1
|
Putro E, Carnevale A, Marangio C, Fulci V, Paolini R, Molfetta R. New Insight into Intestinal Mast Cells Revealed by Single-Cell RNA Sequencing. Int J Mol Sci 2024; 25:5594. [PMID: 38891782 PMCID: PMC11171657 DOI: 10.3390/ijms25115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells distributed in all tissues and strategically located close to blood and lymphatic vessels and nerves. Thanks to the expression of a wide array of receptors, MCs act as tissue sentinels, able to detect the presence of bacteria and parasites and to respond to different environmental stimuli. MCs originate from bone marrow (BM) progenitors that enter the circulation and mature in peripheral organs under the influence of microenvironment factors, thus differentiating into heterogeneous tissue-specific subsets. Even though MC activation has been traditionally linked to IgE-mediated allergic reactions, a role for these cells in other pathological conditions including tumor progression has recently emerged. However, several aspects of MC biology remain to be clarified. The advent of single-cell RNA sequencing platforms has provided the opportunity to understand MCs' origin and differentiation as well as their phenotype and functions within different tissues, including the gut. This review recapitulates how single-cell transcriptomic studies provided insight into MC development as well as into the functional role of intestinal MC subsets in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Rossella Paolini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (A.C.); (C.M.); (V.F.); (R.M.)
| | | |
Collapse
|
2
|
Chen J, Wang Z, Zhu Q, Ren S, Xu Y, Wang G, Zhou L. Comprehensive analysis and experimental verification of the mechanism of action of T cell-mediated tumor-killing related genes in Colon adenocarcinoma. Transl Oncol 2024; 43:101918. [PMID: 38412662 PMCID: PMC10907202 DOI: 10.1016/j.tranon.2024.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent malignancy of the digestive tract. A new prognostic scoring model for colon adenocarcinoma (COAD) is developed in this study based on the genes involved in tumor cell-mediated killing of T cells (GSTTKs), accurately stratifying COAD patients, thus improving the current status of personalized treatment. METHOD The GEO and TCGA databases served as the sources of the data for the COAD cohort. This study identified GSTTKs-related genes in COAD through single-factor Cox analysis. These genes were used to categorize COAD patients into several subtypes via unsupervised clustering analysis. The biological pathways and tumor microenvironments of different subgroups were compared. We performed intersection analysis between different subtypes to obtain intersection genes. Single-factor Cox regression analysis and Lasso-Cox analysis were conducted to establish clinical prognostic models. Two methods are used to assess the accuracy of model predictions: ROC and Kaplan-Meier analysis. Next, the prediction model was further validated in the validation cohort. Differential immune cell infiltration between various risk categories was identified via single sample gene set enrichment analysis (ssGSEA). The COAD model's gene expression was validated via single-cell data analysis and experiments. RESULT We established two distinct GSTTKs-related subtypes. Biological processes and immune cell tumor invasion differed significantly between various subtypes. Clinical prognostic models were created using five GSTTKs-related genes. The model's risk score independently served as a prognostic factor. COAD patients were classified as low- or high-risk depending on their risk scores. Patients in the low-risk category recorded a greater chance of surviving. The outcomes from the validation cohort match those from the training set. Risk scores and several tumor-infiltrating immune cells were strongly correlated, according to ssGSEA. Single-cell data illustrated that the model's genes were linked to several immune cells. The experimental results demonstrated a significant increase in the expression of HOXC6 in colon cancer tissue. CONCLUSION Our research findings established a new gene signature for COAD. This gene signature helps to accurately stratify the risk of COAD patients and improve the current status of individualized care.
Collapse
Affiliation(s)
- Jing Chen
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China
| | - Zhengfang Wang
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China
| | - Qin Zhu
- Department of Trauma Hand Surgery, Dalian Third People's Hospital, Dalian 116000, China
| | - Shiqi Ren
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yanhua Xu
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China
| | - Guangzhou Wang
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China.
| | - Lin Zhou
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
3
|
Molfetta R, Lecce M, Milito ND, Putro E, Pietropaolo G, Marangio C, Scarno G, Moretti M, De Smaele E, Santini T, Bernardini G, Sciumè G, Santoni A, Paolini R. SCF and IL-33 regulate mouse mast cell phenotypic and functional plasticity supporting a pro-inflammatory microenvironment. Cell Death Dis 2023; 14:616. [PMID: 37730723 PMCID: PMC10511458 DOI: 10.1038/s41419-023-06139-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Mast cells (MCs) are multifaceted innate immune cells often present in the tumor microenvironment (TME). Several recent findings support their contribution to the transition from chronic inflammation to cancer. However, MC-derived mediators can either favor tumor progression, inducing the spread of the tumor, or exert anti-tumorigenic functions, limiting tumor growth. This apparent controversial role likely depends on the plastic nature of MCs that under different microenvironmental stimuli can rapidly change their phenotype and functions. Thus, the exact effect of unique MC subset(s) during tumor progression is far from being understood. Using a murine model of colitis-associated colorectal cancer, we initially characterized the MC population within the TME and in non-lesional colonic areas, by multicolor flow cytometry and confocal microscopy. Our results demonstrated that tumor-associated MCs harbor a main connective tissue phenotype and release high amounts of Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α. This MC phenotype correlates with the presence of high levels of Stem Cell Factor (SCF) and IL-33 inside the tumor. Thus, we investigated the effect of SCF and IL-33 on primary MC cultures and underscored their ability to shape MC phenotype eliciting the production of pro-inflammatory cytokines. Our findings support the conclusion that during colonic transformation a sustained stimulation by SCF and IL-33 promotes the accumulation of a prevalent connective tissue-like MC subset that through the secretion of IL-6 and TNF-α maintains a pro-inflammatory microenvironment.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
| | - Mario Lecce
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- Leibniz Institute for Immunotherapy-Division of functional immune cell modulation, Franz-Josef-Strausse, D-93053, Regensburg, Germany
| | - Nadia D Milito
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Erisa Putro
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Pietropaolo
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Caterina Marangio
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Gianluca Scarno
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- IRCCS Neuromed, Pozzilli, 86077, Isernia, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
4
|
The Controversial Role of Intestinal Mast Cells in Colon Cancer. Cells 2023; 12:cells12030459. [PMID: 36766801 PMCID: PMC9914221 DOI: 10.3390/cells12030459] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Mast cells are tissue-resident sentinels involved in large number of physiological and pathological processes, such as infection and allergic response, thanks to the expression of a wide array of receptors. Mast cells are also frequently observed in a tumor microenvironment, suggesting their contribution in the transition from chronic inflammation to cancer. In particular, the link between inflammation and colorectal cancer development is becoming increasingly clear. It has long been recognized that patients with inflammatory bowel disease have an increased risk of developing colon cancer. Evidence from experimental animals also implicates the innate immune system in the development of sporadically occurring intestinal adenomas, the precursors to colorectal cancer. However, the exact role of mast cells in tumor initiation and growth remains controversial: mast cell-derived mediators can either exert pro-tumorigenic functions, causing the progression and spread of the tumor, or anti-tumorigenic functions, limiting the tumor's growth. Here, we review the multifaceted and often contrasting findings regarding the role of the intestinal mast cells in colon cancer progression focusing on the molecular pathways mainly involved in the regulation of mast cell plasticity/functions during tumor progression.
Collapse
|
5
|
Sakita JY, Elias-Oliveira J, Carlos D, de Souza Santos E, Almeida LY, Malta TM, Brunaldi MO, Albuquerque S, Araújo Silva CL, Andrade MV, Bonato VLD, Garcia SB, Cunha FQ, Cebinelli GCM, Martins RB, Matthews J, Colli L, Martin FL, Uyemura SA, Kannen V. Mast cell-T cell axis alters development of colitis-dependent and colitis-independent colorectal tumours: potential for therapeutically targeting via mast cell inhibition. J Immunother Cancer 2022; 10:jitc-2022-004653. [PMID: 36220303 PMCID: PMC9557261 DOI: 10.1136/jitc-2022-004653] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/06/2022] Open
Abstract
Background Colorectal cancer (CRC) has a high mortality rate and can develop in either colitis-dependent (colitis-associated (CA)-CRC) or colitis-independent (sporadic (s)CRC) manner. There has been a significant debate about whether mast cells (MCs) promote or inhibit the development of CRC. Herein we investigated MC activity throughout the multistepped development of CRC in both human patients and animal models. Methods We analyzed human patient matched samples of healthy colon vs CRC tissue alongside conducting a The Cancer Genome Atlas-based immunogenomic analysis and multiple experiments employing genetically engineered mouse (GEM) models. Results Analyzing human CRC samples revealed that MCs can be active or inactive in this disease. An activated MC population decreased the number of tumor-residing CD8 T cells. In mice, MC deficiency decreased the development of CA-CRC lesions, while it increased the density of tumor-based CD8 infiltration. Furthermore, co-culture experiments revealed that tumor-primed MCs promote apoptosis in CRC cells. In MC-deficient mice, we found that MCs inhibited the development of sCRC lesions. Further exploration of this with several GEM models confirmed that different immune responses alter and are altered by MC activity, which directly alters colon tumorigenesis. Since rescuing MC activity with bone marrow transplantation in MC-deficient mice or pharmacologically inhibiting MC effects impacts the development of sCRC lesions, we explored its therapeutic potential against CRC. MC activity promoted CRC cell engraftment by inhibiting CD8+ cell infiltration in tumors, pharmacologically blocking it inhibits the ability of allograft tumors to develop. This therapeutic strategy potentiated the cytotoxic activity of fluorouracil chemotherapy. Conclusion Therefore, we suggest that MCs have a dual role throughout CRC development and are potential druggable targets against this disease.
