1
|
Ducza L, Gaál B. The Neglected Sibling: NLRP2 Inflammasome in the Nervous System. Aging Dis 2024; 15:1006-1028. [PMID: 38722788 PMCID: PMC11081174 DOI: 10.14336/ad.2023.0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 05/13/2024] Open
Abstract
While classical NOD-like receptor pyrin domain containing protein 1 (NLRP1) and NLRP3 inflammasomal proteins have been extensively investigated, the contribution of NLRP2 is still ill-defined in the nervous system. Given the putative significance of NLRP2 in orchestrating neuroinflammation, further inquiry is needed to gain a better understanding of its connectome, hence its specific targeting may hold a promising therapeutic implication. Therefore, bioinformatical approach for extracting information, specifically in the context of neuropathologies, is also undoubtedly preferred. To the best of our knowledge, there is no review study selectively targeting only NLRP2. Increasing, but still fragmentary evidence should encourage researchers to thoroughly investigate this inflammasome in various animal- and human models. Taken together, herein we aimed to review the current literature focusing on the role of NLRP2 inflammasome in the nervous system and more importantly, we provide an algorithm-based protein network of human NLRP2 for elucidating potentially valuable molecular partnerships that can be the beginning of a new discourse and future therapeutic considerations.
Collapse
Affiliation(s)
- László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| |
Collapse
|
2
|
Li S, Tang G, Jain P, Lin P, Xu J, Miranda RN, Cheng J, Yin CC, You MJ, Wang ML, Medeiros LJ. SOX11+ Large B-Cell Neoplasms: Cyclin D1-Negative Blastoid/Pleomorphic Mantle Cell Lymphoma or Large B-Cell Lymphoma? Mod Pathol 2024; 37:100405. [PMID: 38104893 DOI: 10.1016/j.modpat.2023.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Large or blastoid B-cell neoplasms that are SOX11+ are a diagnostic dilemma and raise a differential diagnosis of cyclin D1-negative blastoid/pleomorphic mantle cell lymphoma (MCL) versus diffuse large B-cell lymphoma (DLBCL) or blastoid high-grade B-cell lymphoma (HGBL) with aberrant SOX11 expression. Here we report a study cohort of 13 SOX11+ large/blastoid B-cell neoplasms. Fluorescence in situ hybridization analysis was negative for CCND1 rearrangement in all 13 cases; 1 of 8 (12.5%) cases tested showed CCND2 rearrangement and 2 (25%) cases had extracopies of CCND2. Gene expression profiling showed that the study group had a gene expression signature similar to cyclin D1+ blastoid/pleomorphic MCL but different from DLBCL. Principal component analysis revealed that the cohort cases overlapped with cyclin D1+ blastoid/pleomorphic MCL but had minimal overlap with DLBCL. All patients in the cohort had clinicopathologic features similar to those reported for patients with cyclin D1+ MCL. We also performed a survey of SOX11 expression in a group of 85 cases of DLBCL and 24 cases of blastoid HGBL. SOX11 expression showed a 100% specificity and positive predictive value for the diagnosis of MCL. Overall, the results support the conclusion that large or blastoid B-cell neoplasms that are positive for SOX11 are best classified as cyclin D1-negative blastoid/pleomorphic MCL, and not as DLBCL or blastoid HGBL. We also conclude that SOX11 is a specific marker for the diagnosis of MCL, including cyclin D1-negative blastoid/pleomorphic MCL cases and should be performed routinely on blastoid/large B-cell neoplasms to help identify potential cases of cyclin D1-negative blastoid/pleomorphic MCL.
