1
|
Perez-Ternero C, Li W, Aubdool AA, Goldin RD, Loy J, Devalia K, Alazawi W, Hobbs AJ. Endogenous C-type natriuretic peptide offsets the pathogenesis of steatohepatitis, hepatic fibrosis, and portal hypertension. PNAS NEXUS 2025; 4:pgae579. [PMID: 39816244 PMCID: PMC11734523 DOI: 10.1093/pnasnexus/pgae579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), hepatic fibrosis, and portal hypertension constitute an increasing public health problem due to the growing prevalence of obesity and diabetes. C-type natriuretic peptide (CNP) is an endogenous regulator of cardiovascular homeostasis, immune cell reactivity, and fibrotic disease. Thus, we investigated a role for CNP in the pathogenesis of MASLD. Wild-type (WT), global CNP (gbCNP-/-), and natriuretic peptide receptor-C (NPR-C-/-) knockout mice were fed a choline-deficient defined amino acid diet or administered CCl4. Liver damage was assessed by histological and biochemical analyses, with steatosis and portal vein size determined by ultrasound. Portal vein pressure and reactivity were measured in vivo and ex vivo, respectively. Pharmacological CNP delivery was used to evaluate prospective therapeutic benefit, and plasma CNP concentration was compared in controls and patients with cirrhosis. Circulating CNP concentration was lower in patients with cirrhosis compared with controls. gbCNP-/- mice were more susceptible, versus WT, to advanced steatohepatitis and hepatic fibrosis, characterized by increased immune cell infiltration, fibrosis, ballooning, plasma alanine aminotransferase concentration, and up-regulation of markers driving these processes. gbCNP-/- mice had increased portal vein diameter and pressure, underpinned by CNP insensitivity. NPR-C-/- animals recapitulated, comparatively, the exaggerated pathogenic phenotype in gbCNP-/- mice, whereas CNP reduced hepatic stellate cell proliferation via NPR-B-dependent inhibition of extracellular signal-related kinase 1/2. Administration of CNP reversed many aspects of disease severity. These data define a new intrinsic role for CNP in offsetting the pathogenesis of MASLD, hepatic fibrosis, and portal hypertension and the potential for targeting CNP signaling for treating these disorders.
Collapse
Affiliation(s)
- Cristina Perez-Ternero
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Barts and The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Wenhao Li
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Aisah A Aubdool
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Barts and The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Robert D Goldin
- Centre for Pathology, St Mary’s Hospital, Imperial College, London W2 1NY, United Kingdom
| | - John Loy
- Bariatric Surgery Department, Homerton University Hospital, Homerton Row, London E9 6SR, United Kingdom
| | - Kalpana Devalia
- Bariatric Surgery Department, Homerton University Hospital, Homerton Row, London E9 6SR, United Kingdom
| | - William Alazawi
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Adrian J Hobbs
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Barts and The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
2
|
Ma X, Peddibhotla S, Zheng Y, Pan S, Mehta A, Moroni DG, Chen QY, Ma X, Burnett JC, Malany S, Sangaralingham SJ. Discovery of small molecule guanylyl cyclase B receptor positive allosteric modulators. PNAS NEXUS 2024; 3:pgae225. [PMID: 38894878 PMCID: PMC11185183 DOI: 10.1093/pnasnexus/pgae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Myocardial fibrosis is a pathological hallmark of cardiovascular disease (CVD), and excessive fibrosis can lead to new-onset heart failure and increased mortality. Currently, pharmacological therapies for myocardial fibrosis are limited, highlighting the need for novel therapeutic approaches. The particulate guanylyl cyclase B (GC-B) receptor possesses beneficial antifibrotic actions through the binding of its natural ligand C-type natriuretic peptide (CNP) and the generation of the intracellular second messenger, cyclic guanosine 3',5'-monophosphate (cGMP). These actions include the suppression of fibroblast proliferation and reduction in collagen synthesis. With its abundant expression on fibroblasts, the GC-B receptor has emerged as a key molecular target for innovative CVD therapeutics. However, small molecules that can bind and potentiate the GC-B/cGMP pathway have yet to be discovered. From a cell-based high-throughput screening initiative of the NIH Molecular Libraries Small Molecule Repository and hit-to-lead evolution based on a series of structure-activity relationships, we report the successful discovery of MCUF-42, a GC-B-targeted small molecule that acts as a positive allosteric modulator (PAM). Studies herein support MCUF-42's ability to enhance the binding affinity between GC-B and CNP. Moreover, MCUF-42 potentiated cGMP levels induced by CNP in human cardiac fibroblasts (HCFs) and notably also enhanced the inhibitory effect of CNP on HCF proliferation. Together, our findings highlight that MCUF-42 is a small molecule that can modulate the GC-B/cGMP signaling pathway, potentially enhancing the antifibrotic actions of CNP. Thus, these data underscore the continued development of GC-B small molecule PAMs as a novel therapeutic strategy for targeting cardiac fibrosis and CVD.
