1
|
Bridges JP, Vladar EK, Kurche JS, Krivoi A, Stancil IT, Dobrinskikh E, Hu Y, Sasse SK, Lee JS, Blumhagen RZ, Yang IV, Gerber AN, Peljto AL, Evans CM, Redente EF, Riches DW, Schwartz DA. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135:e183836. [PMID: 39744946 DOI: 10.1172/jci183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Collapse
Affiliation(s)
- James P Bridges
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eszter K Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan S Kurche
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Andrei Krivoi
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian T Stancil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yan Hu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Joyce S Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Z Blumhagen
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Ivana V Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Anna L Peljto
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Elizabeth F Redente
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David Wh Riches
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Lavis P, Garabet A, Cardozo AK, Bondue B. The fibroblast activation protein alpha as a biomarker of pulmonary fibrosis. Front Med (Lausanne) 2024; 11:1393778. [PMID: 39364020 PMCID: PMC11446883 DOI: 10.3389/fmed.2024.1393778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare, chronic, and progressive interstitial lung disease with an average survival of approximately 3 years. The evolution of IPF is unpredictable, with some patients presenting a relatively stable condition with limited progression over time, whereas others deteriorate rapidly. In addition to IPF, other interstitial lung diseases can lead to pulmonary fibrosis, and up to a third have a progressive phenotype with the same prognosis as IPF. Clinical, biological, and radiological risk factors of progression were identified, but no specific biomarkers of fibrogenesis are currently available. A recent interest in the fibroblast activation protein alpha (FAPα) has emerged. FAPα is a transmembrane serine protease with extracellular activity. It can also be found in a soluble form, also named anti-plasmin cleaving enzyme (APCE). FAPα is specifically expressed by activated fibroblasts, and quinoline-based specific inhibitors (FAPI) were developed, allowing us to visualize its distribution in vivo by imaging techniques. In this review, we discuss the use of FAPα as a useful biomarker for the progression of lung fibrosis, by both its assessment in human fluids and/or its detection by imaging techniques and immunohistochemistry.
Collapse
Affiliation(s)
- Philomène Lavis
- Department of Pathology, Hôpital universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
- IRIBHM, Université libre de Bruxelles, Brussels, Belgium
| | - Ani Garabet
- Inflammation and Cell Death Signalling Group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Alessandra Kupper Cardozo
- Inflammation and Cell Death Signalling Group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Benjamin Bondue
- IRIBHM, Université libre de Bruxelles, Brussels, Belgium
- Department of Pneumology, Hôpital universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
- European Reference Network for Rare Pulmonary Diseases (ERN-LUNG), Frankfurt, Germany
| |
Collapse
|
3
|
Franzén L, Olsson Lindvall M, Hühn M, Ptasinski V, Setyo L, Keith BP, Collin A, Oag S, Volckaert T, Borde A, Lundeberg J, Lindgren J, Belfield G, Jackson S, Ollerstam A, Stamou M, Ståhl PL, Hornberg JJ. Mapping spatially resolved transcriptomes in human and mouse pulmonary fibrosis. Nat Genet 2024; 56:1725-1736. [PMID: 38951642 PMCID: PMC11319205 DOI: 10.1038/s41588-024-01819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis and limited treatment options. Efforts to identify effective treatments are thwarted by limited understanding of IPF pathogenesis and poor translatability of available preclinical models. Here we generated spatially resolved transcriptome maps of human IPF (n = 4) and bleomycin-induced mouse pulmonary fibrosis (n = 6) to address these limitations. We uncovered distinct fibrotic niches in the IPF lung, characterized by aberrant alveolar epithelial cells in a microenvironment dominated by transforming growth factor beta signaling alongside predicted regulators, such as TP53 and APOE. We also identified a clear divergence between the arrested alveolar regeneration in the IPF fibrotic niches and the active tissue repair in the acutely fibrotic mouse lung. Our study offers in-depth insights into the IPF transcriptional landscape and proposes alveolar regeneration as a promising therapeutic strategy for IPF.
Collapse
Affiliation(s)
- Lovisa Franzén
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Martina Olsson Lindvall
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Hühn
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Victoria Ptasinski
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Laura Setyo
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Benjamin P Keith
- Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Astrid Collin
- Animal Science and Technology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven Oag
- Animal Science and Technology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Thomas Volckaert
- Bioscience In Vivo, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Borde
- Bioscience In Vivo, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Julia Lindgren
- Translational Genomics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Graham Belfield
- Translational Genomics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sonya Jackson
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Ollerstam
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Marianna Stamou
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Patrik L Ståhl
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden.
| | - Jorrit J Hornberg
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
4
|
Sisto M, Lisi S. Epigenetic Regulation of EMP/EMT-Dependent Fibrosis. Int J Mol Sci 2024; 25:2775. [PMID: 38474021 PMCID: PMC10931844 DOI: 10.3390/ijms25052775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Fibrosis represents a process characterized by excessive deposition of extracellular matrix (ECM) proteins. It often represents the evolution of pathological conditions, causes organ failure, and can, in extreme cases, compromise the functionality of organs to the point of causing death. In recent years, considerable efforts have been made to understand the molecular mechanisms underlying fibrotic evolution and to identify possible therapeutic strategies. Great interest has been aroused by the discovery of a molecular association between epithelial to mesenchymal plasticity (EMP), in particular epithelial to mesenchymal transition (EMT), and fibrogenesis, which has led to the identification of complex molecular mechanisms closely interconnected with each other, which could explain EMT-dependent fibrosis. However, the result remains unsatisfactory from a therapeutic point of view. In recent years, advances in epigenetics, based on chromatin remodeling through various histone modifications or through the intervention of non-coding RNAs (ncRNAs), have provided more information on the fibrotic process, and this could represent a promising path forward for the identification of innovative therapeutic strategies for organ fibrosis. In this review, we summarize current research on epigenetic mechanisms involved in organ fibrosis, with a focus on epigenetic regulation of EMP/EMT-dependent fibrosis.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
5
|
Melocchi L, Cervi G, Sartori G, Gandolfi L, Jocollé G, Cavazza A, Rossi G. Up-regulation by overexpression of c-MET in fibroblastic foci of usual interstitial pneumonia. Pathologica 2023; 115:308-317. [PMID: 37812383 PMCID: PMC10767799 DOI: 10.32074/1591-951x-920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Background Usual interstitial pneumonia (UIP) is the radiologic and histologic hallmark of idiopathic pulmonary fibrosis (IPF) and the commonest histologic pattern of other progressive fibrosing interstitial lung diseases (e.g., fibrotic hypersensitivity pneumonia). Analogous to lung cancer, activation of epithelial-to-mesenchymal transition (EMT) is one of the main molecular pathways recently identified by transcriptomic studies in IPF. Fibroblastic foci (FF) are considered the active/trigger component of UIP pattern. The proto-oncogene C-MET is a key gene among molecules promoting EMT against which several inhibitors are currently available or promising in ongoing studies on lung cancer. Methods Twenty surgical cases of diffuse fibrosing interstitial lung diseases (fILD) with UIP pattern and FF-rich (17 IPF and 3 patients with fibrotic hypersensitivity pneumonia, fHP) were retrospectively selected. FF were manually microdissected and analysed for c-MET gene alterations (FISH amplification and gene hot-spot mutations Sanger sequencing) and tested with a c-MET companion diagnostic antibody (clone SP44 metmab) by immunohistochemistry. Results FF are characterized by upregulation of c-MET as shown by overexpression of the protein in 80% of cases, while no gene amplification by FISH or mutations were detected. C-MET upregulation of FF was observed either in IPF and fHP, with a tropism for the epithelial cell component only. Conclusion Upregulation of c-MET in FF of ILD with UIP pattern further confirms the key role of the proto-oncogene c-MET in its pathogenesis, possibly representing an interesting and easily-detectable molecular target for selective therapy using specific inhibitors in future clinical trials, similar to lung cancer. It is reasonable to speculate that molecular alterations in FF can also be detected in FF by transbronchial cryobiopsy.
Collapse
Affiliation(s)
- Laura Melocchi
- Operative Unit of Pathology, Diagnostic Services Area, Fondazione Poliambulanza Hospital Institute, Brescia, Italy
| | - Giulia Cervi
- Respiratory Diseases Unit, Carlo Poma Hospital, Azienda Territoriale Socio Sanitaria (ATS) of Mantova, Mantova, Italy
| | - Giuliana Sartori
- Operative Unit of Pathologic Anatomy, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Laura Gandolfi
- Operative Unit of Pathology, Diagnostic Services Area, Fondazione Poliambulanza Hospital Institute, Brescia, Italy
| | - Genny Jocollé
- Operative Unit of Oncology, Azienda USL Valle d’Aosta, Aosta, Italy
| | - Alberto Cavazza
- Operative Unit of Pathologic Anatomy, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Giulio Rossi
- Operative Unit of Pathology, Diagnostic Services Area, Fondazione Poliambulanza Hospital Institute, Brescia, Italy
| |
Collapse
|
6
|
Thiam F, Phogat S, Abokor FA, Osei ET. In vitro co-culture studies and the crucial role of fibroblast-immune cell crosstalk in IPF pathogenesis. Respir Res 2023; 24:298. [PMID: 38012580 PMCID: PMC10680329 DOI: 10.1186/s12931-023-02608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
IPF is a fatal lung disease characterized by intensive remodeling of lung tissue leading to respiratory failure. The remodeling in IPF lungs is largely characterized by uncontrolled fibrosis. Fibroblasts and their contractile phenotype the myofibroblast are the main cell types responsible for typical wound healing responses, however in IPF, these responses are aberrant and result in the overactivation of fibroblasts which contributes to the inelasticity of the lung leading to a decrease in lung function. The specific mechanisms behind IPF pathogenesis have been elusive, but recently the innate and adaptive immunity have been implicated in the fibrotic processes of the disease. In connection with this, several in vitro co-culture models have been used to investigate the specific interactions occurring between fibroblasts and immune cells and how this contributes to the pathobiology of IPF. In this review, we discuss the in vitro models that have been used to examine the abnormal interactions between fibroblasts and cells of the innate and adaptive immune system, and how these contribute to the fibrotic processes in the lungs of IPF patients.
Collapse
Affiliation(s)
- Fama Thiam
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Sakshi Phogat
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Filsan Ahmed Abokor
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Emmanuel Twumasi Osei
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Poe A, Martinez Yus M, Wang H, Santhanam L. Lysyl oxidase like-2 in fibrosis and cardiovascular disease. Am J Physiol Cell Physiol 2023; 325:C694-C707. [PMID: 37458436 PMCID: PMC10635644 DOI: 10.1152/ajpcell.00176.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is an important and essential reparative response to injury that, if left uncontrolled, results in the excessive synthesis, deposition, remodeling, and stiffening of the extracellular matrix, which is deleterious to organ function. Thus, the sustained activation of enzymes that catalyze matrix remodeling and cross linking is a fundamental step in the pathology of fibrotic diseases. Recent studies have implicated the amine oxidase lysyl oxidase like-2 (LOXL2) in this process and established significantly elevated expression of LOXL2 as a key component of profibrotic conditions in several organ systems. Understanding the relationship between LOXL2 and fibrosis as well as the mechanisms behind these relationships can offer significant insights for developing novel therapies. Here, we summarize the key findings that demonstrate the link between LOXL2 and fibrosis and inflammation, examine current therapeutics targeting LOXL2 for the treatment of fibrosis, and discuss future directions for experiments and biomedical engineering.