Collapse
Affiliation(s)
- Juliana Y Sakita
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | - Daniela Carlos
- Department of Biochemistry and Immunology, University of Sao Paulo, Sao Paulo, Brazil
| | - Emerson de Souza Santos
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Tathiane M Malta
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariângela O Brunaldi
- Department of Pathology and Forensic Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sergio Albuquerque
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Marcus V Andrade
- Department of Clinical Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vania L D Bonato
- Department of Biochemistry and Immunology, University of Sao Paulo, Sao Paulo, Brazil
| | - Sergio Britto Garcia
- Department of Pathology and Forensic Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Ronaldo B Martins
- Department of Cell and Molecular Biology, Virology Research Center, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Jason Matthews
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada,Nutrition, University of Oslo, Oslo, Norway
| | - Leandro Colli
- Medical Imaging, Hematology, and Oncology, University of Sao Paulo, Sao Paulo, Brazil
| | - Francis L Martin
- Biocel Ltd, Hull, UK,Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, UK
| | - Sergio A Uyemura
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinicius Kannen
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil,Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Sobiepanek A, Kuryk Ł, Garofalo M, Kumar S, Baran J, Musolf P, Siebenhaar F, Fluhr JW, Kobiela T, Plasenzotti R, Kuchler K, Staniszewska M. The Multifaceted Roles of Mast Cells in Immune Homeostasis, Infections and Cancers. Int J Mol Sci 2022; 23:2249. [PMID: 35216365 PMCID: PMC8875910 DOI: 10.3390/ijms23042249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Mast cells (MCs) play important roles in normal immune responses and pathological states. The location of MCs on the boundaries between tissues and the external environment, including gut mucosal surfaces, lungs, skin, and around blood vessels, suggests a multitude of immunological functions. Thus, MCs are pivotal for host defense against different antigens, including allergens and microbial pathogens. MCs can produce and respond to physiological mediators and chemokines to modulate inflammation. As long-lived, tissue-resident cells, MCs indeed mediate acute inflammatory responses such as those evident in allergic reactions. Furthermore, MCs participate in innate and adaptive immune responses to bacteria, viruses, fungi, and parasites. The control of MC activation or stabilization is a powerful tool in regulating tissue homeostasis and pathogen clearance. Moreover, MCs contribute to maintaining the homeostatic equilibrium between host and resident microbiota, and they engage in crosstalk between the resident and recruited hematopoietic cells. In this review, we provide a comprehensive overview of the functions of MCs in health and disease. Further, we discuss how mouse models of MC deficiency have become useful tools for establishing MCs as a potential cellular target for treating inflammatory disorders.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Łukasz Kuryk
- National Institute of Public Health NIH—National Institute of Research, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Sandeep Kumar
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Joanna Baran
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Paulina Musolf
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Joachim Wilhelm Fluhr
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Roberto Plasenzotti
- Department of Biomedical Research, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria;
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
7
|
Mast Cell–Tumor Interactions: Molecular Mechanisms of Recruitment, Intratumoral Communication and Potential Therapeutic Targets for Tumor Growth. Cells 2022; 11:cells11030349. [PMID: 35159157 PMCID: PMC8834237 DOI: 10.3390/cells11030349] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that are important players in diseases associated with chronic inflammation such as cancer. Since MCs can infiltrate solid tumors and promote or limit tumor growth, a possible polarization of MCs to pro-tumoral or anti-tumoral phenotypes has been proposed and remains as a challenging research field. Here, we review the recent evidence regarding the complex relationship between MCs and tumor cells. In particular, we consider: (1) the multifaceted role of MCs on tumor growth suggested by histological analysis of tumor biopsies and studies performed in MC-deficient animal models; (2) the signaling pathways triggered by tumor-derived chemotactic mediators and bioactive lipids that promote MC migration and modulate their function inside tumors; (3) the possible phenotypic changes on MCs triggered by prevalent conditions in the tumor microenvironment (TME) such as hypoxia; (4) the signaling pathways that specifically lead to the production of angiogenic factors, mainly VEGF; and (5) the possible role of MCs on tumor fibrosis and metastasis. Finally, we discuss the novel literature on the molecular mechanisms potentially related to phenotypic changes that MCs undergo into the TME and some therapeutic strategies targeting MC activation to limit tumor growth.
Collapse
|
8
|
Elieh Ali Komi D, Wöhrl S, Bielory L. Mast Cell Biology at Molecular Level: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:342-365. [PMID: 31828527 DOI: 10.1007/s12016-019-08769-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) are portions of the innate and adaptive immune system derived from bone marrow (BM) progenitors that are rich in cytoplasmic granules. MC maturation, phenotype, and function are determined by their microenvironment. MCs accumulate at inflammatory sites associated with atopy, wound healing, and malignancies. They interact with the external environment and are predominantly located in close proximity of blood vessels and sensory nerves. MCs are key initiators and modulators of allergic, anaphylactic, and other inflammatory reactions, by induction of vasodilation, promoting of vascular permeability, recruitment of inflammatory cells, facilitation of adaptive immune responses, and modulation of angiogenesis, and fibrosis. They express a wide range of receptors, e.g., for IgE (FcεRI), IgG (FcγR), stem cell factor (SCF) (KIT receptor or CD117), complement (including C5aR), and cytokines, that upon activation trigger various signaling pathways. The final consequence of such ligand receptor-based activation of MCs is the release of a broad array of mediators which are classified in three categories. While some mediators are preformed and remain stored in granules such as heparin, histamine, and enzymes mainly chymase and tryptase, others are de novo synthesized only after activation including LTB4, LTD4, PDG2, and PAF, and the cytokines IL-10, IL-8, IL-5, IL-3, IL-1, GM-CSF, TGF-β, VEGF, and TNF-α. Depending on the stimulus, MCs calibrate their pattern of mediator release, modulate the amplification of allergic inflammation, and are involved in the resolution of the immune responses. Here, we review recent findings and reports that help to understand the MC biology, pathology, and physiology of diseases with MC involvement.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Stefan Wöhrl
- Floridsdorf Allergy Center (FAZ), Vienna, Austria
| | - Leonard Bielory
- Department of Medicine and Ophthalmology, Hackensack Meridian School of Medicine at Seton Hall University, 400 Mountain Avenue, Springfield, NJ, 07081-2515, USA.
- Department of Medicine, Thomas Jefferson Universi ty Sidney Kimmel School of Medicine, Philadelphia, PA, USA.
- Rutgers University Center of Environmental Prediction, New Brunswick, NJ, USA.
| |
Collapse
|
9
|
Mast cells drive IgE-mediated disease but might be bystanders in many other inflammatory and neoplastic conditions. J Allergy Clin Immunol 2019; 144:S19-S30. [DOI: 10.1016/j.jaci.2019.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023]
|
10
|
Yu Y, Blokhuis B, Derks Y, Kumari S, Garssen J, Redegeld F. Human mast cells promote colon cancer growth via bidirectional crosstalk: studies in 2D and 3D coculture models. Oncoimmunology 2018; 7:e1504729. [PMID: 30377568 PMCID: PMC6205014 DOI: 10.1080/2162402x.2018.1504729] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation drives the development of colorectal cancer (CRC), where tumor-infiltrating immune cells interact with cancer cells in a dynamic crosstalk. Mast cells (MC), one of earliest recruited immune cells, accumulate in CRC tissues and their density is correlated with cancer progression. However, the exact contribution of MC in CRC and their interaction with colon cancer cells is poorly understood. Here, we investigated the impact of primary human MC and their mediators on colon cancer growth using 2D and 3D coculture models. Primary human MC were generated from peripheral CD34+ stem cells. Transwell chambers were used to analyze MC chemotaxis to colon cancer. Colon cancer cells HT29 and Caco2 differentially recruited MC by releasing CCL15 or SCF, respectively. Using BrdU proliferation assays, we demonstrated that MC can directly support colon cancer proliferation and this effect was mediated by their cellular crosstalk. 3D coculture models with cancer spheroids further confirmed the pro-tumor effect of MC on colon cancer growth, where direct cell-cell contact is dispensable and increased production of multiple soluble mediators was detected. Moreover, TLR2 stimulation of MC promoted stronger growth of colon cancer spheroids. By examining the transcriptome profile of colon cancer-cocultured MC versus control MC, we identified several MC marker genes, which were deregulated in expression. Our study provides an advanced in vitro model to investigate the role of human MC in cancer. Our data support the detrimental role of MC in CRC development and provide a molecular insight into the cellular crosstalk between MC and colon cancer cells.