Collapse
Affiliation(s)
- Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joanne Cheng
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael L Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
3
|
Gong Y, Tong H, Yu F, Liu Q, Huang X, Ren G, Fan Z, Wang Z, Zhao J, Mao Z, Zhang J, Zhou R. CCDC50, an essential driver involved in tumorigenesis, is a potential severity marker of diffuse large B cell lymphoma. Ann Hematol 2023; 102:3153-3165. [PMID: 37684379 PMCID: PMC10567943 DOI: 10.1007/s00277-023-05409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Diffuse Large B Cell Lymphoma (DLBCL) is the most common form of blood cancer. Among the subtypes, the activated B-cell (ABC) subtype is typically more aggressive and associated with worse outcomes. However, the underlying mechanisms are not fully understood. In this study, we performed microarray analysis to identify potential ABC-DLBCL-associated genes. We employed Kaplan-Meier methods and cox univariate analysis to explore the prognostic value of the identified candidate gene Coiled-coil domain containing 50 (CCDC50). Additionally, we used DLBCL cell lines and mouse models to explore the functions and mechanisms of CCDC50. Finally, we isolated CCDC50-bearing exosomes from clinical patients to study the correlation between these exosomes and disease severity. Our results demonstrated that CCDC50 not only showed significantly positive correlations with ABC subtype, tumor stage and number of extranodal sites, but also suggested poor outcomes in DLBCL patients. We further found that CCDC50 promoted ABC-DLBCL proliferation in vitro and in vivo. Mechanistically, CCDC50 inhibited ubiquitination-mediated c-Myc degradation by stimulating the PI3K/AKT/GSK-3β pathway. Moreover, CCDC50 expression was positively correlated with c-Myc at protein levels in DLBCL patients. Additionally, in two clinical cohorts, the plasma CCDC50-positive exosomes differentiated DLBCL subtypes robustly (AUC > 0.80) and predicted disease severity effectively (p < 0.05). Our findings suggest that CCDC50 likely drives disease progression in ABC-DLBCL patients, and the CCDC50-bearing exosome holds great potential as a non-invasive biomarker for subtype diagnosis and prognosis prediction of DLBCL patients.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Humans
- Animals
- Female
- Mice
- Male
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Middle Aged
- Cell Line, Tumor
- Prognosis
- Exosomes/metabolism
- Exosomes/genetics
- Gene Expression Regulation, Neoplastic
- Carcinogenesis/genetics
- Severity of Illness Index
- Cell Proliferation
Collapse
Affiliation(s)
- Yuqi Gong
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianbo Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongqin Fan
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Wang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengrong Mao
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ren Zhou
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Jia P, Tian T, Li Z, Wang Y, Lin Y, Zeng W, Ye Y, He M, Ni X, Pan J, Dong X, Huang J, Li C, Guo D, Hou P. CCDC50 promotes tumor growth through regulation of lysosome homeostasis. EMBO Rep 2023; 24:e56948. [PMID: 37672005 PMCID: PMC10561174 DOI: 10.15252/embr.202356948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
The maintenance of lysosome homeostasis is crucial for cell growth. Lysosome-dependent degradation and metabolism sustain tumor cell survival. Here, we demonstrate that CCDC50 serves as a lysophagy receptor, promoting tumor progression and invasion by controlling lysosomal integrity and renewal. CCDC50 monitors lysosomal damage, recognizes galectin-3 and K63-linked polyubiquitination on damaged lysosomes, and specifically targets them for autophagy-dependent degradation. CCDC50 deficiency causes the accumulation of ruptured lysosomes, impaired autophagic flux, and superfluous reactive oxygen species, consequently leading to cell death and tumor suppression. CCDC50 expression is associated with malignancy, progression to metastasis, and poor overall survival in human melanoma. Targeting CCDC50 suppresses tumor growth and lung metastasis, and enhances the effect of BRAFV600E inhibition. Thus, we demonstrate critical roles of CCDC50-mediated clearance of damaged lysosomes in supporting tumor growth, hereby identifying a potential therapeutic target of melanoma.
Collapse
Affiliation(s)
- Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Tian Tian
- The Center for Applied Genomics, Abramson Research CenterThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Zibo Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Yicheng Wang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Yuxin Lin
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Weijie Zeng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Yu Ye
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Miao He
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Xiangrong Ni
- Department of Neurosurgery/Neuro‐oncology, Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangzhouChina
| | - Ji'an Pan
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Xiaonan Dong
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouChina
| | - Jian Huang
- Coriell Institute for Medical ResearchCamdenNJUSA
| | - Chun‐mei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Deyin Guo
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouChina
| | - Panpan Hou
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Angelakis A, Soulioti I, Filippakis M. Diagnosis of acute myeloid leukaemia on microarray gene expression data using categorical gradient boosted trees. Heliyon 2023; 9:e20530. [PMID: 37860531 PMCID: PMC10582309 DOI: 10.1016/j.heliyon.2023.e20530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
We define an iterative method for dimensionality reduction using categorical gradient boosted trees and Shapley values and created four machine learning models which potentially could be used as diagnostic tests for acute myeloid leukaemia (AML). For the final Catboost model we use a dataset of 2177 individuals using as features 16 probe sets and the age in order to classify if someone has AML or is healthy. The dataset is multicentric and consists of data from 27 organizations, 25 cities, 15 countries and 4 continents. The performance of our last model is specificity: 0.9909, sensitivity: 0.9985, F1-score: 0.9976 and its ROC-AUC: 0.9962 using ten fold cross validation. On an inference dataset the perormance is: specificity: 0.9909, sensitivity: 0.9969, F1-score: 0.9969 and its ROC-AUC: 0.9939. To the best of our knowledge the performance of our model is the best one in the literature, as regards the diagnosis of AML using similar or not data. Moreover, there has not been any bibliographic reference which associates AML or any other type of cancer with the 16 probe sets we used as features in our final model.
