1
|
Tsarouhas V, Liu D, Tsikala G, Engström Y, Strigini M, Samakovlis C. A surfactant lipid layer of endosomal membranes facilitates airway gas filling in Drosophila. Curr Biol 2023; 33:5132-5146.e5. [PMID: 37992718 DOI: 10.1016/j.cub.2023.10.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
The mechanisms underlying the construction of an air-liquid interface in respiratory organs remain elusive. Here, we use live imaging and genetic analysis to describe the morphogenetic events generating an extracellular lipid lining of the Drosophila airways required for their gas filing and animal survival. We show that sequential Rab39/Syx1A/Syt1-mediated secretion of lysosomal acid sphingomyelinase (Drosophila ASM [dASM]) and Rab11/35/Syx1A/Rop-dependent exosomal secretion provides distinct components for lipid film assembly. Tracheal inactivation of Rab11 or Rab35 or loss of Rop results in intracellular accumulation of exosomal, multi-vesicular body (MVB)-derived vesicles. On the other hand, loss of dASM or Rab39 causes luminal bubble-like accumulations of exosomal membranes and liquid retention in the airways. Inactivation of the exosomal secretion in dASM mutants counteracts this phenotype, arguing that the exosomal secretion provides the lipid vesicles and that secreted lysosomal dASM organizes them into a continuous film. Our results reveal the coordinated functions of extracellular vesicle and lysosomal secretions in generating a lipid layer crucial for airway gas filling and survival.
Collapse
Affiliation(s)
- Vasilios Tsarouhas
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; Science for Life Laboratory, SciLifeLab, 171 65 Stockholm, Sweden.
| | - Dan Liu
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden
| | - Georgia Tsikala
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; IMBB, 70013 Heraklion, Crete, Greece
| | - Ylva Engström
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden
| | | | - Christos Samakovlis
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; Science for Life Laboratory, SciLifeLab, 171 65 Stockholm, Sweden; ECCPS, Justus Liebig University of Giessen, 35390 Giessen, Germany.
| |
Collapse
|
2
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
3
|
Еlmahdy MK, Abdelaziz RR, Elmahdi HS, Suddеk GM. Effect of Agmatine on a mouse model of allergic airway inflammation: A comparative study. Autoimmunity 2022; 55:608-619. [PMID: 35775471 DOI: 10.1080/08916934.2022.2093864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Asthma is a chronic lung disease that injures and constricts the airways. This study evaluates the effects of agmatine on ovalbumin (OVA)-induced allergic inflammation of the airways. METHODS OVA sensitization by intraperitoneal injection was used to induce airway inflammation in mice on days 0 and 7; then the mice were challenged using beclomethasone (150 µg/kg, inhalation), a standard anti-asthmatic drug, from day 14 to day 16. Furthermore, agmatine (200 mg/kg) was intraperitoneally injected on day 0 and then daily for 16 days, followed by OVA challenge. The lung weight ratio, total and differential cell counts, TNF-α, interleukin-5 (IL-5) and IL-13 in bronchoalveolar lavage fluid (BALF), lung nitrite/nitrate (NO), and oxidative parameters were determined. Moreover, histopathological and immunohistochemical staining was employed. RESULTS Injection of agmatine (200 mg/kg) for 16 days significantly attenuated inflammation of the airways. The levels of BALF inflammatory cells, TNF-α, IL-5, IL-13, lung NO, and malondialdehyde (MDA), significantly decreased with concomitant elevation of superoxide dismutase (SOD) levels. Histological and immunohistochemical analyses of mast cells paralleled to biochemical improvements. CONCLUSION Finally, this study illustrated that agmatine attenuates the allergic inflammation of airways caused by OVA by mitigating cytokines release, NO expression, and oxidative stress.
Collapse
Affiliation(s)
- Mohammed K Еlmahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Hoda S Elmahdi
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddеk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
4
|
Dectin-2 promotes house dust mite-skewed Th2 response through the activation of cDC2s. Cell Immunol 2022; 378:104558. [PMID: 35717749 DOI: 10.1016/j.cellimm.2022.104558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022]
Abstract
The role of Dectin-2 (gene symbol, Clec4n) in house dust mite (HDM) induced Th2 immune response and the exact mechanism remains controversial. In this study, we illustrated that, Clec4n-/- mice had decreased Th2 immune response following HDM challenge, which may ascribe to dramatically reduced type 2 conventional dendritic cells (cDC2s) in lung of Clec4n-/- mice, as cDC2s from lung of Clec4n-/- mice after challenging had less ability to induce Th2 response with decreased production of IL-4/IL-13. Further in vitro experiments showed the activation of Clec4n-/--BMDCs significantly decreased after HDM stimulation accompanied with decreased activation of Syk-NF-κB and Syk-JNK signal pathway. Importantly, Dectin-2 expression in PBMCs from asthmatic patients was significantly higher than that in healthy controls. Taken together, these results demonstrated that Dectin-2 could promote cDC2s activation in lung, which polarizes Th2 immune response outlining a novel mechanism of asthma development.
Collapse
|
5
|
Acid Sphingomyelinase Deficiency: A Clinical and Immunological Perspective. Int J Mol Sci 2021; 22:ijms222312870. [PMID: 34884674 PMCID: PMC8657623 DOI: 10.3390/ijms222312870] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disease caused by deficient activity of acid sphingomyelinase (ASM) enzyme, leading to the accumulation of varying degrees of sphingomyelin. Lipid storage leads to foam cell infiltration in tissues, and clinical features including hepatosplenomegaly, pulmonary insufficiency and in some cases central nervous system involvement. ASM enzyme replacement therapy is currently in clinical trial being the first treatment addressing the underlying pathology of the disease. Therefore, presently, it is critical to better comprehend ASMD to improve its diagnose and monitoring. Lung disease, including recurrent pulmonary infections, are common in ASMD patients. Along with lung disease, several immune system alterations have been described both in patients and in ASMD animal models, thus highlighting the role of ASM enzyme in the immune system. In this review, we summarized the pivotal roles of ASM in several immune system cells namely on macrophages, Natural Killer (NK) cells, NKT cells, B cells and T cells. In addition, an overview of diagnose, monitoring and treatment of ASMD is provided highlighting the new enzyme replacement therapy available.
Collapse
|
6
|
Poczobutt JM, Mikosz AM, Poirier C, Beatman EL, Serban KA, Gally F, Cao D, McCubbrey AL, Cornell CF, Schweitzer KS, Berdyshev EV, Bronova IA, Paris F, Petrache I. Altered Macrophage Function Associated with Crystalline Lung Inflammation in Acid Sphingomyelinase Deficiency. Am J Respir Cell Mol Biol 2021; 64:629-640. [PMID: 33662226 PMCID: PMC8086042 DOI: 10.1165/rcmb.2020-0229oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/12/2021] [Indexed: 11/24/2022] Open
Abstract
Deficiency of ASM (acid sphingomyelinase) causes the lysosomal storage Niemann-Pick disease (NPD). Patients with NPD type B may develop progressive interstitial lung disease with frequent respiratory infections. Although several investigations using the ASM-deficient (ASMKO) mouse NPD model revealed inflammation and foamy macrophages, there is little insight into the pathogenesis of NPD-associated lung disease. Using ASMKO mice, we report that ASM deficiency is associated with a complex inflammatory phenotype characterized by marked accumulation of monocyte-derived CD11b+ macrophages and expansion of airspace/alveolar CD11c+ CD11b- macrophages, both with increased size, granularity, and foaminess. Both the alternative and classical pathways were activated, with decreased in situ phagocytosis of opsonized (Fc-coated) targets, preserved clearance of apoptotic cells (efferocytosis), secretion of Th2 cytokines, increased CD11c+/CD11b+ cells, and more than a twofold increase in lung and plasma proinflammatory cytokines. Macrophages, neutrophils, eosinophils, and noninflammatory lung cells of ASMKO lungs also exhibited marked accumulation of chitinase-like protein Ym1/2, which formed large eosinophilic polygonal Charcot-Leyden-like crystals. In addition to providing insight into novel features of lung inflammation that may be associated with NPD, our report provides a novel connection between ASM and the development of crystal-associated lung inflammation with alterations in macrophage biology.
Collapse
MESH Headings
- Animals
- CD11 Antigens/genetics
- CD11 Antigens/immunology
- CD11b Antigen/genetics
- CD11b Antigen/immunology
- Cell Size
- Chitinases/genetics
- Chitinases/immunology
- Disease Models, Animal
- Eosinophils/immunology
- Eosinophils/pathology
- Female
- Gene Expression
- Glycoproteins/genetics
- Glycoproteins/immunology
- Humans
- Lectins/genetics
- Lectins/immunology
- Lung/immunology
- Lung/pathology
- Lysophospholipase/genetics
- Lysophospholipase/immunology
- Macrophages/immunology
- Macrophages/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/pathology
- Male
- Mice
- Mice, Knockout
- Neutrophils/immunology
- Neutrophils/pathology
- Niemann-Pick Disease, Type A/enzymology
- Niemann-Pick Disease, Type A/genetics
- Niemann-Pick Disease, Type A/immunology
- Niemann-Pick Disease, Type A/pathology
- Niemann-Pick Disease, Type B/enzymology
- Niemann-Pick Disease, Type B/genetics
- Niemann-Pick Disease, Type B/immunology
- Niemann-Pick Disease, Type B/pathology
- Phagocytosis
- Pneumonia/enzymology
- Pneumonia/genetics
- Pneumonia/immunology
- Pneumonia/pathology
- Sphingomyelin Phosphodiesterase/deficiency
- Sphingomyelin Phosphodiesterase/genetics
- Sphingomyelin Phosphodiesterase/immunology
- Th1-Th2 Balance/genetics
- beta-N-Acetylhexosaminidases/genetics
- beta-N-Acetylhexosaminidases/immunology
Collapse
Affiliation(s)
| | | | | | | | - Karina A. Serban
- National Jewish Health, Denver, Colorado
- University of Colorado, Denver, Colorado
| | - Fabienne Gally
- National Jewish Health, Denver, Colorado
- University of Colorado, Denver, Colorado
| | | | | | | | - Kelly S. Schweitzer
- National Jewish Health, Denver, Colorado
- University of Colorado, Denver, Colorado
| | | | | | - François Paris
- Institut de Cancérologie de l’Ouest, Saint-Herblain, France; and
- Le Regional Center for Research in Cancerology and Immunology Nantes/Angers, Université de Nantes, Nantes, France
| | - Irina Petrache
- National Jewish Health, Denver, Colorado
- Indiana University, Indianapolis, Indiana
- University of Colorado, Denver, Colorado
| |
Collapse
|
7
|
Broomfield AA, Padidela R, Wilkinson S. Pulmonary Manifestations of Endocrine and Metabolic Diseases in Children. Pediatr Clin North Am 2021; 68:81-102. [PMID: 33228944 DOI: 10.1016/j.pcl.2020.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Advances in technology, methodology, and deep phenotyping are increasingly driving the understanding of the pathologic basis of disease. Improvements in patient identification and treatment are impacting survival. This is true in endocrinology and inborn errors of metabolism, where disease-modifying therapies are developing. Inherent to this evolution is the increasing awareness of the respiratory manifestations of these rare diseases. This review updates clinicians, stratifying diseases spirometerically; pulmonary hypertension and diseases with a predisposition to recurrent pulmonary infection are discussed. This division is artificial; many diseases have multiple pathologic effects on respiration. This review does not cover the impact of obesity.