Collapse
Affiliation(s)
- Yingxin Yu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Blokhuis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Yvonne Derks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sangeeta Kumari
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Department of Immunology, Nutricia Research, Utrecht, The Netherlands
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
A Quantitative Method for Detecting Ara h 2 by Generation and Utilization of Monoclonal Antibodies. J Immunol Res 2018; 2018:4894705. [PMID: 29854839 PMCID: PMC5960532 DOI: 10.1155/2018/4894705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/25/2018] [Indexed: 01/06/2023] Open
Abstract
Peanut (Arachis hypogaea) is one of the most common food allergens that can induce fatal anaphylaxis, and Ara h 2 is one of the major allergen components involved in peanut allergy. The aim of this study was to develop a quantitative method for detecting peanut allergen using monoclonal antibodies against Ara h 2. The splenocytes of immunized mice were fused with myeloma cells (SP2/0), and stable mAb-producing clones were obtained by limiting dilution. mAbs against Ara h 2 were isolated from mouse ascites, and specificity was confirmed by immunoblotting. Five mAbs with high purity and specific reactivity were obtained, which were referred to as 1-2E10, 2-1D5, 3-1C5, 4-1C2, and 5-1G4, respectively. After screening different mAb combinations for development of a sandwich ELISA, we selected 5-1G4 as the capture antibody and 1-2E10 as the detection antibody for the measurement of Ara h 2 from which an optimal correlation between the Ara h 2 concentration and the OD value was obtained. This sandwich ELISA could specifically detect Ara h 2 in peanut extract at concentrations as low as 5 ng/mL and up to 10 μg/mL. These mAbs can, therefore, serve as quantitative diagnostic reagents for peanut and peanut product risk assessment.
Collapse
|
12
|
Abstract
Chronic inflammation is a risk factor for gastrointestinal cancer and other diseases. Most studies have focused on cytokines and chemokines as mediators connecting chronic inflammation to cancer, whereas the involvement of lipid mediators, including prostanoids, has not been extensively investigated. Prostanoids are among the earliest signaling molecules released in response to inflammation. Multiple lines of evidence suggest that prostanoids are involved in gastrointestinal cancer. In this Review, we discuss how prostanoids impact gastrointestinal cancer development. In particular, we highlight recent advances in our understanding of how prostaglandin E2 induces the immunosuppressive microenvironment in gastrointestinal cancers.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Raymond N DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, Arizona, USA
| |
Collapse
|
13
|
Abstract
Mast cells are hematopoietic progenitor-derived, granule-containing immune cells that are widely distributed in tissues that interact with the external environment, such as the skin and mucosal tissues. It is well-known that mast cells are significantly involved in IgE-mediated allergic reactions, but because of their location, it has also been long hypothesized that mast cells can act as sentinel cells that sense pathogens and initiate protective immune responses. Using mast cell or mast cell protease-deficient murine models, recent studies by our groups and others indicate that mast cells have pleiotropic regulatory roles in immunological responses against pathogens. In this review, we discuss studies that demonstrate that mast cells can either promote host resistance to infections caused by bacteria and fungi or contribute to dysregulated immune responses that can increase host morbidity and mortality. Overall, these studies indicate that mast cells can influence innate immune responses against bacterial and fungal infections via multiple mechanisms. Importantly, the contribution of mast cells to infection outcomes depends in part on the infection model, including the genetic approach used to assess the influence of mast cells on host immunity, hence highlighting the complexity of mast cell biology in the context of innate immune responses.
Collapse
Affiliation(s)
- Adrian M Piliponsky
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Luigina Romani
- Pathology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Center of functional genomics (C.U.R.Ge.F.), Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
14
|
Cromolyn chitosan nanoparticles as a novel protective approach for colorectal cancer. Chem Biol Interact 2017; 275:1-12. [DOI: 10.1016/j.cbi.2017.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 01/04/2023]
|
15
|
Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, Granata F. Are Mast Cells MASTers in Cancer? Front Immunol 2017; 8:424. [PMID: 28446910 PMCID: PMC5388770 DOI: 10.3389/fimmu.2017.00424] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin's lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Monaldi Hospital Pharmacy, Naples, Italy
| | - Raffaella Iannone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Garton AJ, Seibel S, Lopresti-Morrow L, Crew L, Janson N, Mandiyan S, Trombetta ES, Pankratz S, LaVallee TM, Gedrich R. Anti-KIT Monoclonal Antibody Treatment Enhances the Antitumor Activity of Immune Checkpoint Inhibitors by Reversing Tumor-Induced Immunosuppression. Mol Cancer Ther 2017; 16:671-680. [DOI: 10.1158/1535-7163.mct-16-0676] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 11/16/2022]
|
17
|
Varricchi G, Galdiero MR, Marone G, Granata F, Borriello F, Marone G. Controversial role of mast cells in skin cancers. Exp Dermatol 2016; 26:11-17. [PMID: 27305467 DOI: 10.1111/exd.13107] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumor initiation and progression. The stromal microenvironment can promote tumor development. Mast cells, widely distributed throughout all tissues, are a stromal component of many solid and haematologic tumors. Mast cells can be found in human and mouse models of skin cancers such as melanoma, basal and squamous cell carcinomas, primary cutaneous lymphomas, haemangiomas and Merkel cell carcinoma. However, human and animal studies addressing potential functions of mast cells and their mediators in skin cancers have provided conflicting results. In several studies, mast cells play a pro-tumorigenic role, whereas in others, they play an anti-tumorigenic role. Other studies have failed to demonstrate a clear role for tumor-associated mast cells. Many unanswered questions need to be addressed before we understand whether tumor-associated mast cells are adversaries, allies or simply innocent bystanders in different types and subtypes of skin cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria R Galdiero
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
18
|
c-kit plays a critical role in induction of intravenous tolerance in experimental autoimmune encephalomyelitis. Immunol Res 2015; 61:294-302. [PMID: 25588867 DOI: 10.1007/s12026-015-8624-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
c-kit (CD117) is a tyrosine kinase receptor found in various types of immune cells. It has been shown that c-kit plays a role in the pathogenesis of multiple sclerosis, an inflammatory demyelinating disorder of the CNS. Recent data have suggested an immunoregulatory effect of c-kit. We therefore examined the role of c-kit in autoantigen-induced i.v. tolerance in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Our results show that induction of intravenous tolerance against EAE in B6 mice is characterized by increased numbers of CD117(+) cells and altered mast cell-associated molecules in the periphery and in the CNS. W(-sh) (c-kit-deficient) mice were resistant to i.v autoantigen-induced tolerance, with increased proinflammatory cytokine production in the periphery. I.v. autoantigen in WT mice suppressed the production of proinflammatory cytokines IFN-γ and IL-6 and up-regulated the expression of FoxP3, a transcription factor of Tregs; however, in W(-sh) mice, IFN-γ and IL-6 were increased with a failure of FoxP3 induction upon i.v. autoantigen injection and is thus a mechanism for resistance to i.v. tolerance induction in these mice. We conclude that c-kit signaling has a regulatory role in i.v. tolerance and could be a target for potential immunotherapy in autoimmune disorders.
Collapse
|
19
|
Rigoni A, Bongiovanni L, Burocchi A, Sangaletti S, Danelli L, Guarnotta C, Lewis A, Rizzo A, Silver AR, Tripodo C, Colombo MP. Mast Cells Infiltrating Inflamed or Transformed Gut Alternatively Sustain Mucosal Healing or Tumor Growth. Cancer Res 2015. [PMID: 26206557 DOI: 10.1158/0008-5472.can-14-3767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mast cells (MC) are immune cells located next to the intestinal epithelium with regulatory function in maintaining the homeostasis of the mucosal barrier. We have investigated MC activities in colon inflammation and cancer in mice either wild-type (WT) or MC-deficient (Kit(W-sh)) reconstituted or not with bone marrow-derived MCs. Colitis was chemically induced with dextran sodium sulfate (DSS). Tumors were induced by administering azoxymethane (AOM) intraperitoneally before DSS. Following DSS withdrawal, Kit(W-sh) mice showed reduced weight gain and impaired tissue repair compared with their WT littermates or Kit(W-sh) mice reconstituted with bone marrow-derived MCs. MCs were localized in areas of mucosal healing rather than damaged areas where they degraded IL33, an alarmin released by epithelial cells during tissue damage. Kit(W-sh) mice reconstituted with MC deficient for mouse mast cell protease 4 did not restore normal mucosal healing or reduce efficiently inflammation after DSS withdrawal. In contrast with MCs recruited during inflammation-associated wound healing, MCs adjacent to transformed epithelial cells acquired a protumorigenic profile. In AOM- and DSS-treated WT mice, high MC density correlated with high-grade carcinomas. In similarly treated Kit(W-sh) mice, tumors were less extended and displayed lower histologic grade. Our results indicate that the interaction of MCs with epithelial cells is dependent on the inflammatory stage, and on the activation of the tissue repair program. Selective targeting of MCs for prevention or treatment of inflammation-associated colon cancer should be timely pondered to allow tissue repair at premalignant stages or to reduce aggressiveness at the tumor stage.