Collapse
Affiliation(s)
- Xiao Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Ye Zheng
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Shuchong Pan
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alka Mehta
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610, USA
| | - Dante G Moroni
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Xiaoyu Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Siobhan Malany
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610, USA
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Ensho T, Hino J, Ueda Y, Miyazato M, Iwakura H. Vascular endothelial cell-specific overexpression of CNP did not improve liver fibrosis in HFFCD-induced NASH, but did improve renal lesions. Peptides 2024; 172:171146. [PMID: 38157939 DOI: 10.1016/j.peptides.2023.171146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Mice with endothelial-cell-specific overexpression of C-type natriuretic peptide (E-CNP Tg mice) were shown to be protected against hepatic fibrosis and inflammation induced by high fat diet (HFD) feeding, with improved insulin sensitivity and attenuated weight gain. A recently developed high-fat, high-fructose, high-cholesterol diet (HFFCD) is considered to be a superior model to HFD, owing to the resemblance to human non-alcoholic steatohepatitis (NASH). In this study, we therefore aimed to reveal whether these previous findings with E-CNP Tg mice on HFD can be observed in a newly developed NASH model. Patients with NASH have been suggested to be at higher risk of developing chronic kidney disease, so we also assessed the kidney histology of these mice. After 8 months of HFFCD feeding, the livers of E-CNP Tg mice and controls showed progressive fibrosis, which resembled the features of human NASH. However, no significant differences were observed in NAFLD activity scores between E-CNP Tg mice and controls, although there was a tendency for improvement in E-CNP Tg mice. The reduced levels of GCB, a receptor for CNP, may have weakened the action of CNP in the current model. In the kidneys, HFFCD showed glomerular hypertrophy and tubular atrophy in the cortical region, which were suppressed in E-CNP Tg mice. The present study did not prove the therapeutic effect of CNP on NASH in the HFFCD model, but provided evidence of its potential beneficial effects on NASH-associated renal damage.
Collapse
Affiliation(s)
- Takuya Ensho
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yoko Ueda
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hiroshi Iwakura
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
4
|
Yakupova EI, Abramicheva PA, Bocharnikov AD, Andrianova NV, Plotnikov EY. Biomarkers of the End-Stage Renal Disease Progression: Beyond the GFR. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1622-1644. [PMID: 38105029 DOI: 10.1134/s0006297923100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/20/2023] [Accepted: 08/20/2023] [Indexed: 12/19/2023]
Abstract
Chronic kidney disease can progress to the end-stage renal disease (ESRD) characterized by a high risk of morbidity and mortality. ESRD requires immediate therapy or even dialysis or kidney transplantation, therefore, its timely diagnostics is critical for many patients. ESRD is associated with pathological changes, such as inflammation, fibrosis, endocrine disorders, and epigenetic changes in various cells, which could serve as ESRD markers. The review summarizes information on conventional and new ESRD biomarkers that can be assessed in kidney tissue, blood, and urine. Some biomarkers are specific to a particular pathology, while others are more universal. Here, we suggest several universal inflammatory, fibrotic, hormonal, and epigenetic markers indicative of severe deterioration of renal function and ESRD progression for improvement of ESRD diagnostics.