Collapse
Affiliation(s)
- Athanasios Angelakis
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam Public Health Research Institute, University of Amsterdam Data Science Center, Netherlands
| | - Ioanna Soulioti
- Department of Biology, National and Kapodistrian University of Athens, Greece
| | | |
Collapse
|
6
|
Su C, Yang JC, Rong Z, Li F, Luo LX, Liu G, Cheng CY, Zhao MG, Yang L. Identification of CCDC115 as an adverse prognostic biomarker in liver cancer based on bioinformatics and experimental analyses. Heliyon 2023; 9:e19233. [PMID: 37674842 PMCID: PMC10477456 DOI: 10.1016/j.heliyon.2023.e19233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a major malignant tumor of the digestive system with a high incidence rate and poor early diagnosis. Coiled-coil domain-containing protein 115 (CCDC115), an accessory component of vacuolar-ATPase with dramatically abnormal expression, is associated with survival outcomes of cancer patients. However, the role of CCDC115 in LIHC remains unclear. In this study, we aimed to determine the functional role of CCDC115 in LIHC by examining CCDC115 expression, and its influence on LIHC prognosis. Through extensive statistical analyses, using LIHC patient databases, we observed that CCDC115 expression significantly increased in tumor tissues of LIHC patients. In addition, CCDC115 expression correlated with the poor prognosis. Additionally, CCDC115 was found to be involved in several cancer-related pathways, specifically the PI3K-Akt pathway. The expression of CCDC115 was positively correlated with human leukocyte antigen molecules as well as with immune checkpoint molecules in LIHC patients. We performed in vitro experiments and confirmed that the expression of CCDC115 significantly affects the proliferation potential, metastasis and sorafenib resistance of liver cancer cells, as well as some key protein expression in PI3K-Akt pathway. These results indicate that CCDC115 could serve as a diagnostic and prognostic biomarker of LIHC, and targeting CCDC115 may provide a potential strategy to enhance the efficacy of liver cancer therapy.
Collapse
Affiliation(s)
- Chang Su
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
- Shaanxi Provincial Corps, Chinese People's Armed Police Force, Xi'an, China
| | - Jing-cheng Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Zheng Rong
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Fei Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Lan-xin Luo
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Guan Liu
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Cai-yan Cheng
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Ming-gao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Li C, Jia Y, Li N, Zhou Q, Liu R, Wang Q. DNA methylation-mediated high expression of CCDC50 correlates with poor prognosis and hepatocellular carcinoma progression. Aging (Albany NY) 2023; 15:7424-7439. [PMID: 37552104 PMCID: PMC10457044 DOI: 10.18632/aging.204899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancer types worldwide. Recent studies found Coiled-coil domain-containing protein 50 (CCDC50) could regulate the nuclear factor kappa-B and p53 signalling pathways in cancer. Nevertheless, the underlying biological function and potential mechanisms of CCDC50 driving the progression of HCC remain unclear. In this study, we found that CCDC50 was up-regulated in HCC, and its higher expression was associated with adverse clinical outcomes and poor clinical characteristics. The results of the Cox regression analysis revealed that CCDC50 was an independent factor for the prognosis of HCC. Meanwhile, we also established a nomogram based on CCDC50 to predict the 1-, 3-, or 5-year survival in HCC patients. Furthermore, we found that DNA hypomethylation results in its overexpression in HCC. In addition, functional annotation confirmed that CCDC50 was mainly involved in the neuroactive ligand-receptor interaction and protein digestion and absorption. Importantly, we found that CCDC50 was highly expressed in HCC cell lines. Depletion of CCDC50 significantly inhibits HCC cell proliferation and migration abilities. This is the first study to identify CCDC50 as a new potential prognostic biomarker and characterize the functional roles of CCDC50 in the progression of HCC, and provides a novel potential diagnostic and therapeutic biomarker for HCC in the future.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining 629000, Sichuan, P.R. China