Collapse
Affiliation(s)
- Alice Rigoni
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Bongiovanni
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Alessia Burocchi
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Danelli
- Inserm UMRS-1149, Paris; Université Paris Diderot, Sorbonne 7 Paris Cite; Laboratoire d'excellence INFLAMEX, Paris, France
| | - Carla Guarnotta
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Amy Lewis
- Colorectal Cancer Genetics, Centre for Digestive Diseases, Blizard Institute, Barts and the London School of Medicine and Dentistry, Whitechapel, London, United Kingdom
| | - Aroldo Rizzo
- Human Pathology Section, Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Andrew R Silver
- Colorectal Cancer Genetics, Centre for Digestive Diseases, Blizard Institute, Barts and the London School of Medicine and Dentistry, Whitechapel, London, United Kingdom
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
20
|
Gaudenzio N, Sibilano R, Starkl P, Tsai M, Galli SJ, Reber LL. Analyzing the Functions of Mast Cells In Vivo Using 'Mast Cell Knock-in' Mice. J Vis Exp 2015:e52753. [PMID: 26068439 DOI: 10.3791/52753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mast cells (MCs) are hematopoietic cells which reside in various tissues, and are especially abundant at sites exposed to the external environment, such as skin, airways and gastrointestinal tract. Best known for their detrimental role in IgE-dependent allergic reactions, MCs have also emerged as important players in host defense against venom and invading bacteria and parasites. MC phenotype and function can be influenced by microenvironmental factors that may differ according to anatomic location and/or based on the type or stage of development of immune responses. For this reason, we and others have favored in vivo approaches over in vitro methods to gain insight into MC functions. Here, we describe methods for the generation of mouse bone marrow-derived cultured MCs (BMCMCs), their adoptive transfer into genetically MC-deficient mice, and the analysis of the numbers and distribution of adoptively transferred MCs at different anatomical sites. This method, named the 'mast cell knock-in' approach, has been extensively used over the past 30 years to assess the functions of MCs and MC-derived products in vivo. We discuss the advantages and limitations of this method, in light of alternative approaches that have been developed in recent years.
Collapse
Affiliation(s)
| | | | - Philipp Starkl
- Department of Pathology, Stanford University School of Medicine
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine; Department of Microbiology & Immunology, Stanford University School of Medicine
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine;
| |
Collapse
|
21
|
Reber LL, Sibilano R, Mukai K, Galli SJ. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 2015; 8:444-63. [PMID: 25669149 PMCID: PMC4739802 DOI: 10.1038/mi.2014.131] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs--such as secreting preformed and/or newly synthesized biologically active products--in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Riccardo Sibilano
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Kaori Mukai
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA,Department of Microbiology & Immunology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
22
|
Abstract
Tumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by nonepithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin 33 (IL-33) as a regulator of tumor stromal cell activation and mediator of intestinal polyposis. In human colorectal cancer, IL-33 expression was induced in the tumor epithelium of adenomas and carcinomas, and expression of the IL-33 receptor, IL1RL1 (also referred to as IL1-R4 or ST2), localized predominantly to the stroma of adenoma and both the stroma and epithelium of carcinoma. Genetic and antibody abrogation of responsiveness to IL-33 in the Apc(Min/+) mouse model of intestinal tumorigenesis inhibited proliferation, induced apoptosis, and suppressed angiogenesis in adenomatous polyps, which reduced both tumor number and size. Similar to human adenomas, IL-33 expression localized to tumor epithelial cells and expression of IL1RL1 associated with two stromal cell types, subepithelial myofibroblasts and mast cells, in Apc(Min/+) polyps. In vitro, IL-33 stimulation of human subepithelial myofibroblasts induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in Apc(Min/+) polyps and suppressed the expression of mast cell-derived proteases and cytokines known to promote polyposis. Based on these findings, we propose that IL-33 derived from the tumor epithelium promotes polyposis through the coordinated activation of stromal cells and the formation of a protumorigenic microenvironment.
Collapse
|
23
|
Inoue T, Yorifuji N, Iguchi M, Fujiwara K, Kakimoto K, Nouda S, Okada T, Kawakami K, Abe Y, Takeuchi T, Higuchi K. Geranylgeranylacetone suppresses colitis‑related mouse colon carcinogenesis. Oncol Rep 2015; 33:1769-74. [PMID: 25672375 DOI: 10.3892/or.2015.3794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/12/2015] [Indexed: 11/05/2022] Open
Abstract
Geranylgeranylacetone (GGA), an isoprenoid compound, is an anti-ulcer drug developed in Japan. GGA protects a variety of cells and tissues against numerous stresses via induction of heat shock protein (HSP) 70, and it has recently been reported to protect mice from experimental ulcerative colitis (UC). However, it is unknown whether GGA exhibits a preventive effect on UC-associated neoplasia. In the present study, we evaluated the preventive effects of GGA on colitis-related carcinogenesis in the mouse colon. Mice were administered 1,2-dimethylhydrazine (DMH) subcutaneously three times within a week, followed by 2 cycles of dextran sulfate sodium (DSS) (each cycle, 3% DSS for 7 days and then distilled water for 14 days) and they were sacrificed 28 days after the completion of the 2 cycles. The mice were divided into the following groups according to the diet received during the experiment: group A, which received a standard diet and served as a disease control; group B, which received a diet mixed with 0.25% GGA; group C, which received a diet mixed with 0.5% GGA; group D, which received a diet mixed with 1.0% GGA; group E, which received a diet mixed with 2.0% GGA; and group F, which received a diet containing no agents, including DSS and served as a normal control. The incidence of neoplasia was assessed. The expression of inducible nitric oxide synthase (iNOS) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) was also determined. In addition, the expression of HSP70 in the colon tissues was determined by immunohistochemistry and western blot analysis. The mean number of tumors was 16.6, 11.0, 9.4, 5.8, 5.4 and 0 in groups A-F, respectively. GGA significantly suppressed the occurrence of neoplasia in a dose-dependent manner. GGA treatment enhanced the expression of HSP70 and suppressed the oxidative damage in the background mucosa (i.e. lesion-free colon). These results suggest that GGA could be useful in the prevention of UC-associated neoplasia.
Collapse
Affiliation(s)
- Takuya Inoue
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Naoki Yorifuji
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Munetaka Iguchi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kaori Fujiwara
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kazuki Kakimoto
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Sadaharu Nouda
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Toshihiko Okada
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Ken Kawakami
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yosuke Abe
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Toshihisa Takeuchi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
24
|
Marichal T, Tsai M, Galli SJ. Mast cells: potential positive and negative roles in tumor biology. Cancer Immunol Res 2015; 1:269-79. [PMID: 24777963 DOI: 10.1158/2326-6066.cir-13-0119] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors.
Collapse
Affiliation(s)
- Thomas Marichal
- Authors' Affiliations: Departments of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | | | | |
Collapse
|
25
|
Maciel TT, Moura IC, Hermine O. The role of mast cells in cancers. F1000PRIME REPORTS 2015; 7:09. [PMID: 25705392 PMCID: PMC4311277 DOI: 10.12703/p7-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mast cells are immune cells that accumulate in the tumors and their microenvironment during disease progression. Mast cells are armed with a wide array of receptors that sense environment modifications and, upon stimulation, they are able to secrete several biologically active factors involved in the modulation of tumor growth. For example, mast cells are able to secrete pro-angiogenic and growth factors but also pro- and anti-inflammatory mediators. Recent studies have allowed substantial progress in understanding the role of mast cells in tumorigenesis/disease progression but further studies are necessary to completely elucidate their impact in the pathophysiology of cancer. Here we review observations suggesting that mast cells could modulate tumor growth in humans. We also discuss the drawbacks related to observations from mast cell-deficient mouse models, which could have consequences in the determination of a potential causative relationship between mast cells and cancer. We believe that the understanding of the precise role of mast cells in tumor development and progression will be of critical importance for the development of new targeted therapies in human cancers.