Collapse
Affiliation(s)
- Elmira I Yakupova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Polina A Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey D Bocharnikov
- International School of Medicine of the Future, Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| | - Nadezda V Andrianova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
5
|
Abramicheva PA, Plotnikov EY. Hormonal Regulation of Renal Fibrosis. Life (Basel) 2022; 12:737. [PMID: 35629404 PMCID: PMC9143586 DOI: 10.3390/life12050737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis is a severe complication of many acute and chronic kidney pathologies. According to current concepts, an imbalance in the synthesis and degradation of the extracellular matrix by fibroblasts is considered the key cause of the induction and progression of fibrosis. Nevertheless, inflammation associated with the damage of tissue cells is among the factors promoting this pathological process. Most of the mechanisms accompanying fibrosis development are controlled by various hormones, which makes humoral regulation an attractive target for therapeutic intervention. In this vein, it is particularly interesting that the kidney is the source of many hormones, while other hormones regulate renal functions. The normal kidney physiology and pathogenesis of many kidney diseases are sex-dependent and thus modulated by sex hormones. Therefore, when choosing therapy, it is necessary to focus on the sex-associated characteristics of kidney functioning. In this review, we considered renal fibrosis from the point of view of vasoactive and reproductive hormone imbalance. The hormonal therapy possibilities for the treatment or prevention of kidney fibrosis are also discussed.
Collapse
Affiliation(s)
- Polina A. Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
6
|
Chen WX, Liu HH, Li RX, Mammadov G, Wang JJ, Liu FF, Samadli S, Wu YF, Zhang DD, Luo HH, Hu P. C-type natriuretic peptide stimulates osteoblastic proliferation and collagen-X expression but suppresses fibroblast growth factor-23 expression in vitro. Pediatr Rheumatol Online J 2020; 18:46. [PMID: 32517762 PMCID: PMC7285564 DOI: 10.1186/s12969-020-00441-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The effects of C-type natriuretic peptide (CNP) and fibroblast growth factor (FGF)-23 appear to oppose each other during the process of bone formation, whereas few studies exist on the interaction between CNP and FGF-23. The main objective of the present study is to probe whether CNP is directly responsible for the regulation of osteoblast or via antagonizing FGF-23. METHODS Osteoblasts were cultured in the absence or presence of CNP (0, 10, and 100 pmol/L) for 24 h, 48 h and 72 h, respectively. RESULTS The findings of the present study indicated that: (1) CNP significantly stimulated osteoblastic proliferation and collagen (Col)-X expression; (2) both osteoblastic (osteocalcin, procollagen type I carboxy-terminal propeptide, total alkaline phosphatase and bone-specific alkaline phosphatase) and osteolytic (tartrate-resistant acid phosphatase and cross-linked carboxyterminal telopeptide of type I collagen) bone turnover biomarkers were up-regulated by CNP in osteoblasts; (3) FGF-23 mRNA and protein were significantly down-regulated at 24 h by CNP in osteoblasts, but the expression of FGF receptor-1/Klotho had no significant change. CONCLUSIONS CNP stimulates osteoblastic proliferation and Col-X expression via the down-regulation of FGF-23 possibly in vitro. However, the specific mechanisms of the interaction between CNP and FGF-23 in osteoblasts are still unclear according to our findings. A further study on osteoblasts cultured with CNP and FGF-23 inhibitor will be undertaken in our laboratory.
Collapse
Affiliation(s)
- Wei Xia Chen
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Hui Hui Liu
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Rui Xue Li
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Goshgar Mammadov
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Jing Jing Wang
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Fei Fei Liu
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Sama Samadli
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Yang Fang Wu
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Dong Dong Zhang
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Huang Huang Luo
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Peng Hu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province, 230032, PR China.
