1
|
Chatterjee P, Moss CT, Omar S, Dhillon E, Hernandez Borges CD, Tang AC, Stevens DA, Hsu JL. Allergic Bronchopulmonary Aspergillosis (ABPA) in the Era of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators. J Fungi (Basel) 2024; 10:656. [PMID: 39330416 PMCID: PMC11433030 DOI: 10.3390/jof10090656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity disease caused by Aspergillus fumigatus (Af), prevalent in persons with cystic fibrosis (CF) or asthma. In ABPA, Af proteases drive a T-helper cell-2 (Th2)-mediated allergic immune response leading to inflammation that contributes to permanent lung damage. Corticosteroids and antifungals are the mainstays of therapies for ABPA. However, their long-term use has negative sequelae. The treatment of patients with CF (pwCF) has been revolutionized by the efficacy of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Pharmacological improvement in CFTR function with highly effective elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes of pwCF. The mechanism behind the improvement in patient outcomes is a continued topic of investigation as our understanding of the role of CFTR function evolves. As ETI therapy gains traction in CF management, understanding its potential impact on ABPA, especially on the allergic immune response pathways and Af infection becomes increasingly crucial for optimizing patient outcomes. This literature review aims to examine the extent of these findings and expand our understanding of the already published research focusing on the intersection between ABPA therapeutic approaches in CF and the rapid impact of the evolving CFTR modulator landscape. While our literature search yielded limited reports specifically focusing on the role of CFTR modulator therapy on CF-ABPA, findings from epidemiologic and retrospective studies suggest the potential for CFTR modulator therapies to positively influence pulmonary outcomes by addressing the underlying pathophysiology of CF-ABPA, especially by decreasing inflammatory response and Af colonization. Thus, this review highlights the promising scope of CFTR modulator therapy in decreasing the overall prevalence and incidence of CF-ABPA.
Collapse
Affiliation(s)
- Paulami Chatterjee
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Carson Tyler Moss
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sarah Omar
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Ekroop Dhillon
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | | | - Alan C. Tang
- Department of Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA;
| | - David A. Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA;
| | - Joe L. Hsu
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| |
Collapse
|
2
|
Simmonds NJ, Southern KW, De Wachter E, De Boeck K, Bodewes F, Mainz JG, Middleton PG, Schwarz C, Vloeberghs V, Wilschanski M, Bourrat E, Chalmers JD, Ooi CY, Debray D, Downey DG, Eschenhagen P, Girodon E, Hickman G, Koitschev A, Nazareth D, Nick JA, Peckham D, VanDevanter D, Raynal C, Scheers I, Waller MD, Sermet-Gaudelus I, Castellani C. ECFS standards of care on CFTR-related disorders: Identification and care of the disorders. J Cyst Fibros 2024; 23:590-602. [PMID: 38508949 DOI: 10.1016/j.jcf.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
This is the third paper in the series providing updated information and recommendations for people with cystic fibrosis transmembrane conductance regulator (CFTR)-related disorder (CFTR-RD). This paper covers the individual disorders, including the established conditions - congenital absence of the vas deferens (CAVD), diffuse bronchiectasis and chronic or acute recurrent pancreatitis - and also other conditions which might be considered a CFTR-RD, including allergic bronchopulmonary aspergillosis, chronic rhinosinusitis, primary sclerosing cholangitis and aquagenic wrinkling. The CFTR functional and genetic evidence in support of the condition being a CFTR-RD are discussed and guidance for reaching the diagnosis, including alternative conditions to consider and management recommendations, is provided. Gaps in our knowledge, particularly of the emerging conditions, and future areas of research, including the role of CFTR modulators, are highlighted.
Collapse
Affiliation(s)
- N J Simmonds
- Adult Cystic Fibrosis Centre, Royal Brompton Hospital, London, UK; National Heart and Lung Institute, Imperial College London, UK.