Collapse
Affiliation(s)
- Alan Poe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Marta Martinez Yus
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| | - Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Lakshmi Santhanam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
8
|
Gajjala PR, Singh P, Odayar V, Ediga HH, McCormack FX, Madala SK. Wilms Tumor 1-Driven Fibroblast Activation and Subpleural Thickening in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2023; 24:2850. [PMID: 36769178 PMCID: PMC9918078 DOI: 10.3390/ijms24032850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that is often fatal due to the formation of irreversible scar tissue in the distal areas of the lung. Although the pathological and radiological features of IPF lungs are well defined, the lack of insight into the fibrogenic role of fibroblasts that accumulate in distinct anatomical regions of the lungs is a critical knowledge gap. Fibrotic lesions have been shown to originate in the subpleural areas and extend into the lung parenchyma through processes of dysregulated fibroproliferation, migration, fibroblast-to-myofibroblast transformation, and extracellular matrix production. Identifying the molecular targets underlying subpleural thickening at the early and late stages of fibrosis could facilitate the development of new therapies to attenuate fibroblast activation and improve the survival of patients with IPF. Here, we discuss the key cellular and molecular events that contribute to (myo)fibroblast activation and subpleural thickening in IPF. In particular, we highlight the transcriptional programs involved in mesothelial to mesenchymal transformation and fibroblast dysfunction that can be targeted to alter the course of the progressive expansion of fibrotic lesions in the distal areas of IPF lungs.
Collapse
Affiliation(s)
| | | | | | | | | | - Satish K. Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH 45267-0564, USA
| |
Collapse
|
9
|
Zhao J, Wang C, Fan R, Liu X, Zhang W. A prognostic model based on clusters of molecules related to epithelial-mesenchymal transition for idiopathic pulmonary fibrosis. Front Genet 2023; 13:1109903. [PMID: 36685840 PMCID: PMC9853015 DOI: 10.3389/fgene.2022.1109903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Most patients with idiopathic pulmonary fibrosis (IPF) have poor prognosis; Effective predictive models for these patients are currently lacking. Epithelial-mesenchymal transition (EMT) often occurs during idiopathic pulmonary fibrosis development, and is closely related to multiple pathways and biological processes. It is thus necessary for clinicians to find prognostic biomarkers with high accuracy and specificity from the perspective of Epithelial-mesenchymal transition. Methods: Data were obtained from the Gene Expression Omnibus database. Using consensus clustering, patients were grouped based on Epithelial-mesenchymal transition-related genes. Next, functional enrichment analysis was performed on the results of consensus clustering using gene set variation analysis. The gene modules associated with Epithelial-mesenchymal transition were obtained through weighted gene co-expression network analysis. Prognosis-related genes were screened via least absolute shrinkage and selection operator (LASSO) regression analysis. The model was then evaluated and validated using survival analysis and time-dependent receiver operating characteristic (ROC) analysis. Results: A total of 239 Epithelial-mesenchymal transition-related genes were obtained from patients with idiopathic pulmonary fibrosis. Six genes with strong prognostic associations (C-X-C chemokine receptor type 7 [CXCR7], heparan sulfate-glucosamine 3-sulfotransferase 1 [HS3ST1], matrix metallopeptidase 25 [MMP25], murine retrovirus integration site 1 [MRVI1], transmembrane four L6 family member 1 [TM4SF1], and tyrosylprotein sulfotransferase 1 [TPST1]) were identified via least absolute shrinkage and selection operator and Cox regression analyses. A prognostic model was then constructed based on the selected genes. Survival analysis showed that patients with high-risk scores had worse prognosis based on the training set [hazard ratio (HR) = 7.31, p < .001] and validation set (HR = 2.85, p = .017). The time-dependent receiver operating characteristic analysis showed that the area under the curve (AUC) values in the training set were .872, .905, and .868 for 1-, 2-, and 3-year overall survival rates, respectively. Moreover, the area under the curve values in the validation set were .814, .814, and .808 for 1-, 2-, and 3-year overall survival rates, respectively. Conclusion: The independent prognostic model constructed from six Epithelial-mesenchymal transition-related genes provides bioinformatics guidance to identify additional prognostic markers for idiopathic pulmonary fibrosis in the future.
Collapse
Affiliation(s)
- Jiarui Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Can Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rui Fan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiangyang Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Wei Zhang,
| |
Collapse
|
10
|
Hydrogen sulfide attenuates lung injury instigated by Bisphenol-A via suppressing inflammation and oxidative stress. BMC Pharmacol Toxicol 2022; 23:98. [PMID: 36585682 PMCID: PMC9805095 DOI: 10.1186/s40360-022-00636-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
The xenoestrogen bisphenol A (BPA), a commonly used industrial chemical, has been linked to endocrine disruption. The point of the study was to consider the effects of chronic BPA exposure on the respiratory system of adult female rats, and the potential mitigating benefits of Sodium hydrosulfide (NaHS), a donor of hydrogen sulfide (H2S) administration. Detect biomarkers in Bronchoalveolar lavage fluid (BALF), including total protein content, Total cell counts, Neutrophils %, ICAM (intercellular adhesion molecule)-1 and TGF-β (Transforming growth factor beta). NaHS significantly reduced pro-inflammatory cytokines (IFN-β and MCAF,) also reduce (i.e. VCAM-1, VEGF, VIM, MMP-2, MMP-9), and reduced malondialdehyde and augmented activities of SOD and GSH-PX. Notably, H2S induced a marked decrease in the expression levels of p-extracellular signal-regulated protein kinase (p-ERK), p-c-Jun N-terminal kinase (p-JNK), and p-p38, H2S inhibits BPA-induced inflammation and injury in alveolar epithelial cells. These results suggest NaHS may prevent inflammation via the suppression of the ERK/JNK/ p-p38MAPK signaling pathway, Subsequent inhibition of inflammation, epithelial cell injury, and apoptosis may be providing insight into potential avenues for the treatment of lung injury.
Collapse
|
11
|
Hao W, Li M, Cai Q, Wu S, Li X, He Q, Hu Y. Roles of NRF2 in Fibrotic Diseases: From Mechanisms to Therapeutic Approaches. Front Physiol 2022; 13:889792. [PMID: 35721561 PMCID: PMC9203969 DOI: 10.3389/fphys.2022.889792] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrosis is a persistent inflammatory response that causes scarring and tissue sclerosis by stimulating myofibroblasts to create significant quantities of extracellular matrix protein deposits in the tissue. Oxidative stress has also been linked to the development of fibrosis in several studies. The nuclear erythroid 2-related factor 2 (NRF2) transcription factor controls the expression of several detoxification and antioxidant genes. By binding to antioxidant response elements, NRF2 is activated by oxidative or electrophilic stress and promotes its target genes, resulting in a protective effect on cells. NRF2 is essential for cell survival under oxidative stress conditions. This review describes Kelch-like epichlorohydrin-associated protein 1 (KEAP1)/NRF2 signaling mechanisms and presents recent research advances regarding NRF2 and its involvement in primary fibrotic lesions such as pulmonary fibrosis, hepatic fibrosis, myocardial fibrosis, and renal fibrosis. The related antioxidant substances and drugs are described, along with the mechanisms by which KEAP1/NRF2 regulation positively affects the therapeutic response. Finally, the therapeutic prospects and potential value of NRF2 in fibrosis are summarized. Further studies on NRF2 may provide novel therapeutic approaches for fibrosis.
Collapse
Affiliation(s)
- Wenlong Hao
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Minghao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingmin Cai
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiying Wu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiangyao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Quanyu He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongbin Hu
- Department of Pathology, Basic Medical School, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongbin Hu,
| |
Collapse
|
12
|
Uthaya Kumar DB, Motakis E, Yurieva M, Kohar V, Martinek J, Wu TC, Khoury J, Grassmann J, Lu M, Palucka K, Kaminski N, Koff JL, Williams A. Bronchial epithelium epithelial-mesenchymal plasticity forms aberrant basaloid-like cells in vitro. Am J Physiol Lung Cell Mol Physiol 2022; 322:L822-L841. [PMID: 35438006 PMCID: PMC9142163 DOI: 10.1152/ajplung.00254.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Although epithelial-mesenchymal transition (EMT) is a common feature of fibrotic lung disease, its role in fibrogenesis is controversial. Recently, aberrant basaloid cells were identified in fibrotic lung tissue as a novel epithelial cell type displaying a partial EMT phenotype. The developmental origin of these cells remains unknown. To elucidate the role of EMT in the development of aberrant basaloid cells from the bronchial epithelium, we mapped EMT-induced transcriptional changes at the population and single-cell levels. Human bronchial epithelial cells grown as submerged or air-liquid interface (ALI) cultures with or without EMT induction were analyzed by bulk and single-cell RNA-Sequencing. Comparison of submerged and ALI cultures revealed differential expression of 8,247 protein coding (PC) and 1,621 long noncoding RNA (lncRNA) genes and revealed epithelial cell-type-specific lncRNAs. Similarly, EMT induction in ALI cultures resulted in robust transcriptional reprogramming of 6,020 PC and 907 lncRNA genes. Although there was no evidence for fibroblast/myofibroblast conversion following EMT induction, cells displayed a partial EMT gene signature and an aberrant basaloid-like cell phenotype. The substantial transcriptional differences between submerged and ALI cultures highlight that care must be taken when interpreting data from submerged cultures. This work supports that lung epithelial EMT does not generate fibroblasts/myofibroblasts and confirms ALI cultures provide a physiologically relevant system to study aberrant basaloid-like cells and mechanisms of EMT. We provide a catalog of PC and lncRNA genes and an interactive browser (https://bronc-epi-in-vitro.cells.ucsc.edu/) of single-cell RNA-Seq data for further exploration of potential roles in the lung epithelium in health and lung disease.
Collapse
Affiliation(s)
- Dinesh Babu Uthaya Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Efthymios Motakis
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | | | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Johad Khoury
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Mingyang Lu
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jonathan L Koff
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
13
|
Kataoka T, Okudela K, Matsumura M, Baba T, Kitamura H, Arai H, Suzuki T, Koike C, Mutsui H, Sekiya M, Sugiyama M, Takemura T, Iwasawa T, Ogura T, Ohashi K. Significant accumulation of KRAS mutations in bronchiolar metaplasia‑associated honeycomb lesions of interstitial pneumonia. Oncol Lett 2022; 24:225. [PMID: 35720499 PMCID: PMC9185152 DOI: 10.3892/ol.2022.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/24/2022] [Indexed: 11/06/2022] Open
Abstract
Interstitial pneumonia (IP) is a major risk factor for lung adenocarcinoma (LADC). IP-related LADC predominantly develops in the bronchiolar metaplasia lining in honeycomb lesions. Kirsten rat sarcoma virus (KRAS) is the most common oncogene mutated in IP-related LADC. The present study examined the metaplastic epithelia in honeycomb lesions for KRAS mutations using digital droplet polymerase chain reaction (ddPCR), a sensitive method used to detect infrequent mutations. Significantly higher KRAS mutation variant allele frequencies (VAFs) were detected in the metaplastic lung epithelia from 13 patients with IP compared with those in 46 non-lesioned lung samples from patients without IP (G12V, P=0.0004, G12C, P=0.0181, and G12A, P=0.0234; Mann Whitney U test). Multivariate analyses revealed that higher KRAS G12V (logistic regression model; P=0.0133, odds ratio=7.11) and G12C (P=0.0191, odds ratio=5.81) VAFs in patients with IP were independent of confounding variables, such as smoking and age. In patients with IP, metaplastic epithelia exhibited significantly higher KRAS G12V and G12C VAFs compared with the non-lesioned counterparts (paired t-test; G12V, P=0.0158, G12C, P=0.0465). These results suggested that IP could increase KRAS mutations and supported the hypothesis that bronchiolar metaplasia could be a precursor for IP-related LADC.
