1
|
Guo J, Ai X, Jia B, Zhong X, Liu L, Hu Q, Xie J, Hong X, Chen Y, Liu D. Galectin-9 as an indicator of functional limitations and radiographic joint damage in patients with rheumatoid arthritis. Front Immunol 2024; 15:1419676. [PMID: 38957462 PMCID: PMC11217821 DOI: 10.3389/fimmu.2024.1419676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
Background Previous studies have revealed that Galectin-9 (Gal-9) acts as an apoptosis modulator in autoimmunity and rheumatic inflammation. In the present study, we investigated the potential role of Gal-9 as a biomarker in patients with rheumatoid arthritis (RA), especially as an indicator of functional limitations and radiographic joint damage. Methods A total of 146 patients with RA and 52 age- and sex-matched healthy controls were included in this study. Clinical data including disease activity, physical function, and radiographic joint damage were assessed. Functional limitation was defined as the Stanford Health Assessment Questionnaire (HAQ) disability index >1. Subjects with joint erosion >0 or joint space narrowing >0 were considered to have radiographic joint damage. Serum Gal-9 levels were detected by an enzyme-linked immunosorbent assay. Univariate and multivariate logistic regression analysis were used to evaluate the association between Gal-9 and high disease activity and functional limitations, and a prediction model was established to construct predictive nomograms. Results Serum levels of Gal-9 were significantly increased in patients with RA compared to those in healthy controls (median 13.1 ng/mL vs. 7.6 ng/mL). Patients with RA who were older (>65 years), had a longer disease duration (>5 years), longer morning stiffness (>60mins), elevated serum erythrocyte sedimentation rate and C-reactive protein, and difficult-to-treat RA had significantly higher Gal-9 levels than those in the corresponding control subgroups (all p <0.05). Patients with RA were divided into two subgroups according to the cut-off value of Gal-9 of 11.6 ng/mL. Patients with RA with Gal-9 >11.6 ng/mL had a significantly higher core clinical disease activity index, HAQ scores, Sharp/van der Heijde modified Sharp scores, as well as a higher percentage of advanced joint damage (all p<0.05) than patients with Gal-9 ≤11.6 ng/mL. Accordingly, patients with RA presenting either functional limitations or radiographic joint damage had significantly higher serum Gal-9 levels than those without (both p <0.05). Furthermore, multivariate logistic regression analysis showed that a serum level of Gal-9 >11.6 ng/mL was an independent risk factor for high disease activity (OR=3.138, 95% CI 1.150-8.567, p=0.026) and presence of functional limitations (OR=2.455, 95% CI 1.017-5.926, p=0.046), respectively. Conclusion Gal-9 could be considered as a potential indicator in patients with RA, especially with respect to functional limitations and joint damage.
Collapse
Affiliation(s)
- Jiewen Guo
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoyuan Ai
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Baixue Jia
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoling Zhong
- Department of Radiology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Radiology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lixiong Liu
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qiu Hu
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jingyi Xie
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yulan Chen
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Roy M, Mbous Nguimbus L, Badiane PY, Goguen-Couture V, Degrandmaison J, Parent JL, Brunet MA, Roux S. Galectin-8 modulates human osteoclast activity partly through isoform-specific interactions. Life Sci Alliance 2024; 7:e202302348. [PMID: 38395460 PMCID: PMC10895193 DOI: 10.26508/lsa.202302348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In overactive human osteoclasts, we previously identified an alternative splicing event in LGALS8, encoding galectin-8, resulting in decreased expression of the long isoform. Galectin-8, which modulates cell-matrix interactions and functions intracellularly as a danger recognition receptor, has never been associated with osteoclast biology. In human osteoclasts, inhibition of galectin-8 expression revealed its roles in bone resorption, osteoclast nuclearity, and mTORC1 signaling regulation. Galectin-8 isoform-specific inhibition asserted a predominant role for the short isoform in bone resorption. Moreover, a liquid chromatography with tandem mass spectrometry (LC-MS/MS) proteomic analysis of galectin-8 isoforms performed in HEK293T cells identified 22 proteins shared by both isoforms. Meanwhile, nine interacting partners were specific for the short isoform, and none were unique to the long isoform. Interactors specific for the galectin-8 short isoform included cell adhesion proteins and lysosomal proteins. We confirmed the interactions of galectin-8 with CLCN3, CLCN7, LAMP1, and LAMP2, all known to localize to secretory vesicles, in human osteoclasts. Altogether, our study reveals direct roles of galectin-8 in osteoclast activity, mostly attributable to the short isoform.
Collapse
Affiliation(s)
- Michèle Roy
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Léopold Mbous Nguimbus
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Papa Yaya Badiane
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Victor Goguen-Couture
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Jade Degrandmaison
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Jean-Luc Parent
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Marie A Brunet
- Department of Paediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Sophie Roux
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
3
|
Chen PK, Hsu WF, Peng CY, Liao TL, Chang SH, Chen HH, Chen CH, Chen DY. Significant association of elevated serum galectin-9 levels with the development of non-alcoholic fatty liver disease in patients with rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1347268. [PMID: 38371515 PMCID: PMC10869587 DOI: 10.3389/fmed.2024.1347268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is prevalent among rheumatoid arthritis (RA) patients, but its pathogenesis has rarely been explored. Galectin-9 (Gal-9) interacts with T cell immunoglobulin and mucin-containing-molecule-3 (TIM-3) expressed on hepatocytes and thus regulates T cell proliferation in a murine model of NAFLD. We aimed to examine the pathogenic role of the Gal-9/TIM-3 pathway in RA-NAFLD. Methods Serum levels of Gal-9, soluble TIM-3 (sTIM-3), fatty acid-binding proteins (FABP)1, and FABP4 were determined by ELISA in forty-five RA patients and eleven healthy participants. Using Oil-red O staining and immunoblotting, we examined the effects of Gal-9 and free fatty acid (FFA) on lipid accumulation in human hepatocytes and FABP1 expression. Results Serum Gal-9, sTIM-3 and FABP1 level were significantly higher in RA patients (median 5.02 ng/mL, 3.42 ng/mL, and 5.76 ng/mL, respectively) than in healthy participants (1.86 ng/mL, 0.99 ng/mL, and 0.129 ng/mL, all p < 0.001). They were also significantly higher in patients with moderate-to-severe NAFLD compared with none-to-mild NAFLD (p < 0.01; p < 0.05; and p < 0.01, respectively). Serum Gal-9 levels were positively correlated with sTIM-3, FABP1, FABP4 levels, and ultrasound-fatty liver score, respectively, in RA patients. Multivariate regression analysis revealed that Gal-9 (cut-off>3.30) was a significant predictor of NAFLD development, and Gal-9 and sTIM-3 were predictors of NAFLD severity (both p < 0.05). The cell-based assay showed that Gal-9 and FFA could upregulate FABP1 expression and enhance lipid droplet accumulation in hepatocytes. Conclusion Elevated levels of Gal-9 and sTIM3 in RA patients with NAFLD and their positive correlation with NAFLD severity suggest the pathogenic role of Gal-9 signaling in RA-related NAFLD.