| | - Yingdong Jia
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining 629000, Sichuan, P.R. China
| | - Na Li
- Department of Oncology, Suining Central Hospital, Suining 629000, Sichuan, P.R. China
| | - Qiang Zhou
- Department of Oncology, Suining Central Hospital, Suining 629000, Sichuan, P.R. China
| | - Rui Liu
- Department of Radiation Oncology, Suining Central Hospital, Suining 629000, Sichuan, P.R. China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining 629000, Sichuan, P.R. China
| |
Collapse
|
8
|
Liu Z, Yan W, Liu S, Liu Z, Xu P, Fang W. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis. Cancer Lett 2023; 565:216225. [PMID: 37182638 DOI: 10.1016/j.canlet.2023.216225] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
CCDC (coiled-coil domain-containing) is a coiled helix domain that exists in natural proteins. There are about 180 CCDC family genes, encoding proteins that are involved in intercellular transmembrane signal transduction and genetic signal transcription, among other functions. Alterations in expression, mutation, and DNA promoter methylation of CCDC family genes have been shown to be associated with the pathogenesis of many diseases, including primary ciliary dyskinesia, infertility, and tumors. In recent studies, CCDC family genes have been found to be involved in regulation of growth, invasion, metastasis, chemosensitivity, and other biological behaviors of malignant tumor cells in various cancer types, including nasopharyngeal carcinoma, lung cancer, colorectal cancer, and thyroid cancer. In this review, we summarize the involvement of CCDC family genes in tumor pathogenesis and the relevant upstream and downstream molecular mechanisms. In addition, we summarize the potential of CCDC family genes as tumor therapy targets. The findings discussed here help us to further understand the role and the therapeutic applications of CCDC family genes in tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Shaohua Liu
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410002, China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China; Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| |
Collapse
|
9
|
Ma D, Ma Y, Ma Y, Liu J, Gu Y, Liu N, Xiang C, Liu H, Sang W. Molecular subtyping of CD5+ diffuse large B-cell lymphoma based on DNA-targeted sequencing and Lymph2Cx. Front Oncol 2022; 12:941347. [PMID: 36081566 PMCID: PMC9445310 DOI: 10.3389/fonc.2022.941347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCD5-positive diffuse large B-cell lymphoma (CD5+ DLBCL) showed poor prognosis in the rituximab era, with limited research on its genetic characteristics and cell of origin (COO). We aimed to demonstrate the molecular characteristics of CD5+ DLBCL and to discover potential prognostic factors.MethodsWe included 24 cases of CD5+ DLBCL and 23 CD5-negative (CD5-) counterparts and collected their clinicopathological features. Targeted DNA sequencing of 475 lymphoma-related genes was performed, and all cases were assigned to distinct genetic subtypes using the LymphGen tool. The COO was determined by the Lymph2Cx assay. The Kaplan–Meier method and Cox proportional hazards model were applied to identify the possible prognostic factors.ResultsCompared with their CD5- counterparts, patients with CD5+ DLBCL tended to have a worse prognosis and a higher incidence of MYD88L265P and CD79B double mutation (MCD) subtype (54.17%, P = 0.005) and activated B cell-like (ABC) subtype (62.5%, P = 00017), as determined by next-generation sequencing and Lymph2Cx, respectively. Moreover, PIM1, MYD88, and KMT2D mutations were detected more frequently in CD5+ DLBCL cases (P < 0.05). According to multivariate analysis, MYC/BCL2 double expression and ABC subtype were correlated with unfavorable overall survival (OS). High mRNA expression of SERPINA9 and MME showed a significant correlation with a better OS, and high expression of MME showed a significant correlation with better progression-free survival in CD5+ DLBCL.ConclusionThe genetic profile of CD5+ DLBCL is characterized by PIM1, MYD88, and KMT2D mutations, with a higher incidence of MCD and ABC subtypes. MYC/BCL2 double expression, ABC subtype, and mRNA expression of SERPINA9 and MME are independently predictive of the prognosis of CD5+ DLBCL.