Collapse
Affiliation(s)
- Alexander A Broomfield
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Raja Padidela
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart Wilkinson
- Respiratory Department Royal Manchester Children's Hospital, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
8
|
Chung HY, Claus RA. Keep Your Friends Close, but Your Enemies Closer: Role of Acid Sphingomyelinase During Infection and Host Response. Front Med (Lausanne) 2021; 7:616500. [PMID: 33553211 PMCID: PMC7859284 DOI: 10.3389/fmed.2020.616500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Breakdown of the inert and constitutive membrane building block sphingomyelin to the highly active lipid mediator ceramide by extracellularly active acid sphingomyelinase is tightly regulated during stress response and opens the gate for invading pathogens, triggering the immune response, development of remote organ failure, and tissue repair following severe infection. How do one enzyme and one mediator manage all of these affairs? Under physiological conditions, the enzyme is located in the lysosomes and takes part in the noiseless metabolism of sphingolipids, but following stress the protein is secreted into circulation. When secreted, acid sphingomyelinase (ASM) is able to hydrolyze sphingomyelin present at the outer leaflet of membranes to ceramide. Its generation troubles the biophysical context of cellular membranes resulting in functional assembly and reorganization of proteins and receptors, also embedded in highly conserved response mechanisms. As a consequence of cellular signaling, not only induction of cell death but also proliferation, differentiation, and fibrogenesis are affected. Here, we discuss the current state of the art on both the impact and function of the enzyme during host response and damage control. Also, the potential role of lysosomotropic agents as functional inhibitors of this upstream alarming cascade is highlighted.
Collapse
Affiliation(s)
- Ha-Yeun Chung
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ralf A Claus
- Department for Anaesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
9
|
Jerbi M, Sayhi M, Gaied H, Hedri H, Aoudia R, Goucha R, Abdallah TB. Renal Thrombotique microangiopathy: An unusual renal involvement in Niemann-Pick disease type B. Clin Case Rep 2020; 8:3316-3321. [PMID: 33363925 PMCID: PMC7752378 DOI: 10.1002/ccr3.3408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/23/2022] Open
Abstract
Renal involvement in Niemann-Pick disease type B is very rare. Kidney check-up and renal biopsy should be performed in any patient presented with hypertension and kidney disease. Histology identifies the lesion, the prognosis, and guide treatment.
Collapse
Affiliation(s)
- Mouna Jerbi
- Nephrology DepartmentCHU Mongi SlimLa MarsaTunisia
- Faculty of MedicineUniversity of Tunis El ManarTunisTunisia
| | - Mariem Sayhi
- Faculty of MedicineUniversity of Tunis El ManarTunisTunisia
- Medicine A DepartmentCharles Nicolle HospitalTunisTunisia
| | - Hanene Gaied
- Nephrology DepartmentCHU Mongi SlimLa MarsaTunisia
- Faculty of MedicineUniversity of Tunis El ManarTunisTunisia
| | - Hafedh Hedri
- Faculty of MedicineUniversity of Tunis El ManarTunisTunisia
- Medicine A DepartmentCharles Nicolle HospitalTunisTunisia
| | - Raja Aoudia
- Faculty of MedicineUniversity of Tunis El ManarTunisTunisia
- Medicine A DepartmentCharles Nicolle HospitalTunisTunisia
| | - Rim Goucha
- Nephrology DepartmentCHU Mongi SlimLa MarsaTunisia
- Faculty of MedicineUniversity of Tunis El ManarTunisTunisia
| | - Taieb Ben Abdallah
- Faculty of MedicineUniversity of Tunis El ManarTunisTunisia
- Medicine A DepartmentCharles Nicolle HospitalTunisTunisia
| |
Collapse
|
10
|
Guerrini V, Gennaro ML. Foam Cells: One Size Doesn't Fit All. Trends Immunol 2019; 40:1163-1179. [PMID: 31732284 DOI: 10.1016/j.it.2019.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023]
Abstract
Chronic inflammation in many infectious and metabolic diseases, and some cancers, is accompanied by the presence of foam cells. These cells form when the intracellular lipid content of macrophages exceeds their capacity to maintain lipid homeostasis. Concurrently, critical macrophage immune functions are diminished. Current paradigms of foam cell formation derive from studies of atherosclerosis. However, recent studies indicate that the mechanisms of foam cell biogenesis during tuberculosis differ from those operating during atherogenesis. Here, we review how foam cell formation and function vary with disease context. Since foam cells are therapeutic targets in atherosclerosis, further research on the disease-specific mechanisms of foam cell biogenesis and function is needed to explore the therapeutic consequences of targeting these cells in other diseases.
Collapse
Affiliation(s)
- Valentina Guerrini
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
11
|
Respiratory complications of metabolic disease in the paediatric population: A review of presentation, diagnosis and therapeutic options. Paediatr Respir Rev 2019; 32:55-65. [PMID: 31101546 DOI: 10.1016/j.prrv.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Inborn errors of metabolism (IEMs) whilst individually rare, as a group constitute a field which is increasingly demands on pulmonologists. With the advent of new therapies such as enzyme replacement and gene therapy, early diagnosis and treatment of these conditions can impact on long term outcome, making their timely recognition and appropriate investigation increasingly important. Conversely, with improved treatment, survival of these patients is increasing, with the emergence of previously unknown respiratory phenotypes. It is thus important that pulmonologists are aware of and appropriately monitor and manage these complications. This review aims to highlight the respiratory manifestations which can occur. It isdivided into conditions resulting primarily in obstructive airway and lung disease, restrictive lung disease such as interstitial lung disease or pulmonary alveolar proteinosis and pulmonary hypertension, whilst acknowledging that some diseases have the potential to cause all three. The review focuses on general phenotypes of IEMs, their known respiratory complications and the basic metabolic investigations which should be performed where an IEM is suspected.
Collapse
|
12
|
Aldosari MH, de Vries RP, Rodriguez LR, Hesen NA, Beztsinna N, van Kuilenburg ABP, Hollak CEM, Schellekens H, Mastrobattista E. Liposome-targeted recombinant human acid sphingomyelinase: Production, formulation, and in vitro evaluation. Eur J Pharm Biopharm 2019; 137:185-195. [PMID: 30818011 DOI: 10.1016/j.ejpb.2019.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/25/2018] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
Niemann-Pick disease type B is a hereditary rare condition caused by deficiency of the acid sphingomyelinase (ASM) that is needed for lysosomal hydrolysis of sphingomyelin to ceramide and phosphocholine. This deficiency leads to a massive accumulation of sphingomyelin in cells throughout the body, predominantly in the liver, spleen and lungs. Currently, there is no effective treatment available. Olipudase alfa (recombinant human acid sphingomyelinase; rhASM) is an investigational drug that has shown promising results. However, dose-dependent toxicity was observed in mice upon the intravenous administration of rhASM, potentially due to the systemic release of ceramide upon the extracellular degradation of sphingomyelin by rhASM. Using a nanocarrier to deliver the rhASM to cells could improve the therapeutic window by shielding the rhASM to prevent the off-target degradation of sphingomyelin. For this aim, we recombinantly expressed hASM in human cells and loaded it into different liposomal formulations at a drug-to-lipid ratio of 4% (w/w). Among four formulations, the liposomal rhASM formulation with the composition DPPC:DOPS:BMP:CHOL:DiD (59:20:10:10:1 mol%) was selected because of its superiority concerning the encapsulation efficiency of rhASM (21%) and cellular uptake by fibroblasts and macrophages. The selected liposomal rhASM formulation significantly reduced the accumulated lyso-sphingomyelin in NPD-B fibroblasts by 71%, part of this effect was stimulated by the used lipids, compared to 55% when using the free rhASM enzyme. More importantly, the undesired extracellular degradation of sphingomyelin was reduced when using the selected liposomal rhASM by 61% relative to the free rhASM. The presented in vitro data indicate that the liposomal rhASM is effective and may provide a safer intervention than free rhASM.
Collapse
Affiliation(s)
- Mohammed H Aldosari
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands; Drug Sector, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Lucia R Rodriguez
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Nienke A Hesen
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Nataliia Beztsinna
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - André B P van Kuilenburg
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - Carla E M Hollak
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, the Netherlands
| | - Huub Schellekens
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Sopel N, Kölle J, Dumendiak S, Koch S, Reichel M, Rhein C, Kornhuber J, Finotto S. Immunoregulatory role of acid sphingomyelinase in allergic asthma. Immunology 2019; 156:373-383. [PMID: 30556232 DOI: 10.1111/imm.13035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Acid sphingomyelinase (ASM) is one of the enzymes that catalyzes the breakdown of sphingomyelin to ceramide and phosphorylcholine. In this study, we aimed at elucidating the role of ASM in allergic asthma. We used an ovalbumin-induced murine model of asthma where we compared wild-type and ASM-deficient mice. In wild-type mice, secretory ASM activity in the bronchoalveolar lavage fluid was increased in the acute ovalbumin model, but not in a tolerogenic model. Furthermore, in the absence of ASM, the serum IgE level was reduced, compared with wild-type mice, while an accumulation of interstitial macrophages and foreign antigen-induced regulatory T cells along with exhausted CD4+ PD1+ T cells was observed in the lungs of ASM-/- mice. In conclusion, in the absence of ASM, we observed an accumulation of immunosuppressive antigen-induced regulatory T cells expressing Foxp3 and CTLA4 in the lung as well as multinucleated interstitial macrophages and exhausted CD4+ PD1+ T cells associated with inhibition of serum IgE in asthma.