Collapse
Affiliation(s)
- Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- Translational Medicine Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Fan Hsu
- College of Medicine, China Medical University, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Yuan Peng
- College of Medicine, China Medical University, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tsai-Ling Liao
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Hsin Chang
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Hua Chen
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Division of General Medicine, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, United States
- Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- Translational Medicine Laboratory, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Yang S, He Z, Wu T, Wang S, Dai H. Glycobiology in osteoclast differentiation and function. Bone Res 2023; 11:55. [PMID: 37884496 PMCID: PMC10603120 DOI: 10.1038/s41413-023-00293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023] Open
Abstract
Glycans, either alone or in complex with glycan-binding proteins, are essential structures that can regulate cell biology by mediating protein stability or receptor dimerization under physiological and pathological conditions. Certain glycans are ligands for lectins, which are carbohydrate-specific receptors. Bone is a complex tissue that provides mechanical support for muscles and joints, and the regulation of bone mass in mammals is governed by complex interplay between bone-forming cells, called osteoblasts, and bone-resorbing cells, called osteoclasts. Bone erosion occurs when bone resorption notably exceeds bone formation. Osteoclasts may be activated during cancer, leading to a range of symptoms, including bone pain, fracture, and spinal cord compression. Our understanding of the role of protein glycosylation in cells and tissues involved in osteoclastogenesis suggests that glycosylation-based treatments can be used in the management of diseases. The aims of this review are to clarify the process of bone resorption and investigate the signaling pathways mediated by glycosylation and their roles in osteoclast biology. Moreover, we aim to outline how the lessons learned about these approaches are paving the way for future glycobiology-focused therapeutics.
Collapse
Affiliation(s)
- Shufa Yang
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Ziyi He
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Tuo Wu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Shunlei Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
| |
Collapse
|
5
|
Epigenetic Perspective of Immunotherapy for Cancers. Cells 2023; 12:cells12030365. [PMID: 36766706 PMCID: PMC9913322 DOI: 10.3390/cells12030365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Immunotherapy has brought new hope for cancer patients in recent times. However, despite the promising success of immunotherapy, there is still a need to address major challenges including heterogeneity in response among patients, the reoccurrence of the disease, and iRAEs (immune-related adverse effects). The first critical step towards solving these issues is understanding the epigenomic events that play a significant role in the regulation of specific biomolecules in the context of the immune population present in the tumor immune microenvironment (TIME) during various treatments and responses. A prominent advantage of this step is that it would enable researchers to harness the reversibility of epigenetic modifications for their druggability. Therefore, we reviewed the crucial studies in which varying epigenomic events were captured with immuno-oncology set-ups. Finally, we discuss the therapeutic possibilities of their utilization for the betterment of immunotherapy in terms of diagnosis, progression, and cure for cancer patients.
Collapse
|
6
|
Brom VC, Strauss AC, Sieberath A, Salber J, Burger C, Wirtz DC, Schildberg FA. Agonistic and antagonistic targeting of immune checkpoint molecules differentially regulate osteoclastogenesis. Front Immunol 2023; 14:988365. [PMID: 36817431 PMCID: PMC9931766 DOI: 10.3389/fimmu.2023.988365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Immune checkpoint inhibitors are used in the treatment of various cancers and have been extensively researched with regard to inflammatory and autoimmune diseases. However, this revolutionary therapeutic strategy often provokes critical auto-inflammatory adverse events, such as inflammatory reactions affecting the cardiovascular, gastrointestinal, nervous, and skeletal systems. Because the function of these immunomodulatory co-receptors is highly cell-type specific and the role of macrophages as osteoclast precursors is widely published, we aimed to analyze the effect of immune checkpoint inhibitors on these bone-resorbing cells. Methods We established an in vitro model of osteoclastogenesis using human peripheral blood mononuclear cells, to which various immune checkpoints and corresponding antagonistic antibodies were administered. Formation of osteoclasts was quantified and cell morphology was analyzed via immunofluorescence staining, cell size measurements, and calculation of cell numbers in a multitude of samples. Results These methodical approaches for osteoclast research achieved objective, comparable, and reproducible results despite the great heterogeneity in the form, size, and number of osteoclasts. In addition to the standardization of experimental analyses involving osteoclasts, our study has revealed the substantial effects of agonistic and antagonistic checkpoint modulation on osteoclastogenesis, confirming the importance of immune checkpoints in bone homeostasis. Discussion Our work will enable more robust and reproducible investigations into the use of immune checkpoint inhibitors in conditions with diminished bone density such as osteoporosis, aseptic loosening of endoprostheses, cancer, as well as the side effects of cancer therapy, and might even pave the way for novel individualized diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Victoria C Brom
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Andreas C Strauss
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Alexander Sieberath
- Department of Experimental Surgery, Centre for Clinical Research, Ruhr-Universität Bochum, Bochum, Germany
| | - Jochen Salber