| | - K W Southern
- Department of Women's and Children's Health, University of Liverpool, University of Liverpool, Alder Hey Children's Hospital, Liverpool, UK
| | - E De Wachter
- Cystic Fibrosis Center, Pediatric Pulmonology department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - K De Boeck
- Department of Pediatrics, University of Leuven, Leuven, Belgium
| | - F Bodewes
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Groningen Medical Center, Groningen, the Netherlands
| | - J G Mainz
- Cystic Fibrosis Center, Brandenburg Medical School (MHB), University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - P G Middleton
- Cystic Fibrosis and Bronchiectasis Service, Department of Respiratory and Sleep Medicine, Westmead Hospital, Sydney, News South Wales, Australia
| | - C Schwarz
- HMU-Health and Medical University Potsdam, CF Center Westbrandenburg, Campus Potsdam, Germany
| | - V Vloeberghs
- Brussels IVF, Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - M Wilschanski
- CF Center, Department of Pediatrics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - E Bourrat
- APHP, Service de Dermatologie, CRMR MAGEC Nord St Louis, Hôpital-Saint Louis, Paris, France
| | - J D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - C Y Ooi
- a) School of Clinical Medicine, Discipline of Paediatrics and Child Health, Medicine & Health, University of New South Wales, Level 8, Centre for Child Health Research & Innovation Bright Alliance Building Cnr Avoca & High Streets, Randwick, Sydney, NSW, Australia, 2031; b) Sydney Children's Hospital, Gastroenterology Department, High Street, Randwick, Sydney, NSW, Australia, 2031
| | - D Debray
- Pediatric Hepatology unit, Centre de Référence Maladies Rares (CRMR) de l'atrésie des voies biliaires et cholestases génétiques (AVB-CG), National network for rare liver diseases (Filfoie), ERN rare liver, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris, Paris, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - D G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | | - E Girodon
- Service de Médecine Génomique des Maladies de Système et d'Organe, APHP.Centre - Université de Paris Cité, Hôpital Cochin, Paris, France
| | - G Hickman
- APHP, Service de Dermatologie, CRMR MAGEC Nord St Louis, Hôpital-Saint Louis, Paris, France
| | - A Koitschev
- Klinikum Stuttgart, Pediatric Otorhinolaryngology, Stuttgart, Germany
| | - D Nazareth
- a) Adult CF Unit, Liverpool Heart and Chest Hospital NHS Foundation Trust, U.K; b) Clinical Infection, Microbiology and Immunology, University of Liverpool, UK
| | - J A Nick
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - D Peckham
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - D VanDevanter
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - C Raynal
- Laboratory of molecular genetics, University Hospital of Montpellier and INSERM U1046 PHYMEDEXP, Montpellier, France
| | - I Scheers
- Department of Pediatrics, Pediatric Gastroenterology and Hepatology Unit, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - M D Waller
- Adult Cystic Fibrosis and Respiratory Medicine, King's College Hospital NHS Foundation Trust, London, United Kingdom; Honorary Senior Lecturer, King's College London, London, United Kingdom
| | - I Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, Paris, France; Université de Paris, Paris, France; Centre de référence Maladies Rares, Mucoviscidose et maladies apparentées, Hôpital Necker Enfants malades, Paris, France
| | - C Castellani
- IRCCS Istituto Giannina Gaslini, Cystic Fibrosis Center, Genoa, Italy
| |
Collapse
|
3
|
Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023; 14:2172264. [PMID: 36752587 PMCID: PMC10732619 DOI: 10.1080/21505594.2023.2172264] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.
Collapse
Affiliation(s)
- Kayleigh Earle
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Daniel P. Conn
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George Vere
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C. Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Poore TS, Zemanick ET. Infection, Allergy, and Inflammation: The Role of Aspergillus fumigatus in Cystic Fibrosis. Microorganisms 2023; 11:2013. [PMID: 37630573 PMCID: PMC10458351 DOI: 10.3390/microorganisms11082013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Aspergillus fumigatus (Af) is a mold frequently detected in airway samples from people with cystic fibrosis (pwCF). Abnormal airway mucus may allow Af to germinate, resulting in airway infection or an allergic response. While Af is known to increase morbidity in pwCF, individual responses and the degree of impact on lung disease vary. Improved approaches to diagnosis, treatment, and prevention of Af, particularly the persistent Af infection, are needed. This update highlights our current understanding of Af pathophysiology in the CF airway, the effects of Af on pwCF, and areas of research needed to improve clinical outcomes.
Collapse
Affiliation(s)
- T. Spencer Poore
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35223, USA
- UAB Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35223, USA
| | - Edith T. Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Breathing Institute, Children’s Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Eschenhagen PN, Bacher P, Grehn C, Mainz JG, Scheffold A, Schwarz C. Proliferative activity of antigen-specific CD154+ T cells against bacterial and fungal respiratory pathogens in cystic fibrosis decreases after initiation of highly effective CFTR modulator therapy. Front Pharmacol 2023; 14:1180826. [PMID: 37408761 PMCID: PMC10318131 DOI: 10.3389/fphar.2023.1180826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
Background: Together with impaired mucociliary clearance, lung disease in cystic fibrosis (CF) is driven by dysregulation of innate and adaptive immunity caused by dysfunctional CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), leading to airway infection and hyperinflamma-tion. The highly effective CFTR modulator therapy (HEMT) elexacaftor/tezacaftor/ivacaftor (ETI) generates substantial improvements in clinical outcomes of people with CF (pwCF) by restoration of CFTR activity. Aberrant immune responses of lymphocytes due to CFTR dysfunction has been described in the past, but not the effects of CFTR restoration by HEMT on these cells. We aimed to examine the effect of ETI on the proliferative activity of antigen-specific CD154 (+) T cells against bacterial and fungal species relevant in CF and on total IgG and IgE as markers of B cell adaptive immunity. Methods: We performed ex vivo analyses of Ki-67 expression in antigen-specific CD154 (+) T cells against Pseudomonas aeruginosa, Staphylococcus aureus, Aspergillus fumigatus, Scedosporium apiospermum and Candida albicans from 21 pwCF by cytometric assay based on antigen-reactive T cell enrichment (ARTE), and analysis of total serum IgE and IgG before and after initiation of ETI. Results: Mean Ki-67 expression in antigen-specific CD154 (+) T cells against P. aeruginosa, A. fumigatus, S. apiospermum and C. albicans, but not S. aureus, mean total serum IgG and mean total serum IgE decreased significantly after initiation of ETI. No correlation was found to change in sputum microbiology of the examined pathogens. Mean BMI and FEV1 increased significantly. Conclusion: HEMT is associated with decreased antigen-specific CD154 (+) T cell proliferation activity in our cohort, independent of findings in sputum microbiology of the examined pathogens. Together with the observed clinical improvement and the decrease in total IgE and IgG, this indicates effects due to CFTR restoration on CD154 (+) T cells by ETI and a reduction of B cell activation with subsequent lower immunoglobulin synthesis under HEMT therapy. These results endorse earlier evidence of CFTR dysfunction in T and B cells leading directly to aberrant immune responses with hyperinflammation.