Collapse
Affiliation(s)
- Thiago T. Maciel
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications24 Boulevard du Montparnasse, 75015, ParisFrance
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute24 Boulevard du Montparnasse, 75015, ParisFrance
- CNRS ERL 825424 Boulevard du Montparnasse, 75015, ParisFrance
- Laboratory of Excellence GR-Ex24 Boulevard du Montparnasse, 75015, ParisFrance
- Centre de Référence National des Mastocytoses (CEREMAST)149 rue de Sèvres, 75015, ParisFrance
| | - Ivan C. Moura
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications24 Boulevard du Montparnasse, 75015, ParisFrance
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute24 Boulevard du Montparnasse, 75015, ParisFrance
- CNRS ERL 825424 Boulevard du Montparnasse, 75015, ParisFrance
- Laboratory of Excellence GR-Ex24 Boulevard du Montparnasse, 75015, ParisFrance
- Centre de Référence National des Mastocytoses (CEREMAST)149 rue de Sèvres, 75015, ParisFrance
| | - Olivier Hermine
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications24 Boulevard du Montparnasse, 75015, ParisFrance
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute24 Boulevard du Montparnasse, 75015, ParisFrance
- CNRS ERL 825424 Boulevard du Montparnasse, 75015, ParisFrance
- Laboratory of Excellence GR-Ex24 Boulevard du Montparnasse, 75015, ParisFrance
- Centre de Référence National des Mastocytoses (CEREMAST)149 rue de Sèvres, 75015, ParisFrance
- Service d'Hématologie clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker149 rue de Sèvres, 75015, ParisFrance
| |
Collapse
|
26
|
Štofilová J, Szabadosová V, Hrčková G, Salaj R, Bertková I, Hijová E, Strojný L, Bomba A. Co-administration of a probiotic strain Lactobacillus plantarum LS/07 CCM7766 with prebiotic inulin alleviates the intestinal inflammation in rats exposed to N,N-dimethylhydrazine. Int Immunopharmacol 2014; 24:361-368. [PMID: 25536541 DOI: 10.1016/j.intimp.2014.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 12/27/2022]
Abstract
The aim of this study was to determine the anti-inflammatory effects of preventive administration of a probiotic strain Lactobacillus plantarum LS/07 CCM7766 alone or in combination with prebiotic inulin or with flax-seed oil in the gut of rats, which developed chronic inflammation following administration of the pro-carcinogen N,N-dimethylhydrazine (DMH). After 28weeks administration of probiotic/prebiotic-containing diet, rats were killed and their colons were examined by immunohistological criteria, whereas cytokines were determined in the jejunal mucosa. Application of DMH triggered the production of pro-inflammatory cytokines IL-2, IL-6, IL-17, and TNF-α, expression of pro-inflammatory mediators NF-κB, COX-2 and iNOS and caused depletion of goblet cells. Supplementing the diet with L. plantarum and its combination with the prebiotic abolished DMH-induced inflammatory process in the jejunal mucosa by inhibiting the production of pro-inflammatory cytokines and by stimulation of anti-inflammatory IL-10 cytokine synthesis, whereas concentration of TGF-β1 was not influenced significantly. Diet prevented a decrease in goblet cell numbers but numbers of mast cells were lowered only moderately. However, combined treatment of rats with L. plantarum and flax-seed oil had no significant effect on the parameters examined, except for decreased expression of NF-κB, in comparison with the negative control. Results indicate that the preventive administration of probiotic L. plantarum LS/07 CCM7766 alone or in combination with prebiotic inulin to rats with DMH-induced chronic inflammation can reduce inflammatory process in the jejunal and colon mucosa, probably indirectly, and involves down-regulation of synthesis of pro-inflammatory cytokines and suppression of NF-κB activity in mucosal cells.
Collapse
Affiliation(s)
- Jana Štofilová
- Department of Experimental Medicine, Faculty of Medicine, University of P.J. Šafárik, Trieda SNP 1, 04011 Košice, Slovak Republic
| | - Viktória Szabadosová
- Department of Experimental Medicine, Faculty of Medicine, University of P.J. Šafárik, Trieda SNP 1, 04011 Košice, Slovak Republic
| | - Gabriela Hrčková
- Department of Experimental Pharmacology, Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| | - Rastislav Salaj
- Department of Experimental Medicine, Faculty of Medicine, University of P.J. Šafárik, Trieda SNP 1, 04011 Košice, Slovak Republic
| | - Izabela Bertková
- Department of Experimental Medicine, Faculty of Medicine, University of P.J. Šafárik, Trieda SNP 1, 04011 Košice, Slovak Republic
| | - Emília Hijová
- Department of Experimental Medicine, Faculty of Medicine, University of P.J. Šafárik, Trieda SNP 1, 04011 Košice, Slovak Republic
| | - Ladislav Strojný
- Department of Experimental Medicine, Faculty of Medicine, University of P.J. Šafárik, Trieda SNP 1, 04011 Košice, Slovak Republic
| | - Alojz Bomba
- Department of Experimental Medicine, Faculty of Medicine, University of P.J. Šafárik, Trieda SNP 1, 04011 Košice, Slovak Republic
| |
Collapse
|
27
|
Siebenhaar F, Metz M, Maurer M. Mast cells protect from skin tumor development and limit tumor growth during cutaneous de novo carcinogenesis in a Kit-dependent mouse model. Exp Dermatol 2014; 23:159-64. [PMID: 24444017 DOI: 10.1111/exd.12328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2014] [Indexed: 01/21/2023]
Abstract
Epidermal tumors belong to the most frequent type of neoplasms, and tumor-associated accumulation of mast cells (MCs) has first been observed more than a century ago. Therefore, MCs have been implicated in tumor development and growth; however, the results regarding the role of MC in cutaneous de novo carcinogenesis are still controversially discussed. Here, we subjected MC-deficient Kit(W) /Kit(W-v) mice to chemical skin carcinogenesis. Tumors were induced using the carcinogen 7,12-dimethylbenz[a]-anthracene and subsequent treatment with the tumor promoter 12-tetradecanoyl-phorbol-13-acetat. The treatment resulted in pronounced inflammatory cell infiltrates that were diminished in MC-deficient animals. Unexpectedly, tumor development and growth was significantly increased in MC-deficient Kit(W) /Kit(W-v) mice. The repair of their MC deficiency by local adoptive transfer of MCs normalized tumor incidence and growth. The recruitment of skin-infiltrating immune cells, particularly of F4/80+ monocytes, Gr-1+ granulocytes, B220+ B cells and CD8+ T lymphocytes, to sites of tumor development was, in part, also controlled by MCs. Recent evidence indicated the importance of local antitumor tissue immunity which prevents tumor development. These findings suggest a critical role for MCs in mediating these host antitumor immune responses in the skin.
Collapse
Affiliation(s)
- Frank Siebenhaar
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
28
|
Iwanaga K, Nakamura T, Maeda S, Aritake K, Hori M, Urade Y, Ozaki H, Murata T. Mast cell-derived prostaglandin D2 inhibits colitis and colitis-associated colon cancer in mice. Cancer Res 2014; 74:3011-9. [PMID: 24879565 DOI: 10.1158/0008-5472.can-13-2792] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Compared with prostaglandin E2, which has an established role in cancer, the role of the COX metabolite prostaglandin D2 (PGD2) in chronic inflammation leading to tumorigenesis is uncertain. In this study, we investigated the role of PGD2 in colitis and colitis-associated colon cancer (CAC) using genetically modified mice and an established model of inflammatory colon carcinogenesis. Systemic genetic deficiency in hematopoietic PGD synthase (H-PGDS) aggravated colitis and accelerated tumor formation in a manner associated with increased TNFα expression. Treatment with a TNFα receptor antagonist attenuated colitis regardless of genotype. Histologic analysis revealed that infiltrated mast cells strongly expressed H-PGDS in inflamed colons. Mast cell-specific H-PGDS deficiency also aggravated colitis and accelerated CAC. In contrast, treatment with a PGD2 receptor agonist inhibited colitis and CAC. Together, our results identified mast cell-derived PGD2 as an inhibitor of colitis and CAC, with implications for its potential use in preventing or treating colon cancer.
Collapse
Affiliation(s)
- Koichi Iwanaga
- Authors' Affiliations: Departments of Animal Radiology and Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo; and Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka, Japan
| | - Tatsuro Nakamura
- Authors' Affiliations: Departments of Animal Radiology and Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo; and Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka, Japan
| | - Shingo Maeda
- Authors' Affiliations: Departments of Animal Radiology and Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo; and Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka, Japan
| | - Kosuke Aritake
- Authors' Affiliations: Departments of Animal Radiology and Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo; and Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka, Japan
| | - Masatoshi Hori
- Authors' Affiliations: Departments of Animal Radiology and Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo; and Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka, Japan
| | - Yoshihiro Urade
- Authors' Affiliations: Departments of Animal Radiology and Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo; and Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka, Japan
| | - Hiroshi Ozaki
- Authors' Affiliations: Departments of Animal Radiology and Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo; and Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka, Japan
| | - Takahisa Murata
- Authors' Affiliations: Departments of Animal Radiology and Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo; and Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka, Japan
| |
Collapse
|
29
|
Oldford SA, Marshall JS. Mast cells as targets for immunotherapy of solid tumors. Mol Immunol 2014; 63:113-24. [PMID: 24698842 DOI: 10.1016/j.molimm.2014.02.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/09/2023]
Abstract
Mast cells have historically been studied mainly in the context of allergic disease. In recent years, we have come to understand the critical importance of mast cells in tissue remodeling events and their role as sentinel cells in the induction and development of effective immune responses to infection. Studies of the role of mast cells in tumor immunity are more limited. The pro-tumorigenic role of mast cells has been widely reported. However, mast cell infiltration predicts improved prognosis in some cancers, suggesting that their prognostic value may be dependent on other variables. Such factors may include the nature of local mast cell subsets and the various activation stimuli present within the tumor microenvironment. Experimental models have highlighted the importance of mast cells in orchestrating the anti-tumor events that follow immunotherapies that target innate immunity. Mast cells are long-lived tissue resident cells that are abundant around many solid tumors and are radiation resistant making them unique candidates for combined treatment modalities. This review will examine some of the key roles of mast cells in tumor immunity, with a focus on potential immunotherapeutic interventions that harness the sentinel role of mast cells.