Collapse
Affiliation(s)
- Toshiaki Kataoka
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| | - Koji Okudela
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| | - Mai Matsumura
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| | - Tomohisa Baba
- Division of Respirology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Hideya Kitamura
- Division of Respirology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Hiromasa Arai
- Division of Surgery, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Takeshisa Suzuki
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| | - Chihiro Koike
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| | - Hideaki Mutsui
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| | - Motoki Sekiya
- Division of Pathology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Misaki Sugiyama
- Division of Pathology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Tamiko Takemura
- Division of Pathology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Tae Iwasawa
- Division of Radiology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Takashi Ogura
- Division of Respirology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Kenichi Ohashi
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| |
Collapse
|
14
|
Liu L, Sun Q, Davis F, Mao J, Zhao H, Ma D. Epithelial-mesenchymal transition in organ fibrosis development: current understanding and treatment strategies. BURNS & TRAUMA 2022; 10:tkac011. [PMID: 35402628 PMCID: PMC8990740 DOI: 10.1093/burnst/tkac011] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/16/2021] [Indexed: 01/10/2023]
Abstract
Organ fibrosis is a process in which cellular homeostasis is disrupted and extracellular matrix is excessively deposited. Fibrosis can lead to vital organ failure and there are no effective treatments yet. Although epithelial–mesenchymal transition (EMT) may be one of the key cellular mechanisms, the underlying mechanisms of fibrosis remain largely unknown. EMT is a cell phenotypic process in which epithelial cells lose their cell-to-cell adhesion and polarization, after which they acquire mesenchymal features such as infiltration and migration ability. Upon injurious stimulation in different organs, EMT can be triggered by multiple signaling pathways and is also regulated by epigenetic mechanisms. This narrative review summarizes the current understanding of the underlying mechanisms of EMT in fibrogenesis and discusses potential strategies for attenuating EMT to prevent and/or inhibit fibrosis. Despite better understanding the role of EMT in fibrosis development, targeting EMT and beyond in developing therapeutics to tackle fibrosis is challenging but likely feasible.
Collapse
Affiliation(s)
- Lexin Liu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.,Department of Nephrology and Urology, Pediatric Urolith Center, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, 310003, China
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Frank Davis
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Jianhua Mao
- Department of Nephrology, The Children Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| |
Collapse
|
15
|
Takahashi M, Mizumura K, Gon Y, Shimizu T, Kozu Y, Shikano S, Iida Y, Hikichi M, Okamoto S, Tsuya K, Fukuda A, Yamada S, Soda K, Hashimoto S, Maruoka S. Iron-Dependent Mitochondrial Dysfunction Contributes to the Pathogenesis of Pulmonary Fibrosis. Front Pharmacol 2022; 12:643980. [PMID: 35058772 PMCID: PMC8765595 DOI: 10.3389/fphar.2021.643980] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Although the pathogenesis of pulmonary fibrosis remains unclear, it is known to involve epithelial injury and epithelial-mesenchymal transformation (EMT) as a consequence of cigarette smoke (CS) exposure. Moreover, smoking deposits iron in the mitochondria of alveolar epithelial cells. Iron overload in mitochondria causes the Fenton reaction, leading to reactive oxygen species (ROS) production, and ROS leakage from the mitochondria induces cell injury and inflammation in the lungs. Nevertheless, the mechanisms underlying iron metabolism and pulmonary fibrosis are yet to be elucidated. In this study, we aimed to determine whether iron metabolism and mitochondrial dysfunction are involved in the pathogenesis of pulmonary fibrosis. We demonstrated that administration of the iron chelator deferoxamine (DFO) reduced CS-induced pulmonary epithelial cell death, mitochondrial ROS production, and mitochondrial DNA release. Notably, CS-induced cell death was reduced by the administration of an inhibitor targeting ferroptosis, a unique iron-dependent form of non-apoptotic cell death. Transforming growth factor-β-induced EMT of pulmonary epithelial cells was also reduced by DFO. The preservation of mitochondrial function reduced Transforming growth factor-β-induced EMT. Furthermore, transbronchial iron chelation ameliorated bleomycin-induced pulmonary fibrosis and leukocyte migration in a murine model. Our findings indicate that iron metabolism and mitochondrial dysfunction are involved in the pathogenesis of pulmonary fibrosis. Thus, they may be leveraged as new therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Mai Takahashi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kenji Mizumura
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yutaka Kozu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Sotaro Shikano
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yuko Iida
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Mari Hikichi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shinichi Okamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kota Tsuya
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Asami Fukuda
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shiho Yamada
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kaori Soda
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shu Hashimoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Qu Z, Dou W, Zhang K, Duan L, Zhou D, Yin S. IL-22 inhibits bleomycin-induced pulmonary fibrosis in association with inhibition of IL-17A in mice. Arthritis Res Ther 2022; 24:280. [PMID: 36564791 PMCID: PMC9789559 DOI: 10.1186/s13075-022-02977-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Interstitial lung disease, a common extra-articular complication of connective tissue disease, is characterized by progressive and irreversible pulmonary inflammation and fibrosis, which causes significant mortality. IL-22 shows a potential in regulating chronic inflammation and possibly plays an anti-fibrotic role by protecting epithelial cells. However, the detailed effects and underlying mechanisms are still unclear. In this study, we explored the impact of IL-22 on pulmonary fibrosis both in vivo and in vitro. METHODS To induce pulmonary fibrosis, wild-type mice and IL-22 knockout mice were intratracheally injected with bleomycin followed by treatments with recombinant IL-22 or IL-17A neutralizing antibody. We investigated the role of IL-22 on bleomycin-induced pulmonary fibrosis and the mechanism in the possible interaction between IL-22 and IL-17A. Fibrosis-related genes were detected using RT-qPCR, western blot, and immunofluorescence. Inflammatory and fibrotic changes were assessed based on histological features. We also used A549 human alveolar epithelial cells, NIH/3T3 mouse fibroblast cells, and primary mouse lung fibroblasts to study the impact of IL-22 on fibrosis in vitro. RESULTS IL-22 knockout mice showed aggravated pulmonary fibrosis compared with wild-type mice, and injection of recombinant IL-22 decreased the severe fibrotic manifestations in IL-22 knockout mice. In cell culture assays, IL-22 decreased protein levels of Collagen I in A549 cells, NIH/3T3 cells, and primary mouse lung fibroblasts. IL-22 also reduced the protein level of Collagen I in NIH/3T3 cells which were co-cultured with T cells. Mechanistically, IL-22 reduced the Th17 cell proportion and IL-17A mRNA level in lung tissues, and treatment with an IL-17A neutralizing antibody alleviated the severe pulmonary fibrosis in IL-22 knockout mice. The IL-17A neutralizing antibody also reduced Collagen I expression in NIH/3T3 cells in vitro. Knockdown of IL-17A with siRNAs or administration of IL-22 in NIH/3T3 cells and MLFs decreased expression of Collagen I, an effect blocked by concurrent use of recombinant IL-17A. CONCLUSIONS IL-22 mediated an anti-fibrogenesis effect in the bleomycin-induced pulmonary fibrosis model and this effect was associated with inhibition of IL-17A.
Collapse
Affiliation(s)
- Ziye Qu
- grid.413389.40000 0004 1758 1622Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,grid.417303.20000 0000 9927 0537The First Clinical Medicine School, Xuzhou Medical University, Xuzhou, 221002 China
| | - Wencan Dou
- grid.413389.40000 0004 1758 1622Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,grid.417303.20000 0000 9927 0537The First Clinical Medicine School, Xuzhou Medical University, Xuzhou, 221002 China
| | - Kexin Zhang
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China
| | - Lili Duan
- Department of Rheumatology, The People’s Hospital of Jiawang District of Xuzhou, Xuzhou, 221011 China
| | - Dongmei Zhou
- grid.413389.40000 0004 1758 1622Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,grid.417303.20000 0000 9927 0537The First Clinical Medicine School, Xuzhou Medical University, Xuzhou, 221002 China
| | - Songlou Yin
- grid.413389.40000 0004 1758 1622Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,grid.417303.20000 0000 9927 0537The First Clinical Medicine School, Xuzhou Medical University, Xuzhou, 221002 China
| |
Collapse
|
17
|
Zhang C, Wang S, Lau J, Roden AC, Matteson EL, Sun J, Luo F, Tschumperlin DJ, Vassallo R. IL-23 amplifies the epithelial-mesenchymal transition of mechanically conditioned alveolar epithelial cells in rheumatoid arthritis-associated interstitial lung disease through mTOR/S6 signaling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1006-L1022. [PMID: 34585990 DOI: 10.1152/ajplung.00292.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) creates an environment facilitating fibrosis following alveolar epithelial cell injury. IL-23 has important roles in chronic autoimmune conditions like rheumatoid arthritis (RA), but its role in the interstitial lung disease that affects patients with RA is unclear. This study aimed to determine the profibrogenic role of IL-23 on somatic alveolar type I (ATI) epithelial cells. Primary ATI cells were isolated from rats and cultured on plastic dishes for 1-3 wk. After prolonged culture (≥14 days) on rigid culture dishes, primary ATI cells gradually acquired a mesenchymal phenotype, identified by decreased expression of caveolin-1, and reorganization of F-actin cytoskeleton, indicating the initiation of EMT by matrix stiffness. To determine how IL-23 promotes EMT in vitro, transitioning ATI cells, cultured on a stiff substrate for ≥14 days were stimulated with IL-23. The EMT phenotype was significantly enhanced by IL-23, which upregulated α-smooth muscle actin (α-SMA), collagen I/III protein, and decreased caveolin-1. Furthermore, IL-23 significantly promoted cell invasion, as well as apoptotic resistance on transitioning ATI cells. Mechanistically, IL-23-induced EMT was mammalian target of rapamycin/ribosomal protein S6 (mTOR/S6) signaling dependent and reversible by rapamycin. Transcriptional sequencing analysis of human lung fibrosis biopsy tissue revealed key roles for IL-23 in rheumatoid arthritis-associated interstitial lung disease (RA-ILD). This result was further validated by significantly upregulated IL-23 expression at the mRNA level in RA-ILD lung sections. Notably, transitioning ATI epithelial cells were abundantly detected in RA-ILD tissue. Taken together, these data support a role for IL-23 in the pathogenesis of RA lung fibrosis by promoting EMT in alveolar epithelial cells through mTOR/S6 signaling.