Collapse
Affiliation(s)
- Dongshen Ma
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuhan Ma
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuanyuan Ma
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jia Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ying Gu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nian Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chenxi Xiang
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Hui Liu, ; Wei Sang,
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Hui Liu, ; Wei Sang,
| |
Collapse
|
10
|
Li XP, Zhang WN, Mao JY, Zhao BT, Jiang L, Gao Y. Integration of CD34 +CD117 dim population signature improves the prognosis prediction of acute myeloid leukemia. Lab Invest 2022; 20:359. [PMID: 35962395 PMCID: PMC9373712 DOI: 10.1186/s12967-022-03556-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Background Acute Myeloid Leukemia (AML) is a hematological cancer characterized by heterogeneous hematopoietic cells. Through the use of multidimensional sequencing technologies, we previously identified a distinct myeloblast population, CD34+CD117dim, the proportion of which was strongly associated with the clinical outcome in t (8;21) AML. In this study, we explored the potential value of the CD34+CD117dim population signature (117DPS) in AML stratification. Methods Based on the CD34+CD117dim gene signature, the least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to construct the 117DPS model using the gene expression data from Gene Expression Omnibus (GEO) database (GSE37642-GPL96 was used as training cohort; GSE37642-GPL570, GSE12417-GPL96, GSE12417-GPL570 and GSE106291 were used as validation cohorts). In addition, the RNA-seq data from The Cancer Genome Atlas (TCGA)-LAML and Beat AML projects of de-novo AML patients were also analyzed as validation cohorts. The differences of clinical features and tumor-infiltrating lymphocytes were further explored between the high-risk score group and low-risk score group. Results The high-risk group of the 117DPS model exhibited worse overall survival than the low-risk group in both training and validation cohorts. Immune signaling pathways were significantly activated in the high-risk group. Patients with high-risk score had a distinct pattern of infiltrating immune cells, which were closely related to clinical outcome. Conclusion The 117DPS model established in our study may serve as a potentially valuable tool for predicting clinical outcome of patients with AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03556-8.
Collapse
Affiliation(s)
- Xue-Ping Li
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 500020, China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 500020, China.
| | - Wei-Na Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 500020, China
| | - Jia-Ying Mao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 500020, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bai-Tian Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 500020, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yan Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 500020, China. .,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
11
|
Henning AN, Green D, Baumann R, Grandinetti P, Highfill SL, Zhou H, De Giorgi V. Immunomagnetic B cell isolation as a tool to study blood cell subsets and enrich B cell transcripts. BMC Res Notes 2021; 14:418. [PMID: 34794498 PMCID: PMC8600718 DOI: 10.1186/s13104-021-05833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Transcriptional profiling of immune cells is an indispensable tool in biomedical research; however, heterogenous sample types routinely used in transcriptomic studies may mask important cell type-specific transcriptional differences. Techniques to isolate desired cell types are used to overcome this limitation. We sought to evaluate the use of immunomagnetic B cell isolation on RNA quality and transcriptional output. Additionally, we aimed to develop a B cell gene signature representative of a freshly isolated B cell population to be used as a tool to verify isolation efficacy and to provide a transcriptional standard for evaluating maintenance or deviation from traditional B cell identity. RESULTS We found RNA quality and RNA-sequencing output to be comparable between donor-matched PBMC, whole blood, and B cells following negative selection by immunomagnetic B cell isolation. Transcriptional analysis enabled the development of an 85 gene B cell signature. This signature effectively clustered isolated B cells from heterogeneous sample types in our study and naïve and memory B cells when applied to transcriptional data from a published source. Additionally, by identifying B cell signature genes whose functional role in B cells is currently unknown, our gene signature has uncovered areas for future investigation.