- Department of Experimental Surgery, Centre for Clinical Research, Ruhr-Universität Bochum, Bochum, Germany.,Department of Surgery, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Bailly C, Thuru X, Quesnel B. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Cancers (Basel) 2021; 13:cancers13246365. [PMID: 34944985 PMCID: PMC8699133 DOI: 10.3390/cancers13246365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The disaccharide lactose is a common excipient in pharmaceutical products. In addition, the two anomers α- and β-lactose can exert immuno-modulatory effects. α-Lactose functions as a major regulator of the T-cell immunoglobulin mucin-3 (Tim-3)/Galectin-9 (Gal-9) immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of TIM-3 with monoclonal antibodies or small molecules represents a promising approach to combat onco-hematological diseases, in particular myelodysplastic syndromes, and acute myeloid leukemia. Alternatively, the activity of the checkpoint can be modulated via targeting of Gal-9 with both α- and β-lactose. In fact, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. This review discusses the capacity of lactose and Gal-9 to modulate the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. The immuno-regulatory roles of lactose and Gal-9 are highlighted. Abstract The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
- Correspondence:
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
8
|
Matsumoto H, Fujita Y, Asano T, Matsuoka N, Temmoku J, Sato S, Yashiro–Furuya M, Yokose K, Yoshida S, Suzuki E, Yago T, Watanabe H, Kawakami A, Migita K. Association between inflammatory cytokines and immune-checkpoint molecule in rheumatoid arthritis. PLoS One 2021; 16:e0260254. [PMID: 34793561 PMCID: PMC8601500 DOI: 10.1371/journal.pone.0260254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/05/2021] [Indexed: 11/27/2022] Open
Abstract
Background Anti-citrullinated peptide antibodies (ACPA) and inflammatory cytokines play important roles in the development of rheumatoid arthritis (RA). T cell immunoglobulin and mucin–domain containing–3 (TIM–3) is an immune-checkpoint molecule involved in inhibitory signaling. Galectin–9 (Gal–9) mediated ligation of TIM–3 induces the amelioration of autoimmune diseases. TIM–3 is expressed in synovial osteoclasts and involved in the rheumatoid bone destruction. The aim of this study was to investigate the relationships between inflammatory cytokines and immune–checkpoint molecules in RA patients. Methods Serum levels of interleukin–6 (IL–6), tumor necrosis factor–α (TNF–α), soluble TIM–3 (sTIM–3) and Gal–9 were determined by ELISA. Patients were stratified into two groups based on ACPA titers: low-medium ACPA (ACPA <200 U/mL) and high ACPA (ACPA ≥200 U/mL). Serum levels of cytokines or immune-checkpoint molecules were evaluated between RA patients with low-medium ACPA titers and high ACPA titers. Results Elevated serum levels of inflammatory cytokines were correlated with DAS28–ESR in RA patients. Although serum levels of sTIM–3 were elevated in RA patients, significant correlations between sTIM–3 and cytokines (IL–6 or TNF–α) were observed exclusively in RA patients with low-medium ACPA titers (<200 U/mL). Serum levels of IL–6 and TNF–α levels were significantly correlated with elevated Gal–9 levels regardless of ACPA status. A significant correlation between IL–6 and Gal–9 was observed in RA patients without advanced joint damage. Conversely, a significant correlation between TNF–α and Gal–9 was observed in RA patients with advanced joint damage. Conclusions Our data indicated that there are positive correlations between circulating inflammatory cytokines and checkpoint molecules in RA patients and these interactions can be modulated by ACPA status or joint damage stage.
Collapse
Affiliation(s)
- Haruki Matsumoto
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoki Matsuoka
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jumpei Temmoku
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Makiko Yashiro–Furuya
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kohei Yokose
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shuhei Yoshida
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Eiji Suzuki
- Department of Rheumatology, Ohta Nishinouchi General Hospital Foundation, Fukushima, Japan
| | - Toru Yago
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
- * E-mail:
| |
Collapse
|
9
|
Kukita T, Hiura H, Gu JY, Zhang JQ, Kyumoto-Nakamura Y, Uehara N, Murata S, Sonoda S, Yamaza T, Takahashi I, Kukita A. Modulation of osteoclastogenesis through adrenomedullin receptors on osteoclast precursors: initiation of differentiation by asymmetric cell division. J Transl Med 2021; 101:1449-1457. [PMID: 34611305 DOI: 10.1038/s41374-021-00633-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
Adrenomedullin (ADM), a member of the calcitonin family of peptides, is a potent vasodilator and was shown to have the ability to modulate bone metabolism. We have previously found a unique cell surface antigen (Kat1 antigen) expressed in rat osteoclasts, which is involved in the functional regulation of the calcitonin receptor (CTR). Cross-linking of cell surface Kat1 antigen with anti-Kat1 antigen monoclonal antibody (mAbKat1) stimulated osteoclast formation only under conditions suppressed by calcitonin. Here, we found that ADM provoked a significant stimulation in osteoclastogenesis only in the presence of calcitonin; a similar biological effect was seen with mAbKat1 in the bone marrow culture system. This stimulatory effect on osteoclastogenesis mediated by ADM was abolished by the addition of mAbKat1. 125I-labeled rat ADM (125I-ADM)-binding experiments involving micro-autoradiographic studies demonstrated that mononuclear precursors of osteoclasts abundantly expressed ADM receptors, and the specific binding of 125I-ADM was markedly inhibited by the addition of mAbKat1, suggesting a close relationship between the Kat1 antigen and the functional ADM receptors expressed on cells in the osteoclast lineage. ADM receptors were also detected in the osteoclast progenitor cells in the late mitotic phase, in which only one daughter cell of the dividing cell express ADM receptors, suggesting the semiconservative cell division of the osteoclast progenitors in the initiation of osteoclastogenesis. Messenger RNAs for the receptor activity-modifying-protein 1 (RAMP1) and calcitonin receptor-like receptor (CRLR) were expressed in cells in the osteoclast lineage; however, the expression of RAMP2 or RAMP3 was not detected in these cells. It is suggested that the Kat1 antigen is involved in the functional ADM receptor distinct from the general ADM receptor, consisting of CRLR and RAMP2 or RAMP3. Modulation of osteoclastogenesis through functional ADM receptors abundantly expressed on mononuclear osteoclast precursors is supposed to be important in the fine regulation of osteoclast differentiation in a specific osteotrophic hormonal condition with a high level of calcitonin in blood.