Collapse
Affiliation(s)
- Chujie Zhang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jessica Lau
- Pulmonary and Critical Care Medicine, The Vancouver Clinic, Vancouver, Washington
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Eric L Matteson
- Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jie Sun
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Daniel J Tschumperlin
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
18
|
Kronborg-White S, Madsen LB, Bendstrup E, Poletti V. PD-L1 Expression in Patients with Idiopathic Pulmonary Fibrosis. J Clin Med 2021; 10:jcm10235562. [PMID: 34884264 PMCID: PMC8658518 DOI: 10.3390/jcm10235562] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is the most common and severe form within the group of idiopathic interstitial pneumonias. It is characterized by repetitive alveolar injury in genetically susceptible individuals and abnormal wound healing, leading to dysregulated bronchiolar proliferation and excessive deposition of extracellular matrix, causing complete architectural distortion and fibrosis. Epithelial-to-mesenchymal transition is considered an important pathogenic event, a phenomenon also observed in various malignant neoplasms, in which tumor cells express programmed death-ligand one (PD-L1). The aim of this study was to assess the presence of PD-L1 in patients with IPF and other interstitial lung diseases (ILDs). Method: Patients with a clinically and radiologically suspected idiopathic interstitial pneumonia or other ILDs undergoing transbronchial cryobiopsy to confirm the diagnosis at the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, were included in this prospective observational study. Cellular membrane PD-L1 expression in epithelial cells was determined using the DAKO PD-L1 IHC 22C3 PharmDx Kit. Results: Membrane-bound PD-L1 (mPD-L1) was found in twelve (28%) of the forty-three patients with IPF and in five (9%) of the fifty-five patients with other ILDs (p = 0.015). When adjusting for age, gender and smoking status, the odds ratio of having IPF when expressing mPD-L1 in alveolar and/or bronchiolar epithelial cells was 4.3 (CI: 1.3–14.3). Conclusion: Expression of mPD-L1 in epithelial cells in the lung parenchymal zones was detected in a consistent subgroup of patients with IPF compared to other interstitial pneumonias. Larger studies are needed to explore the role of mPD-L1 in patients with IPF.
Collapse
Affiliation(s)
- Sissel Kronborg-White
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, 8200 Aarhus, Denmark; (E.B.); (V.P.)
- Correspondence:
| | - Line Bille Madsen
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Elisabeth Bendstrup
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, 8200 Aarhus, Denmark; (E.B.); (V.P.)
| | - Venerino Poletti
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, 8200 Aarhus, Denmark; (E.B.); (V.P.)
- Department of the Diseases of the Thorax, Ospedale Morgagni, University of Bologna, 47121 Forli, Italy
| |
Collapse
|
19
|
Siekacz K, Piotrowski WJ, Iwański MA, Górski P, Białas AJ. The Role of Interaction between Mitochondria and the Extracellular Matrix in the Development of Idiopathic Pulmonary Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9932442. [PMID: 34707784 PMCID: PMC8545566 DOI: 10.1155/2021/9932442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 01/16/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a condition which affects mainly older adults, that suggests mitochondrial dysfunction and oxidative stress, which follow cells senescence, and might contribute to the disease onset. We have assumed pathogenesis associated with crosstalk between the extracellular matrix (ECM) and mitochondria, mainly based on mitochondrial equilibrium impairment consisting of (1) tyrosine kinases and serine-threonine kinase (TKs and ST-Ks) activation via cytokines, (2) mitochondrial electron transport chain dysfunction and in consequence electrons leak with lower ATP synthesis, (3) the activation of latent TGF-β via αVβ6 integrin, (4) tensions transduction via α2β1 integrin, (5) inefficient mitophagy, and (6) stress inhibited biogenesis. Mitochondria dysfunction influences ECM composition and vice versa. Damaged mitochondria release mitochondrial reactive oxygen species (mtROS) and the mitochondrial DNA (mtDNA) to the microenvironment. Therefore, airway epithelial cells (AECs) undergo transition and secrete cytokines. Described factors initiate an inflammatory process with immunological enhancement. In consequence, local fibroblasts exposed to harmful conditions transform into myofibroblasts, produce ECM, and induce progression of fibrosis. In our review, we summarize numerous aspects of mitochondrial pathobiology, which seem to be involved in the pathogenesis of lung fibrosis. In addition, an increasing body of evidence suggests considering crosstalk between the ECM and mitochondria in this context. Moreover, mitochondria and ECM seem to be important players in the antifibrotic treatment of IPF.
Collapse
Affiliation(s)
- Kamil Siekacz
- Department of Pathobiology of Respiratory Diseases, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| | - Wojciech J. Piotrowski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| | - Mikołaj A. Iwański
- Department of Pathobiology of Respiratory Diseases, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| | - Paweł Górski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| | - Adam J. Białas
- Department of Pathobiology of Respiratory Diseases, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| |
Collapse
|
20
|
Tan W, Wang Y, Chen Y, Chen C. Cell tracing reveals the transdifferentiation fate of mouse lung epithelial cells during pulmonary fibrosis in vivo. Exp Ther Med 2021; 22:1188. [PMID: 34475978 PMCID: PMC8406816 DOI: 10.3892/etm.2021.10622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and devastating interstitial lung disease. The origin of myofibroblasts is still to be elucidated and the existence of epithelial-mesenchymal transition (EMT) in IPF remains controversial. Hence, it is important to clarify the origin of fibroblasts by improving modeling and labeling methods and analyzing the differentiation pathway of alveolar epithelial cells (AEC) in pulmonary fibrosis with cell tracking technology. In the present study, adult transgenic mice with SPC-rtTA+/-/tetO7-CMV-Cre+/-/mTmG+/- were induced with doxycycline for 15 days. The gene knockout phenomenon occurred in type II AECs in the lung and the reporter gene cell membrane-localized enhanced green fluorescence protein (mEGFP) was expressed in the cell membrane. The expression of Cre recombinase and SPC was analyzed using immunohistochemical (IHC) staining to detect the labeling efficiency. A repetitive intraperitoneal bleomycin-induced pulmonary fibrosis model was established, and the mice were sacrificed on day 28. The co-localization of mEGFP and mesenchymal markers α-smooth muscle actin (α-SMA) and S100 calcium binding protein A4 (S100A4) were detected by multiple IHC staining. The results revealed that Cre was expressed in the airway and AECs in the lung tissue of adult transgenic mice with SPC-rtTA+/-/tetO7-CMV-Cre+/-/mTmG+/- induced by doxycycline; the labeling efficiency in the peripheral lung tissue was 63.27±7.51%. mEGFP was expressed on the membrane of type II AECs and their differentiated form of type I AECs. Expression of mEGFP was mainly observed in the fibrotic region in bleomycin-induced pulmonary fibrosis; 1.94±0.08% of α-SMA-positive cells were mEGFP-positive and 9.68±2.06% of S100A4-positive cells were mEGFP-positive in bleomycin-induced pulmonary fibrosis. In conclusion, the present results suggested that while EMT contributes to the pathogenesis of pulmonary fibrosis, it is not the major causative factor of this condition.
Collapse
Affiliation(s)
- Wei Tan
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yaru Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yuhua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Cheng Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
21
|
Sun W, Jing X, Yang X, Huang H, Luo Q, Xia S, Wang P, Wang N, Zhang Q, Guo J, Xu Z. Regulation of the IGF1 signaling pathway is involved in idiopathic pulmonary fibrosis induced by alveolar epithelial cell senescence and core fucosylation. Aging (Albany NY) 2021; 13:18852-18869. [PMID: 34329195 PMCID: PMC8351684 DOI: 10.18632/aging.203335] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) mainly occurs in elderly people over the age of sixty. IPF pathogenesis is associated with alveolar epithelial cells (AECs) senescence. Activation of PI3K/AKT signaling induced by insulin-like growth factor 1 (IGF1) participates in AEC senescence and IPF by releasing CTGF, TGF-β1, and MMP9. Our previous study demonstrated that core fucosylation (CF) modification, catalyzed by a specific core fucosyltransferase (FUT8) can regulate the activation of multiple signaling pathways, and inhibiting CF can alleviate pulmonary fibrosis in mice induced by bleomycin. However, whether CF is involved in IGF1-mediated AEC senescence in IPF remains unclear. In this study, we found that the IGF1/PI3K/AKT signaling pathway was activated in IPF lung tissue. Meanwhile, CF was present in senescent AECs. We also showed that IGF1 could induce AECs senescence with enhanced CF in vivo and in vitro. Inhibiting CF alleviated AECs senescence and pulmonary fibrosis induced by IGF1. In addition, activation of IGF1/PI3K/AKT signaling depends on CF. In conclusion, this study confirmed that CF is an important target regulating the IGF1 signaling pathway in AEC senescence and IPF, which might be a candidate target to treat IPF in the future.
Collapse
Affiliation(s)
- Wei Sun
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Jing
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyu Yang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Huang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shu Xia
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping Wang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Wang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Guo
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zuojun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Vasse GF, Van Os L, De Jager M, Jonker MR, Borghuis T, Van Den Toorn LT, Jellema P, White ES, Van Rijn P, Harmsen MC, Heijink IH, Melgert BN, Burgess JK. Adipose Stromal Cell-Secretome Counteracts Profibrotic Signals From IPF Lung Matrices. Front Pharmacol 2021; 12:669037. [PMID: 34393771 PMCID: PMC8355988 DOI: 10.3389/fphar.2021.669037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease characterized by excess deposition and altered structure of extracellular matrix (ECM) in the lungs. The fibrotic ECM is paramount in directing resident cells toward a profibrotic phenotype. Collagens, an important part of the fibrotic ECM, have been shown to be structurally different in IPF. To further understand the disease to develop better treatments, the signals from the ECM that drive fibrosis need to be identified. Adipose tissue-derived stromal cell conditioned medium (ASC-CM) has demonstrated antifibrotic effects in animal studies but has not been tested in human samples yet. In this study, the collagen structural integrity in (fibrotic) lung tissue, its interactions with fibroblasts and effects of ASC-CM treatment hereon were studied. Methods: Native and decellularized lung tissue from patients with IPF and controls were stained for denatured collagen using a collagen hybridizing peptide. Primary lung fibroblasts were seeded into decellularized matrices from IPF and control subjects and cultured for 7 days in the presence or absence of ASC-CM. Reseeded matrices were fixed, stained and analyzed for total tissue deposition and specific protein expression. Results: In both native and decellularized lung tissue, more denatured collagen was observed in IPF tissue compared to control tissue. Upon recellularization with fibroblasts, the presence of denatured collagen was equalized in IPF and control matrices, whereas total ECM was higher in IPF matrices than in the control. Treatment with ASC-CM resulted in less ECM deposition, but did not alter the levels of denatured collagen. Discussion: Our data showed that ASC-CM can inhibit fibrotic ECM-induced profibrotic behavior of fibroblasts. This process was independent of collagen structural integrity. Our findings open up new avenues for ASC-CM to be explored as treatment for IPF.