| |
Collapse
|
7
|
Zhang DD, Wu YF, Chen WX, Xu Y, Liu SY, Luo HH, Jiang GM, Wu Y, Hu P. C-type natriuretic peptide attenuates renal osteodystrophy through inhibition of FGF-23/MAPK signaling. Exp Mol Med 2019; 51:1-18. [PMID: 31263178 PMCID: PMC6802631 DOI: 10.1038/s12276-019-0265-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/27/2019] [Accepted: 02/26/2019] [Indexed: 01/19/2023] Open
Abstract
Renal osteodystrophy (ROD) occurs as early as chronic kidney disease (CKD) stage 2 and seems ubiquitous in almost all pediatric patients with CKD stage 5. Fibroblast growth factor (FGF)-23, a bone-derived endocrine regulator of phosphate homeostasis, is overexpressed in CKD and disturbs osteoblast differentiation and matrix mineralization. In contrast, C-type natriuretic peptide (CNP) acts as a potent positive regulator of bone growth. In the present study, we infused CNP into uremic rats and observed whether CNP could attenuate ROD through the inhibition of FGF-23 cascades. In uremic rats, CNP administration significantly alleviated renal dysfunction, calcium phosphate metabolic disorders, hypovitaminosis D, secondary hyperparathyroidism, the decrease in bone turnover markers and retarded bone pathological progression. More importantly, within FGF-23/mitogen-activated protein kinase (MAPK) signaling, the fibroblast growth factor receptor-1, Klotho and alternative (STAT-1/phospho-STAT-1) elements were upregulated by CNP, whereas FGF-23, RAF-1/phospho-RAF-1, and downstream (ERK/phospho-ERK and P38/phospho-P38) elements were paradoxically underexpressed in bone tissue. Therefore, CNP exerts a therapeutic effect on ROD through inhibition of FGF-23/MAPK signaling at the RAF-1 level.
Collapse
Affiliation(s)
- Dong Dong Zhang
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Yang Fang Wu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Wei Xia Chen
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Yao Xu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Si Yan Liu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Huang Huang Luo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Guang Mei Jiang
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Yue Wu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Peng Hu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China.
| |
Collapse
|
8
|
Inhibition of human breast cancer cells (MCF-7 cell line) growth via cell proliferation, migration, and angiogenesis by auraptene of Ferula szowitsiana root extract. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00185-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Chen Y, Zheng Y, Iyer SR, Harders GE, Pan S, Chen HH, Ichiki T, Burnett JC, Sangaralingham SJ. C53: A novel particulate guanylyl cyclase B receptor activator that has sustained activity in vivo with anti-fibrotic actions in human cardiac and renal fibroblasts. J Mol Cell Cardiol 2019; 130:140-150. [PMID: 30954448 DOI: 10.1016/j.yjmcc.2019.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/08/2019] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
Abstract
The native particulate guanylyl cyclase B receptor (pGC-B) activator, C-type natriuretic peptide (CNP), induces anti-remodeling actions in the heart and kidney through the generation of the second messenger 3', 5' cyclic guanosine monophosphate (cGMP). Indeed fibrotic remodeling, particularly in cardiorenal disease states, contributes to disease progression and thus, has been a key target for drug discovery and development. Although the pGC-B/cGMP system has been perceived as a promising anti-fibrotic pathway, its therapeutic potential is limited due to the rapid degradation and catabolism of CNP by neprilysin (NEP) and natriuretic peptide clearance receptor (NPRC). The goal of this study was to bioengineer and test in vitro and in vivo a novel pGC-B activator, C53. Here we established that C53 selectively generates cGMP via the pGC-B receptor and is highly resistant to NEP and has less interaction with NPRC in vitro. Furthermore in vivo, C53 had enhanced cGMP-generating actions that paralleled elevated plasma CNP-like levels, thus indicating a longer circulating half-life compared to CNP. Importantly in human cardiac fibroblasts (HCFs) and renal fibroblasts (HRFs), C53 exerted robust cGMP-generating actions, inhibited TGFβ-1 stimulated HCFs and HRFs proliferation chronically and suppressed the differentiation of HCFs and HRFs to myofibroblasts. The current findings advance innovation in drug discovery and highlight C53 as a novel pGC-B activator with sustained in vivo activity and anti-fibrotic actions in vitro. Future studies are warranted to explore the efficacy and therapeutic opportunity of C53 targeting fibrosis in cardiorenal disease states and beyond.