Collapse
Affiliation(s)
- Toshio Kukita
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan.
| | - Hidenobu Hiura
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
- Division of Oral Health, Growth, and Development, Department of Orthodontics and Dental Orthopedics, Graduate School of Dental Science, Kyushu University, 3-3-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jiong-Yan Gu
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Jing-Qi Zhang
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Yukari Kyumoto-Nakamura
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Norihisa Uehara
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Sara Murata
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
- Division of Oral Health, Growth, and Development, Department of Orthodontics and Dental Orthopedics, Graduate School of Dental Science, Kyushu University, 3-3-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Ichiro Takahashi
- Division of Oral Health, Growth, and Development, Department of Orthodontics and Dental Orthopedics, Graduate School of Dental Science, Kyushu University, 3-3-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akiko Kukita
- Department of Research Center of Arthroplasty, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga, 849-0937, Japan
| |
Collapse
|
10
|
Xu WD, Huang Q, Huang AF. Emerging role of galectin family in inflammatory autoimmune diseases. Autoimmun Rev 2021; 20:102847. [PMID: 33971347 DOI: 10.1016/j.autrev.2021.102847] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022]
Abstract
Galectin family is a group of glycan-binding proteins. Members in this family are expressed in different tissues, immune or non-immune cells. These molecules are important regulators in innate and adaptive immune response, performing significantly in a broad range of cellular and pathophysiological functions, such as cell proliferation, adhesion, migration, and invasion. Findings have shown that expression of galectins is abnormal in many inflammatory autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, osteoarthritis, sjögren's syndrome, systemic sclerosis. Galectins also function as intracellular and extracellular disease regulators mainly through the binding of their carbohydrate recognition domain to glycoconjugates. Here, we review the state-of-the-art of the role that different galectin family members play in immune cells, contributing to the complex inflammatory diseases. Hopefully collection of the information will provide a preliminary theoretical basis for the exploration of new targets for treatment of the disorders.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qi Huang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
11
|
Matsumoto H, Fujita Y, Asano T, Matsuoka N, Temmoku J, Sato S, Yashiro-Furuya M, Watanabe H, Migita K. T cell immunoglobulin and mucin domain-3 is associated with disease activity and progressive joint damage in rheumatoid arthritis patients. Medicine (Baltimore) 2020; 99:e22892. [PMID: 33126340 PMCID: PMC7598883 DOI: 10.1097/md.0000000000022892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
T cell immunoglobulin and mucin domain-3 (TIM-3) is a surface molecule expressed on immune cells which play a role in immune regulation. The aims of the present study were to determine whether circulating soluble T cell immunoglobulin domain and mucin-3 (sTIM-3) are elevated in rheumatoid arthritis (RA) patients, and investigate the relationships between sTIM-3 and clinical features of RA.The study included 116 patients with established RA and 27 healthy control subjects. Serum levels of sTIM-3 were measured via the enzyme-linked immunosorbent assays (ELISA). Correlations between serum sTIM-3 and a range of parameters including anti-citrullinated peptide antibody (ACPA) titer, erythrocyte sedimentation rate (ESR), and matrix metalloproteinase-3 (MMP-3) were assessed.Serum sTIM-3 was significantly elevated in RA patients compared with those in healthy subjects, and it was positively correlated with ACPA titer (r = 0.27 P = .005), ESR (r = 0.27, P = .004) and MMP-3 (r = 0.35, P < .001). In RA patients with high ACPA titers (≥200 U/mL), sTIM-3 was not correlated with ESR or MMP-3. Whereas, sTIM-3 was significantly correlated with ESR and MMP-3 in RA patients with low ACPA titers (<200 U/mL).Serum sTIM-3 was increased in RA patients, and it was associated with proinflammatory markers and disease activity in RA patients under a particular ACPA status. Our data suggest that circulating sTIM-3 may be a useful biomarker for the determination of disease activity in RA patients.
Collapse
|
12
|
Tazhitdinova R, Timoshenko AV. The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation. Cells 2020; 9:cells9081792. [PMID: 32731422 PMCID: PMC7465113 DOI: 10.3390/cells9081792] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Galectins are a family of soluble β-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. Human cells express twelve out of sixteen recognized mammalian galectin genes and their expression profiles are very different between cell types and tissues. In this review, we summarize the current knowledge on the changes in the expression of individual galectins at mRNA and protein levels in different types of differentiating cells and the effects of recombinant galectins on cellular differentiation. A new model of galectin regulation is proposed considering the change in O-GlcNAc homeostasis between progenitor/stem cells and mature differentiated cells. The recognition of galectins as regulatory factors controlling cell differentiation and self-renewal is essential for developmental and cancer biology to develop innovative strategies for prevention and targeted treatment of proliferative diseases, tissue regeneration, and stem-cell therapy.