Collapse
Affiliation(s)
- Nina Sopel
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Kölle
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sonja Dumendiak
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sonja Koch
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Reichel
- Nephrologische Forschungslaboratorien, Medizinische Klinik m. S. Nephrologie und Internistische Intensivmedizin Charité, Universitätsmedizin Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
14
|
Yosri H, Said E, Elkashef WF, Gameil NM. Modulatory role of gabapentin against ovalbumin-induced asthma, bronchial and airway inflammation in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:18-25. [PMID: 30286334 DOI: 10.1016/j.etap.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Allergic asthma is a type of chronic immune-mediated inflammatory lung disorders with constantly increased worldwide prevalence. Gabapentin is an L-type calcium channel blocker used essentially as antiepileptic and recently has been indicated for management of post-operative and neuropathic pains as an anti-inflammatory. The current study was conducted to evaluate the anti-inflammatory and anti-allergic properties of gabapentin in a mouse-model of Ovalbumin-induced allergic asthma. Mice received OVA (10 mg) adsorbed on Al(OH)3 on days 0 and 7 and were challenged by exposure to nebulized OVA solution (1%) form days 14-16. Asthma induction was associated with significant biochemical, oxidative and inflammatory imbalance. Daily oral gabapentin (50 mg/kg), significantly reduced lung inflammatory cells counts', serum LDH and catalase activities and lung/body weight index. Moreover, gabapentin significantly increased lung GSH concentration and enhanced SOD activity. Lung contents of TNFα, IL-4 and IL-13 significantly declined as well. IL-13; is the major contributor to airway hyper-responsiveness; the charetrestic hallmark of asthma and IL-4; a major chemoattractant cytokine. Lung histopathology significantly improved parallel to the biochemical improvements. In conclusion; Gabapentin's modulatory effect on IL-4, IL-13 and TNFα activities accounts for the observed anti-inflammatory and anti-allergic properties.
Collapse
Affiliation(s)
- Haidy Yosri
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Wagdi F Elkashef
- Dep. of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nariman M Gameil
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
15
|
Abdеlaziz RR, Еlmahdy MK, Suddek GM. Flavocoxid attenuates airway inflammation in ovalbumin-induced mouse asthma model. Chem Biol Interact 2018; 292:15-23. [PMID: 29986831 DOI: 10.1016/j.cbi.2018.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/25/2018] [Accepted: 07/01/2018] [Indexed: 01/05/2023]
Abstract
Asthma is a common airways inflammatory disease. This study provides evidence on the efficacy of flavocoxid against ovalbumin (OVA)-induced allergic airways inflammation in a mouse model of asthma. Airway inflammation was induced by intrapеritonеal injection of 10 mg ovalbumin (OVA) on day zero and day 7 followed by OVA challenge starting from 14th day to 16th day. Beclomethasone; a standard anti-inflammatory agent was selected as a drug in asthma. Flavocoxid (20 mg/kg, i. p.) was administered on day zero till 16th day followed by OVA challenge. At the end of the study, lung weight index, bronchoalveolar lavage fluid (BALF) content of total and differential WBCs, interleukin-13(IL-13), in addition to lung tissue nitrate/nitrite (NO) and oxidative stress biomarkers were measured. Also, histological and immunohistochemical analysis were conducted. Daily i. p. injection of flavocoxid (20 mg/kg) significantly improved airway inflammation. Inflammatory cells in BALF, malondialdehyde (MDA), NO and IL-13 significantly declined with concomitant increase in superoxide dismutase (SOD) activity. Histopathological examination and immunohistochеmical staining of mast cells were correlated with observed biochemical improvements. Collectively, these results demonstrate that flavocoxid mitigates the allergic airway inflammation induced by ovalbumin through attenuation of IL-13, NO expressions and oxidative stress.
Collapse
Affiliation(s)
- Rania R Abdеlaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| | - Mohammеd Kh Еlmahdy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
16
|
Kaddi CD, Niesner B, Baek R, Jasper P, Pappas J, Tolsma J, Li J, van Rijn Z, Tao M, Ortemann‐Renon C, Easton R, Tan S, Puga AC, Schuchman EH, Barrett JS, Azer K. Quantitative Systems Pharmacology Modeling of Acid Sphingomyelinase Deficiency and the Enzyme Replacement Therapy Olipudase Alfa Is an Innovative Tool for Linking Pathophysiology and Pharmacology. CPT Pharmacometrics Syst Pharmacol 2018; 7:442-452. [PMID: 29920993 PMCID: PMC6063739 DOI: 10.1002/psp4.12304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disorder with heterogeneous clinical manifestations, including hepatosplenomegaly and infiltrative pulmonary disease, and is associated with significant morbidity and mortality. Olipudase alfa (recombinant human acid sphingomyelinase) is an enzyme replacement therapy under development for the non-neurological manifestations of ASMD. We present a quantitative systems pharmacology (QSP) model supporting the clinical development of olipudase alfa. The model is multiscale and mechanistic, linking the enzymatic deficiency driving the disease to molecular-level, cellular-level, and organ-level effects. Model development was informed by natural history, and preclinical and clinical studies. By considering patient-specific pharmacokinetic (PK) profiles and indicators of disease severity, the model describes pharmacodynamic (PD) and clinical end points for individual patients. The ASMD QSP model provides a platform for quantitatively assessing systemic pharmacological effects in adult and pediatric patients, and explaining variability within and across these patient populations, thereby supporting the extrapolation of treatment response from adults to pediatrics.
Collapse
Affiliation(s)
| | - Bradley Niesner
- Translational Informatics, TMED, Sanofi, BridgewaterNew JerseyUSA
| | - Rena Baek
- Sanofi Genzyme, CambridgeMassachusettsUSA
| | | | | | | | - Jing Li
- Translational Informatics, TMED, Sanofi, BridgewaterNew JerseyUSA
| | - Zachary van Rijn
- Translational Informatics, TMED, Sanofi, BridgewaterNew JerseyUSA
| | - Mengdi Tao
- Translational Informatics, TMED, Sanofi, BridgewaterNew JerseyUSA
| | | | - Rachael Easton
- Translational Informatics, TMED, Sanofi, BridgewaterNew JerseyUSA
| | - Sharon Tan
- Sanofi Genzyme, CambridgeMassachusettsUSA
| | | | - Edward H. Schuchman
- Genetics & Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | - Karim Azer
- Translational Informatics, TMED, Sanofi, BridgewaterNew JerseyUSA
| |
Collapse
|
17
|
Yu FPS, Islam D, Sikora J, Dworski S, Gurka J, López-Vásquez L, Liu M, Kuebler WM, Levade T, Zhang H, Medin JA. Chronic lung injury and impaired pulmonary function in a mouse model of acid ceramidase deficiency. Am J Physiol Lung Cell Mol Physiol 2018; 314:L406-L420. [PMID: 29167126 PMCID: PMC5900354 DOI: 10.1152/ajplung.00223.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 11/22/2022] Open
Abstract
Farber disease (FD) is a debilitating lysosomal storage disorder (LSD) caused by a deficiency of acid ceramidase (ACDase) activity due to mutations in the gene ASAH1. Patients with ACDase deficiency may develop a spectrum of clinical phenotypes. Severe cases of FD are frequently associated with neurological involvement, failure to thrive, and respiratory complications. Mice homozygous ( Asah1P361R/P361R) for an orthologous patient mutation in Asah1 recapitulate human FD. In this study, we show significant impairment in lung function, including low compliance and increased airway resistance in a mouse model of ACDase deficiency. Impaired lung mechanics in Farber mice resulted in decreased blood oxygenation and increased red blood cell production. Inflammatory cells were recruited to both perivascular and peribronchial areas of the lung. We observed large vacuolated foamy histiocytes that were full of storage material. An increase in vascular permeability led to protein leakage, edema, and impacted surfactant homeostasis in the lungs of Asah1P361R/P361R mice. Bronchial alveolar lavage fluid (BALF) extraction and analysis revealed accumulation of a highly turbid lipoprotein-like substance that was composed in part of surfactants, phospholipids, and ceramides. The phospholipid composition of BALF from Asah1P361R/P361R mice was severely altered, with an increase in both phosphatidylethanolamine (PE) and sphingomyelin (SM). Ceramides were also found at significantly higher levels in both BALF and lung tissue from Asah1P361R/P361R mice when compared with levels from wild-type animals. We demonstrate that a deficiency in ACDase leads to sphingolipid and phospholipid imbalance, chronic lung injury caused by significant inflammation, and increased vascular permeability, leading to impaired lung function.