Collapse
Affiliation(s)
- Gwenda F. Vasse
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Lisette Van Os
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Marina De Jager
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
| | - Marnix R. Jonker
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - L. Tim Van Den Toorn
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Pytrick Jellema
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Eric S. White
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Patrick Van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, Netherlands
| | - Martin C. Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Barbro N. Melgert
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| |
Collapse
|
23
|
Identification and Validation of Potential Biomarkers and Pathways for Idiopathic Pulmonary Fibrosis by Comprehensive Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5545312. [PMID: 34285914 PMCID: PMC8275392 DOI: 10.1155/2021/5545312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/27/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022]
Abstract
Objective Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible, high-mortality lung disease, but its pathogenesis is still unclear. Our purpose was to explore potential genes and molecular mechanisms underlying IPF. Methods IPF-related data were obtained from the GSE99621 dataset. Differentially expressed genes (DEGs) were identified between IPF and controls. Their biological functions were analyzed. The relationships between DEGs and microRNAs (miRNAs) were predicted. DEGs and pathways were validated in a microarray dataset. A protein-protein interaction (PPI) network was constructed based on these common DEGs. Western blot was used to validate hub genes in IPF cell models by western blot. Results DEGs were identified for IPF than controls in the RNA-seq dataset. Functional enrichment analysis showed that these DEGs were mainly enriched in immune and inflammatory response, chemokine-mediated signaling pathway, cell adhesion, and other biological processes. In the miRNA-target network based on RNA-seq dataset, we found several miRNA targets among all DEGs, like RAB11FIP1, TGFBR3, and SPP1. We identified 304 upregulated genes and 282 downregulated genes in IPF compared to controls both in the microarray and RNA-seq datasets. These common DEGs were mainly involved in cell adhesion, extracellular matrix organization, oxidation-reduction process, and lung vasculature development. In the PPI network, 3 upregulated and 4 downregulated genes could be considered hub genes, which were confirmed in the IPF cell models. Conclusion Our study identified several IPF-related DEGs that could become potential biomarkers for IPF. Large-scale multicentric studies are eagerly needed to confirm the utility of these biomarkers.
Collapse
|
24
|
Regulation of Cellular Senescence Is Independent from Profibrotic Fibroblast-Deposited ECM. Cells 2021; 10:cells10071628. [PMID: 34209854 PMCID: PMC8307656 DOI: 10.3390/cells10071628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor survival. Age is a major risk factor, and both alveolar epithelial cells and lung fibroblasts in this disease exhibit features of cellular senescence, a hallmark of ageing. Accumulation of fibrotic extracellular matrix (ECM) is a core feature of IPF and is likely to affect cell function. We hypothesize that aberrant ECM deposition augments fibroblast senescence, creating a perpetuating cycle favouring disease progression. In this study, primary lung fibroblasts were cultured on control and IPF-derived ECM from fibroblasts pretreated with or without profibrotic and prosenescent stimuli, and markers of senescence, fibrosis-associated gene expression and secretion of cytokines were measured. Untreated ECM derived from control or IPF fibroblasts had no effect on the main marker of senescence p16Ink4a and p21Waf1/Cip1. However, the expression of alpha smooth muscle actin (ACTA2) and proteoglycan decorin (DCN) increased in response to IPF-derived ECM. Production of the proinflammatory cytokines C-X-C Motif Chemokine Ligand 8 (CXCL8) by lung fibroblasts was upregulated in response to senescent and profibrotic-derived ECM. Finally, the profibrotic cytokines transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF) were upregulated in response to both senescent- and profibrotic-derived ECM. In summary, ECM deposited by IPF fibroblasts does not induce cellular senescence, while there is upregulation of proinflammatory and profibrotic cytokines and differentiation into a myofibroblast phenotype in response to senescent- and profibrotic-derived ECM, which may contribute to progression of fibrosis in IPF.
Collapse
|
25
|
Xu Q, Cheng D, Liu Y, Pan H, Li G, Li P, Li Y, Sun W, Ma D, Ni C. LncRNA-ATB regulates epithelial-mesenchymal transition progression in pulmonary fibrosis via sponging miR-29b-2-5p and miR-34c-3p. J Cell Mol Med 2021; 25:7294-7306. [PMID: 34180127 PMCID: PMC8335671 DOI: 10.1111/jcmm.16758] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of non‐coding RNAs (ncRNAs) has been proved to play pivotal roles in epithelial‐mesenchymal transition (EMT) and fibrosis. We have previously demonstrated the crucial function of long non‐coding RNA (lncRNA) ATB in silica‐induced pulmonary fibrosis‐related EMT progression. However, the underlying molecular mechanism has not been fully elucidated. Here, we verified miR‐29b‐2‐5p and miR‐34c‐3p as two vital downstream targets of lncRNA‐ATB. As opposed to lncRNA‐ATB, a significant reduction of both miR‐29b‐2‐5p and miR‐34c‐3p was observed in lung epithelial cells treated with TGF‐β1 and a murine silicosis model. Overexpression miR‐29b‐2‐5p or miR‐34c‐3p inhibited EMT process and abrogated the pro‐fibrotic effects of lncRNA‐ATB in vitro. Further, the ectopic expression of miR‐29b‐2‐5p and miR‐34c‐3p with chemotherapy attenuated silica‐induced pulmonary fibrosis in vivo. Mechanistically, TGF‐β1‐induced lncRNA‐ATB accelerated EMT as a sponge of miR‐29b‐2‐5p and miR‐34c‐3p and shared miRNA response elements with MEKK2 and NOTCH2, thus relieving these two molecules from miRNA‐mediated translational repression. Interestingly, the co‐transfection of miR‐29b‐2‐5p and miR‐34c‐3p showed a synergistic suppression effect on EMT in vitro. Furthermore, the co‐expression of these two miRNAs by using adeno‐associated virus (AAV) better alleviated silica‐induced fibrogenesis than single miRNA. Approaches aiming at lncRNA‐ATB and its downstream effectors may represent new effective therapeutic strategies in pulmonary fibrosis.
Collapse
Affiliation(s)
- Qi Xu
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Demin Cheng
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Liu
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Honghong Pan
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guanru Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ping Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenqing Sun
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongyu Ma
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunhui Ni
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Carlier FM, de Fays C, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol 2021; 12:691227. [PMID: 34248677 PMCID: PMC8264588 DOI: 10.3389/fphys.2021.691227] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces are lined by epithelial cells, which provide a complex and adaptive module that ensures first-line defense against external toxics, irritants, antigens, and pathogens. The underlying mechanisms of host protection encompass multiple physical, chemical, and immune pathways. In the lung, inhaled agents continually challenge the airway epithelial barrier, which is altered in chronic diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, or pulmonary fibrosis. In this review, we describe the epithelial barrier abnormalities that are observed in such disorders and summarize current knowledge on the mechanisms driving impaired barrier function, which could represent targets of future therapeutic approaches.
Collapse
Affiliation(s)
- François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology and Lung Transplant, Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | - Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
27
|
Kato M, Takahashi F, Sato T, Mitsuishi Y, Tajima K, Ihara H, Nurwidya F, Baskoro H, Murakami A, Kobayashi I, Hidayat M, Shimada N, Sasaki S, Mineki R, Fujimura T, Kumasaka T, Niwa SI, Takahashi K. Tranilast Inhibits Pulmonary Fibrosis by Suppressing TGFβ/SMAD2 Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4593-4603. [PMID: 33149556 PMCID: PMC7605600 DOI: 10.2147/dddt.s264715] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Purpose Idiopathic pulmonary fibrosis (IPF) is characterized by the accumulation of extracellular matrix (ECM) protein in the lungs. Transforming growth factor (TGF) β-induced ECM protein synthesis contributes to the development of IPF. Tranilast, an anti-allergy drug, suppresses TGFβ expression and inhibits interstitial renal fibrosis in animal models. However, the beneficial effects of tranilast or its mechanism as a therapy for pulmonary fibrosis have not been clarified. Methods We investigated the in vitro effect of tranilast on ECM production and TGFβ/SMAD2 pathway in TGFβ2-stimulated A549 human alveolar epithelial cells, using quantitative polymerase chain reaction, Western blotting, and immunofluorescence. In vitro observations were validated in the lungs of a murine pulmonary fibrosis model, which we developed by intravenous injection of bleomycin. Results Treatment with tranilast suppressed the expression of ECM proteins, such as fibronectin and type IV collagen, and attenuated SMAD2 phosphorylation in TGFβ2-stimulated A549 cells. In addition, based on a wound healing assay in these cells, tranilast significantly inhibited cell motility, with foci formation that comprised of ECM proteins. Histological analyses revealed that the administration of tranilast significantly attenuated lung fibrosis in mice. Furthermore, tranilast treatment significantly reduced levels of TGFβ, collagen, fibronectin, and phosphorylated SMAD2 in pulmonary fibrotic tissues in mice. Conclusion These findings suggest that tranilast inhibits pulmonary fibrosis by suppressing TGFβ/SMAD2-mediated ECM protein production, presenting tranilast as a promising and novel anti-fibrotic agent for the treatment of IPF.
Collapse
Affiliation(s)
- Motoyasu Kato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadashi Sato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoichiro Mitsuishi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Tajima
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroaki Ihara
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fariz Nurwidya
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hario Baskoro
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akiko Murakami
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Isao Kobayashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Moulid Hidayat
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoko Shimada
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Leading Center for the Development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sasaki
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Reiko Mineki
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsutomu Fujimura
- Laboratory of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Toshio Kumasaka
- Department of Pathology, Japanese Red Cross Medical Center, Tokyo, Japan
| | | | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Leading Center for the Development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Pericyte-myofibroblast transition in the human lung. Biochem Biophys Res Commun 2020; 528:269-275. [DOI: 10.1016/j.bbrc.2020.05.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
|
29
|
Cores J, Dinh PUC, Hensley T, Adler KB, Lobo LJ, Cheng K. A pre-investigational new drug study of lung spheroid cell therapy for treating pulmonary fibrosis. Stem Cells Transl Med 2020; 9:786-798. [PMID: 32304182 PMCID: PMC7308638 DOI: 10.1002/sctm.19-0167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a lethal interstitial lung disease with unknown etiology, no cure, and few treatment options. Herein, a therapy option is presented that makes use of a heterogeneous population of lung cells, including progenitor cells and supporting cells lines, cultured in adherent and suspension conditions, the latter of which induces spontaneous spheroid formation. Within these spheroids, progenitor marker expression is augmented. The cells, called lung spheroid cells, are isolated from fibrotic lungs, expanded, and delivered in single cell suspensions into rat models of pulmonary fibrosis via tail-vein injections. Two bleomycin-induced fibrotic rat models are used; a syngeneic Wistar-Kyoto rat model, treated with syngeneic cells, and a xenogeneic nude rat model, treated with human cells. The first objective was to study the differences in fibrotic progression in the two rat models after bleomycin injury. Nude rat fibrosis formed quickly and extended for 30 days with no self-resolution. Wistar-Kyoto rat fibrosis was more gradual and began to decrease in severity between days 14 and 30. The second goal was to find the minimum effective dose of cells that demonstrated safe and effective therapeutic value. The resultant minimum effective therapeutic dose, acquired from the nude rat model, was 3 × 106 human cells. Histological analysis revealed no evidence of tumorigenicity, increased local immunological activity in the lungs, or an increase in liver enzyme production. These data demonstrate the safety and efficacy of lung spheroid cells in their application as therapeutic agents for pulmonary fibrosis, as well as their potential for clinical translation.