Collapse
Affiliation(s)
- Amanda N. Henning
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD USA
| | - Daniel Green
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Ryan Baumann
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD USA
| | - Patrick Grandinetti
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Steven L. Highfill
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD USA
| | - Huizhi Zhou
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD USA
| | - Valeria De Giorgi
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
12
|
Deng T, Shen P, Li A, Zhang Z, Yang H, Deng X, Peng X, Hu Z, Tang Z, Liu J, Hou R, Liu Z, Fang W. CCDC65 as a new potential tumor suppressor induced by metformin inhibits activation of AKT1 via ubiquitination of ENO1 in gastric cancer. Am J Cancer Res 2021; 11:8112-8128. [PMID: 34335983 PMCID: PMC8315052 DOI: 10.7150/thno.54961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/16/2021] [Indexed: 12/14/2022] Open
Abstract
The coiled-coil domain containing protein members have been well documented for their roles in many diseases including cancers. However, the function of the coiled-coil domain containing 65 (CCDC65) remains unknown in tumorigenesis including gastric cancer. Methods: CCDC65 expression and its correlation with clinical features and prognosis of gastric cancer were analyzed in tissue. The biological role and molecular basis of CCDC65 were performed via in vitro and in vivo assays and a various of experimental methods including co-immunoprecipitation (Co-IP), GST-pull down and ubiquitination analysis et al. Finally, whether metformin affects the pathogenesis of gastric cancer by regulating CCDC65 and its-mediated signaling was investigated. Results: Here, we found that downregulated CCDC65 level was showed as an unfavourable factor in gastric cancer patients. Subsequently, CCDC65 or its domain (a.a. 130-484) was identified as a significant suppressor in GC growth and metastasis in vitro and in vivo. Molecular basis showed that CCDC65 bound to ENO1, an oncogenic factor has been widely reported to promote the tumor pathogenesis, by its domain (a.a. 130-484) and further promoted ubiquitylation and degradation of ENO1 by recruiting E3 ubiquitin ligase FBXW7. The downregulated ENO1 decreased the binding with AKT1 and further inactivated AKT1, which led to the loss of cell proliferation and EMT signal. Finally, we observed that metformin, a new anti-cancer drug, can significantly induce CCDC65 to suppress ENO1-AKT1 complex-mediated cell proliferation and EMT signals and finally suppresses the malignant phenotypes of gastric cancer cells. Conclusion: These results firstly highlight a critical role of CCDC65 in suppressing ENO1-AKT1 pathway to reduce the progression of gastric cancer and reveals a new molecular mechanism for metformin in suppressing gastric cancer. Our present study provides a new insight into the mechanism and therapy for gastric cancer.
Collapse
|
13
|
Goroshchuk O, Kolosenko I, Kunold E, Vidarsdottir L, Pirmoradian M, Azimi A, Jafari R, Palm-Apergi C. Thermal proteome profiling identifies PIP4K2A and ZADH2 as off-targets of Polo-like kinase 1 inhibitor volasertib. FASEB J 2021; 35:e21741. [PMID: 34143546 DOI: 10.1096/fj.202100457rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
Polo-like kinase 1 (PLK1) is an important cell cycle kinase and an attractive target for anticancer treatments. An ATP-competitive small molecular PLK1 inhibitor, volasertib, has reached phase III in clinical trials in patients with refractory acute myeloid leukemia as a combination treatment with cytarabine. However, severe side effects limited its use. The origin of the side effects is unclear and might be due to insufficient specificity of the drug. Thus, identifying potential off-targets to volasertib is important for future clinical trials and for the development of more specific drugs. In this study, we used thermal proteome profiling (TPP) to identify proteome-wide targets of volasertib. Apart from PLK1 and proteins regulated by PLK1, we identified about 200 potential volasertib off-targets. Comparison of this result with the mass-spectrometry analysis of volasertib-treated cells showed that phosphatidylinositol phosphate and prostaglandin metabolism pathways are affected by volasertib. We confirmed that PIP4K2A and ZADH2-marker proteins for these pathways-are, indeed, stabilized by volasertib. PIP4K2A, however, was not affected by another PLK1 inhibitor onvansertib, suggesting that PIP4K2A is a true off-target of volasertib. Inhibition of these proteins is known to impact both the immune response and fatty acid metabolism and could explain some of the side effects seen in volasertib-treated patients.