Collapse
Affiliation(s)
- Fabian P S Yu
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
| | - Diana Islam
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
| | - Jakub Sikora
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, Charles University, First Faculty of Medicine , Prague , Czech Republic
- Institute of Pathology, Charles University, First Faculty of Medicine and General University Hospital , Prague , Czech Republic
| | - Shaalee Dworski
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
| | - Jiří Gurka
- Department of Cardiology, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Lucía López-Vásquez
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
| | - Mingyao Liu
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto Ontario , Canada
- University Health Network , Toronto, Ontario , Canada
| | - Wolfgang M Kuebler
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto Ontario , Canada
- Keenan Research Centre for Biomedical Science, Saint Michael's Hospital , Toronto, Ontario , Canada
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, and INSERM UMR1037 CRCT, Université de Toulouse , Toulouse , France
| | - Haibo Zhang
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto Ontario , Canada
- Keenan Research Centre for Biomedical Science, Saint Michael's Hospital , Toronto, Ontario , Canada
- Department of Anesthesia, University of Toronto , Toronto, Ontario , Canada
| | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
- University Health Network , Toronto, Ontario , Canada
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
18
|
Yosri H, Elkashef WF, Said E, Gameil NM. Crocin modulates IL-4/IL-13 signaling and ameliorates experimentally induced allergic airway asthma in a murine model. Int Immunopharmacol 2017. [DOI: 10.10.1016/j.intimp.2017.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Crocin modulates IL-4/IL-13 signaling and ameliorates experimentally induced allergic airway asthma in a murine model. Int Immunopharmacol 2017; 50:305-312. [PMID: 28738246 DOI: 10.1016/j.intimp.2017.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/09/2017] [Accepted: 07/15/2017] [Indexed: 12/13/2022]
Abstract
Allergic asthma is a chronic respiratory disease with a prevalent T helper (Th2)-mediated immune reaction. Crocin, the major bioactive constituent of saffron, has been reported in multiple studies to have numerous pharmacological activities, including prominent anti-oxidant activities. In the current study, the anti-asthmatic potential of crocin was evaluated. Adult male Swiss Albino mice were administered 10mg of ovalbumin (OVA) mixed with 1mg of aluminum hydroxide intraperitoneally on days 0 and 7 and were administered crocin (25mg/kg) orally daily for 16days. Asthma progression was associated with significant increase in the lung/body weight index, inflammatory cell counts in bronchoalveolar lavage fluid (BALF), lung total protein content, and serious index of lung permeability, indicating pulmonary edema with accumulation of serous fluids within the lungs. Serum lactate dehydrogenase (LDH) activity and lung malondialdehyde (MDA) content were significantly increased, while lung superoxide dismutase (SOD) activity, reduced glutathione (GSH) levels, and serum and lung catalase activities were significantly decreased. These changes reflect significant pulmonary inflammation with concomitant disturbance of oxidant/antioxidant homeostasis. Moreover, tumor necrosis factor (TNF)-α, interleukin (IL)-4, and IL-13 contents in the lung were also significantly high after OVA sensitization. Crocin treatment significantly alleviated the OVA-induced allergic asthma-associated alterations in inflammatory and oxidative stress biomarkers. Crocin enhanced anti-oxidant defenses, reduced the incidence of oxidative stress, and restored pro-inflammatory cytokines to normal levels. Histopathological analysis showed significant lung improvement in crocin-treated mice. In conclusion, crocin showed a significant protective effect against allergic asthma progression, which was associated with down-regulation of inflammatory cytokine expression and restoration of oxidant/antioxidant homeostasis.
Collapse
|
20
|
Adjustment of Dysregulated Ceramide Metabolism in a Murine Model of Sepsis-Induced Cardiac Dysfunction. Int J Mol Sci 2017; 18:ijms18040839. [PMID: 28420138 PMCID: PMC5412423 DOI: 10.3390/ijms18040839] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022] Open
Abstract
Cardiac dysfunction, in particular of the left ventricle, is a common and early event in sepsis, and is strongly associated with an increase in patients’ mortality. Acid sphingomyelinase (SMPD1)—the principal regulator for rapid and transient generation of the lipid mediator ceramide—is involved in both the regulation of host response in sepsis as well as in the pathogenesis of chronic heart failure. This study determined the degree and the potential role to which SMPD1 and its modulation affect sepsis-induced cardiomyopathy using both genetically deficient and pharmacologically-treated animals in a polymicrobial sepsis model. As surrogate parameters of sepsis-induced cardiomyopathy, cardiac function, markers of oxidative stress as well as troponin I levels were found to be improved in desipramine-treated animals, desipramine being an inhibitor of ceramide formation. Additionally, ceramide formation in cardiac tissue was dysregulated in SMPD1+/+ as well as SMPD1−/− animals, whereas desipramine pretreatment resulted in stable, but increased ceramide content during host response. This was a result of elevated de novo synthesis. Strikingly, desipramine treatment led to significantly improved levels of surrogate markers. Furthermore, similar results in desipramine-pretreated SMPD1−/− littermates suggest an SMPD1-independent pathway. Finally, a pattern of differentially expressed transcripts important for regulation of apoptosis as well as antioxidative and cytokine response supports the concept that desipramine modulates ceramide formation, resulting in beneficial myocardial effects. We describe a novel, protective role of desipramine during sepsis-induced cardiac dysfunction that controls ceramide content. In addition, it may be possible to modulate cardiac function during host response by pre-conditioning with the Food and Drug Administration (FDA)-approved drug desipramine.
Collapse
|
21
|
Schuchman EH, Desnick RJ. Types A and B Niemann-Pick disease. Mol Genet Metab 2017; 120:27-33. [PMID: 28164782 PMCID: PMC5347465 DOI: 10.1016/j.ymgme.2016.12.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 11/29/2022]
Abstract
The eponym Niemann-Pick disease (NPD) refers to a group of patients who present with varying degrees of lipid storage and foam cell infiltration in tissues, as well as overlapping clinical features including hepatosplenomegaly, pulmonary insufficiency and/or central nervous system (CNS) involvement. Due to the pioneering work of Roscoe Brady and co-workers, we now know that there are two distinct metabolic abnormalities that account for NPD. The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM; "types A & B" NPD), and the second is due to defective function in cholesterol transport ("type C" NPD). Herein only types A and B NPD will be discussed. Type A NPD patients exhibit hepatosplenomegaly in infancy and profound CNS involvement. They rarely survive beyond 2-3years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no CNS signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Intermediate patients also have been reported with mild to moderate neurological findings. All patients with types A and B NPD have mutations in the gene encoding ASM (SMPD1), and thus the disease is more accurately referred to as ASM deficiency (ASMD). Herein we will review the clinical, pathological, biochemical, and genetic findings in types A and B NPD, and emphasize the seminal contributions of Dr. Brady to this disease. We will also discuss the current status of therapy for this disorder.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, United States.
| | - Robert J Desnick
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, United States
| |
Collapse
|
22
|
MacFadden-Murphy E, Roussel L, Martel G, Bérubé J, Rousseau S. Decreasing SMPD1 activity in BEAS-2B bronchial airway epithelial cells results in increased NRF2 activity, cytokine synthesis and neutrophil recruitment. Biochem Biophys Res Commun 2016; 482:645-650. [PMID: 27865842 DOI: 10.1016/j.bbrc.2016.11.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022]
Abstract
Niemann-Pick disease (NPD) type B is a rare autosomal recessive disease characterized by variable levels of impairment in sphingomyelin phosphodiesterase 1 (SMPD1) activity. Lung involvement is the most important prognostic factor in NPD-B, with recurrent respiratory infections starting in infancy being the major cause of morbidity and mortality. We hypothesized that decreased SMPD1 activity impaired airway epithelium host defense response. SMPD1 activity was reduced using inducible shRNA. Surprisingly, decreasing SMPD1 activity by 50%, resulted in increased neutrophil recruitment, both at baseline and in response to bacterial stimulation. This correlated with elevated levels of cytokine mRNA shown to contribute to neutrophil recruitment in unstimulated (e.g. IL-8 and GRO-α) and infected cells (e.g. IL-8, GRO-α, GM-CSF and CCL20). Instead of preventing the host defence responses, decreased SMPD1 activity results in an inflammatory response even in the absence of infection. Moreover, decreasing SMPD1 activity resulted in a pro-oxidative shift. Accordingly, expression of an inactive mutant, SMPD1[L225P] but not the WT enzyme increased activation of the antioxidant transcription factor NRF2. Therefore, decreasing SMPD1 activity by 50% in airway epithelial cells, the equivalent of the loss of one allele, results in the accumulation of oxidants that activates NRF2 and a concomitant increased cytokine production as well as neutrophil recruitment. This can result in a chronic inflammatory state that impairs host defence similar to scenarios observe in other chronic inflammatory lung disease such as Chronic Obstructive Pulmonary Disease or Cystic Fibrosis.
Collapse
Affiliation(s)
- Elyse MacFadden-Murphy
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Lucie Roussel
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Guy Martel
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Julie Bérubé
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Simon Rousseau
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Said E, Elkashef WF, Abdelaziz RR. Tranilast ameliorates cyclophosphamide-induced lung injury and nephrotoxicity. Can J Physiol Pharmacol 2016; 94:347-58. [DOI: 10.1139/cjpp-2015-0070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The world-wide increase in cancer incidence imposes a corresponding significant increase in the use of chemotherapeutic agents. Nephrotoxicity is a side effect frequently encountered with cyclophosphamide (CP), which is also well-known to cause acute and chronic lung toxicities. The current study focuses on the evaluation of the potential protective efficacy of tranilast against acute and subacute CP-induced lung and kidney injuries in male Swiss Albino mice. Intraperitoneal CP significantly impaired oxidant/anti-oxidant balance and increased inflammatory cell count in bronchoalveolar lavage fluid, serum creatinine, blood urea nitrogen (BUN), tumor necrosis factor-α (TNF-α) and lactate dehydrogenase (LDH) levels, with significant impairment of lung and kidney architectures. Tranilast taken orally for 8 and 14 days significantly enhanced mice anti-oxidant defense mechanisms; it increased lung and kidney SOD activity, GSH content and reduced lipid peroxidation. Tranilast significantly reduced serum creatinine and BUN. Furthermore, it decreased accumulation of inflammatory cells in the lungs. Serum TNF-α, LDH, total lung and kidney protein contents significantly declined as well. Histopathological examination revealed concomitant significant tissue recovery. Such results show a significant protective potential of tranilast against deleterious lung and kidney damage induced by CP, probably by enhancing host antioxidant defense mechanism, decreasing cytotoxicity, and decreasing expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Eman Said
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | | | - Rania R. Abdelaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
24
|
Hannun YA, Newcomb B. A new twist to the emerging functions of ceramides in cancer: novel role for platelet acid sphingomyelinase in cancer metastasis. EMBO Mol Med 2016; 7:692-4. [PMID: 25859016 PMCID: PMC4459812 DOI: 10.15252/emmm.201505161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
It is now appreciated that sphingolipids constitute a rich class of bioactive molecules that include ceramide, sphingosine, and sphingosine 1‐phosphate whose formation is controlled by a network of highly regulated enzymes (Hannun & Obeid, 2008). Notably, several stress stimuli induce the production of ceramide, which, as a single entity, has been traditionally associated with apoptotic and growth suppressive functions. However, recent data clearly suggest that this simplistic formulation is no longer tenable.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Department of Medicine, The Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Benjamin Newcomb
- Department of Medicine, The Stony Brook Cancer Center, Stony Brook, NY, USA
| |
Collapse
|
25
|
Carpinteiro A, Becker KA, Japtok L, Hessler G, Keitsch S, Požgajovà M, Schmid KW, Adams C, Müller S, Kleuser B, Edwards MJ, Grassmé H, Helfrich I, Gulbins E. Regulation of hematogenous tumor metastasis by acid sphingomyelinase. EMBO Mol Med 2016; 7:714-34. [PMID: 25851537 PMCID: PMC4459814 DOI: 10.15252/emmm.201404571] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Metastatic dissemination of cancer cells is the ultimate hallmark of malignancy and accounts for approximately 90% of human cancer deaths. We investigated the role of acid sphingomyelinase (Asm) in the hematogenous metastasis of melanoma cells. Intravenous injection of B16F10 melanoma cells into wild-type mice resulted in multiple lung metastases, while Asm-deficient mice (Smpd1−/− mice) were protected from pulmonary tumor spread. Transplanting wild-type platelets into Asm-deficient mice reinstated tumor metastasis. Likewise, Asm-deficient mice were protected from hematogenous MT/ret melanoma metastasis to the spleen in a mouse model of spontaneous tumor metastasis. Human and mouse melanoma cells triggered activation and release of platelet secretory Asm, in turn leading to ceramide formation, clustering, and activation of α5β1 integrins on melanoma cells finally leading to adhesion of the tumor cells. Clustering of integrins by applying purified Asm or C16 ceramide to B16F10 melanoma cells before intravenous injection restored trapping of tumor cells in the lung in Asm-deficient mice. This effect was revertable by arginine-glycine-aspartic acid peptides, which are known inhibitors of integrins, and by antibodies neutralizing β1 integrins. These findings indicate that melanoma cells employ platelet-derived Asm for adhesion and metastasis.