Collapse
Affiliation(s)
- Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States.
| | - Ye Zheng
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Gerald E Harders
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Shuchong Pan
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States; Department of Physiology and Biomedical Engineering, United States
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States; Department of Physiology and Biomedical Engineering, United States.
| |
Collapse
|
10
|
Unilateral ureteral obstruction causes gut microbial dysbiosis and metabolome disorders contributing to tubulointerstitial fibrosis. Exp Mol Med 2019; 51:1-18. [PMID: 30918245 PMCID: PMC6437207 DOI: 10.1038/s12276-019-0234-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic kidney disease (CKD) increases the risk and prevalence of cardiovascular disease (CVD) morbidity and mortality. Recent studies have revealed marked changes in the composition of the microbiome and the metabolome and their potential influence in renal disease and CVD via the accumulation of microbial-derived uremic toxins. However, the effect of unilateral ureteral obstruction (UUO) on the gut microbiome and circulating metabolites is unknown. Male Sprague-Dawley rats were randomized to UUO and sham-operated control groups. Renal histology, colonic microbiota, and plasma metabolites were examined two weeks later. We employed 16S rRNA sequence and untargeted metabolomic analyses to explore the changes in colonic microbiota and plasma metabolites and their relationship with tubulointerstitial fibrosis (TIF). The UUO rats exhibited tubular atrophy and dilatation, interstitial fibrosis and inflammatory cell infiltration in the obstructed kidney. UUO rats showed significant colonic enrichment and depletion of genera. Significant differences were identified in 219 plasma metabolites involved in lipid, amino acid, and bile acid metabolism, which were consistent with gut microbiota-related metabolism. Interestingly, tryptophan and its metabolites kynurenine, 5-hydroxytryptophan and 5-hydroxytryptamine levels, which were linked with TIF, correlated with nine specific genera. Plasma tryptophan level was positively correlated with Clostridium IV, Turicibacter, Pseudomonas and Lactobacillales, and negatively correlated with Oscillibacter, Blautia, and Intestinimonas, which possess the genes encoding tryptophan synthase (K16187), indoleamine 2,3-dioxygenase (K00463) and tryptophan 2,3-dioxygenase (K00453) and their corresponding enzymes (EC:1.13.11.52 and EC:1.13.11.11) that exacerbate TIF. In conclusion, UUO results in profound changes in the gut microbiome and circulating metabolites, events that contribute to the pathogenesis of inflammation and TIF.
Collapse
|
11
|
Wu YF, Zhang DD, Liu SY, Luo HH, Jiang GM, Xu Y, Wu Y, Wang JJ, Liu FF, Samadli S, Wei W, Hu B, Hu P. C-Type Natriuretic Peptide Dampens Fibroblast Growth Factor-23 Expression Through MAPK Signaling Pathway in Human Mesangial Cells. J Interferon Cytokine Res 2018; 38:500-509. [PMID: 30335543 DOI: 10.1089/jir.2018.0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
C-type natriuretic peptide (CNP) is believed to be produced locally in the kidneys and possess several renoprotective properties. In contrast, fibroblast growth factor (FGF) -23 elevates in the early stage of chronic kidney disease and predicts its outcomes. Currently, several studies have demonstrated that CNP and FGF-23 act through a close pathway, and moreover, FGF-23/mitogen-activated protein kinase (MAPK) can be obviously suppressed by CNP. In the present study, human mesangial cells (MCs) were incubated in serum-containing medium in the absence or presence of CNP (0, 10 and 100 pM) for 24, 48 and 72 h, respectively. CNP administration significantly suppresses MCs proliferation in a time- and dose-dependent manner. As a down-stream signaling of CNP activation, the expressions of natriuretic peptide receptor (NPR)-B, cyclic guanosine monophosphate-dependent protein kinases II and NPR-C were obviously augmented, whereas neutral endopeptidase expression was significantly decreased after CNP treatment in MCs. FGF-23, FGF receptor-1 and RAF-1 experienced a pronounced down-regulation in MCs with different doses of CNP throughout the whole observational period. CNP may dampen FGF-23 expression via MAPK signaling pathway in MCs.