Collapse
Affiliation(s)
- Patience N. Eschenhagen
- Cystic Fibrosis Section, Klinikum Westbrandenburg, Campus Potsdam, Potsdam, Germany
- HMU Health and Medical University, Potsdam, Germany
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Bacher
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Kiel, Germany
- Institute of Immunology, Christian-Albrecht-University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Claudia Grehn
- Berlin Institute of Health at Charité Universitätsmedizin, Berlin, Germany
| | - Jochen G. Mainz
- Cystic Fibrosis Center, Brandenburg Medical School (MHB) University, Brandenburg, Germany
- Faculty of Health Sciences Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| | - Alexander Scheffold
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Kiel, Germany
| | - Carsten Schwarz
- Cystic Fibrosis Section, Klinikum Westbrandenburg, Campus Potsdam, Potsdam, Germany
- HMU Health and Medical University, Potsdam, Germany
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Manti S, Giallongo A, Parisi GF, Papale M, Mulè E, Aloisio D, Rotolo N, Leonardi S. Biologic drugs in treating allergic bronchopulmonary aspergillosis in patients with cystic fibrosis: a systematic review. Eur Respir Rev 2022; 31:220011. [PMID: 35896271 PMCID: PMC9724814 DOI: 10.1183/16000617.0011-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Aspergillus fumigatus is a common saprophytic fungus causing allergic bronchopulmonary aspergillosis (ABPA) in patients with cystic fibrosis (CF). The recommended first-line treatment for ABPA is oral steroids, followed by antifungal therapy. However, both treatments are not free from adverse effects; thus, efforts are being made to identify new drugs showing the same effectiveness but with fewer or no side-effects. Therein, biologic drugs have been significantly implemented in clinical practice in treating ABPA in patients with CF. OBJECTIVE To systematically review the available literature, providing evidence for the administration of biologic drugs as a new potential treatment of ABPA in both the paediatric and adult populations with CF. METHODS A systematic review of the literature published between January 2007 and July 2021 was performed, using a protocol registered with the International Prospective Register of Systematic Reviews (PROSPERO CRD42021270932). RESULTS A total of 21 studies focusing on the use of biologics in treating ABPA in CF patients was included. We highlighted a paucity of data providing evidence for biologic drug use in ABPA. CONCLUSION Scientific evidence is insufficient to support firm conclusions and randomised clinical trials are urgently required to investigate the efficacy and safety of biologics for ABPA in CF patients.
Collapse
Affiliation(s)
- Sara Manti
- Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Pediatric Unit, Dept of Human and Pediatric Pathology "Gaetano Barresi", University of Messina, Messina, Italy
- Both authors contributed equally to the manuscript
| | - Alessandro Giallongo
- Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Both authors contributed equally to the manuscript
| | | | - Maria Papale
- Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Enza Mulè
- Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Donatella Aloisio
- Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Novella Rotolo
- Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Salvatore Leonardi
- Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Verburg K, van Neer J, Duca M, de Cock H. Novel Treatment Approach for Aspergilloses by Targeting Germination. J Fungi (Basel) 2022; 8:758. [PMID: 35893126 PMCID: PMC9331470 DOI: 10.3390/jof8080758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
Germination of conidia is an essential process within the Aspergillus life cycle and plays a major role during the infection of hosts. Conidia are able to avoid detection by the majority of leukocytes when dormant. Germination can cause severe health problems, specifically in immunocompromised people. Aspergillosis is most often caused by Aspergillus fumigatus (A. fumigatus) and affects neutropenic patients, as well as people with cystic fibrosis (CF). These patients are often unable to effectively detect and clear the conidia or hyphae and can develop chronic non-invasive and/or invasive infections or allergic inflammatory responses. Current treatments with (tri)azoles can be very effective to combat a variety of fungal infections. However, resistance against current azoles has emerged and has been increasing since 1998. As a consequence, patients infected with resistant A. fumigatus have a reported mortality rate of 88% to 100%. Especially with the growing number of patients that harbor azole-resistant Aspergilli, novel antifungals could provide an alternative. Aspergilloses differ in defining characteristics, but germination of conidia is one of the few common denominators. By specifically targeting conidial germination with novel antifungals, early intervention might be possible. In this review, we propose several morphotypes to disrupt conidial germination, as well as potential targets. Hopefully, new antifungals against such targets could contribute to disturbing the ability of Aspergilli to germinate and grow, resulting in a decreased fungal burden on patients.