Collapse
Affiliation(s)
- Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany Department of Hematology, University of Duisburg-Essen, Essen, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Lukasz Japtok
- Institute for Nutritional Science University of Potsdam, Nuthetal, Germany
| | - Gabriele Hessler
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Miroslava Požgajovà
- Department of Genetics and Breeding Biology, Slovak University of Agriculture, Nitra, Slovakia
| | - Kurt W Schmid
- Department of Pathology and Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Constantin Adams
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Müller
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany
| | - Burkhard Kleuser
- Institute for Nutritional Science University of Potsdam, Nuthetal, Germany
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Iris Helfrich
- Department of Dermatology, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
26
|
Abstract
Two distinct metabolic abnormalities are encompassed under the eponym Niemann-Pick disease (NPD). The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM). Patients with ASM deficiency are classified as having types A and B Niemann-Pick disease (NPD). Type A NPD patients exhibit hepatosplenomegaly in infancy and profound central nervous system involvement. They rarely survive beyond two years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no central nervous system signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Recently, patients with phenotypes intermediate between types A and B NPD also have been identified. These individuals represent the expected continuum caused by inheriting different mutations in the ASM gene (SMPD1). Patients in the second NPD category are designated as having types C and D NPD. These patients may have mild hepatosplenomegaly, but the central nervous system is profoundly affected. Impaired intracellular trafficking of cholesterol causes types C and D NPD, and two distinct gene defects have been found. In this chapter only types A and B NPD will be discussed.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics & Genomic Sciences, Ichan School of Medicine at Mount Sinai, 1425 Madison Avenue, Room 14-20A, New York, NY 10029, United States.
| | - Melissa P Wasserstein
- Department of Genetics & Genomic Sciences, Ichan School of Medicine at Mount Sinai, 1428 Madison Avenue, 1st Floor, Room AB1-12, New York, NY 10029, United States.
| |
Collapse
|
27
|
Morbidity and mortality in type B Niemann-Pick disease. Genet Med 2013; 15:618-23. [PMID: 23412609 DOI: 10.1038/gim.2013.4] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/07/2013] [Indexed: 01/27/2023] Open
Abstract
PURPOSE The purpose of this study was to perform a systematic evaluation of morbidity and mortality in type B Niemann-Pick disease. METHODS A total of 103 patients with Niemann-Pick disease (49 males, 54 females, age range: 1-72 years) participated in natural history studies through Mount Sinai's International Center for Types A and B Niemann-Pick Disease between 1992 and 2012. RESULTS Serious morbidities included significant neurological, hepatic, and cardiac disease. Thirteen patients had some degree of neurological impairment. Nine patients had cirrhosis or liver failure requiring transplantation. Coronary artery and valvular heart disease were present in nine patients. Of note, only four patients were oxygen dependent, although progressive pulmonary disease is a well-described feature of Niemann-Pick disease. During the follow-up period, 18 deaths occurred. The median age of death was 15.5 years (range 1-72). Causes of death included pneumonia, liver failure, and hemorrhage. The majority of deaths (12 of 18) occurred in patients <21 years, yielding a mortality rate of 19% in the pediatric population. CONCLUSION This study demonstrates that Niemann-Pick disease is a life-threatening disorder with significant morbidity and mortality, especially in the pediatric population. The information collected in this series highlights the need for safe, effective therapy for Niemann-Pick disease.
Collapse
|
28
|
Jbeily N, Suckert I, Gonnert FA, Acht B, Bockmeyer CL, Grossmann SD, Blaess MF, Lueth A, Deigner HP, Bauer M, Claus RA. Hyperresponsiveness of mice deficient in plasma-secreted sphingomyelinase reveals its pivotal role in early phase of host response. J Lipid Res 2012; 54:410-24. [PMID: 23230083 PMCID: PMC3541704 DOI: 10.1194/jlr.m031625] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plasma secretion of acid sphingomyelinase is a hallmark of cellular stress
response resulting in the formation of membrane embedded ceramide-enriched lipid
rafts and the reorganization of receptor complexes. Consistently,
decompartmentalization of ceramide formation from inert sphingomyelin has been
associated with signaling events and regulation of the cellular phenotype.
Herein, we addressed the question of whether the secretion of acid
sphingomyelinase is involved in host response during sepsis. We found an
exaggerated clinical course in mice genetically deficient in acid
sphingomyelinase characterized by an increased bacterial burden, an increased
phagocytotic activity, and a more pronounced cytokine storm. Moreover, on a
functional level, leukocyte-endothelial interaction was found diminished in
sphingomyelinase-deficient animals corresponding to a distinct leukocytes’
phenotype with respect to rolling and sticking as well as expression of cellular
surface proteins. We conclude that hydrolysis of membrane-embedded
sphingomyelin, triggered by circulating sphingomyelinase, plays a pivotal role
in the first line of defense against invading microorganisms. This function
might be essential during the early phase of infection leading to an adaptive
response of remote cells and tissues.
Collapse
Affiliation(s)
- Nayla Jbeily
- Center of Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Acid sphingomyelinase (ASMase) is a key initiator of sphingomyelin/ceramide signal transduction activated by many stress stimuli. Over the past two decades, much progress has been made in defining the clinical relevance of sphingomyelin/ceramide signaling in numerous diseases using ASMase knockout mice. Organs that operate this pathway are numerous and the disease states regulated are diverse, with ceramide generation governing injury in tumor, gut, ovary, brain, lung, heart, liver, and during infection. This chapter emphasizes evolutionary conservation of sphingolipid stress signaling and mammalian adaptations that permit transduction of organotypic responses. Recognition that the sphingomyelin/ceramide transducer calibrates extent of tissue injury, ultimately acting as a molecular switch that determines organ fate, is driving development of new pharmacologic concepts and tools to intervene therapeutically.
Collapse
Affiliation(s)
- Erich Gulbins
- , Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, Essen, 45122 Germany
| | - Irina Petrache
- Division of Pulmonary, Allergy, Critical, Department of Medicine, Indiana University School of Medicine, W. Walnut Street 980, Indianapolis, 46202 Indiana USA
| |
Collapse
|
30
|
Gülhan B, Özçelik U, Gürakan F, Güçer Ş, Orhan D, Cinel G, Yalçın E, Ersöz DD, Kiper N, Yüce A, Kale G. Different features of lung involvement in Niemann-Pick disease and Gaucher disease. Respir Med 2012; 106:1278-85. [DOI: 10.1016/j.rmed.2012.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 06/14/2012] [Accepted: 06/20/2012] [Indexed: 11/29/2022]
|
31
|
Yang Y, Uhlig S. The role of sphingolipids in respiratory disease. Ther Adv Respir Dis 2011; 5:325-44. [PMID: 21900155 DOI: 10.1177/1753465811406772] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids form a broad class of lipids with diverse functions ranging from membrane constituents to intracellular second messengers and extracellular mediators. They can be rapidly generated or converted into each other and they play pivotal roles in various cellular processes, many of which are broadly associated with inflammation and apoptosis. Among the numerous sphingolipids, ceramide and sphingosine-1-phosphate (S1P) have received the greatest attention. Ceramide is a hydrophobic molecule that is increased in the lungs of patients with cystic fibrosis and chronic obstructive pulmonary disease (COPD). Ceramide is the eponym for ceramide-rich membrane platforms. that need to form as a prerequisite to the uptake of several microorganisms including Pseudomonas aeruginosa, and as a prerequisite to many signaling processes including apoptosis and increased vascular permeability. Accordingly, abnormal amounts of enzymes involved in the synthesis of ceramide, such as neutral or acid sphingomyelinase, are found in emphysematic smokers and in patients with severe sepsis, and are considered as novel pharmacological targets. S1P acts as an extracellular mediator that opposes several actions of ceramide and acts by binding to G-protein coupled S1P receptors (S1P(1)-S1P(5)). Of particular interest are S1P(1) receptors that enhance vascular barrier functions and are antiapoptotic. Therefore, S1P(1)-receptor ligands are suggested as novel drugs for COPD and acute lung injury. S1P is a potent chemotaxin for many leukocytes, it organizes lymphocyte trafficking and is involved in several key symptoms of asthma such as airway hyperresponsiveness and pulmonary eosinophil sequestration. S1P is formed by sphingosine kinases that have been identified as possible drug targets for the treatment of asthma. Based on these findings, several new drugs have recently been developed to specifically target sphingomyelinases, sphingosine kinases and S1P receptors for the treatment of COPD, cystic fibrosis, asthma and acute lung injury.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Pharmacology and Toxicology, University Hospital Aachen, Aachen, Germany
| | | |
Collapse
|
32
|
Jenkins RW, Clarke CJ, Canals D, Snider AJ, Gault CR, Heffernan-Stroud L, Wu BX, Simbari F, Roddy P, Kitatani K, Obeid LM, Hannun YA. Regulation of CC ligand 5/RANTES by acid sphingomyelinase and acid ceramidase. J Biol Chem 2011; 286:13292-303. [PMID: 21335555 DOI: 10.1074/jbc.m110.163378] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acid sphingomyelinase (aSMase) generates the bioactive lipid ceramide (Cer) from hydrolysis of sphingomyelin (SM). However, its precise roles in regulating specific sphingolipid-mediated biological processes remain ill defined. Interestingly, the aSMase gene gives rise to two distinct enzymes, lysosomal sphingomyelinase (L-SMase) and secretory sphingomyelinase (S-SMase) via alternative trafficking of a shared protein precursor. Previously, our laboratory identified Ser(508) as a crucial residue for the constitutive and regulated secretion of S-SMase in response to inflammatory cytokines, and demonstrated a role for S-SMase in formation of select cellular Cer species (Jenkins, R. W., Canals, D., Idkowiak-Baldys, J., Simbari, F., Roddy, P., Perry, D. M., Kitatani, K., Luberto, C., and Hannun, Y. A. (2010) J. Biol. Chem. 285, 35706-35718). In the present study using a chemokine/cytokine screen, we identified the chemokine CCL5 (formerly known as RANTES) as a candidate-specific downstream target for aSMase. Regulation of CCL5 by aSMase was subsequently validated using both loss-of-function and gain-of-function models indicating that aSMase is both necessary and sufficient for CCL5 production. Interestingly, cells deficient in acid ceramidase (aCDase) also exhibited defects in CCL5 induction, whereas cells deficient in sphingosine kinase-1 and -2 exhibited higher levels of CCL5, suggesting that sphingosine and not sphingosine 1-phosphate (S1P) is responsible for the positive signal to CCL5. Consistent with this, co-expression of aSMase and aCDase was sufficient to strongly induce CCL5. Taken together, these data identify a novel role for aSMase (particularly S-SMase) in chemokine elaboration by pro-inflammatory cytokines and highlight a novel and shared function for aSMase and aCDase.