Collapse
Affiliation(s)
- Yang Fang Wu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Dong Dong Zhang
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Si Yan Liu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Huang Huang Luo
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Guang Mei Jiang
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Yao Xu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Yue Wu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Jing Jing Wang
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Fei Fei Liu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Sama Samadli
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Wei Wei
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Bo Hu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peng Hu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| |
Collapse
|
12
|
Bae CR, Hino J, Hosoda H, Miyazato M, Kangawa K. C-type natriuretic peptide (CNP) in endothelial cells attenuates hepatic fibrosis and inflammation in non-alcoholic steatohepatitis. Life Sci 2018; 209:349-356. [PMID: 30114411 DOI: 10.1016/j.lfs.2018.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 12/13/2022]
Abstract
AIMS Our previous study revealed that mice transgenic for endothelial-cell-specific overexpression of CNP (E-CNP Tg mice) are protected against the increased fat weight, inflammation, and insulin resistance associated with high-fat diet (HFD)-induced obesity. In addition, E-CNP overexpression prevented abnormal lipid profiles and metabolism and blocked inflammation in the livers of HFD-fed mice. Because obesity, dyslipidemia, and insulin resistance increase the risk of various liver diseases, including non-alcoholic steatohepatitis (NASH), we here studied the role of E-CNP overexpression in the livers of mice in which NASH was induced through feeding of either HFD or a choline-deficient defined l‑amino-acid diet (CDAA). MAIN METHODS Wild-type (Wt) and E-CNP Tg mice were fed either a standard diet or HFD for 25 weeks or CDAA for 10 weeks. We then assessed hepatic and serum biochemistry; measured blood glucose during glucose tolerance test (GTT) and insulin tolerance test (ITT); evaluated hepatic fibrosis and inflammation; and performed hepatic histology and gene expression analysis. KEY FINDINGS Serum triglycerides, total cholesterol, non-esterified fatty acids, asparagine transaminase, glucose tolerance, and insulin resistance were ameliorated by CNP overexpression in endothelial cells of HFD-fed E-CNP Tg mice. In addition, hepatic fibrosis and inflammation were decreased in HFD-fed E-CNP Tg mice compared with HFD-fed Wt mice. CDAA-fed E-CNP Tg mice showed improved glycemic control, but liver parameters, fibrosis, and inflammation were remained elevated and equivalent to those in CDAA-fed Wt mice. SIGNIFICANCE The overexpression of CNP in endothelial cells has anti-fibrotic and anti-inflammatory effects in liver during HFD-induced NASH in mice.
Collapse
Affiliation(s)
- Cho-Rong Bae
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
13
|
Bae CR, Hino J, Hosoda H, Son C, Makino H, Tokudome T, Tomita T, Hosoda K, Miyazato M, Kangawa K. Adipocyte-specific expression of C-type natriuretic peptide suppresses lipid metabolism and adipocyte hypertrophy in adipose tissues in mice fed high-fat diet. Sci Rep 2018; 8:2093. [PMID: 29391544 PMCID: PMC5794866 DOI: 10.1038/s41598-018-20469-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/19/2018] [Indexed: 02/08/2023] Open
Abstract
C-type natriuretic peptide (CNP) is expressed in diverse tissues, including adipose and endothelium, and exerts its effects by binding to and activating its receptor, guanylyl cyclase B. Natriuretic peptides regulate intracellular cGMP and phosphorylated vasodilator-stimulated phosphoprotein (VASP). We recently revealed that overexpression of CNP in endothelial cells protects against high-fat diet (HFD)-induced obesity in mice. Given that endothelial CNP affects adipose tissue during obesity, CNP in adipocytes might directly regulate adipocyte function during obesity. Therefore, to elucidate the effect of CNP in adipocytes, we assessed 3T3-L1 adipocytes and transgenic (Tg) mice that overexpressed CNP specifically in adipocytes (A-CNP). We found that CNP activates the cGMP–VASP pathway in 3T3-L1 adipocytes. Compared with Wt mice, A-CNP Tg mice showed decreases in fat weight and adipocyte hypertrophy and increases in fatty acid β-oxidation, lipolysis-related gene expression, and energy expenditure during HFD-induced obesity. These effects led to decreased levels of the macrophage marker F4/80 in the mesenteric fat pad and reduced inflammation. Furthermore, A-CNP Tg mice showed improved glucose tolerance and insulin sensitivity, which were associated with enhanced insulin-stimulated Akt phosphorylation. Our results suggest that CNP overexpression in adipocytes protects against adipocyte hypertrophy, excess lipid metabolism, inflammation, and decreased insulin sensitivity during HFD-induced obesity.