Collapse
Affiliation(s)
- Oksana Goroshchuk
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Iryna Kolosenko
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Elena Kunold
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Linda Vidarsdottir
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Mohammad Pirmoradian
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Alireza Azimi
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Rozbeh Jafari
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
14
|
Priyanka PP, Yenugu S. Coiled-Coil Domain-Containing (CCDC) Proteins: Functional Roles in General and Male Reproductive Physiology. Reprod Sci 2021; 28:2725-2734. [PMID: 33942254 DOI: 10.1007/s43032-021-00595-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 01/10/2023]
Abstract
The coiled-coil domain-containing (CCDC) proteins have been implicated in a variety of physiological and pathological processes. Their functional roles vary from their interaction with molecular components of signaling pathways to determining the physiological functions at the cellular and organ level. Thus, they govern important functions like gametogenesis, embryonic development, hematopoiesis, angiogenesis, and ciliary development. Further, they are implicated in the pathogenesis of a large number of cancers. Polymorphisms in CCDC genes are associated with the risk of lifetime diseases. Because of their role in many biological processes, they have been extensively studied. This review concisely presents the functional role of CCDC proteins that have been studied in the last decade. Studies on CCDC proteins continue to be an active area of investigation because of their indispensable functions. However, there is ample opportunity to further understand the involvement of CCDC proteins in many more functions. It is anticipated that basing on the available literature, the functional role of CCDC proteins will be explored much further.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
15
|
Zhi X, Chen Q, Song S, Gu Z, Wei W, Chen H, Chen X, Weng W, Zhou Q, Cui J, Cao L. Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways. Front Pharmacol 2021; 11:565163. [PMID: 33536903 PMCID: PMC7849192 DOI: 10.3389/fphar.2020.565163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
Myostatin is a crucial cytokine that is widely present in skeletal muscle and that negatively regulates the growth and development of muscle cells. Recent research has shown that myostatin might play an essential role in bone metabolism. In RAW264.7 cells and bone marrow monocytes (BMMCs), myostatin activates the expression of the II type receptor ActR II B. Here, we report that myostatin significantly promoted RANKL/M-CSF-induced osteoclastogenesis and activated NF-κB and MAPK pathways in vitro via the Ccdc50 gene. Overexpression of myostatin promoted osteoclastogenesis and osteoclastogenesis-related markers including c-Src, MMP9, CTR, CK, and NFATc1. Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. Our study indicates that myostatin is a promising candidate target for inhibiting RANKL-mediated osteoclastogenesis and might participate in therapy for osteoporosis, and that the Ccdc50 gene plays a significant role in the regulatory process.
Collapse
Affiliation(s)
- Xin Zhi
- Department of Orthopedics, PLA General Hospital, Beijing, China
| | - Qian Chen
- Basic Medical School, Naval Military Medical University, Shanghai, China
| | - Shaojun Song
- Department of Emergency, General Hospital of Central Theather Command, Wuhan, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Wenqiang Wei
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Huiwen Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Weizong Weng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Qirong Zhou
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Jin Cui
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, China
| |
Collapse
|
16
|
Hou P, Yang K, Jia P, Liu L, Lin Y, Li Z, Li J, Chen S, Guo S, Pan J, Wu J, Peng H, Zeng W, Li C, Liu Y, Guo D. A novel selective autophagy receptor, CCDC50, delivers K63 polyubiquitination-activated RIG-I/MDA5 for degradation during viral infection. Cell Res 2021; 31:62-79. [PMID: 32612200 PMCID: PMC7852694 DOI: 10.1038/s41422-020-0362-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a conserved process that delivers cytosolic substances to the lysosome for degradation, but its direct role in the regulation of antiviral innate immunity remains poorly understood. Here, through high-throughput screening, we discovered that CCDC50 functions as a previously unknown autophagy receptor that negatively regulates the type I interferon (IFN) signaling pathway initiated by RIG-I-like receptors (RLRs), the sensors for RNA viruses. The expression of CCDC50 is enhanced by viral infection, and CCDC50 specifically recognizes K63-polyubiquitinated RLRs, thus delivering the activated RIG-I/MDA5 for autophagic degradation. The association of CCDC50 with phagophore membrane protein LC3 is confirmed by crystal structure analysis. In contrast to other known autophagic cargo receptors that associate with either the LIR-docking site (LDS) or the UIM-docking site (UDS) of LC3, CCDC50 can bind to both LDS and UDS, representing a new type of cargo receptor. In mouse models with RNA virus infection, CCDC50 deficiency reduces the autophagic degradation of RIG-I/MDA5 and promotes type I IFN responses, resulting in enhanced viral resistance and improved survival rates. These results reveal a new link between autophagy and antiviral innate immune responses and provide additional insights into the regulatory mechanisms of RLR-mediated antiviral signaling.