Collapse
Affiliation(s)
- Russell W Jenkins
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dhami R, He X, Schuchman EH. Acid sphingomyelinase deficiency attenuates bleomycin-induced lung inflammation and fibrosis in mice. Cell Physiol Biochem 2010; 26:749-60. [PMID: 21063112 DOI: 10.1159/000322342] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND/AIMS The sphingomyelin/ceramide signaling pathway is an important component of many cellular processes implicated in the pathogenesis of lung disease. Acid sphingomyelinase (ASM) is a key mediator of this pathway, but its specific role in pulmonary fibrosis has not been previously investigated. Here we used the bleomycin model of pulmonary fibrosis to investigate fibrotic responses in normal and ASM knockout (ASM(-/-)) mice, and in NIH3T3 fibroblasts with and without ASM siRNA treatment. METHODS Mice and cells with and without ASM activity were treated with bleomycin, and the effects on lung inflammation, formation of collagen producing myofibroblasts, and apoptosis were assessed. RESULTS The development of bleomycin-induced inflammation and fibrosis in wildtype mice correlated with the rapid activation of ASM, and was markedly attenuated in the absence of ASM activity. Along with the elevated ASM activity, there also was an elevation of acid ceramidase (AC) activity, which was sustained for up to 14 days post-bleomycin treatment. Studies in NIH3T3 fibroblasts confirmed these findings, and revealed a direct effect of ASM/AC activation on the formation of myofibroblasts. Cell studies also showed that a downstream effect of bleomycin treatment was the production of sphingosine-1-phosphate. CONCLUSIONS These data demonstrate that the sphingomyelin/ceramide signaling pathway is involved in the pathogenesis of bleomycin-induced pulmonary fibrosis, and suggest that inhibition of ASM may potentially slow the fibrotic process in the lung.
Collapse
Affiliation(s)
- Rajwinder Dhami
- Department of Genetics & Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
34
|
Vitner EB, Platt FM, Futerman AH. Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 2010; 285:20423-7. [PMID: 20430897 DOI: 10.1074/jbc.r110.134452] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysosomal storage diseases (LSDs), of which about 50 are known, are caused by the defective activity of lysosomal proteins, resulting in accumulation of unmetabolized substrates. As a result, a variety of pathogenic cascades are activated such as altered calcium homeostasis, oxidative stress, inflammation, altered lipid trafficking, autophagy, endoplasmic reticulum stress, and autoimmune responses. Some of these pathways are common to many LSDs, whereas others are only altered in a subset of LSDs. We now review how these cascades impact upon LSD pathology and suggest how intervention in the pathways may lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Einat B Vitner
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
35
|
Gangoiti P, Camacho L, Arana L, Ouro A, Granado MH, Brizuela L, Casas J, Fabriás G, Abad JL, Delgado A, Gómez-Muñoz A. Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease. Prog Lipid Res 2010; 49:316-34. [PMID: 20193711 DOI: 10.1016/j.plipres.2010.02.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/18/2010] [Accepted: 02/22/2010] [Indexed: 01/05/2023]
Abstract
Simple bioactive sphingolipids include ceramide, sphingosine and their phosphorylated forms sphingosine 1-phosphate and ceramide 1-phosphate. These molecules are crucial regulators of cell functions. In particular, they play important roles in the regulation of angiogenesis, apoptosis, cell proliferation, differentiation, migration, and inflammation. Decoding the mechanisms by which these cellular functions are regulated requires detailed understanding of the signaling pathways that are implicated in these processes. Most importantly, the development of inhibitors of the enzymes involved in their metabolism may be crucial for establishing new therapeutic strategies for treatment of disease.
Collapse
Affiliation(s)
- Patricia Gangoiti
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Osawa Y, Seki E, Adachi M, Suetsugu A, Ito H, Moriwaki H, Seishima M, Nagaki M. Role of acid sphingomyelinase of Kupffer cells in cholestatic liver injury in mice. Hepatology 2010; 51:237-45. [PMID: 19821528 DOI: 10.1002/hep.23262] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Kupffer cells, resident tissue macrophages of the liver, play a key role in the regulation of hepatic inflammation, hepatocyte death, and fibrosis that characterize liver diseases. However, it is controversial whether Kupffer cells promote or protect from liver injury. To explore this issue we examined the role of Kupffer cells in liver injury, cell death, regeneration, and fibrosis on cholestatic liver injury in C57BL/6 mice using a model of partial bile duct ligation (BDL), in which animals do not die and the effects of BDL can be compared between injured ligated lobes and nonligated lobes. In cholestatic liver injury, the remaining viable cells represented tolerance for tumor necrosis factor alpha (TNF-alpha)-induced hepatocyte apoptosis and regenerative features along with AKT activation. Inhibition of AKT by adenovirus expressing dominant-negative AKT abolished the survival and regenerative properties in hepatocytes. Moreover, Kupffer cell depletion by alendronate liposomes increased hepatocyte damage and the sensitivity of TNF-alpha-induced hepatocyte apoptosis in ligated lobes. Kupffer cell depletion decreased hepatocyte regeneration and liver fibrosis with reduced AKT activation. To investigate the impact of acid sphingomyelinase (ASMase) in Kupffer cells, we generated chimeric mice that contained ASMase-deficient Kupffer cells and -sufficient hepatocytes using a combination of Kupffer cell depletion, irradiation, and the transplantation of ASMase-deficient bone marrow cells. In these mice, AKT activation, the tolerance for TNF-alpha-induced apoptosis, and the regenerative responses were attenuated in hepatocytes after BDL. CONCLUSION Kupffer cells have a protective role for hepatocyte damage and promote cell survival, liver regeneration, and fibrosis in cholestatic liver disease. Kupffer cell-derived ASMase is crucial for AKT activation of hepatocytes that is required for the survival and regenerative responses.
Collapse
Affiliation(s)
- Yosuke Osawa
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Paulussen M, Landuyt B, Schoofs L, Luyten W, Arckens L. Thymosin beta 4 mRNA and peptide expression in phagocytic cells of different mouse tissues. Peptides 2009; 30:1822-32. [PMID: 19631707 DOI: 10.1016/j.peptides.2009.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 11/18/2022]
Abstract
Thymosin beta 4 (Tbeta4) is a peptide of 43 amino acids, mainly recognized as a regulator of actin polymerization by sequestering G-actin. Meanwhile, the peptide has been implicated in lymphocyte maturation, carcinogenesis, apoptosis, angiogenesis, blood coagulation and wound healing. The peptide is also involved in lesion-induced neuroplasticity through microglia upregulation and it participates in the growth of neuronal processes. However, its precise cellular localization throughout the entire body of the mouse has not been documented. We therefore initiated a detailed investigation of the tissue distribution and cellular expression of the Tbeta4 peptide and its precursor mRNA by immunocytochemistry and in situ hybridization, respectively. In the brain, Tbeta4 was clearly present in neurons of the olfactory bulb, neocortex, hippocampus, striatum, amygdala, piriform cortex and cerebellum, and in microglia across the entire brain. We further localized Tbeta4 in cells, typically with many processes, inside thymus, spleen, lung, kidney, liver, adrenal gland, stomach and intestine. Remarkably, Tbeta4 was thus associated with microglia and macrophages, the differentiated phagocytic cells residing in every tissue. Motility and phagocytosis, two important activities of macrophages, depend on actin, which can explain the presence of Tbeta4 in these cells.