Collapse
|
13
|
Zhang L, Tian S, Zhao M, Yang T, Quan S, Yang Q, Song L, Yang X. SUV39H1-DNMT3A-mediated epigenetic regulation of Tim-3 and galectin-9 in the cervical cancer. Cancer Cell Int 2020; 20:325. [PMID: 32699524 PMCID: PMC7370487 DOI: 10.1186/s12935-020-01380-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background Methylation of histone 3 at lysine 9 (H3K9) and DNA methylation are epigenetic marks correlated with genes silencing. The tumor microenvironment significantly influences therapeutic responses and clinical outcomes. The epigenetic-regulation mechanism of the costimulatory factors Tim-3 and galectin-9 in cervical cancer remains unknown. Methods The methylation status of HAVCR2 and LGALS9 were detected by MS-PCR in cervical cancer tissues and cell lines. The underlying molecular mechanism of SUV39H1-DNMT3A-Tim-3/galectin-9 regulation was elucidated using cervical cancer cell lines containing siRNA or/and over-expression system. Confirmation of the regulation of DNMT3A by SUV39H1 used ChIP-qPCR. Results SUV39H1 up-regulates H3K9me3 expression at the DNMT3A promoter region, which in turn induced expression of DNMT3A in cervical cancer. In addition, the mechanistic studies indicate that DNMT3A mediates the epigenetic modulation of the HAVCR2 and LGALS9 genes by directly binding to their promoter regions in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1 up-regulates the level of H3K9me3 at the DNMT3A promoter region was found to correlate with Tim-3 and galectin-9 cellular expression level. Conclusion These results indicate that SUV39H1-DNMT3A is a crucial Tim-3 and galectin-9 regulatory axis in cervical cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Sijuan Tian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Minyi Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Shimin Quan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Qing Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Lihua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| |
Collapse
|
14
|
Fujita Y, Asano T, Matsuoka N, Temmoku J, Sato S, Matsumoto H, Furuya MY, Suzuki E, Watanabe H, Kawakami A, Migita K. Differential regulation and correlation between galectin-9 and anti-CCP antibody (ACPA) in rheumatoid arthritis patients. Arthritis Res Ther 2020; 22:80. [PMID: 32293530 PMCID: PMC7161013 DOI: 10.1186/s13075-020-02158-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Background Galectin-9 (Gal-9) is involved in the regulatory process of immune responses or inflammation. The aim of the present study is to characterize circulating Gal-9 in patients with rheumatoid arthritis (RA) and its relationship with RA disease activity and phenotype. Methods A total of 116 RA patients and 31 age-matched healthy controls were included in this study. Disease activity of RA patients was determined by Disease Activity Score of 28 joint scoring system (DAS28-ESR). Levels of Gal-9 in serum were determined by enzyme-linked immunosorbent assay (ELISA). Results Serum levels of Gal-9 were significantly higher in patients with RA compared to those in controls (median 7577 pg/ml [interquartile range (IQR) 5570–10,201] versus 4738 pg/ml [IQR 4267–5630], p = 0.001). There were significant differences in serum Gal-9 between RA patients with and without RA-ILD (9606 pg/ml [IQR 8522–12,167] versus 7078 pg/ml [IQR 5225–9447], p < 0.001) or those with and without advanced joint damage (stage II–IV, 9606 pg/ml [IQR 8522–12,167] versus 7078 pg/ml [IQR 5225–9447], p < 0.001). Although serum levels of Gal-9 correlated with the titers of ACPA (r = 0.275, p = 0.002), levels of ACPA titers conferred the different relationship, between serum Gal-9 and inflammatory mediators or RA disease activity. Although Gal-9 was correlated with ACPA titers (r = 0.508, p = 0.002), there was no correlation between Gal-9 levels and erythrocyte sedimentation rate (ESR), matrix metalloproteinase-3 (MMP-3), or DAS28-ESR in RA patients with high titers of ACPA (> 200 U/ml). Conversely, Gal-9 was correlated with MMP-3 (r = 0.300, p = 0.007) or DAS28-ESR (r = 0.331, p = 0.004) but not with ACPA titer in RA patients with low titers of ACPA titers (< 200 U/ml). Conclusions Serum levels of Gal-9 were increased in RA patients and associated with RA disease activity in RA patients without high titers of ACPA. The levels of ACPA titers may influence the values of circulating Gal-9 in RA patients with various clinical phenotypes. These data suggest that Gal-9 possessed the properties of pro-inflammatory or arthropathic biomarker under the status of ACPA titers.
Collapse
Affiliation(s)
- Yuya Fujita
- Department of Rheumatology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Naoki Matsuoka
- Department of Rheumatology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Jumpei Temmoku
- Department of Rheumatology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shuzo Sato
- Department of Rheumatology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Haruki Matsumoto
- Department of Rheumatology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Makiko Yashiro Furuya
- Department of Rheumatology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Eiji Suzuki
- Department of Rheumatology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Hiroshi Watanabe
- Department of Rheumatology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences,, Nagasaki University, Sakamoto1-7-1, Nagasaki, 852-8501, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan.