Collapse
Affiliation(s)
- Sharon A Oldford
- Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jean S Marshall
- Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
30
|
Khan R, Khan AQ, Lateef A, Rehman MU, Tahir M, Ali F, Hamiza OO, Sultana S. Glycyrrhizic acid suppresses the development of precancerous lesions via regulating the hyperproliferation, inflammation, angiogenesis and apoptosis in the colon of Wistar rats. PLoS One 2013; 8:e56020. [PMID: 23457494 PMCID: PMC3573076 DOI: 10.1371/journal.pone.0056020] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/09/2013] [Indexed: 01/30/2023] Open
Abstract
Background Colon carcinogenesis is a multistep process and it emanates from a series of molecular and histopathological alterations. Glycyrrhizic acid (GA) is a natural and major pentacyclic triterpenoid glycoside of licorice roots extracts. It has several pharmacological and biological properties such as anti-inflammatory, anti-viral, and anti-cancer. In the present study, we investigated the chemopreventive potential of GA against 1,2-dimethyhydrazine (DMH)-induced precancerous lesions i.e., aberrant crypt foci (ACF) and mucin depleted foci (MDF), and its role in regulating the hyperproliferation, inflammation, angiogenesis and apoptosis in the colon of Wistar rats. Methods Animals were divided into 5 groups. In group III, IV and V, GA was administered at the dose of 15 mg/kg b. wt. orally while in group II, III and IV, DMH was administered subcutaneously in the groin at the dose of 20 mg/kg b.wt once a week for first 5 weeks and animals were euthanized after 9 weeks. Results GA supplementation suppressed the development of precancerous lesions and it also reduced the infiltration of mast cells, suppressed the immunostaining of Ki-67, NF-kB-p65, COX-2, iNOS and VEGF while enhanced the immunostaining of p53, connexin-43, caspase-9 and cleaved caspase-3. GA treatment significantly attenuated the level of TNF-α and it also reduced the depletion of the mucous layer as well as attenuated the shifting of sialomucin to sulphomucin. Conclusion Our findings suggest that GA has strong chemopreventive potential against DMH-induced colon carcinogenesis but further studies are warranted to elucidate the precise mechanism of action of GA.
Collapse
Affiliation(s)
- Rehan Khan
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - Abdul Quaiyoom Khan
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - Abdul Lateef
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - Muneeb U. Rehman
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - Mir Tahir
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - Farrah Ali
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - Oday O. Hamiza
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - Sarwat Sultana
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
- * E-mail:
| |
Collapse
|
31
|
Abstract
Mast cells are well known as principle effector cells of type I hypersensitivity responses. Beyond this role in allergic disease, these cells are now appreciated as playing an important role in many inflammatory conditions. This review summarizes the support for mast cell involvement in resisting bacterial infection, exacerbating autoimmunity and atherosclerosis, and promoting cancer progression. A commonality in these conditions is the ability of mast cells to elicit migration of many cell types, often through the production of inflammatory cytokines such as tumor necrosis factor. However, recent data also demonstrates that mast cells can suppress the immune response through interleukin-10 production. The data encourage those working in this field to expand their view of how mast cells contribute to immune homeostasis.
Collapse
|
32
|
Wensman H, Kamgari N, Johansson A, Grujic M, Calounova G, Lundequist A, Rönnberg E, Pejler G. Tumor-mast cell interactions: induction of pro-tumorigenic genes and anti-tumorigenic 4-1BB in MCs in response to Lewis Lung Carcinoma. Mol Immunol 2012; 50:210-9. [PMID: 22343053 DOI: 10.1016/j.molimm.2012.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/19/2012] [Accepted: 01/21/2012] [Indexed: 12/21/2022]
Abstract
Mast cells (MCs) can have either detrimental or beneficial effects on malignant processes but the underlying mechanisms are poorly understood. Here we addressed this issue by examining the interaction between Lewis Lung Carcinoma (LLC) cells and MCs. In vivo, LLC tumors caused a profound accumulation of MCs, suggesting that LLC tumors have the capacity to attract MCs. Indeed, transwell migration assays showed that LLC-conditioned medium had chemotactic activity towards MCs, which was blocked by an antibody towards stem cell factor. In order to gain insight into the molecular mechanisms operative in tumor-MC interactions, the effect of LLC on the MC gene expression pattern was examined. As judged by gene array analysis, conditioned medium from LLC cells caused significant upregulation of numerous cell surface receptors and a pro-angiogenic Runx2/VEGF/Dusp5 axis in MCs, the latter in line with a role for MCs in promoting tumor angiogenesis. Among the genes showing the highest extent of upregulation was Tnfrsf9, encoding the anti-tumorigenic protein 4-1BB, suggesting that also anti-tumorigenic factors are induced. Quantitative RT-PCR analysis showed that 4-1BB was upregulated in a transient manner, and it was also shown that tumor cells induce 4-1BB in human MCs. Immunohistochemical analysis showed that LLC-conditioned medium induced 4-1BB also at the protein level. Together, this study provides novel insight into the molecular events associated with MC-tumor interactions and suggests that tumor cells induce both pro- and anti-tumorigenic responses in MCs.
Collapse
Affiliation(s)
- Helena Wensman
- Swedish University of Agricultural Sciences, Dept. of Anatomy, Physiology and Biochemistry, BMC, Box 575, 75123 Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Stoyanov E, Uddin M, Mankuta D, Dubinett SM, Levi-Schaffer F. Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells. Lung Cancer 2011; 75:38-44. [PMID: 21733595 DOI: 10.1016/j.lungcan.2011.05.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 12/17/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common form of lung cancer with an extremely low survival rate. It is characterized by a chronic inflammatory process with intense mast cell infiltrate that is associated with reduced survival. The aim of this study was to test the hypothesis that mast cells have an enhancing effect on NSCLC proliferation. To assess the tumor-promoting potential of mast cells, we used the human alveolar basal adenocarcinoma (A549) and the mouse Lewis lung carcinoma (LLC) cell lines, umbilical cord blood-derived mast cells (CBMC) and the mast cell-deficient mouse Sash model. The proliferation rate of A549/LLC cells was markedly increased by mast cells and histamine. Histamine proliferating activity was mediated via H(1), H(2) and H(4) receptors and caused ERK phosphorylation. LLC induced in Sash mice or in wild-type mice treated with the mast cell stabilizer nedocromil sodium displayed an accelerated growth (number of metastic colonies in the lungs, total lung area and lung/total mice weight ratio). In summary, we have shown a significant effect of mast cells and histamine in enhancing NSCLC/LLCX growth in vitro, while in a mouse LLC model in vivo we have found that mast cells are important negative regulators of cancer development. Therefore our results would indicate a pro-tumorogenic effect of the mast cells in vitro on established lung tumor cell lines, and anti-tumorogenic effect in mice at lung cancer induction. In conclusion, mast cell/anti-histamine targeted therapies should carefully consider this dual effect.
Collapse
Affiliation(s)
- Evgeniy Stoyanov
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
34
|
Tryptase-Positive Mast Cells Correlate with Angiogenesis in Canine Mammary Carcinoma. J Comp Pathol 2011; 144:157-63. [DOI: 10.1016/j.jcpa.2010.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 06/01/2010] [Accepted: 08/10/2010] [Indexed: 11/22/2022]
|
35
|
Abstract
Mast cells are multifunctional cells that initiate not only IgE-dependent allergic diseases but also play a fundamental role in innate and adaptive immune responses to microbial infection. They are also thought to play a role in angiogenesis, tissue remodeling, wound healing, and tumor repression or growth. The broad scope of these physiologic and pathologic roles illustrates the flexible nature of mast cells, which is enabled in part by their phenotypic adaptability to different tissue microenvironments and their ability to generate and release a diverse array of bioactive mediators in response to multiple types of cell-surface and cytosolic receptors. There is increasing evidence from studies in cell cultures that release of these mediators can be selectively modulated depending on the types or groups of receptors activated. The intent of this review is to foster interest in the interplay among mast cell receptors to help understand the underlying mechanisms for each of the immunological and non-immunological functions attributed to mast cells. The second intent of this review is to assess the pathophysiologic roles of mast cells and their products in health and disease. Although mast cells have a sufficient repertoire of bioactive mediators to mount effective innate and adaptive defense mechanisms against invading microorganisms, these same mediators can adversely affect surrounding tissues in the host, resulting in autoimmune disease as well as allergic disorders.