Collapse
Affiliation(s)
- Jhon Cores
- Joint Department of Biomedical Engineering, University of North Carolina, and North Carolina State University, Chapel Hill and Raleigh, North Carolina, USA.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Phuong-Uyen C Dinh
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Taylor Hensley
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Kenneth B Adler
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Leonard J Lobo
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ke Cheng
- Joint Department of Biomedical Engineering, University of North Carolina, and North Carolina State University, Chapel Hill and Raleigh, North Carolina, USA.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA.,Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
30
|
Knight DA, Grainge CL, Stick SM, Kicic A, Schuliga M. Epithelial Mesenchymal Transition in Respiratory Disease: Fact or Fiction. Chest 2020; 157:1591-1596. [PMID: 31952949 DOI: 10.1016/j.chest.2019.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 11/20/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Australian Respiratory Epithelium Consortium, Perth, WA, Australia.
| | - Christopher L Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia; Australian Respiratory Epithelium Consortium, Perth, WA, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Subiaco, WA, Australia; Australian Respiratory Epithelium Consortium, Perth, WA, Australia
| | - Anthony Kicic
- Telethon Kids Institute, Subiaco, WA, Australia; Australian Respiratory Epithelium Consortium, Perth, WA, Australia
| | - Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia; Australian Respiratory Epithelium Consortium, Perth, WA, Australia
| |
Collapse
|
31
|
Yao W, Li Y, Han L, Ji X, Pan H, Liu Y, Yuan J, Yan W, Ni C. The CDR1as/miR-7/TGFBR2 Axis Modulates EMT in Silica-Induced Pulmonary Fibrosis. Toxicol Sci 2019; 166:465-478. [PMID: 30202956 DOI: 10.1093/toxsci/kfy221] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Silicosis is one of the typical forms of pneumoconiosis characterized by abnormal proliferation of fibroblasts and deposition of extracellular matrix. Recent findings have shown that microRNAs and circular RNAs (circRNAs) are implicated in many diseases. However, the function of noncoding RNAs in pulmonary fibrosis remain to be elucidated. Here, miR-7 was found significantly decreased in silica-treated pulmonary epithelial cells as well as in fibrotic lung tissues of mice. Elevated expression of miR-7 via agomir injection relieved lung fibrosis in vivo. Further molecular study showed that miR-7 played its role against pulmonary fibrosis by blocking epithelial-mesenchymal transition (EMT) progression of human bronchial epithelial cells and A549 cells. Notably, transforming growth factor beta receptor 2 (TGFBR2) was identified as a target gene of miR-7 with bioinformatics tools, which was verified by dual luciferase receptor gene assay in human bronchial epithelial cells and A549 cells. Silica induced elevation of TGFBR2 could be abolished by exogenous expression of miR-7. Furthermore, bioinformatics software indicated that circRNA CDR1as had several binding sites for miR-7. The inhibitory effects of miR-7 on EMT and its target TGFBR2 were suppressed by circRNA CDR1as, which contributed to pulmonary fibrosis. Our studies also revealed overexpressed miR-7 could repress fibrogenesis of lung fibroblasts induced by TGF-β1. Collectively, circRNA CDR1as stimulated by silica could sponge miR-7 to release TGFBR2, plays an important role during pulmonary fibrosis by promoting EMT process. These results indicated that the interaction between miR-7 and circRNA CDR1as may exert important functions and provide potential therapeutic targets in lung fibrotic diseases.
Collapse
Affiliation(s)
- Wenxi Yao
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Li
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210028, China
| | - Xiaoming Ji
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Honghong Pan
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yi Liu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiali Yuan
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiwen Yan
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
32
|
Tada M, Sumi T, Tanaka Y, Hirai S, Yamaguchi M, Miyajima M, Niki T, Takahashi H, Watanabe A, Sakuma Y. MCL1 inhibition enhances the therapeutic effect of MEK inhibitors in KRAS-mutant lung adenocarcinoma cells. Lung Cancer 2019; 133:88-95. [DOI: 10.1016/j.lungcan.2019.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/21/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
|
33
|
Jung J, Lee YJ, Choi YH, Park EM, Kim HS, Kang JL. Gas6 Prevents Epithelial-Mesenchymal Transition in Alveolar Epithelial Cells via Production of PGE 2, PGD 2 and Their Receptors. Cells 2019; 8:cells8070643. [PMID: 31247991 PMCID: PMC6678614 DOI: 10.3390/cells8070643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is important in organ fibrosis. We hypothesized that growth arrest-specific protein 6 (Gas6) and its underlying mechanisms play roles in the prevention of EMT in alveolar epithelial cells (ECs). In this study, to determine whether Gas6 prevents TGF-β1-induced EMT in LA-4 and primary alveolar type II ECs, real-time PCR and immunoblotting in cell lysates and ELISA in culture supernatants were performed. Migration and invasion assays were performed using Transwell chambers. Pretreatment of ECs with Gas6 inhibited TGF-β1-induced EMT based on cell morphology, changes in EMT marker expression, and induction of EMT-activating transcription factors. Gas6 enhanced the levels of cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) and PGD2 as well as of their receptors. COX-2 inhibitors and antagonists of PGE2 and PGD2 receptors reversed the inhibition of TGF-β1-induced EMT, migration, and invasion by Gas6. Moreover, knockdown of Axl or Mer reversed the enhancement of PGE2 and PGD2 and suppression of EMT, migration and invasion by Gas6. Our data suggest Gas6-Axl or -Mer signalling events may reprogram ECs to resist EMT via the production of PGE2, PGD2, and their receptors.
Collapse
Affiliation(s)
- Jihye Jung
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul 07804, Korea.
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Korea.
| | - Ye-Ji Lee
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul 07804, Korea.
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Korea.
| | - Youn-Hee Choi
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul 07804, Korea.
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Korea.
| | - Eun-Mi Park
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Korea.
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul 07804, Korea.
| | - Hee-Sun Kim
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Korea.
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Korea.
| | - Jihee L Kang
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul 07804, Korea.
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Korea.
| |
Collapse
|
34
|
Kawami M, Harada R, Ojima T, Yamagami Y, Yumoto R, Takano M. Association of cell cycle arrest with anticancer drug-induced epithelial-mesenchymal transition in alveolar epithelial cells. Toxicology 2019; 424:152231. [PMID: 31170432 DOI: 10.1016/j.tox.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Many drugs exert serious cytotoxic effects on pulmonary tissues. Although several reports have shown an association of epithelial-mesenchymal transition (EMT) with anticancer drug-induced lung injury, mechanisms of these effects are poorly understood. In the present study, we evaluated mechanisms of anticancer drug-induced EMT, with a focus on involvement of cell cycle arrest. We found that methotrexate (MTX) altered mRNA expression levels of many genes as determined by microarray analysis. Gene set enrichment analysis revealed that cell cycle arrest pathways may be associated with MTX-induced EMT. In addition, thymidine (THY) and nocodazole (NOC), which induce cell cycle arrest at S-phase and G2/M-phase, increased mRNA expression levels of α-smooth muscle actin (SMA), an EMT marker. Furthermore, α-SMA protein expression in cells arrested at S- and G2/M-phases by MTX and paclitaxel (PTX) was significantly higher than that in cells at G1. Notably, co-treatment of cells with THY or NOC and EMT-inducing anticancer drugs did not result in additional upregulation of α-SMA mRNA expression. These findings suggested that cell cycle arrest may be closely associated with anticancer drug-induced EMT in alveolar epithelial cells.
Collapse
Affiliation(s)
- Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Risako Harada
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takamichi Ojima
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yohei Yamagami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| |
Collapse
|
35
|
Sundarakrishnan A, Zukas H, Coburn J, Bertini BT, Liu Z, Georgakoudi I, Baugh L, Dasgupta Q, Black LD, Kaplan DL. Bioengineered in Vitro Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis. ACS Biomater Sci Eng 2019; 5:2417-2429. [PMID: 33405750 DOI: 10.1021/acsbiomaterials.8b01262] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex disease of unknown etiology with no current curative treatment. Modeling pulmonary fibrotic (PF) tissue has the potential to improve our understanding of IPF disease progression and treatment. Rodent animal models do not replicate human fibroblastic foci (Hum-FF) pathology, and current iterations of in vitro model systems (e.g., collagen hydrogels, polyacrylamide hydrogels, and fibrosis-on-chip systems) are unable to replicate the three-dimensional (3D) complexity and biochemical composition of human PF tissue. Herein, we fabricated a 3D bioengineered pulmonary fibrotic (Eng-PF) tissue utilizing cell laden silk collagen type I dityrosine cross-linked hydrogels and Flexcell bioreactors. We show that silk collagen type I hydrogels have superior stability and mechanical tunability compared to other hydrogel systems. Using customized Flexcell bioreactors, we reproduced Hum-FF-like pathology with airway epithelial and microvascular endothelial cells. Eng-PF tissues can model myofibroblast differentiation and permit evaluation of antifibrotic drug treatments. Further, Eng-PF tissues could be used to model different facets of IPF disease, including epithelial injury with the addition of bleomycin and cellular recruitment by perfusion of cells through the hydrogel microchannel.
Collapse
Affiliation(s)
- Aswin Sundarakrishnan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Heather Zukas
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Jeannine Coburn
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, Massachusetts 01605, United States
| | - Brian T Bertini
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, United States
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Lauren Baugh
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Queeny Dasgupta
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Department of Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
36
|
Salton F, Volpe MC, Confalonieri M. Epithelial⁻Mesenchymal Transition in the Pathogenesis of Idiopathic Pulmonary Fibrosis. ACTA ACUST UNITED AC 2019; 55:medicina55040083. [PMID: 30925805 PMCID: PMC6524028 DOI: 10.3390/medicina55040083] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/21/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious disease of the lung, which leads to extensive parenchymal scarring and death from respiratory failure. The most accepted hypothesis for IPF pathogenesis relies on the inability of the alveolar epithelium to regenerate after injury. Alveolar epithelial cells become apoptotic and rare, fibroblasts/myofibroblasts accumulate and extracellular matrix (ECM) is deposited in response to the aberrant activation of several pathways that are physiologically implicated in alveologenesis and repair but also favor the creation of excessive fibrosis via different mechanisms, including epithelial⁻mesenchymal transition (EMT). EMT is a pathophysiological process in which epithelial cells lose part of their characteristics and markers, while gaining mesenchymal ones. A role for EMT in the pathogenesis of IPF has been widely hypothesized and indirectly demonstrated; however, precise definition of its mechanisms and relevance has been hindered by the lack of a reliable animal model and needs further studies. The overall available evidence conceptualizes EMT as an alternative cell and tissue normal regeneration, which could open the way to novel diagnostic and prognostic biomarkers, as well as to more effective treatment options.