Collapse
Affiliation(s)
- Kim Verburg
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.V.); (J.v.N.)
| | - Jacq van Neer
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.V.); (J.v.N.)
| | - Margherita Duca
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Hans de Cock
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.V.); (J.v.N.)
| |
Collapse
|
8
|
Fungal Infection and Inflammation in Cystic Fibrosis. Pathogens 2021; 10:pathogens10050618. [PMID: 34069863 PMCID: PMC8157353 DOI: 10.3390/pathogens10050618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Fungi are frequently recovered from lower airway samples from people with cystic fibrosis (CF), yet the role of fungi in the progression of lung disease is debated. Recent studies suggest worsening clinical outcomes associated with airway fungal detection, although most studies to date are retrospective or observational. The presence of fungi can elicit a T helper cell type 2 (Th-2) mediated inflammatory reaction known as allergic bronchopulmonary aspergillosis (ABPA), particularly in those with a genetic atopic predisposition. In this review, we discuss the epidemiology of fungal infections in people with CF, risk factors associated with development of fungal infections, and microbiologic approaches for isolation and identification of fungi. We review the spectrum of fungal disease presentations, clinical outcomes after isolation of fungi from airway samples, and the importance of considering airway co-infections. Finally, we discuss the association between fungi and airway inflammation highlighting gaps in knowledge and future research questions that may further elucidate the role of fungus in lung disease progression.
Collapse
|
9
|
Ivacaftor Is Associated with Reduced Lung Infection by Key Cystic Fibrosis Pathogens. A Cohort Study Using National Registry Data. Ann Am Thorac Soc 2020; 16:1375-1382. [PMID: 31319678 DOI: 10.1513/annalsats.201902-122oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rationale: Ivacaftor can greatly improve clinical outcomes in people with cystic fibrosis (CF) and has been shown to have in vitro antibacterial properties, yet the long-term microbiological outcomes of treatment are unknown.Objectives: To investigate changes in respiratory microbiology associated with long-term ivacaftor use.Methods: This was a retrospective cohort study using data from the UK CF Registry 2011-2016. Primary outcome was the annual prevalence ratios for key CF pathogens between ivacaftor users and their contemporaneous comparators. Multivariable log-binomial regression models were designed to adjust for confounders. Changes in Pseudomonas aeruginosa status were compared between groups using nonparametric maximum likelihood estimate for the purposes of Kaplan-Meier approximation.Results: Ivacaftor use was associated with early and sustained reduction in P. aeruginosa rates (2016 adjusted prevalence ratio, 0.68; 95% confidence interval, 0.58-0.79; P < 0.001) via a combination of increased clearance in those with infection (ivacaftor: 33/87 [37.9%] vs. nonivacaftor: 432/1,872 [22.8%]; P < 0.001) and reduced acquisition in those without infection (49/134 [36.6%] vs. 1,157/2,382 [48.6%]; P = 0.01). The improved prevalence of P. aeruginosa infection was independent of reduced sampling in the ivacaftor cohort. Ivacaftor was also associated with reduced prevalence of Staphylococcus aureus and Aspergillus spp. but not Burkholderia cepacia complex.Conclusions: In this study, long-term ivacaftor use was associated with reduced infection with important CF pathogens including P. aeruginosa. These findings have implications for antibiotic stewardship and the need for ongoing chronic antimicrobial therapy in this cohort.
Collapse
|
10
|
Specific panallergen peptide of Sorghum Polcalcin showing IgE response identified based on in silico and in vivo peptide mapping. Biosci Rep 2020; 39:220753. [PMID: 31694050 PMCID: PMC6859114 DOI: 10.1042/bsr20191835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
In India, Sorghum plant allergenicity was reported to be approximately 54.9%. Sorghum bicolor Polcalcin (Sorb PC) was identified as the panallergen but the specificity of this allergen is yet to be characterized. The present study was aimed to characterize the antigenic determinants of Sorb PC that are responsible for eliciting the IgE response. In silico modeling, simulation studies and docking of Sorb PC peptides (PC1-11) against IgG and IgE followed by in vivo evaluation was adopted. Peptide docking studies revealed PC 6 with highest G-score -12.85 against IgE followed by PC-11, 5, 1 and 7 (-10.91) peptides. The mice sensitized with PC7 peptide showed interleukin (IL) 4 (IL-4), IL-5, IL-12, TNF-α and GMCSF levels increased when compared with other peptides and controls, signifying a strong T helper type 2 (Th2)-based response. In tandem, the T helper type 1 (Th1) pathway was inhibited by low levels of cytokine IL-2, interferon γ (IFN-γ) and increased IL-10 levels justifying the role of PC7 in allergic IgE response. Considering the above data of overlapping peptides of PC6 and PC7, N-terminal part of the PC7 peptide (DEVQRMM) is found to play a crucial role in Sorghum Polcalcin allergenic response.