| |
Collapse
|
15
|
Zhang L, Tian S, Pei M, Zhao M, Wang L, Jiang Y, Yang T, Zhao J, Song L, Yang X. Crosstalk between histone modification and DNA methylation orchestrates the epigenetic regulation of the costimulatory factors, Tim‑3 and galectin‑9, in cervical cancer. Oncol Rep 2019; 42:2655-2669. [PMID: 31661141 PMCID: PMC6859457 DOI: 10.3892/or.2019.7388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022] Open
Abstract
Persistent infection with high-risk human papillomavirus is known to cause cervical cancer. The binding of the costimulatory factors, Tim-3 and galectin-9, can cause immune tolerance and lead to immune escape during carcinogenesis. Epigenetic regulation is essential for Tim-3/galectin-9 expression, which affects the outcome of local cervical cancer infection. Hence, exploring the epigenetic regulatory mechanisms of costimulatory signaling by Tim-3/galectin-9 is of great interest for investigating the mechanisms through which these proteins are regulated in cervical cancer tumorigenesis. In this study, we report that E2F-1 and FOXM1 mediated by HPV18 E6 and E7 can enhance the transcriptional activity of Enhancer of zeste homolog 2 (EZH2) by binding to its promoter region, resulting in the induced expression of the EZH2-specific target protein, H3K27me3, which consequently reduces the expression of the downstream target gene, DNA (cytosine-5)-methyltransferase 3A (DNMT3A). EZH2 and H3K27me3 directly interact with the DNMT3A promoter region to negatively regulate its expression in HeLa cells. Moreover, the downregulated DNMT3A and the decreased methylation levels in HAVCR2/LGALS9 promoter regions in HeLa cells promoted the expression of Tim-3/galectin-9. Furthermore, the high expression of Tim-3/galectin-9 was associated with HPV positivity among patients with cervical cancer. Moreover, HAVCR2/LGALS9 promoter regions were hypermethylated in normal cervical tissues, and this hypermethylated status inhibited gene expression. On the whole, these findings suggest that EZH2, H3K27me3 and DNMT3A mediate the epigenetic regulation of the negative stimulatory molecules, Tim-3 and galectin-9 in cervical cancer which is associated with HPV18 infection.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sijuan Tian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Meili Pei
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Minyi Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yifan Jiang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Juan Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lihua Song
- Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
16
|
Galectin-9 gene (LGALS9) polymorphisms are associated with rheumatoid arthritis in Brazilian patients. PLoS One 2019; 14:e0223191. [PMID: 31600237 PMCID: PMC6786579 DOI: 10.1371/journal.pone.0223191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and hyperplasia, as well as cartilage and bone destruction. Several proteins are associated with the pathogenesis of the disease. Galectin-9 belongs to the family of lectins that are involved in various biological processes and have anti-inflammatory activity. Objective To investigate associations between the SNPs of the GAL-9 gene (LGALS9) and serum levels in rheumatoid arthritis patients. We extracted DNA from 356 subjects, 156 RA patients and 200 healthy controls from northeastern Brazil. Three polymorphisms (rs4795835, rs3763959, and rs4239242) in the LGALS9 gene were selected and genotyped using TaqMan SNP genotyping assay. Serum concentrations of galectin-9 were analyzed by ELISA. Results The rs4239242 TT genotype showed a positive association with RA (p = 0.0032, odds ratio = 0.28), and heterozygous TC were prevalent in the control group compared to RA patients (p = 0.0001, odds ratio = 7.99). Galectin-9 serum levels were significantly increased in RA patients compared to the control group (p<0.0001). Patients in remission had high levels of galectin compared to the moderate activity group (p<0.0001). Regarding the Clinical Disease Activity Index (CDAI), patients in remission or low activity presented high levels of galectin when compared to patients in severity (p<0.0001). Patients performing moderate activity had a significant value compared to patients who were in high disease severity (p = 0.0064). Interestingly, the AG genotype (rs3763959) has been associated with a higher presence of bone erosion in RA patients (p = 0.0436). The SNP rs4239242 TT genotype showed a positive association with RA in comparison to the control group. The AG genotype (rs3763959) has been associated with a higher presence of bone erosion in RA patients.
Collapse
|
17
|
Pieters BCH, Cappariello A, van den Bosch MHJ, van Lent PLEM, Teti A, van de Loo FAJ. Macrophage-Derived Extracellular Vesicles as Carriers of Alarmins and Their Potential Involvement in Bone Homeostasis. Front Immunol 2019; 10:1901. [PMID: 31440259 PMCID: PMC6694442 DOI: 10.3389/fimmu.2019.01901] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/26/2019] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles are a heterogeneous group of cell-derived membranous structures, which facilitate intercellular communication. Recent studies have highlighted the importance of extracellular vesicles in bone homeostasis, as mediators of crosstalk between different bone-resident cells. Osteoblasts and osteoclasts are capable of releasing various types of extracellular vesicles that promote both osteogenesis, as well as, osteoclastogenesis, maintaining bone homeostasis. However, the contribution of immune cell-derived extracellular vesicles in bone homeostasis remains largely unknown. Recent proteomic studies showed that alarmins are abundantly present in/on macrophage-derived EVs. In this review we will describe these alarmins in the context of bone matrix regulation and discuss the potential contribution macrophage-derived EVs may have in this process.
Collapse
Affiliation(s)
- Bartijn C H Pieters
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alfredo Cappariello
- Research Laboratories - Department of Oncohematology IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
18
|