Collapse
Affiliation(s)
- Francesco Salton
- Pulmonology Department, University Hospital of Cattinara, 34149 Trieste, Italy.
| | | | - Marco Confalonieri
- Pulmonology Department, University Hospital of Cattinara, 34149 Trieste, Italy.
| |
Collapse
|
37
|
Du SF, Wang XL, Ye CL, He ZJ, Li DX, Du BR, Liu YJ, Zhu XY. Exercise training ameliorates bleomycin-induced epithelial mesenchymal transition and lung fibrosis through restoration of H 2 S synthesis. Acta Physiol (Oxf) 2019; 225:e13177. [PMID: 30136377 DOI: 10.1111/apha.13177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 07/26/2018] [Accepted: 08/20/2018] [Indexed: 12/24/2022]
Abstract
AIMS Clinical trials have shown the beneficial effects of exercise training against pulmonary fibrosis. This study aimed to investigate whether prophylactic intervention with exercise training attenuates lung fibrosis via modulating endogenous hydrogen sulphde (H2 S) generation. METHODS First, ICR mice were allocated to Control, Bleomycin, Exercise, and Bleomycin + Exercise groups. Treadmill exercise began on day 1 and continued for 4 weeks. A single intratracheal dose of bleomycin (3 mg/kg) was administered on day 15. Second, ICR mice were allocated to Control, Bleomycin, H2 S, and Bleomycin + H2 S groups. H2 S donor NaHS (28 μmol/kg) was intraperitoneally injected once daily for 2 weeks. RESULTS Bleomycin-treated mice exhibited increased levels of collagen deposition, hydroxyproline, collagen I, transforming growth factor (TGF)-β1, Smad2/Smad3/low-density lipoprotein receptor-related proteins (LRP-6)/glycogen synthase kinase-3β (GSK-3β) phosphorylation, and Smad4/β-catenin expression in lung tissues (P < 0.01), which was alleviated by exercise training (P < 0.01 except for Smad4 and phosphorylated GSK-3β: P < 0.05). Bleomycin-induced lung fibrosis was associated with increased α smooth muscle actin (α-SMA) and decreased E-cadherin expression (P < 0.01). Double immunofluorescence staining showed the co-localization of E-cadherin/α-SMA, indicating epithelial-mesenchymal transition (EMT) formation, which was ameliorated by exercise training. Moreover, exercise training restored bleomycin-induced downregulation of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) expression, as well as H2 S generation in lung tissue (P < 0.01). NaHS treatment attenuated bleomycin-induced TGF-β1 production, activation of LRP-6/β-catenin signalling, EMT and lung fibrosis (P < 0.01 except for β-catenin: P < 0.05). CONCLUSION Exercise training restores bleomycin-induced downregulation of pulmonary CBS/CSE expression, thus contributing to the increased H2 S generation and suppression of TGF-β1/Smad and LRP-6/β-catenin signalling pathways, EMT and lung fibrosis.
Collapse
Affiliation(s)
- Shu-Fang Du
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
- Department of Physiology; Second Military Medical University; Shanghai China
| | - Xiu-Li Wang
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Chang-Lin Ye
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Ze-Jia He
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Dong-Xia Li
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Bai-Ren Du
- Institute of Sport; Anqing Normal University; Anhui China
| | - Yu-Jian Liu
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Xiao-Yan Zhu
- Department of Physiology; Second Military Medical University; Shanghai China
| |
Collapse
|
38
|
Characterization of distal airway stem-like cells expressing N-terminally truncated p63 and thyroid transcription factor-1 in the human lung. Exp Cell Res 2018; 372:141-149. [PMID: 30268759 DOI: 10.1016/j.yexcr.2018.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
Distal airway stem cells (DASCs) in the mouse lung can differentiate into bronchioles and alveoli. However, it remains unclear whether the same stem cells exist in the human lung. Here, we found that human lung epithelial (HuL) cells, derived from normal, peripheral lung tissue, in monolayer, mostly express both the N-terminally truncated isoform of p63 (∆Np63), a marker for airway basal cells, and thyroid transcription factor-1 (TTF-1), a marker for alveolar epithelial cells, even though these two molecules are usually expressed in a mutually exclusive way. Three-dimensionally cultured HuL cells differentiated to form bronchiole-like and alveolus-like organoids. We also uncovered a few bronchiolar epithelial cells expressing both ∆Np63 and TTF-1 in the human lung, suggesting that these cells are the cells of origin for HuL cells. Taken together, ΔNp63+ TTF-1+ peripheral airway epithelial cells are possibly the human counterpart of mouse DASCs and may offer potential for future regenerative medicine.
Collapse
|
39
|
Zhou W, Gong L, Wu Q, Xing C, Wei B, Chen T, Zhou Y, Yin S, Jiang B, Xie H, Zhou L, Zheng S. PHF8 upregulation contributes to autophagic degradation of E-cadherin, epithelial-mesenchymal transition and metastasis in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:215. [PMID: 30180906 PMCID: PMC6122561 DOI: 10.1186/s13046-018-0890-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
Background Plant homeodomain finger protein 8 (PHF8) serves an activator of epithelial-mesenchymal transition (EMT) and is implicated in various tumors. However, little is known about PHF8 roles in hepatocellular carcinoma (HCC) and regulating E-cadherin expression. Methods PHF8 expression pattern was investigated by informatic analysis and verified by RT-qPCR and immunochemistry in HCC tissues and cell lines. CCK8, xenograft tumor model, transwell assay, and tandem mCherry-GFP-LC3 fusion protein assay were utilized to assess the effects of PHF8 on proliferation, metastasis and autophagy of HCC cells in vitro and in vivo. ChIP, immunoblot analysis, rescue experiments and inhibitor treatment were used to clarify the mechanism by which PHF8 facilitated EMT, metastasis and autophagy. Results PHF8 upregulation was quite prevalent in HCC tissues and closely correlated with worse overall survival and disease-relapse free survival. Furthermore, PHF8-knockdown dramatically suppressed cell growth, migration, invasion and autophagy, and the expression of SNAI1, VIM, N-cadherin and FIP200, and increased E-cadherin level, while PHF8-overexpression led to the opposite results. Additionally, FIP200 augmentation reversed the inhibited effects of PHF8-siliencing on tumor migration, invasion and autophagy. Mechanistically, PHF8 was involved in transcriptionally regulating the expression of SNAI1, VIM and FIP200, rather than N-cadherin and E-cadherin. Noticeably, E-cadherin degradation could be accelerated by PHF8-mediated FIP200-dependent autophagy, a crucial pathway complementary to transcriptional repression of E-cadherin by SNAI1 activation. Conclusion These findings suggested that PHF8 played an oncogenic role in facilitating FIP200-dependent autophagic degradation of E-cadherin, EMT and metastasis in HCC. PHF8 might be a promising target for prevention, treatment and prognostic prediction of HCC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0890-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wuhua Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Li Gong
- Department of Endocrinology, Taihe Hospital, Shiyan, China
| | - Qinchuan Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Chunyang Xing
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bajin Wei
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Tianchi Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Yuan Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Shengyong Yin
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Bin Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Shiyan, China
| | - Haiyang Xie
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China. .,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China. .,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China. .,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China. .,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China. .,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China. .,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China.
| |
Collapse
|
40
|
Sumi T, Hirai S, Yamaguchi M, Tanaka Y, Tada M, Niki T, Takahashi H, Sakuma Y. Trametinib downregulates survivin expression in RB1-positive KRAS -mutant lung adenocarcinoma cells. Biochem Biophys Res Commun 2018; 501:253-258. [DOI: 10.1016/j.bbrc.2018.04.230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022]
|
41
|
Sumi T, Hirai S, Yamaguchi M, Tanaka Y, Tada M, Yamada G, Hasegawa T, Miyagi Y, Niki T, Watanabe A, Takahashi H, Sakuma Y. Survivin knockdown induces senescence in TTF‑1-expressing, KRAS-mutant lung adenocarcinomas. Int J Oncol 2018; 53:33-46. [PMID: 29658609 PMCID: PMC5958877 DOI: 10.3892/ijo.2018.4365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
Survivin plays a key role in regulating the cell cycle and apoptosis, and is highly expressed in the majority of malignant tumors. However, little is known about the roles of survivin in KRAS-mutant lung adenocarcinomas. In the present study, we examined 28 KRAS-mutant lung adenocarcinoma tissues and two KRAS-mutant lung adenocarcinoma cell lines, H358 and H441, in order to elucidate the potential of survivin as a therapeutic target. We found that 19 (68%) of the 28 KRAS-mutant lung adenocarcinomas were differentiated tumors expressing thyroid transcription factor-1 (TTF-1) and E-cadherin. Patients with tumors immunohistochemically positive for survivin (n=18) had poorer outcomes than those with survivin-negative tumors (n=10). In the H358 and H441 cells, which expressed TTF-1 and E-cadherin, survivin knockdown alone induced senescence, not apoptosis. However, in monolayer culture, the H358 cells and H441 cells in which survivin was silenced, underwent significant apoptosis following combined treatment with ABT-263, a Bcl-2 inhibitor, and trametinib, a MEK inhibitor. Importantly, the triple combination of survivin knockdown with ABT-263 and trametinib treatment, clearly induced cell death in a three-dimensional cell culture model and in an in vivo tumor xenograft model. We also observed that the growth of the H358 and H441 cells was slightly, yet significantly suppressed in vitro when TTF-1 was silenced. These findings collectively suggest that the triple combination of survivin knockdown with ABT-263 and trametinib treatment, may be a potential strategy for the treatment of KRAS-mutant lung adenocarcinoma. Furthermore, our findings indicate that the well-differentiated type of KRAS-mutant lung tumors depends, at least in part, on TTF-1 for growth.
Collapse
Affiliation(s)
- Toshiyuki Sumi
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Sachie Hirai
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Miki Yamaguchi
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yusuke Tanaka
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Makoto Tada
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Gen Yamada
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-0815, Japan
| | - Toshiro Niki
- Division of Integrative Pathology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Atsushi Watanabe
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
42
|
Valero-Jiménez A, Zúñiga J, Cisneros J, Becerril C, Salgado A, Checa M, Buendía-Roldán I, Mendoza-Milla C, Gaxiola M, Pardo A, Selman M. Transmembrane protease, serine 4 (TMPRSS4) is upregulated in IPF lungs and increases the fibrotic response in bleomycin-induced lung injury. PLoS One 2018; 13:e0192963. [PMID: 29529050 PMCID: PMC5846721 DOI: 10.1371/journal.pone.0192963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by epithelial cell activation, expansion of the fibroblast population and excessive extracellular matrix accumulation. The mechanisms are incompletely understood but evidence indicates that the deregulation of several proteases contributes to its pathogenesis. Transmembrane protease serine 4 (TMPRSS4) is a novel type II transmembrane serine protease that may promote migration and facilitate epithelial to mesenchymal transition (EMT), two critical processes in the pathogenesis of IPF. Thus, we hypothesized that over-expression of TMPRSS4 in the lung could promote the initiation and/or progression of IPF. In this study we first evaluated the expression and localization of TMPRSS4 in IPF lungs by real time PCR, western blot and immunohistochemistry. Then we examined the lung fibrotic response in wild-type and TMPRSS4 deficient mice using the bleomycin-induced lung injury model. We found that this protease is upregulated in IPF lungs, where was primarily expressed by epithelial and mast cells. Paralleling the findings in vivo, TMPRSS4 was expressed by alveolar and bronchial epithelial cells in vitro and unexpectedly, provoked an increase of E-cadherin. No expression was observed in normal human or IPF lung fibroblasts. The lung fibrotic response evaluated at 28 days after bleomycin injury was markedly attenuated in the haplodeficient and deficient TMPRSS4 mice. By morphology, a significant reduction of the fibrotic index was observed in KO and heterozygous mice which was confirmed by measurement of collagen content (hydroxyproline: WT: 164±21.1 μg/lung versus TMPRSS4 haploinsufficient: 110.2±14.3 μg/lung and TMPRSS4 deficient mice: 114.1±24.2 μg/lung (p<0.01). As in IPF, TMPRSS4 was also expressed in epithelial and mast cells. These findings indicate that TMPRSS4 is upregulated in IPF lungs and that may have a profibrotic role.