Collapse
|
11
|
Peptide Mapping, In Silico and In Vivo Analysis of Allergenic Sorghum Profilin Peptides. ACTA ACUST UNITED AC 2019; 55:medicina55050178. [PMID: 31117233 PMCID: PMC6571906 DOI: 10.3390/medicina55050178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/16/2019] [Accepted: 05/17/2019] [Indexed: 01/21/2023]
Abstract
Background and objectives: Nearly 20–30% of the world’s population suffers from allergic rhinitis, among them 15% are progressing to asthma conditions. Sorghum bicolor profilin (Sorb PF), one of the panallergens, was identified, but the allergen specificity is not yet characterized. Materials and Methods: To map the antigenic determinants responsible for IgE binding, the present study is focused on in silico modeling, simulation of Sorb PF and docking of the Sorb PF peptides (PF1-6) against IgG and IgE, followed by in vivo evaluation of the peptides for its allergenicity in mice. Results: Peptide PF3 and PF4 displayed high docking G-scores (−9.05) against IgE only. The mice sensitized with PF3 peptide showed increased levels of IL5, IL12, TNF-alpha, and GMCSF when compared to other peptides and controls, signifying a strong, Th2-based response. Concurrently, the Th1 pathway was inhibited by low levels of cytokine IL2, IFN-γ, and IL-10 justifying the role of PF3 in allergenic IgE response. Conclusions: Based on the results of overlapping peptides PF3 and PF4, the N-terminal part of the PF3 peptide (TGQALVI) plays a crucial role in allergenic response of Sorghum profilin.
Collapse
|
12
|
Warris A, Bercusson A, Armstrong-James D. Aspergillus colonization and antifungal immunity in cystic fibrosis patients. Med Mycol 2019; 57:S118-S126. [PMID: 30816976 DOI: 10.1093/mmy/myy074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/20/2018] [Accepted: 07/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, is the most common inherited life-limiting disease in North European people affecting 90,000 people worldwide. Progressive lung damage caused by recurrent infection and chronic airway inflammation is the major determinant of survival with a median age at death of 29 years. Approximately 60% of CF patients are infected with Aspergillus fumigatus, a ubiquitous environmental fungus, and its presence has been associated with accelerated lung function decline. Half of the patients infected with Aspergillus are <18 years of age. Yet time of acquisition of this fungus and determinants of CF-related Aspergillus disease severity and progression are not known. CFTR expression has been demonstrated in cells of the innate and adaptive immune system and has shown to be critical for normal function. Research delineating the role of CFTR-deficient phagocytes in Aspergillus persistence and infection in the CF lung, has only recently received attention. In this concise review we aim to present the current understanding with respect to when people with CF acquire infection with A. fumigatus and antifungal immune responses by CF immune cells.
Collapse
Affiliation(s)
- Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, University of Aberdeen, United Kingdom
| | - Amelia Bercusson
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | | |
Collapse
|
13
|
Bickford JS, Mueller C, Newsom KJ, Barilovits SJ, Beachy DE, Herlihy JD, Keeler B, Flotte TR, Nick HS. Effect of allergy and inflammation on eicosanoid gene expression in CFTR deficiency. J Cyst Fibros 2012; 12:258-65. [PMID: 22985691 DOI: 10.1016/j.jcf.2012.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/02/2012] [Accepted: 08/10/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Allergic bronchopulmonary aspergillosis (ABPA) is a complicating factor in cystic fibrosis (CF), affecting 2-15% of patients. We hypothesized that sensitization/challenge of CFTR(-/-) mice with an Aspergillus fumigatus (Af) extract will affect eicosanoid pathway gene expression, impacting ABPA and CF. METHODS FABP-hCFTR(+/-)-CFTR(-/-) mice were sensitized/challenged with an Af extract and gene expression of lung mRNA was evaluated for >40 genes, with correlative data in human CF (IB3.1) and CFTR-corrected (S9) bronchoepithelial cell lines. RESULTS Pla2g4c, Pla2g2c, Pla2g2d and Pla2g5 were induced in response to Af in CFTR(-/-) mice. Interestingly, PLA2G2D was induced by LPS, IL-2, IL-6, IL-13, and Af only in CFTR-deficient human IB3.1 cells. Prostanoid gene expression was relatively constant, however, several 12/15-lipoxygenase genes were induced in response to Af. Numerous cytokines also caused differential expression of ALOX15 only in IB3.1 cells. CONCLUSIONS The distinct regulation of PLA2G4C, PLA2G2D and ALOX15 genes in Aspergillus sensitization and/or cystic fibrosis could provide new insights into diagnosis and treatment of ABPA and CF.
Collapse
Affiliation(s)
- Justin S Bickford
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Induction of group IVC phospholipase A2 in allergic asthma: transcriptional regulation by TNFα in bronchoepithelial cells. Biochem J 2012; 442:127-37. [PMID: 22082005 DOI: 10.1042/bj20111269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Airway inflammation in allergen-induced asthma is associated with eicosanoid release. These bioactive lipids exhibit anti- and pro-inflammatory activities with relevance to pulmonary pathophysiology. We hypothesized that sensitization/challenge using an extract from the ubiquitous fungus Aspergillus fumigatus in a mouse model of allergic asthma would result in altered phospholipase gene expression, thus modulating the downstream eicosanoid pathway. We observed the most significant induction in the group IVC PLA2 (phospholipase A2) [also known as cPLA2γ (cytosolic PLA2γ) or PLA2G4C]. Our results infer that A. fumigatus extract can induce cPLA2γ levels directly in eosinophils, whereas induction in lung epithelial cells is most likely to be a consequence of TNFα (tumour necrosis factor α) secretion by A. fumigatus-activated macrophages. The mechanism of TNFα-dependent induction of cPLA2γ gene expression was elucidated through a combination of promoter deletions, ChIP (chromatin immunoprecipitation) and overexpression studies in human bronchoepithelial cells, leading to the identification of functionally relevant CRE (cAMP-response element), NF-κB (nuclear factor κB) and E-box promoter elements. ChIP analysis demonstrated that RNA polymerase II, ATF-2 (activating transcription factor 2)-c-Jun, p65-p65 and USF (upstream stimulating factor) 1-USF2 complexes are recruited to the cPLA2γ enhancer/promoter in response to TNFα, with overexpression and dominant-negative studies implying a strong level of co-operation and interplay between these factors. Overall, our results link cytokine-mediated alterations in cPLA2γ gene expression with allergic asthma and outline a complex regulatory mechanism.