Collapse
Affiliation(s)
- Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA.
| | | |
Collapse
|
36
|
Heijmans J, Büller NV, Muncan V, van den Brink GR. Role of mast cells in colorectal cancer development, the jury is still out. Biochim Biophys Acta Mol Basis Dis 2010; 1822:9-13. [PMID: 21146606 DOI: 10.1016/j.bbadis.2010.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/22/2010] [Accepted: 12/01/2010] [Indexed: 12/11/2022]
Abstract
The link between inflammation and colorectal cancer development is becoming increasingly clear. It had long been recognized that patients with inflammatory bowel disease are at an increased risk of colon cancer. Evidence from experimental animals now also implicates the innate immune system in the development of sporadically occurring intestinal adenomas, the precursors to colorectal cancer. Here we discuss the interaction between the immune system and the adenoma to carcinoma sequence with a special emphasis on the role of mast cells which may play a key role in adenoma development. This article is part of a Special Issue entitled: Mast cells in inflammation.
Collapse
Affiliation(s)
- J Heijmans
- Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
37
|
Abstract
Cancers often arise as the end stage of inflammation in adults, but not in children. As such there is a complex interplay between host immune cells during neoplastic development, with both an ability to promote cancer and limit or eliminate it, most often complicit with the host. In humans, defining inflammation and the presence of inflammatory cells within or surrounding the tumor is a critical aspect of modern pathology. Groups defining staging for neoplasms are strongly encouraged to assess and incorporate measures of the presence of apoptosis, autophagy, and necrosis and also the nature and quality of the immune infiltrate. Both environmental and genetic factors enhance the risk of cigarette smoking, Helicobacter pylori, hepatitis B/C, human papilloma virus, solar irradiation, asbestos, pancreatitis, or other causes of chronic inflammation. Identifying suitable genetic polymorphisms in cytokines, cytokine receptors, and Toll-like receptors among other immune response genes is also seen as high value as genomic sequencing becomes less expensive. Animal models that incorporate and assess not only the genetic anlagen but also the inflammatory cells and the presence of microbial pathogens and damage-associated molecular pattern molecules are necessary. Identifying micro-RNAs involved in regulating the response to damage or injury are seen as highly promising. Although no therapeutic strategies to prevent or treat cancers based on insights into inflammatory pathways are currently approved for the common epithelial malignancies, there remains substantial interest in agents targeting COX2 or PPARgamma, ethyl pyruvate and steroids, and several novel agents on the horizon.
Collapse
|
38
|
Moon TC, St Laurent CD, Morris KE, Marcet C, Yoshimura T, Sekar Y, Befus AD. Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol 2010; 3:111-28. [PMID: 20043008 DOI: 10.1038/mi.2009.136] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mast cells are classically viewed as effector cells of IgE-mediated allergic diseases. However, over the last decade our understanding has been enriched about their roles in host defense, innate and adaptive immune responses, and in homeostatic responses, angiogenesis, wound healing, tissue remodeling, and immunoregulation. Despite impressive progress, there are large gaps in our understanding of their phenotypic heterogeneity, regulatory mechanisms involved, and functional significance. This review summarizes our knowledge of mast cells in innate and acquired immunity, allergic inflammation and tissue homeostasis, as well as some of the regulatory mechanisms that control mast cell development, phenotypic determination, and function, particularly in the context of mucosal surfaces.
Collapse
Affiliation(s)
- T C Moon
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Bischoff SC. Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol 2009; 31:185-205. [PMID: 19533134 DOI: 10.1007/s00281-009-0165-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 05/25/2009] [Indexed: 12/16/2022]
Abstract
The normal gastrointestinal (GI) mucosa is equipped with mast cells that account for 2-3% of lamina propria cells under normal conditions. Mast cells are generally associated with allergic disease, and indeed, food allergy that manifests in the GI tract is usually mast cell dependent. On the other hand, mast cells have a number of physiological functions in the GI tract, namely regulatory functions such as control of blood flow and coagulation, smooth muscle contraction and peristalsis, and secretion of acid, electrolytes, and mucus by epithelial cells. One of the most intriguing functions of intestinal mast cells is their role in host defense against microbes like bacteria, viruses, or parasites. Mast cells recognize microbes by antibody-dependent mechanisms and through pattern-recognition receptors. They direct the subsequent immune response by attracting both granulocytes and lymphocytes to the site of challenge via paracrine cytokine release. Moreover, mast cells initiate, by releasing proinflammatory mediators, innate defense mechanisms such as enhanced epithelial secretion, peristalsis, and alarm programs of the enteric nervous This initiation can occur in response to a primary contact to the microbe or other danger signals, but becomes much more effective if the triggering antigen reappears and antibodies of the IgE or IgG type have been generated in the meantime by the specific immune system. Thus, mast cells operate at the interface between innate and adaptive immune responses to enhance the defense against pathogens and, most likely, the commensal flora. In this respect, it is important to note that mast cells are directly involved in controlling the function of the intestinal barrier that turned out to be a crucial site for the development of infectious and immune-mediated diseases. Hence, intestinal mast cells perform regulatory functions to maintain tissue homeostasis, they are involved in host defense mechanisms against pathogens, and they can induce allergy once they are sensitized against foreign antigens. The broad spectrum of functions makes mast cells a fascinating target for future pharmacological or nutritional interventions.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Department of Nutritional Medicine & Immunology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
40
|
Abstract
Just over a century ago Paul Ehrlich received the Nobel Prize for his studies of immunity. This review describes one of his legacies, the histochemical description of the mast cell, and the research that has ensued since then. After a long period of largely descriptive studies, which revealed little about the biological role of the mast cell, the field was galvanized in the 1950s by the recognition that the mast cell was the main repository of histamine and a key participant in anaphylactic reactions. Although the mast cell was long-viewed in these terms, recent research has now shown that the mast cell also plays a key role in innate and adaptive immune responses, autoimmune disease, and possibly tissue homeostasis by virtue of its expression of a diverse array of receptors and biologically active products. In addition, the responsiveness of mast cells to immunological and pathological stimulants is highly modulated by the tissue cytokine environment and by synergistic, or inhibitory, interactions among the various mast cell receptor systems. This once enigmatic cell of Paul Ehrlich has proved to be both adaptable and multifunctional.
Collapse
Affiliation(s)
- Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Wasiuk A, de Vries VC, Hartmann K, Roers A, Noelle RJ. Mast cells as regulators of adaptive immunity to tumours. Clin Exp Immunol 2008; 155:140-6. [PMID: 19077084 DOI: 10.1111/j.1365-2249.2008.03840.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The observation that mast cells accumulate at the periphery of growing tumours is now well documented, and the loss of mast cells correlates with reduced tumour growth. The role of mast cells as innate regulators of both inflammatory and immunosuppressive responses slowly becomes clear as novel tools become available. This review will address the role of mast cells in tumours and how they can interact with the local immune environment to mediate immune suppression contributing to tumour escape.
Collapse
Affiliation(s)
- A Wasiuk
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
42
|
Theoharides TC, Rozniecki JJ, Sahagian G, Jocobson S, Kempuraj D, Conti P, Kalogeromitros D. Impact of stress and mast cells on brain metastases. J Neuroimmunol 2008; 205:1-7. [DOI: 10.1016/j.jneuroim.2008.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 01/20/2023]
|
43
|
Abstract
Mast cells can function as effector and immunoregulatory cells in immunoglobulin E-associated allergic disorders, as well as in certain innate and adaptive immune responses. This review focuses on exciting new developments in the field of mast cell biology published in the past year. We highlight advances in the understanding of FcvarepsilonRI-mediated signaling and mast cell-activation events, as well as in the use of genetic models to study mast cell function in vivo. Finally, we discuss newly identified functions for mast cells or individual mast cell products, such as proteases and interleukin 10, in host defense, cardiovascular disease and tumor biology and in settings in which mast cells have anti-inflammatory or immunosuppressive functions.