Collapse
Affiliation(s)
- Cho-Rong Bae
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | - Hiroshi Hosoda
- Departments of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Cheol Son
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Omics Research Center and National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hisashi Makino
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takeshi Tokudome
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Tsutomu Tomita
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Biobank, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kiminori Hosoda
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| |
Collapse
|
14
|
Luo HH, Wu C, Hu P, Wu YF, Zhang DD, Liu SY, Jiang GM, Xu Y, Wu Y, Wang JJ, Liu FF, Wei W, Hu B. Receptor signaling and neutral endopeptidase are involved in the resistance of C-type natriuretic peptide to human mesangial proliferation and collagen-IV expression. J Investig Med 2018; 66:1-9. [PMID: 29367254 DOI: 10.1136/jim-2017-000533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2017] [Indexed: 12/31/2022]
Abstract
C-type natriuretic peptide (CNP) is regarded as a local, paracrine hormone to regulate vascular tone and cell proliferation. Although several in vivo studies have documented that CNP exerts the inhibitory effects on mesangial cells (MCs) proliferation and collagen production, a limited number of studies exist about the resistance of CNP to MCs proliferation in vitro. Besides, whether its receptor signaling and neutral endopeptidase (NEP) are involved remains unclear. In the present study, human MCs were incubated in serum-containing medium in the absence or presence of CNP (0, 10 and 100 pM) for 24, 48 and 72 hours, respectively. CNP administration significantly suppresses MCs proliferation and collagen-IV (Col-IV) expression in a time-dependent and dose-dependent manner. As a down-stream signal molecule of CNP activation, the expressions of natriuretic peptide receptor (NPR)-B, cyclic guanosine monophosphate-dependent protein kinases II and NPR-C were obviously augmented, whereas NEP expression was significantly decreased after CNP treatment. In conclusion, receptor signaling and NEP are involved in the resistance of CNP to human mesangial proliferation and Col-IV expression.
Collapse
Affiliation(s)
- Huang Huang Luo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Wu
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Anhui Medical University, Hefei, China
| | - Peng Hu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Fang Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dong Dong Zhang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Si Yan Liu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guang Mei Jiang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Xu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Jing Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fei Fei Liu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Hu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Huang BY, Hu P, Zhang DD, Jiang GM, Liu SY, Xu Y, Wu YF, Xia X, Wang Y. C-type natriuretic peptide suppresses mesangial proliferation and matrix expression via a MMPs/TIMPs-independent pathway in vitro. J Recept Signal Transduct Res 2017; 37:355-364. [PMID: 28554303 DOI: 10.1080/10799893.2017.1286674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bao Yu Huang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Peng Hu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Dong Dong Zhang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Guang Mei Jiang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Si Yan Liu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Yao Xu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Yang Fang Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Xun Xia
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Ya Wang
- Anhui Provincial Children’s Hospital, Hefei, PR China
| |
Collapse
|
16
|
Hu P, Liu SY, Zhang DD, Xu Y, Xia X. Urinary C-type natriuretic peptide excretion: a promising biomarker to detect underlying renal injury and remodeling both acutely and chronically. Biomark Med 2016; 10:999-1008. [PMID: 27586401 DOI: 10.2217/bmm-2016-0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Acute kidney injury (AKI) refers to a sudden decline in renal function. A growing body of evidence demonstrates that AKI is a risk factor for the future development or accelerated progression of chronic kidney disease (CKD), whereas the actual distinction between AKI and CKD remains unknown. CNP is predominantly present in the kidney and possesses multiple renoprotective properties. Urinary CNP excretion tends to be high in AKI, whereas back to the baseline in CKD. The dynamic changes in urinary CNP excretion may help detect underlying renal injury and remodeling both acutely and chronically.