Seebach E, Kubatzky KF. Chronic Implant-Related Bone Infections-Can Immune Modulation be a Therapeutic Strategy? Front Immunol 2019; 10:1724. [PMID: 31396229 PMCID: PMC6664079 DOI: 10.3389/fimmu.2019.01724] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic implant-related bone infections are a major problem in orthopedic and trauma-related surgery with severe consequences for the affected patients. As antibiotic resistance increases in general and because most antibiotics have poor effectiveness against biofilm-embedded bacteria in particular, there is a need for alternative and innovative treatment approaches. Recently, the immune system has moved into focus as the key player in infection defense and bone homeostasis, and the targeted modulation of the host response is becoming an emerging field of interest. The aim of this review was to summarize the current knowledge of impaired endogenous defense mechanisms that are unable to prevent chronicity of bone infections associated with a prosthetic or osteosynthetic device. The presence of foreign material adversely affects the immune system by generating a local immune-compromised environment where spontaneous clearance of planktonic bacteria does not take place. Furthermore, the surface structure of the implant facilitates the transition of bacteria from the planktonic to the biofilm stage. Biofilm formation on the implant surface is closely linked to the development of a chronic infection, and a misled adaption of the immune system makes it impossible to effectively eliminate biofilm infections. The interaction between the immune system and bone cells, especially osteoclasts, is extensively studied in the field of osteoimmunology and this crosstalk further aggravates the course of bone infection by shifting bone homeostasis in favor of bone resorption. T cells play a major role in various chronic diseases and in this review a special focus was therefore set on what is known about an ineffective T cell response. Myeloid-derived suppressor cells (MDSCs), anti-inflammatory macrophages, regulatory T cells (Tregs) as well as osteoclasts all suppress immune defense mechanisms and negatively regulate T cell-mediated immunity. Thus, these cells are considered to be potential targets for immune therapy. The success of immune checkpoint inhibition in cancer treatment encourages the transfer of such immunological approaches into treatment strategies of other chronic diseases. Here, we discuss whether immune modulation can be a therapeutic tool for the treatment of chronic implant-related bone infections.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
19
|
Chiyo T, Fujita K, Iwama H, Fujihara S, Tadokoro T, Ohura K, Matsui T, Goda Y, Kobayashi N, Nishiyama N, Yachida T, Morishita A, Kobara H, Mori H, Niki T, Hirashima M, Himoto T, Masaki T. Galectin-9 Induces Mitochondria-Mediated Apoptosis of Esophageal Cancer In Vitro and In Vivo in a Xenograft Mouse Model. Int J Mol Sci 2019; 20:ijms20112634. [PMID: 31146370 PMCID: PMC6600680 DOI: 10.3390/ijms20112634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/30/2022] Open
Abstract
Galectin-9 (Gal-9) enhances tumor immunity mediated by T cells, macrophages, and dendritic cells. Its expression level in various cancers correlates with prognosis. Furthermore, Gal-9 directly induces apoptosis in various cancers; however, its mechanism of action and bioactivity has not been clarified. We evaluated Gal-9 antitumor effect against esophageal squamous cell carcinoma (ESCC) to analyze the dynamics of apoptosis-related molecules, elucidate its mechanism of action, and identify relevant changes in miRNA expressions. KYSE-150 and KYSE-180 cells were treated with Gal-9 and their proliferation was evaluated. Gal-9 inhibited cell proliferation in a concentration-dependent manner. The xenograft mouse model established with KYSE-150 cells was administered with Gal-9 and significant suppression in the tumor growth observed. Gal-9 treatment of KYSE-150 cells increased the number of Annexin V-positive cells, activation of caspase-3, and collapse of mitochondrial potential, indicating apoptosis induction. c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38) phosphorylation were activated and could be involved in apoptosis. Therefore, Gal-9 induces mitochondria-mediated apoptosis of ESCC and inhibits cell proliferation in vitro and in vivo with JNK and p38 activation.
Collapse
Affiliation(s)
- Taiga Chiyo
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Kyoko Ohura
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Takanori Matsui
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Yasuhiro Goda
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Nobuya Kobayashi
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Noriko Nishiyama
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Tatsuo Yachida
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Mitsuomi Hirashima
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-Cho, Takamatsu, Kagawa 761-0123, Japan.
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| |
Collapse
|
20
|
Salamanna F, Veronesi F, Frizziero A, Fini M. Role and translational implication of galectins in arthritis pathophysiology and treatment: A systematic literature review. J Cell Physiol 2018; 234:1588-1605. [DOI: 10.1002/jcp.27026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Francesca Salamanna
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT Rizzoli Orthopedic Institute Bologna Italy
| | - Francesca Veronesi
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT Rizzoli Orthopedic Institute Bologna Italy
| | - Antonio Frizziero
- Department of Physical and Rehabilitation Medicine University of Padova Padova Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute Bologna Italy
| |
Collapse
|
21
|
Analysis of PD-1 and Tim-3 expression on CD4 + T cells of patients with rheumatoid arthritis; negative association with DAS28. Clin Rheumatol 2018; 37:2063-2071. [PMID: 29626269 DOI: 10.1007/s10067-018-4076-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
Expression of T cell immunoglobulin and mucin-domain containing-3 (Tim-3) and programmed cell death-1 (PD-1) was studied on CD4+ T cells of patients with rheumatoid arthritis (RA). Association of Tim-3 and PD-1 expression with disease activity of RA patients was also addressed. A total of 37 RA patients and 31 sex- and age-matched healthy controls were included in this study. Disease activity of RA patients was determined by Disease Activity Score of 28 joints scoring system (DAS28). A three-color flow cytometry method was applied to determine the frequency of Tim-3+/PD-1+/CD4+ T cells. To measure the cytokine production, peripheral blood mononuclear cells (PBMCs) were stimulated with PMA/ionomycin. Concentrations of IL-17, IL-10, IFN-γ, and TNF-α were measured in culture supernatants by ELISA. The frequency of PD-1+/CD4+ and Tim-3+/PD-1+/CD4+ T cells was significantly higher in patients with RA compared to that in controls (p = 0.0013 and p = 0.050, respectively). The percentage of Tim-3+/CD4+ T cells was similar in patients and controls (p = 0.4498). The RA patients have produced significant higher levels of TNF-α, IL-17, and IFN-γ than those of healthy controls (p = 0.0121, p = 0.0417, and p = 0.0478, respectively). Interestingly, an inverse correlation was found between the frequency of Tim-3+/CD4+ cells and DAS28 of RA patients (r = - 0.4696, p = 0.0493). Similarly, the percentage of Tim-3+/PD-1+/CD4+ T cells was also revealed an inverse correlation with DAS28 (r = - 0.5268, p = 0.0493). Moreover, significant positive correlations were detected between the concentrations of TNF-α (r = 0.6418, p = 0.0023) and IL-17 (r = 0.4683, p = 0.0373) with disease activity of RA patients. Our results indicate that Tim-3 and PD-1 are involved in immune dysregulation mechanisms of rheumatoid arthritis and could be considered as useful biomarkers for determination of disease activity and progression.