Collapse
|
16
|
Hodges CA, Grady BR, Mishra K, Cotton CU, Drumm ML. Cystic fibrosis growth retardation is not correlated with loss of Cftr in the intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2011; 301:G528-36. [PMID: 21659619 PMCID: PMC3174541 DOI: 10.1152/ajpgi.00052.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Maldigestion due to exocrine pancreatic insufficiency leads to intestinal malabsorption and consequent malnutrition, a mechanism proposed to cause growth retardation associated with cystic fibrosis (CF). However, although enzyme replacement therapy combined with increased caloric intake improves weight gain, the effect on stature is not significant, suggesting that growth retardation has a more complex etiology. Mouse models of CF support this, since these animals do not experience exocrine pancreatic insufficiency yet are growth impaired. Cftr absence from the intestinal epithelium has been suggested as a primary source of growth retardation in CF mice, a concept we directly tested by generating mouse models with Cftr selectively inactivated or restored in intestinal epithelium. The relationship between growth and functional characteristics of the intestines, including transepithelial electrophysiology, incidence of intestinal obstruction, and histopathology, were assessed. Absence of Cftr exclusively from intestinal epithelium resulted in loss of cAMP-stimulated short-circuit current, goblet cell hyperplasia, and occurrence of intestinal obstructions but only slight and transient impaired growth. In contrast, specifically restoring Cftr to the intestinal epithelium resulted in restoration of ion transport and completely protected against obstruction and histopathological anomalies, but growth was indistinguishable from CF mice. These results indicate that absence of Cftr in the intestinal epithelium is an important contributor to the intestinal obstruction phenotype in CF but does not correlate with the observed growth reduction in CF.
Collapse
Affiliation(s)
| | | | | | | | - Mitchell L. Drumm
- Departments of 1Pediatrics, ,3Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
17
|
Mueller C, Braag SA, Keeler A, Hodges C, Drumm M, Flotte TR. Lack of cystic fibrosis transmembrane conductance regulator in CD3+ lymphocytes leads to aberrant cytokine secretion and hyperinflammatory adaptive immune responses. Am J Respir Cell Mol Biol 2011; 44:922-9. [PMID: 20724552 PMCID: PMC3135852 DOI: 10.1165/rcmb.2010-0224oc] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/26/2010] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis (CF), the most common fatal monogenic disease in the United States, results from mutations in CF transmembrane conductance regulator (CFTR), a chloride channel. The mechanisms by which CFTR mutations cause lung disease in CF are not fully defined but may include altered ion and water transport across the airway epithelium and aberrant inflammatory and immune responses to pathogens within the airways. We have shown that Cftr(-/-) mice mount an exaggerated IgE response toward Aspergillus fumigatus, with higher levels of IL-13 and IL-4, mimicking both the T helper cell type 2-biased immune responses seen in patients with CF. Herein, we demonstrate that these aberrations are primarily due to Cftr deficiency in lymphocytes rather than in the epithelium. Adoptive transfer experiments with CF splenocytes confer a higher IgE response to Aspergillus fumigatus compared with hosts receiving wild-type splenocytes. The predilection of Cftr-deficient lymphocytes to mount T helper cell type 2 responses with high IL-13 and IL-4 was confirmed by in vitro antigen recall experiments. Conclusive data on this phenomenon were obtained with conditional Cftr knockout mice, where mice lacking Cftr in T cell lineages developed higher IgE than their wild-type control littermates. Further analysis of Cftr-deficient lymphocytes revealed an enhanced intracellular Ca(2+) flux in response to T cell receptor activation. This was accompanied by an increase in nuclear localization of the calcium-sensitive transcription factor, nuclear factor of activated T cell, which could drive the IL-13 response. In summary, our data identified that CFTR dysfunction in T cells can lead directly to aberrant immune responses. These findings implicate the lymphocyte population as a potentially important target for CF therapeutics.