Collapse
Affiliation(s)
- Janet Kalesnikoff
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
44
|
Chantrain CF, Feron O, Marbaix E, DeClerck YA. Bone marrow microenvironment and tumor progression. CANCER MICROENVIRONMENT 2008; 1:23-35. [PMID: 19308682 PMCID: PMC2654350 DOI: 10.1007/s12307-008-0010-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 03/08/2008] [Indexed: 12/14/2022]
Abstract
The bone marrow constitutes an unique microenvironment for cancer cells in three specific aspects. First, the bone marrow actively recruits circulating tumor cells where they find a sanctuary rich in growth factors and cytokines that promote their proliferation and survival. When in the bone marrow, tumor cells profoundly affect the homeostasis of the bone and the balance between osteogenesis and osteolysis. As a consequence, growth and survival factors normally sequestered into the bone matrix are released, further fueling cancer progression. Second, tumor cells actively recruit bone marrow-derived precursor cells into their own microenvironment. When in the tumors, these bone marrow-derived cells contribute to an inflammatory reaction and to the formation of the tumor vasculature. Third, bone marrow-derived cells can home in distant organs, where they form niches that attract circulating tumor cells. Our understanding of the contribution of the bone marrow microenvironment to cancer progression has therefore dramatically improved over the last few years. The importance of this new knowledge cannot be underestimated considering that the vast majority of cancer treatments such as cytotoxic and myeloablative chemotherapy, bone marrow transplantation and radiation therapy inflict a trauma to the bone marrow microenvironment. How such trauma affects the influence that the bone marrow microenvironment exerts on cancer is still poorly understood. In this article, the reciprocal relationship between the bone marrow microenvironment and tumor cells is reviewed, and its potential impact on cancer therapy is discussed.
Collapse
Affiliation(s)
- Christophe F Chantrain
- Division of Hematology-Oncology, Department of Pediatrics, Universite Catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
45
|
Sinnamon MJ, Carter KJ, Sims LP, Lafleur B, Fingleton B, Matrisian LM. A protective role of mast cells in intestinal tumorigenesis. Carcinogenesis 2008; 29:880-6. [PMID: 18258601 DOI: 10.1093/carcin/bgn040] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mast cells have been observed in numerous types of tumors; however, their role in carcinogenesis remains poorly understood. The majority of epidemiological evidence suggests a negative association between the presence of mast cells and tumor progression in breast, lung and colonic neoplasms. Intestinal adenomas in the multiple intestinal neoplasia (Min, APC(Min/+)) mouse displayed increased numbers of mast cells and increased abundance of mast cell-associated proteinases as determined by transcriptional profiling with the Hu/Mu ProtIn microarray. To examine the role of mast cells in intestinal tumorigenesis, a mutant mouse line deficient in mast cells, Sash mice (c-kit(W-sh/W-sh)), was crossed with the Min mouse, a genetic model of intestinal neoplasia. The resulting mast cell-deficient Min-Sash mice developed 50% more adenomas than littermate controls and the tumors were 33% larger in Min-Sash mice. Mast cell deficiency did not affect tumor cell proliferation; however, apoptosis was significantly inhibited in mast cell-deficient mice. Mast cells have been shown to act as critical upstream regulators of numerous inflammatory cells. Neutrophil, macrophage and T cell populations were similar between Min and Min-Sash mice; however, eosinophils were significantly less abundant in tumors obtained from Min-Sash animals. These results indicate a protective, antitumor role of mast cells in a genetic model of early-stage intestinal tumorigenesis.
Collapse
Affiliation(s)
- Mark J Sinnamon
- Department of Cancer Biology, Vanderbilt University, 771 PRB 23rd and Pierce Avenue Nashville, TN 37232-6840, USA
| | | | | | | | | | | |
Collapse
|
46
|
Textor B, Licht AH, Tuckermann JP, Jessberger R, Razin E, Angel P, Schorpp-Kistner M, Hartenstein B. JunB is required for IgE-mediated degranulation and cytokine release of mast cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:6873-80. [PMID: 17982078 DOI: 10.4049/jimmunol.179.10.6873] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells are effector cells of IgE-mediated immune responses frequently found at the vicinity of blood vessels, the margins of diverse tumors and at sites of potential infection and inflammation. Upon IgE-mediated stimulation, mast cells produce and secrete a broad spectrum of cytokines and other inflammatory mediators. Recent work identified JunB, a member of the AP-1 transcription factor family, as critical regulator of basal and induced expression of inflammatory mediators in fibroblasts and T cells. To study the impact of JunB on mast cell biology, we analyzed JunB-deficient mast cells. Mast cells lacking JunB display a normal in vivo maturation, and JunB-deficient bone marrow cells in vitro differentiated to mast cells show no alterations in proliferation or apoptosis. But these cells exhibit impaired IgE-mediated degranulation most likely due to diminished expression of SWAP-70, Synaptotagmin-1, and VAMP-8, and due to impaired influx of extracellular calcium. Moreover, JunB-deficient bone marrow mast cells display an altered cytokine expression profile in response to IgE stimulation. In line with these findings, the contribution of JunB-deficient mast cells to angiogenesis, as analyzed in an in vitro tube formation assay on matrigel, is severely impaired due to limiting amounts of synthesized and secreted vascular endothelial growth factor. Thus, JunB is a critical regulator of intrinsic mast cell functions including cross-talk with endothelial cells.
Collapse
Affiliation(s)
- Björn Textor
- Deutsches Krebsforschungszentrum Heidelberg, Division of Signal Transduction and Growth Control (A100), Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Metz M, Maurer M. Mast cells--key effector cells in immune responses. Trends Immunol 2007; 28:234-41. [PMID: 17400512 DOI: 10.1016/j.it.2007.03.003] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Revised: 03/02/2007] [Accepted: 03/16/2007] [Indexed: 12/28/2022]
Abstract
Mast cells are best known for their potent effector functions in allergic disorders. In recent years, however, mast cells have been identified to be involved in a surprisingly complex range of immune functions that go far beyond allergies and include the development of autoimmune disorders and peripheral tolerance, and the initiation and maintenance of adaptive and innate host responses. Here, we review the key signals and effector mechanisms that have lately been identified for mast cell functions in these immune responses.
Collapse
Affiliation(s)
- Martin Metz
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | |
Collapse
|
48
|
Nakai Y, Nelson WG, De Marzo AM. The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine acts as both a tumor initiator and promoter in the rat ventral prostate. Cancer Res 2007; 67:1378-84. [PMID: 17264317 DOI: 10.1158/0008-5472.can-06-1336] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure of Fisher344 rats to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic amine in cooked meat, causes cancer in the rat ventral prostate, while sparing the dorsolateral and anterior lobes. Uncovering the molecular mechanisms of the lobe specificity of PhIP-induced rat prostate cancer may provide clues to the pathogenesis of human prostate cancer, which is also lobe selective. We examined the prostate and other organs for mutation frequencies using transgenic Fisher344 rats (Big Blue rats) after PhIP treatment. After PhIP treatment for as early as 4 weeks, the colon, spleen, seminal vesicles, and all lobes of the prostate had significantly elevated mutation frequencies compared with the saline-treated control group, and the differences became even greater after 8 weeks. G:C --> T:A transversions were the predominant type of mutation. After 8 weeks of treatment with PhIP, the Ki-67 index was increased (P < 0.001) in the ventral prostate, but not in the dorsolateral or anterior prostate. An increase in the number of stromal mast cells and macrophages was seen in the ventral prostate, but not in the other prostatic lobes. The apoptotic index also increased in the ventral lobe only. The increased proliferation and cell death in response to PhIP indicates that in addition to PhIP acting as an "initiator" of cancer, PhIP is also acting like an organ- and lobe-specific tumor "promoter." The prostate lobe-specific infiltration of mast cells and macrophages in response to PhIP suggests a potential new mechanism by which this dietary compound can increase cancer risk-by prompting inflammation.
Collapse
|
49
|
|
50
|
Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, Scott ZA, Coyle AJ, Reed JL, Van Snick J, Strom TB, Zheng XX, Noelle RJ. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 2006; 442:997-1002. [PMID: 16921386 DOI: 10.1038/nature05010] [Citation(s) in RCA: 580] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 06/20/2006] [Indexed: 01/17/2023]
Abstract
Contrary to the proinflammatory role of mast cells in allergic disorders, the results obtained in this study establish that mast cells are essential in CD4+CD25+Foxp3+ regulatory T (T(Reg))-cell-dependent peripheral tolerance. Here we confirm that tolerant allografts, which are sustained owing to the immunosuppressive effects of T(Reg) cells, acquire a unique genetic signature dominated by the expression of mast-cell-gene products. We also show that mast cells are crucial for allograft tolerance, through the inability to induce tolerance in mast-cell-deficient mice. High levels of interleukin (IL)-9--a mast cell growth and activation factor--are produced by activated T(Reg) cells, and IL-9 production seems important in mast cell recruitment to, and activation in, tolerant tissue. Our data indicate that IL-9 represents the functional link through which activated T(Reg) cells recruit and activate mast cells to mediate regional immune suppression, because neutralization of IL-9 greatly accelerates allograft rejection in tolerant mice. Finally, immunohistochemical analysis clearly demonstrates the existence of this novel T(Reg)-IL-9-mast cell relationship within tolerant allografts.
Collapse
Affiliation(s)
- Li-Fan Lu
- Department of Microbiology & Immunology, Dartmouth Medical School and the Norris Cotton Cancer Center, Lebanon, New Hampshire 03756, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|