Collapse
Affiliation(s)
- Peng Hu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, PR China
| | - Si Yan Liu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, PR China
| | - Dong Dong Zhang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, PR China
| | - Yao Xu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, PR China
| | - Xun Xia
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, PR China
| |
Collapse
|
17
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Hu P, Xia X, Xuan Q, Huang BY, Liu SY, Zhang DD, Jiang GM, Xu Y, Qin YH. Neutral endopeptidase and natriuretic peptide receptors participate in the regulation of C-type natriuretic peptide expression in renal interstitial fibrosis. J Recept Signal Transduct Res 2016; 37:71-83. [PMID: 27278005 DOI: 10.3109/10799893.2016.1155068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Peng Hu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xun Xia
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Qiang Xuan
- Department of Urology, Anhui Provincial Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Bao Yu Huang
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Si Yan Liu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Dong Dong Zhang
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Guang Mei Jiang
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yao Xu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yuan Han Qin
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
19
|
Kimura T, Nojiri T, Hino J, Hosoda H, Miura K, Shintani Y, Inoue M, Zenitani M, Takabatake H, Miyazato M, Okumura M, Kangawa K. C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice. Respir Res 2016; 17:19. [PMID: 26895702 PMCID: PMC4761143 DOI: 10.1186/s12931-016-0335-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/13/2016] [Indexed: 12/31/2022] Open
Abstract
Background Pulmonary fibrosis has high rates of mortality and morbidity; however, no effective pharmacological therapy has been established. C-type natriuretic peptide (CNP), a member of the natriuretic peptide family, selectively binds to the transmembrane guanylyl cyclase (GC)-B receptor and exerts anti-inflammatory and anti-fibrotic effects in various organs through vascular endothelial cells and fibroblasts that have a cell-surface GC-B receptor. Given the pathophysiological importance of fibroblast activation in pulmonary fibrosis, we hypothesized that the anti-fibrotic and anti-inflammatory effects of exogenous CNP against bleomycin (BLM)-induced pulmonary fibrosis were exerted in part by the effect of CNP on pulmonary fibroblasts. Methods C57BL/6 mice were divided into two groups, CNP-treated (2.5 μg/kg/min) and vehicle, to evaluate BLM-induced (1 mg/kg) pulmonary fibrosis and inflammation. A periostin-CNP transgenic mouse model exhibiting CNP overexpression in fibroblasts was generated and examined for the anti-inflammatory and anti-fibrotic effects of CNP via fibroblasts in vivo. Additionally, we assessed CNP attenuation of TGF-β-induced differentiation into myofibroblasts by using immortalized human lung fibroblasts stably expressing GC-B receptors. Furthermore, to investigate whether CNP acts on human lung fibroblasts in a clinical setting, we obtained primary-cultured fibroblasts from surgically resected lungs of patients with lung cancer and analyzed levels of GC-B mRNA transcription. Results CNP reduced mRNA levels of the profibrotic cytokines interleukin (IL)-1β and IL-6, as well as collagen deposition and the fibrotic area in lungs of mice with bleomycin-induced pulmonary fibrosis. Furthermore, similar CNP effects were observed in transgenic mice exhibiting fibroblast-specific CNP overexpression. In cultured-lung fibroblasts, CNP treatment attenuated TGF-β–induced phosphorylation of Smad2 and increased mRNA and protein expression of α-smooth muscle actin and SM22α, indicating that CNP suppresses fibroblast differentiation into myofibroblasts. Furthermore, human lung fibroblasts from patients with or without interstitial lung disease substantially expressed GC-B receptor mRNA. Conclusions These data suggest that CNP ameliorates bleomycin-induced pulmonary fibrosis by suppressing TGF-β signaling and myofibroblastic differentiation in lung fibroblasts. Therefore, we propose consideration of CNP for clinical application to pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Toru Kimura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan. .,Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Takashi Nojiri
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan. .,Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita-City, Osaka, Japan.
| | - Koichi Miura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Masayoshi Inoue
- Department of General Thoracic Surgery, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan.
| | - Masahiro Zenitani
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| | - Hiroyuki Takabatake
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan. .,Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| |
Collapse
|