Collapse
Affiliation(s)
- Christian Mueller
- University of Massachusetts Medical School Department of Pediatrics and Gene Therapy Center, Worcester, Massachusetts 01605, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Modulation of exaggerated-IgE allergic responses by gene transfer-mediated antagonism of IL-13 and IL-17e. Mol Ther 2009; 18:511-8. [PMID: 19935781 DOI: 10.1038/mt.2009.264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Asthma and allergic rhinitis are almost invariable accompanied by elevated levels of immunoglobin E (IgE), and more importantly a genetic link between IgE levels and airway hyper-responsiveness has been established. We hypothesized that expression of soluble receptors directed against interleukin (IL)-13 and IL-17e would prevent the cytokines from engaging the cell-bound receptors and therefore help to attenuate allergic responses in a Cftr(-/-)-dependent mouse model of exaggerated-IgE responses. Cftr(-/-) mice were injected with recombinant adeno-associated virus 1 (rAAV1) intramuscularly expressing soluble receptors to IL-17e (IL-17Rh1fc) or IL-13 (IL-13Ralpha2Fc). Total IgE levels, in mice receiving the IL-17Rh1fc and IL-13Ralpha2Fc therapy, were lower than in the control group. Interestingly Aspergillus fumigatus (Af)-specific IgE levels were undetectable in both the mice receiving the IL-17Rh1fc and IL-13Ralpha2Fc therapies. Further flow cytometry analysis of intracellular gene expression suggests that blocking IL-17e may be interfering with signaling upstream of CD4+ and CD11b+ cells and reducing IgE levels by affecting signaling on these cell populations. In contrast it appears that IL-13 blockade acts downstream to reduce IgE levels probably by directly affecting B-cell maturation. These studies demonstrate the feasibility of targeting T helper 2 (Th2) cytokines with rAAV-delivered fusion proteins as a means to treat aberrant immune responses.
Collapse
|
19
|
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disorder due to mutations in the CF transmembrane conductance regulator (CFTR) gene that lead to defective ion transport in the conducting pulmonary airways and exocrine glands. Through a process that is not fully understood, CFTR defects predispose affected patients to chronic endobronchial infections with organisms such as Pseudomonas aeruginosa and Staphylococcus aureus. Following the discovery of the CFTR gene in 1989, CF became one of the primary targets for gene therapy research. Early enthusiasm surrounded the new field of gene therapy during most of the 1990s and it led academics and clinicians on a big effort to apply gene therapy for cystic fibrosis. Clinical studies have been pursued using recombinant adenovirus, recombinant adeno-associated virus, cationic liposomes, and cationic polymer vectors. Although to this date no dramatic therapeutic benefits have been observed, a lot of information has been gained from the pre-clinical and clinical studies that were performed. This learning curve has led to the optimization of vector technology and an appreciation of immune and mechanical barriers that have to be overcome for successful delivery.
Collapse
|
20
|
CFTR mutations impart elevated immune reactivity in a murine model of cystic fibrosis related diabetes. Cytokine 2008; 44:154-9. [DOI: 10.1016/j.cyto.2008.07.468] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 04/11/2008] [Accepted: 07/17/2008] [Indexed: 11/21/2022]
|
21
|
The pros and cons of immunomodulatory IL-10 gene therapy with recombinant AAV in a Cftr-/- -dependent allergy mouse model. Gene Ther 2008; 16:172-83. [PMID: 18818669 DOI: 10.1038/gt.2008.156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) patients have decreased levels of lung epithelial interleukin (IL)-10 and increased levels of proinflammatory cytokines (tumor necrosis factor-alpha, IL-4, IL-8 and IL-6). This has also been documented in Cftr (cystic fibrosis transmembrane conductance regulator)-deficient mice (Cftr 489X(-/-), FABP-hCFTR(+/+)). Our laboratory has recently characterized a peculiar hyper-IgE phenotype in these mice, in response to Aspergillus fumigatus crude protein extract (Af-cpe). Thus, we hypothesized that sustained systemic circulating IL-10 levels achieved through skeletal muscle transduction with recombinant adeno-associated vectors expressing IL-10 (rAAV1-IL-10) would serve to downregulate Th1 and Th2 cytokine production. This in turn would dampen the allergic response in the Cftr(-/-)-dependent mouse model of allergic bronchopulmonary aspergillosis. After Af-cpe sensitization and airway challenge, mice treated with rAAV1-IL-10 had markedly lower IgE levels when compared to the control-treated rAAV1-GFP group. This was accompanied by a significant reduction in the levels of IL-5, IL-4 and IL-13 in the lung compartment. The lower lung cytokine profiles resulted in a near absence of eosinophil recruitment in the lung and a lower inflammatory response in the lung tissue of mice receiving rAAV1-IL-10. Unfortunately, sustained secretion of IL-10 from transduced muscle did lead to thrombocytopenia and splenomegaly in mice injected with rAAV1-IL-10. These results highlight that while IL-10 gene therapy is very effective for treating allergic responses caution must be taken with the prolonged secretion of IL-10.
Collapse
|
22
|
Cebotaru L, Vij N, Ciobanu I, Wright J, Flotte T, Guggino WB. Cystic fibrosis transmembrane regulator missing the first four transmembrane segments increases wild type and DeltaF508 processing. J Biol Chem 2008; 283:21926-33. [PMID: 18508776 DOI: 10.1074/jbc.m709156200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously generated an adenoassociated viral gene therapy vector, rAAV-Delta264 cystic fibrosis transmembrane conductance regulator (CFTR), missing the first four transmembrane domains of CFTR. When infected into monkey lungs, Delta264 CFTR increased the levels of endogenous wild type CFTR protein. To understand this process, we transfected Delta264 CFTR plasmid cDNA into COS7 cells, and we noted that protein expression from the truncation mutant is barely detectable when compared with wild type or DeltaF508 CFTR. Delta264 CFTR protein expression increases dramatically when cells are treated with proteasome inhibitors. Cycloheximide experiments show that Delta264 CFTR is degraded faster than DeltaF508 CFTR. VCP and HDAC6, two proteins involved in retrograde translocation from endoplasmic reticulum to cytosol for proteasomal and aggresomal degradation, coimmunoprecipitate with Delta264 CFTR. In cotransfection studies in COS7 cells and in transfection of Delta264 CFTR into cells stably expressing wild type and DeltaF508 CFTR, Delta264 CFTR increases wild type CFTR protein and increases levels of maturation of immature band B to mature band C of DeltaF508 CFTR. Thus the adenoassociated viral vector, rAAV-Delta264 CFTR, is a highly promising cystic fibrosis gene therapy vector because it increases the amount of mature band C protein both from wild type and DeltaF508 CFTR and associates with key elements in quality control mechanism of CFTR.