Collapse
Affiliation(s)
- Melissa Paulussen
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Woman and Child, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
38
|
Ziegler RJ, Brown C, Barbon CM, D'Angona AM, Schuchman EH, Andrews L, Thurberg BL, McPherson JM, Karey KP, Cheng SH. Pulmonary delivery of recombinant acid sphingomyelinase improves clearance of lysosomal sphingomyelin from the lungs of a murine model of Niemann-Pick disease. Mol Genet Metab 2009; 97:35-42. [PMID: 19231265 DOI: 10.1016/j.ymgme.2009.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
Abstract
Systemic administration of recombinant acid sphingomyelinase (rhASM) into ASM deficient mice (ASMKO) results in hydrolysis of the abnormal storage of sphingomyelin in lysosomes of the liver, spleen and lung. However, the efficiency with which the substrate is cleared from the lung, particularly the alveolar macrophages, appears to be lower than from the other visceral tissues. To determine if delivery of rhASM into the air spaces of the lung could enhance clearance of pulmonary sphingomyelin, enzyme was administered to ASMKO mice by intranasal instillation. Treatment resulted in a significant and dose-dependent reduction in sphingomyelin levels in the lung. Concomitant with this reduction in substrate levels was a decrease in the amounts of the pro-inflammatory cytokine, MIP-1alpha, in the bronchoalveolar lavage fluids and an improvement in lung pathology. Maximal reduction of lung sphingomyelin levels was observed at 7 days post-treatment. However, reaccumulation of the substrate was noted starting at day 14 suggesting that repeated treatments will be necessary to effect a sustained reduction in sphingomyelin levels. In addition to reducing the storage abnormality in the lung, intranasal delivery of rhASM also resulted in clearance of the substrate from the liver and spleen. Hence, pulmonary administration of rhASM may represent an alternative route of delivery to address the visceral pathology associated with ASM deficiency.
Collapse
Affiliation(s)
- Robin J Ziegler
- Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701-9322, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hervé A, Marchand-Adam S, Fabre A, Debray MP, Germain DP, Crestani B, Aubier M. Maladie de Niemann-Pick de type B révélée par une atteinte bronchopulmonaire. Rev Mal Respir 2008; 25:861-6. [DOI: 10.1016/s0761-8425(08)74353-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Smith EL, Schuchman EH. The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J 2008; 22:3419-31. [PMID: 18567738 DOI: 10.1096/fj.08-108043] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acid sphingomyelinase (ASM; E.C. 3.1.4.12) is best known for its involvement in the lysosomal storage disorder Niemann-Pick disease (NPD). Through studies that began by investigating this rare disease, recent findings have uncovered the important role of this enzyme in the initiation of ceramide-mediated signal transduction. This unique function involves translocation of the enzyme from intracellular compartments to the outer leaflet of the cell membrane, where hydrolysis of sphingomyelin into ceramide initiates membrane reorganization and facilitates the formation and coalescence of lipid microdomains. These microdomains are sites of protein-protein interactions that lead to downstream signaling, and perturbation of microdomain formation influences the pathophysiology of many common diseases. The initial observations implicating ASM in this process have come from studies using cells from patients with NPD or from ASM knockout (ASMKO) mice, where the genetic deficiency of this enzymatic activity has been shown to protect these cells and animals from stress-induced and developmental apoptosis. This review will discuss the complex biology of this enzyme in the context of these new findings and its recently reported importance in common human diseases, including cancer, sepsis, cardiovascular, pulmonary, liver, and neurological diseases as well as the potential for using ASM (or ASM inhibitors) as therapeutic agents.
Collapse
Affiliation(s)
- Eric L Smith
- Department of Genetics and Genomic Sciences, Mt. Sinai School of Medicine, 1425 Madison Ave., New York, NY 10029, USA
| | | |
Collapse
|
41
|
Garnacho C, Dhami R, Simone E, Dziubla T, Leferovich J, Schuchman EH, Muzykantov V, Muro S. Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers. J Pharmacol Exp Ther 2008; 325:400-8. [PMID: 18287213 DOI: 10.1124/jpet.107.133298] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type B Niemann-Pick disease (NPD) is a multiorgan system disorder caused by a genetic deficiency of acid sphingomyelinase (ASM), for which lung is an important and challenging therapeutic target. In this study, we designed and evaluated new delivery vehicles for enzyme replacement therapy of type B NPD, consisting of polystyrene and poly(lactic-coglycolic) acid polymer nanocarriers targeted to intercellular adhesion molecule (ICAM)-1, an endothelial surface protein up-regulated in many pathologies, including type B NPD. Real-time vascular imaging using intravital microscopy and postmortem imaging of mouse organs showed rapid, uniform, and efficient binding of fluorescently labeled ICAM-1-targeted ASM nanocarriers (anti-ICAM/ASM nanocarriers) to endothelium after i.v. injection in mice. Fluorescence microscopy of lung alveoli actin, tissue histology, and 125I-albumin blood-to-lung transport showed that anti-ICAM nanocarriers cause neither detectable lung injury, nor abnormal vascular permeability in animals. Radioisotope tracing showed rapid disappearance from the circulation and enhanced accumulation of anti-ICAM/125I-ASM nanocarriers over the nontargeted naked enzyme in kidney, heart, liver, spleen, and primarily lung, both in wild-type and ASM knockout mice. These data demonstrate that ICAM-1-targeted nanocarriers may enhance enzyme replacement therapy for type B NPD and perhaps other lysosomal storage disorders.
Collapse
Affiliation(s)
- Carmen Garnacho
- Department of Pharmacology, John Morgan Bldg., 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Guillemot N, Troadec C, de Villemeur TB, Clément A, Fauroux B. Lung disease in Niemann-Pick disease. Pediatr Pulmonol 2007; 42:1207-14. [PMID: 17969000 DOI: 10.1002/ppul.20725] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Lung involvement in children with Niemann-Pick disease has rarely been studied systematically. OBJECTIVE To assess the involvement of the lung and the value of bronchoalveolar lavage in children with Niemann-Pick diseases. DESIGN Retrospective analysis of patient records. PATIENTS Thirteen patients, with type A (n = 1), type B (n = 10), and type C (n = 2) Niemann-Pick disease, aged 2 months to 9 years at diagnosis, were included in the study. INTERVENTIONS Lung involvement was assessed by clinical evaluation, chest radiograph, lung computed tomography (CT) scan, pulmonary function tests, and bronchoalveolar lavage fluid analysis. RESULTS Respiratory symptoms were present at diagnosis in 10 patients and developed during follow up in the three other patients. All patients showed signs of interstitial lung disease on chest X-ray and lung CT scan. Bronchoalveolar lavage fluid analysis (n = 7) revealed a marked accumulation of foamy macrophages (Niemann-Pick cells) in all patients. At follow up, one patient died of respiratory failure, five patients required long term oxygen therapy and seven other patients presented a chronic obstructive pulmonary disease (n = 6) or chronic cough (n = 1). CONCLUSION Lung disease was observed in all the patients included in the present study. Bronchoalveolar lavage may be useful in Niemann-Pick diseases by showing the presence of characteristic Niemann-Pick cells.
Collapse
Affiliation(s)
- Nathalie Guillemot
- AP-HP, Hopital Armand Trousseau, Pediatric Pulmonary Department, Paris, France
| | | | | | | | | |
Collapse
|
43
|
Schuchman EH. The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease. J Inherit Metab Dis 2007; 30:654-63. [PMID: 17632693 DOI: 10.1007/s10545-007-0632-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 01/17/2023]
Abstract
Patients with types A and B Niemann-Pick disease (NPD) have an inherited deficiency of acid sphingomyelinase (ASM) activity. The clinical spectrum of this disorder ranges from the infantile, neurological form that results in death by 3 years of age (type A NPD) to the non-neurological form (type B NPD) that is compatible with survival into adulthood. Intermediate cases also have been reported, and the disease is best thought of as a single entity with a spectrum of phenotypes. ASM deficiency is panethnic, but appears to be more frequent in individuals of Middle Eastern and North African descent. Current estimates of the disease incidence range from approximately 0.5 to 1 per 100,000 births. However, these approximations likely under estimate the true frequency of the disorder since they are based solely on cases referred to biochemical testing laboratories for enzymatic confirmation. The gene encoding ASM (SMPD1) has been studied extensively; it resides within an imprinted region on chromosome 11, and is preferentially expressed from the maternal chromosome. Over 100 SMPD1 mutations causing ASM-deficient NPD have been described, and some useful genotype-phenotype correlations have been made. Based on these findings, DNA-based carrier screening has been implemented in the Ashkenazi Jewish community. ASM 'knockout' mouse models also have been constructed and used to investigate disease pathogenesis and treatment. Based on these studies in the mouse model, an enzyme replacement therapy clinical trial has recently begun in adult patients with non-neurological ASM-deficient NPD.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Bronchoalveolar Lavage
- Disease Models, Animal
- Enzyme Inhibitors/therapeutic use
- Genetic Testing
- Genetic Therapy
- Genotype
- Humans
- Mice
- Mice, Knockout
- Mutation
- Niemann-Pick Disease, Type A/diagnosis
- Niemann-Pick Disease, Type A/enzymology
- Niemann-Pick Disease, Type A/ethnology
- Niemann-Pick Disease, Type A/genetics
- Niemann-Pick Disease, Type A/therapy
- Niemann-Pick Disease, Type B/diagnosis
- Niemann-Pick Disease, Type B/enzymology
- Niemann-Pick Disease, Type B/ethnology
- Niemann-Pick Disease, Type B/genetics
- Niemann-Pick Disease, Type B/therapy
- Phenotype
- Recombinant Proteins/therapeutic use
- Sphingomyelin Phosphodiesterase/deficiency
- Sphingomyelin Phosphodiesterase/genetics
- Sphingomyelin Phosphodiesterase/therapeutic use
- Splenectomy
Collapse
Affiliation(s)
- E H Schuchman
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 14-20A, New York, NY 10029, USA.
| |
Collapse
|
44
|
Zeidan YH, Hannun YA. Translational aspects of sphingolipid metabolism. Trends Mol Med 2007; 13:327-36. [PMID: 17588815 DOI: 10.1016/j.molmed.2007.06.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 06/01/2007] [Accepted: 06/12/2007] [Indexed: 12/14/2022]
Abstract
Sphingolipids, a major class of lipids in cell membranes, play diverse roles in biological processes. As bioactive and structural molecules, they have signaling activities and biophysical properties that are essential for regulating various cellular, tissue and systemic functions. Moreover, sphingolipids are receiving increasing attention as contributors to the pathogenesis of several human disorders, including, cancer, inflammation and neurological, immune and metabolic disorders. Small-molecule inhibitors and monoclonal antibodies that target sphingolipid metabolism recently enabled giant strides toward treatment of malignant and autoimmune disorders. Here, we review the emerging roles of sphingolipids in disease pathogenesis and the attendant possibilities for sphingolipid-based therapeutics.