Collapse
Affiliation(s)
- Ana Valero-Jiménez
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - José Cisneros
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Carina Becerril
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Alfonso Salgado
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Marco Checa
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Ivette Buendía-Roldán
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Criselda Mendoza-Milla
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Miguel Gaxiola
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| |
Collapse
|
43
|
Giacomelli C, Daniele S, Romei C, Tavanti L, Neri T, Piano I, Celi A, Martini C, Trincavelli ML. The A 2B Adenosine Receptor Modulates the Epithelial- Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells. Front Pharmacol 2018; 9:54. [PMID: 29445342 PMCID: PMC5797802 DOI: 10.3389/fphar.2018.00054] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different intracellular pathways could represent a mechanism at the basis of EMT maintenance/inhibition based on the extracellular microenvironment. Despite further investigations are needed, herein for the first time the A2BAR has been related to the EMT process, and therefore to the different EMT-related pathologies.
Collapse
Affiliation(s)
| | | | - Chiara Romei
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.,Radiology Unit, University Hospital of Pisa, Pisa, Italy
| | - Laura Tavanti
- Pneumology Unit, Cardio-Thoracic Department, University Hospital of Pisa, Pisa, Italy
| | - Tommaso Neri
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alessandro Celi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
44
|
Gabasa M, Duch P, Jorba I, Giménez A, Lugo R, Pavelescu I, Rodríguez-Pascual F, Molina-Molina M, Xaubet A, Pereda J, Alcaraz J. Epithelial contribution to the profibrotic stiff microenvironment and myofibroblast population in lung fibrosis. Mol Biol Cell 2017; 28:3741-3755. [PMID: 29046395 PMCID: PMC5739292 DOI: 10.1091/mbc.e17-01-0026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
The contribution of epithelial-to-mesenchymal transition (EMT) to the profibrotic stiff microenvironment and myofibroblast accumulation in pulmonary fibrosis remains unclear. We examined EMT-competent lung epithelial cells and lung fibroblasts from control (fibrosis-free) donors or patients with idiopathic pulmonary fibrosis (IPF), which is a very aggressive fibrotic disorder. Cells were cultured on profibrotic conditions including stiff substrata and TGF-β1, and analyzed in terms of morphology, stiffness, and expression of EMT/myofibroblast markers and fibrillar collagens. All fibroblasts acquired a robust myofibroblast phenotype on TGF-β1 stimulation. Yet IPF myofibroblasts exhibited higher stiffness and expression of fibrillar collagens than control fibroblasts, concomitantly with enhanced FAKY397 activity. FAK inhibition was sufficient to decrease fibroblast stiffness and collagen expression, supporting that FAKY397 hyperactivation may underlie the aberrant mechanobiology of IPF fibroblasts. In contrast, cells undergoing EMT failed to reach the values exhibited by IPF myofibroblasts in all parameters examined. Likewise, EMT could be distinguished from nonactivated control fibroblasts, suggesting that EMT does not elicit myofibroblast precursors either. Our data suggest that EMT does not contribute directly to the myofibroblast population, and may contribute to the stiff fibrotic microenvironment through their own stiffness but not their collagen expression. Our results also support that targeting FAKY397 may rescue normal mechanobiology in IPF.
Collapse
Affiliation(s)
- Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Paula Duch
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Ignasi Jorba
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Alícia Giménez
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Roberto Lugo
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Irina Pavelescu
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | - Maria Molina-Molina
- ILD Unit, Pulmonology Department, University Hospital of Bellvitge. Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Antoni Xaubet
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Pneumology Service, Hospital Clínic, 08036 Barcelona, Spain
| | - Javier Pereda
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Departament of Physiology, Faculty of Pharmacy, Universitat de València, 46100 València, Spain
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
45
|
Liu Y, Li Y, Xu Q, Yao W, Wu Q, Yuan J, Yan W, Xu T, Ji X, Ni C. Long non-coding RNA-ATB promotes EMT during silica-induced pulmonary fibrosis by competitively binding miR-200c. Biochim Biophys Acta Mol Basis Dis 2017; 1864:420-431. [PMID: 29113749 DOI: 10.1016/j.bbadis.2017.11.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
Long non-coding RNAs (lncRNAs) are important signal transduction regulators that act by various patterns. However, little is known about the molecular mechanisms of lncRNA related pathways in occupational lung fibrosis. Our previous study found that epithelial-mesenchymal transition (EMT) was one of the key events in silica-induced pulmonary fibrosis. This study showed that the lncRNA-ATB promoted EMT by acting as a miR-200c sponge. miR-200c was identified by miRNA array as a potential target of lncRNA-ATB and verified by dual luciferase reporter gene together with RNA pull-down assays. Moreover, our findings demonstrated that lncRNA-ATB is abundantly expressed during EMT of lung epithelial cells, which contributes to decreased levels of miR-200c. miR-200c targeted ZEB1 to relief silicosis by blocking EMT in vivo and in vitro. The results also suggested M2 macrophages secreted transforming growth factor-β1 (TGF-β1) to induce EMT process by activating lncRNA-ATB in epithelial cells. Collectively, silica-stimulated macrophages secreted TGF-β1 to induce lncRNA-ATB in epithelia cells, promoting EMT by binding with miR-200c and releasing ZEB1. These observations provide further understanding of the regulatory network of silica-induced pulmonary fibrosis and identify new therapeutic targets hopefully.
Collapse
Affiliation(s)
- Yi Liu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenxi Yao
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuyun Wu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiali Yuan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weiwen Yan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tiantian Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoming Ji
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
46
|
Ezegbunam W, Foronjy R. Posttranscriptional control of airway inflammation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29071794 DOI: 10.1002/wrna.1455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Acute inflammation in the lungs is a vital protective response, efficiently and swiftly eliminating inciters of tissue injury. However, in respiratory diseases characterized by chronic inflammation, such as chronic obstructive pulmonary disease and asthma, enhanced expression of inflammatory mediators leads to tissue damage and impaired lung function. Although transcription is an essential first step in the induction of proinflammatory genes, tight regulation of inflammation requires more rapid, flexible responses. Increasing evidence shows that such responses are achieved by posttranscriptional mechanisms directly affecting mRNA stability and translation initiation. RNA-binding proteins, microRNAs, and long noncoding RNAs interact with messenger RNA and each other to impact the stability and/or translation of mRNAs implicated in lung inflammation. Recent research has shown that these biological processes play a central role in the pathogenesis of several important pulmonary conditions. This review will highlight several posttranscriptional control mechanisms that influence lung inflammation and the known associations of derangements in these mechanisms with common respiratory diseases. WIREs RNA 2018, 9:e1455. doi: 10.1002/wrna.1455 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Wendy Ezegbunam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Robert Foronjy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
47
|
Jolly MK, Ward C, Eapen MS, Myers S, Hallgren O, Levine H, Sohal SS. Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Dev Dyn 2017. [DOI: 10.1002/dvdy.24541] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Chris Ward
- Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Mathew Suji Eapen
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| | - Stephen Myers
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
| | - Oskar Hallgren
- Department of Experimental Medical Sciences; Department of Respiratory Medicine and Allergology, Lund University; Sweden
| | - Herbert Levine
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Sukhwinder Singh Sohal
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
48
|
Abstract
INTRODUCTION Idiopathic Pulmonary Fibrosis (IPF) is a relentlessly progressive, fibrosing interstitial pneumonia characterized by a radiologic and/or histologic pattern of usual interstitial pneumonia (UIP). The availability of two effective anti-fibrotic drugs in IPF has encouraged the identification and treatment of patients in early stages in order to maximize clinical benefit. The ability of high-resolution computed tomography (HRCT) to identify a 'definite' UIP pattern is suboptimal, particularly in the absence of honeycombing. Therefore, radiologic criteria for UIP are currently being redefined. Histology represents the major source of information to define a UIP pattern. Novel and less invasive approaches (particularly cryobiopsy) to sample interstitial lung diseases have demonstrated high sensitivity and specificity. In parallel, researchers are focusing on molecular mechanisms underlying IPF with the aim to identify more specific druggable targets. Lung tissue is therefore essential for diagnostic, pathogenetic and therapeutic purposes. Areas covered: We identified and critically reviewed the most relevant recent literature related to the limitations of current radiologic criteria, new lung sampling procedures, and molecular pathways in support of the need of lung tissue to better understand IPF. Expert commentary: The development of truly effective treatments for IPF requires the identification of key pathogenetic molecules and pathways. To this end, the availability of lung tissue is vital.
Collapse
Affiliation(s)
- Giulio Rossi
- a Operative Unit of Pathologic Anatomy , Azienda USL , Aosta , Italy
| | - Paolo Spagnolo
- b Section of Respiratory Diseases, Department of Cardiac , Thoracic, and Vascular Sciences, University of Padua , Padova , Italy
| |
Collapse
|
49
|
Sakuma Y. Epithelial-to-mesenchymal transition and its role inEGFR-mutant lung adenocarcinoma and idiopathic pulmonary fibrosis. Pathol Int 2017; 67:379-388. [DOI: 10.1111/pin.12553] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/31/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Yuji Sakuma
- Department of Molecular Medicine; Research Institute for Frontier Medicine; Sapporo Medical University School of Medicine; Sapporo Japan
| |
Collapse
|
50
|
Yamaguchi M, Hirai S, Sumi T, Tanaka Y, Tada M, Nishii Y, Hasegawa T, Uchida H, Yamada G, Watanabe A, Takahashi H, Sakuma Y. Angiotensin-converting enzyme 2 is a potential therapeutic target for EGFR-mutant lung adenocarcinoma. Biochem Biophys Res Commun 2017; 487:613-618. [PMID: 28433633 PMCID: PMC7092918 DOI: 10.1016/j.bbrc.2017.04.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/15/2022]
Abstract
EGFR-mutant lung adenocarcinomas contain a subpopulation of cells that have undergone epithelial-to-mesenchymal transition and can grow independently of EGFR. To kill these cancer cells, we need a novel therapeutic approach other than EGFR inhibitors. If a molecule is specifically expressed on the cell surface of such EGFR-independent EGFR-mutant cancer cells, it can be a therapeutic target. We found that a mesenchymal EGFR-independent subline derived from HCC827 cells, an EGFR-mutant lung adenocarcinoma cell line, expressed angiotensin-converting enzyme 2 (ACE2) to a greater extent than its parental cells. ACE2 was also expressed at least partially in most of the primary EGFR-mutant lung adenocarcinomas examined, and the ACE2 expression level in the cancer cells was much higher than that in normal lung epithelial cells. In addition, we developed an anti-ACE2 mouse monoclonal antibody (mAb), termed H8R64, that was internalized by ACE2-expressing cells. If an antibody-drug conjugate consisting of a humanized mAb based on H8R64 and a potent anticancer drug were produced, it could be effective for the treatment of EGFR-mutant lung adenocarcinomas. A mesenchymal EGFR-mutant lung adenocarcinoma cell line expresses ACE2. EGFR-mutant lung adenocarcinoma tissues contain cancer cells that express ACE2. We developed an anti-ACE2 antibody that is internalized by ACE2-positive cells. ACE2 is a potential therapeutic target for EGFR-mutant lung cancer.
Collapse
Affiliation(s)
- Miki Yamaguchi
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sachie Hirai
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Sumi
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yusuke Tanaka
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Tada
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yukari Nishii
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroaki Uchida
- Division of Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Gen Yamada
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Watanabe
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|