Collapse
|
22
|
Takeuchi T, Sugimoto A, Imazato N, Tamura M, Nakatani S, Kobata K, Arata Y. Glucosamine Suppresses Osteoclast Differentiation through the Modulation of Glycosylation Including O-GlcNAcylation. Biol Pharm Bull 2017; 40:352-356. [PMID: 28250278 DOI: 10.1248/bpb.b16-00877] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteoclasts represent the only bone resorbing cells in an organism. In this study, we investigated the effect of glucosamine (GlcN), a nutrient used to prevent joint pain and bone loss, on the osteoclastogenesis of murine macrophage-like RAW264 cells. GlcN supplementation suppressed the upregulation of osteoclast-specific genes (tartrate-resistant acid phosphatase (TRAP), cathepsin K, matrix metallopeptidase 9, and nuclear factor of activated T cell c1 (NFATc1)), receptor activator of nuclear factor-κB ligand (RANKL)-dependent upregulation of TRAP enzyme activity, and the formation of TRAP-positive multinuclear cells more effectively than N-acetylglucosamine (GlcNAc), which we have previously shown to inhibit osteoclast differentiation. To clarify the mechanism by which GlcN suppresses osteoclastogenesis, we further investigated the effect of GlcN on O-GlcNAcylation by Western blotting and on other types of glycosylation by lectin blotting. We found that, upon addition of GlcN, the O-GlcNAcylation of cellular proteins was increased whereas α2,6-linked sialic acid modification was decreased. Therefore, these glycan modifications in cellular proteins may contribute to the suppression of osteoclastogenesis.
Collapse
|
23
|
Takeuchi T, Nagasaka M, Shimizu M, Tamura M, Arata Y. N-acetylglucosamine suppresses osteoclastogenesis in part through the promotion of O-GlcNAcylation. Bone Rep 2016; 5:15-21. [PMID: 28326343 PMCID: PMC4926832 DOI: 10.1016/j.bonr.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/01/2016] [Indexed: 01/28/2023] Open
Abstract
Osteoclasts are the only cells in an organism capable of resorbing bone. These cells differentiate from monocyte/macrophage lineage cells upon stimulation by receptor activator of NF-κB ligand (RANKL). On the other hand, osteoclastogenesis is reportedly suppressed by glucose via the downregulation of NF-κB activity through suppression of reactive oxygen species generation. To examine whether other sugars might also affect osteoclast development, we compared the effects of monomeric sugars (glucose, galactose, N-acetylglucosamine (GlcNAc), and N-acetylgalactosamine (GalNAc)) on the osteoclastogenesis of murine RAW264 cells. Our results demonstrated that, in addition to glucose, both GlcNAc and GalNAc, which each have little effect on the generation of reactive oxygen species, suppress osteoclastogenesis. We hypothesized that GlcNAc might affect osteoclastogenesis through the upregulation of O-GlcNAcylation and showed that GlcNAc increases global O-GlcNAcylation, thereby suppressing the RANKL-dependent phosphorylation of NF-κB p65. Furthermore, an inhibitor of N-acetyl-β-D-glucosaminidase, O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino N-phenylcarbamate (PUGNAc), which also increases O-GlcNAcylation, suppressed the osteoclastogenesis of RAW264 cells and that of human peripheral blood mononuclear cells. Together, these data suggest that GlcNAc suppresses osteoclast differentiation in part through the promotion of O-GlcNAcylation. Along with glucose, the monomeric sugars GlcNAc and GalNAc suppress osteoclastic differentiation. Unlike glucose, GlcNAc and GalNAc have little effect on RANKL-induced ROS production. GlcNAc and the N-acetyl-β-D-glucosaminidase inhibitor PUGNAc both increase O-GlcNAcylation and suppress osteoclastogenesis. Upregulation of O-GlcNAcylation suppresses the RANKL-dependent phosphorylation of NF-κB p65. Together, these results suggest that GlcNAc suppresses osteoclastogenesis in part through the promotion of O-GlcNAcylation.
Collapse
Key Words
- Gal, galactose
- GalNAc, N-acetylgalactosamine
- Glc, glucose
- GlcNAc
- GlcNAc, N-acetylglucosamine
- M-CSF, macrophage colony-stimulating factor
- N-acetylglucosamine
- NF-κB
- NF-κB, nuclear factor-κB
- O-GlcNAcylation
- Osteoclast
- PBMC, peripheral blood mononuclear cell
- PUGNAc, O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino N-phenylcarbamate
- RANKL, receptor activator of nuclear factor-κB ligand
- ROS, reactive oxygen species
- TRAP, tartrate-resistant acid phosphatase
- UDP, uridine diphosphate
- sRANKL, soluble receptor activator of nuclear factor-κB ligand
Collapse
Affiliation(s)
- Tomoharu Takeuchi
- Corresponding author at: Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.Laboratory of BiochemistryFaculty of Pharmaceutical SciencesJosai University1-1 KeyakidaiSakadoSaitama350-0295Japan
| | | | | | | | | |
Collapse
|
24
|
Wang HW, Zhu XL, Qin LM, Qian HJ, Wang Y. Microglia activity modulated by T cell Ig and mucin domain protein 3 (Tim-3). Cell Immunol 2014; 293:49-58. [PMID: 25557503 DOI: 10.1016/j.cellimm.2014.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/27/2022]
Abstract
Microglia are the main innate immune cells in the central nervous system that are actively involved in maintaining brain homeostasis and diseases. T cell Ig and mucin domain protein 3 (Tim-3) plays critical roles in both the adaptive and the innate immune system and is an emerging therapeutic target for treatment of various disorders. In the brain Tim-3 is specifically expressed on microglia but its functional role is unclear. Here, we showed that Tim-3 was up-regulated on microglia by ATP or LPS stimulation. Tim-3 activation with antibodies increased microglia expression of TGF-β, TNF-α and IL-1β. Blocking of Tim-3 with antibodies decreased the microglial phagocytosis of apoptotic neurons. Tim-3 blocking alleviated the detrimental effect of microglia on neurons and promoted NG2 cell differentiation in co-cultures. Finally, MAPKs namely ERK1/2 and JNK proteins were phosphorylated upon Tim-3 activation in microglia. Data indicated that Tim-3 modulates microglia activity and regulates the interaction of microglia-neural cells.
Collapse
Affiliation(s)
- Hong-wei Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, PR China
| | - Xin-li Zhu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Li-ming Qin
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Hai-jun Qian
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Yiner Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|