Collapse
Affiliation(s)
- Liudmila Cebotaru
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
23
|
Mueller C, Torrez D, Braag S, Martino A, Clarke T, Campbell-Thompson M, Flotte TR. Partial correction of the CFTR-dependent ABPA mouse model with recombinant adeno-associated virus gene transfer of truncated CFTR gene. J Gene Med 2008; 10:51-60. [PMID: 18023072 DOI: 10.1002/jgm.1119] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recently, we have developed a model of airway inflammation in a CFTR knockout mouse utilizing Aspergillus fumigatus crude protein extract (Af-cpe) to mimic allergic bronchopulmonary aspergillosis (ABPA) 1, an unusual IgE-mediated hypersensitivity syndrome seen in up to 15% of cystic fibrosis (CF) patients and rarely elsewhere. We hypothesized that replacement of CFTR via targeted gene delivery to airway epithelium would correct aberrant epithelial cytokine signaling and ameliorate the ABPA phenotype in CFTR-deficient (CFTR 489X - /-, FABP-hCFTR + / +) mice. CFTR knockout mice underwent intra-tracheal (IT) delivery of recombinant adeno-associated virus serotype 5 (rAAV5Delta-264CFTR) or rAAV5-GFP at 2.58 x 10(12) viral genomes/mouse. All mice were then sensitized with two serial injections (200 microg) of crude Af antigen via the intra-peritoneal (IP) route. Untreated mice were sensitized without virus exposure. Challenges were performed 2 weeks after final sensitization, using a 0.25% solution containing Aspergillus fumigatus crude protein extract delivered by inhalation on three consecutive days. The rAAV5Delta-264CFTR-treated mice had lower total serum IgE levels (172513 ng/ml +/- 1312) than rAAV5-GFP controls (26 892 ng/ml +/- 3715) (p = 0.037) and non-treated, sensitized controls (24 816 +/- 4219 ng/ml). Serum IgG1 levels also were lower in mice receiving the CFTR vector. Interestingly, splenocytes from rAAV5Delta-264CFTR-treated mice secreted less IL-13, INFg, TNFa, RANTES and GM-CSF after ConA stimulation. Gene therapy with rAAV5Delta-264CFTR attenuated the hyper-IgE response in this reproducible CF mouse model of ABPA, with systemic effects also evident in the cytokine response of stimulated splenocytes.
Collapse
Affiliation(s)
- Christian Mueller
- Department of Pediatrics and Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Stalvey MS, Muller C, Schatz DA, Wasserfall CH, Campbell-Thompson ML, Theriaque DW, Flotte TR, Atkinson MA. Cystic fibrosis transmembrane conductance regulator deficiency exacerbates islet cell dysfunction after beta-cell injury. Diabetes 2006; 55:1939-45. [PMID: 16804061 DOI: 10.2337/db05-1647] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cause of cystic fibrosis-related diabetes (CFRD) remains unknown, but cystic fibrosis transmembrane conductance regulator (CFTR) mutations contribute directly to multiple aspects of the cystic fibrosis phenotype. We hypothesized that susceptibility to islet dysfunction in cystic fibrosis is determined by the lack of functional CFTR. To address this, glycemia was assessed in CFTR null (CFTR(-/-)), C57BL/6J, and FVB/NJ mice after streptozotocin (STZ)-induced beta-cell injury. Fasting blood glucose levels were similar among age-matched non-STZ-administered animals, but they were significantly higher in CFTR(-/-) mice 4 weeks after STZ administration (288.4 +/- 97.4, 168.4 +/- 35.9, and 188.0 +/- 42.3 mg/dl for CFTR(-/-), C57BL/6J, and FVB/NJ, respectively; P < 0.05). After intraperitoneal glucose administration, elevated blood glucose levels were also observed in STZ-administered CFTR(-/-) mice. STZ reduced islets among all strains; however, only CFTR(-/-) mice demonstrated a negative correlation between islet number and fasting blood glucose (P = 0.02). To determine whether a second alteration associated with cystic fibrosis (i.e., airway inflammation) could impact glucose control, animals were challenged with Aspergillus fumigatus. The A. fumigatus-sensitized CFTR(-/-) mice demonstrated similar fasting and stimulated glucose responses in comparison to nonsensitized animals. These studies suggest metabolic derangements in CFRD originate from an islet dysfunction inherent to the CFTR(-/-) state.
Collapse
Affiliation(s)
- Michael S Stalvey
- Department of Pathology, University of Florida, College of Medicine, PO Box 100275, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|