Collapse
Affiliation(s)
- Youssef H Zeidan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
45
|
Butler A, Gordon RE, Gatt S, Schuchman EH. Sperm abnormalities in heterozygous acid sphingomyelinase knockout mice reveal a novel approach for the prevention of genetic diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:2077-88. [PMID: 17525274 PMCID: PMC1899442 DOI: 10.2353/ajpath.2007.061002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/25/2007] [Indexed: 11/20/2022]
Abstract
Acid sphingomyelinase knockout mice are a model of the inherited human disorder types A and B Niemann-Pick disease. Herein, we show that heterozygous (ASMKO(+/-)) mice have two distinct sperm populations resembling those found in normal and mutant animals, respectively, and that these two populations could be distinguished by their morphology, ability to undergo capacitation or the acrosome reaction, and/or mitochondrial membrane potential (MMP). The abnormal morphology of the mutant sperm could be normalized by demembranation with detergents or by the addition of recombinant acid sphingomyelinase to the culture media, and the corrected sperm also had an enhanced fertilization capacity. Methods were then explored to enrich for normal sperm from the mixed ASMKO(+/-) population, and flow cytometric sorting based on MMP provided the best results. In vitro fertilization was performed using ASMKO(+/-) oocytes and sperm before and after MMP sorting, and it was found that the sorted sperm produced significantly more wild-type pups than nonsorted sperm. Sperm sorting is much less invasive and more cost-effective than egg isolation, and offers several advantages over the existing assisted reproduction options for Niemann-Pick disease carrier couples. It therefore could have a major impact on the prevention of this and perhaps other genetic diseases.
Collapse
Affiliation(s)
- Avigdor Butler
- Department of Human Genetics, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 14-20A, New York, NY 10029, USA
| | | | | | | |
Collapse
|
46
|
Nicholson AG, Florio R, Hansell DM, Bois RM, Wells AU, Hughes P, Ramadan HK, Mackinlay CI, Brambilla E, Ferretti GR, Erichsen A, Malone M, Lantuejoul S. Pulmonary involvement by Niemann-Pick disease. A report of six cases. Histopathology 2006; 48:596-603. [PMID: 16623786 DOI: 10.1111/j.1365-2559.2006.02355.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Although pulmonary involvement is a known cause of morbidity in Niemann-Pick disease, histological features in the lung are not well characterized. The purpose of this study is to document the histological features seen in pulmonary involvement by types B and C Niemann-Pick disease and to correlate them with clinical and imaging data. METHODS AND RESULTS Surgical lung biopsies from six patients (four with type B and two with type C disease) were reviewed and all showed diffuse endogenous lipid pneumonia, with lesser involvement of the interstitium by fibrosis and foamy macrophage accumulation. In type B disease only, there was also fine cytoplasmic vacuolation within the cytoplasm of ciliated epithelial cells. Neither disease showed foamy changes within pneumocytes. One patient had a bronchial cast removed on whole lung lavage. Electron microscopy showed abnormal lamellar inclusions within lysosomes of affected cells in type B disease. In patients with type C disease, biopsies were undertaken as part of investigations into acute respiratory failure in the context of multiorgan systemic presentation. Three patients with type B disease had clinical disease limited to the lung, all adults (mean age of 40 years) with unexplained diffuse parenchymal lung disease and mainly ground-glass shadowing on high-resolution computed tomography. CONCLUSIONS Niemann-Pick disease should be considered for any patient with unexplained diffuse endogenous lipid pneumonia, even when disease is limited to the lungs and presentation is during adulthood.
Collapse
Affiliation(s)
- A G Nicholson
- Department of Histopathology, Royal Brompton Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dhami R, Passini MA, Schuchman EH. Identification of Novel Biomarkers for Niemann–Pick Disease Using Gene Expression Analysis of Acid Sphingomyelinase Knockout Mice. Mol Ther 2006; 13:556-64. [PMID: 16214420 DOI: 10.1016/j.ymthe.2005.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 07/28/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022] Open
Abstract
Although several therapies are available or being developed for lysosomal storage disorders (LSDs), assessment of therapeutic efficacy is challenged by the lack of markers to assess disease progression and severity. This is particularly true for rare diseases such as LSDs, since natural history data from human populations are often lacking. Herein we describe the use of gene expression analysis in the acid sphingomyelinase-deficient mouse model (ASMKO) of Types A and B Niemann-Pick disease (NPD) to identify novel serum biomarkers. We used microarray and real-time PCR analyses to compare mRNA expression in ASMKO and normal mice in two important sites of pathology, lung and brain, and from these data identified and validated several potential biomarkers. The cytokine MIP-1alpha was markedly elevated in ASMKO mouse serum, and following enzyme replacement therapy (ERT) it was reduced to normal levels. Total iron levels were similarly elevated in ASMKO mice, reflective of the elevated ferritin light chain transcript, and decreased to normal after ERT. Serum growth hormone levels were also elevated in ASMKO mice and were reduced to normal after brain-directed gene therapy, but not ERT. These studies illustrate the value of gene expression analysis for the identification of biomarkers, and provide new insight into the pathobiology of NPD.
Collapse
Affiliation(s)
- Rajwinder Dhami
- Department of Human Genetics, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | |
Collapse
|
48
|
Barbon CM, Ziegler RJ, Li C, Armentano D, Cherry M, Desnick RJ, Schuchman EH, Cheng SH. AAV8-Mediated Hepatic Expression of Acid Sphingomyelinase Corrects the Metabolic Defect in the Visceral Organs of a Mouse Model of Niemann–Pick Disease. Mol Ther 2005; 12:431-40. [PMID: 16099409 DOI: 10.1016/j.ymthe.2005.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Revised: 03/19/2005] [Accepted: 03/19/2005] [Indexed: 11/23/2022] Open
Abstract
Acid sphingomyelinase deficiency is a lysosomal storage disorder in which the defective lysosomal hydrolase fails to degrade sphingomyelin. The resulting accumulation of substrate in the lysosomes of histiocytic cells leads to hepatosplenomegaly and severe pulmonary inflammation. Administration of a recombinant AAV1 vector encoding human acid sphingomyelinase to acid sphingomyelinase knockout (ASMKO) mice effectively reduced the accumulated substrate in all of the affected visceral organs. However, more complete and rapid clearance of sphingomyelin was observed when an AAV8-based serotype vector was used in lieu of AAV1. Importantly, AAV8-mediated hepatic expression of higher and sustained levels of the enzyme also corrected the abnormal cellularity, cell differentials, and levels of the chemokine MIP-1alpha in the bronchoalveolar lavage fluids of the ASMKO mice. Treatment also reversed the morphological aberrations associated with the alveolar macrophages of ASMKO mice and restored their phagocytic activity. No antibodies to the expressed enzyme were detected when the viral vectors were used in conjunction with a transcription cassette harboring a liver-restricted enhancer/promoter. Together, these data support the continued development of AAV8-mediated hepatic gene transfer as an approach to treat the visceral manifestations observed in individuals with acid sphingomyelinase deficiency.
Collapse
|
49
|
Uyan ZS, Karadağ B, Ersu R, Kiyan G, Kotiloğlu E, Sirvanci S, Ercan F, Dağli T, Karakoç F, Dağli E. Early pulmonary involvement in Niemann-Pick type B disease: lung lavage is not useful. Pediatr Pulmonol 2005; 40:169-72. [PMID: 15965955 DOI: 10.1002/ppul.20248] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Niemann-Pick disease (NPD) is a rare, autosomal-recessively inherited lipid storage disease which is characterized by intracellular deposition of sphingomyelin in various body tissues. The disease is heterogeneous and classified into six groups. Pulmonary parenchymal involvement may be a feature of several subtypes of NPD, including type B. Progressive pulmonary involvement in NPD type B is a major cause of morbidity and mortality. It is usually diagnosed at older ages. Only a few cases with early pulmonary involvement have been reported. In this report, a patient with NPD type B, hospitalized with the diagnosis of pneumonia at age 3 months, is presented. Following treatment for pneumonia, she continued to have persistent respiratory symptoms and became oxygen-dependent. High-resolution computed tomography of the chest revealed diffuse interstitial changes. During follow-up, the patient developed hepatosplenomegaly. Lung, liver, and bone marrow biopsies showed characteristic findings for NPD. Biochemical studies also confirmed the diagnosis, and the sphingomyelinase enzyme level of the patient was low. Unilateral lung lavage was performed in order to decrease lipid storage as a treatment modality. However, there was no clinical or radiological improvement. The patient died at age 15 months due to progressive respiratory failure. Pulmonary involvement is a rare entity in early childhood in patients with NPD type B, but should be considered in the differential diagnosis of persistent interstitial lung disease. It may cause progressive respiratory failure, but the treatment options remain limited.
Collapse
Affiliation(s)
- Z S Uyan
- Division of Pediatric Pulmonology, Marmara University, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Marten K, Hansell DM. Imaging of macrophage-related lung diseases. Eur Radiol 2005; 15:727-41. [PMID: 15633061 DOI: 10.1007/s00330-004-2554-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 10/12/2004] [Accepted: 10/18/2004] [Indexed: 01/28/2023]
Abstract
Macrophage-related pulmonary diseases are a heterogeneous group of disorders characterized by macrophage accumulation, activation or dysfunction. These conditions include smoking-related interstitial lung diseases, metabolic disorders such as Niemann-Pick or Gaucher disease, and rare primary lung tumors. High-resolution computed tomography abnormalities include pulmonary ground-glass opacification secondary to infiltration by macrophages, centrilobular nodules or interlobular septal thickening reflecting peribronchiolar or septal macrophage accumulation, respectively, emphysema caused by macrophage dysfunction, and honeycombing following macrophage-related lung matrix remodeling.
Collapse
Affiliation(s)
- Katharina Marten
- Department of Radiology, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
| | | |
Collapse
|