Collapse
Affiliation(s)
- Panpan Hou
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Kongxiang Yang
- Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Lan Liu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuxin Lin
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zibo Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jun Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shuting Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ji'An Pan
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Junyu Wu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Hong Peng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Weijie Zeng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yingfang Liu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Deyin Guo
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
17
|
Coiled-coil domain containing 50-V2 protein positively regulates neurite outgrowth. Sci Rep 2020; 10:21295. [PMID: 33277610 PMCID: PMC7718278 DOI: 10.1038/s41598-020-78304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
The coiled-coil domain containing 50 (CCDC50) protein is a phosphotyrosine-dependent signalling protein stimulated by epidermal growth factor. It is highly expressed in neuronal cells in the central nervous system; however, the roles of CCDC50 in neuronal development are largely unknown. In this study, we showed that the depletion of CCDC50-V2 impeded the neuronal development process, including arbor formation, spine density development, and axonal outgrowth, in primary neurons. Mechanistic studies revealed that CCDC50-V2 positively regulated the nerve growth factor receptor, while it downregulated the epidermal growth factor receptor pathway. Importantly, JNK/c-Jun activation was found to be induced by the CCDC50-V2 overexpression, in which the interaction between CCDC50-V2 and JNK2 was also observed. Overall, the present study demonstrates a novel mechanism of CCDC50 function in neuronal development and provides new insight into the link between CCDC50 function and the aetiology of neurological disorders.
Collapse
|
18
|
Zhou Z, Gong Q, Lin Z, Wang Y, Li M, Wang L, Ding H, Li P. Emerging Roles of SRSF3 as a Therapeutic Target for Cancer. Front Oncol 2020; 10:577636. [PMID: 33072610 PMCID: PMC7544984 DOI: 10.3389/fonc.2020.577636] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ser/Arg-rich (SR) proteins are RNA-binding proteins known as constitutive and alternative splicing (AS) regulators that regulate multiple aspects of the gene expression program. Ser/Arg-rich splicing factor 3 (SRSF3) is the smallest member of the SR protein family, and its level is controlled by multiple factors and involves complex mechanisms in eukaryote cells, whereas the aberrant expression of SRSF3 is associated with many human diseases, including cancer. Here, we review state-of-the-art research on SRSF3 in terms of its function, expression, and misregulation in human cancers. We emphasize the negative consequences of the overexpression of the SRSF3 oncogene in cancers, the pathways underlying SRSF3-mediated transformation, and implications of potential anticancer drugs by downregulation of SRSF3 expression for cancer therapy. Cumulative research on SRSF3 provides critical insight into its essential part in maintaining cellular processes, offering potential new targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qi Gong
- Departments of Pediatrics, Second Clinical Medical College of Qingdao University, Qingdao, China
| | - Zhijuan Lin
- Key Laboratory for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Mengkun Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hongfei Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Sun G, Zhou H, Chen K, Zeng J, Zhang Y, Yan L, Yao W, Hu J, Wang T, Xing J, Xiao K, Wu L, Ye Z, Xu H. HnRNP A1 - mediated alternative splicing of CCDC50 contributes to cancer progression of clear cell renal cell carcinoma via ZNF395. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:116. [PMID: 32560659 PMCID: PMC7304168 DOI: 10.1186/s13046-020-01606-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Aberrant alternative splicing events play critical roles in carcinogenesis and progression of many cancers, while sparse studies regarding to alternative splicing are available for clear cell renal cell carcinoma (ccRCC). We identified that alternative splicing of coiled-coil domain containing 50 (CCDC50) was dysregulated in ccRCC, whereas the clinical significance of this splicing event and its splicing regulation mechanisms were still elusive. METHODS Bioinformatic algorithm was utilized to identify significant exon skipping events in ccRCC via exon sequencing data from The Cancer Genome Atlas. Semi-quantitative real-time polymerase chain reaction and western blot were used to validate the aberrant expression of different transcripts in renal cancer tissues, cell lines and corresponding noncancerous controls. Short hairpin RNA targeting CCDC50 and overexpressing plasmids for each transcript were introduced into ccRCC cell lines, followed by a series of in vitro and in vivo functional experiments. Moreover, a panel of splicing factors were identified and their roles on splicing regulation of CCDC50 precursor mRNA (pre-mRNA) were studied. Furthermore, RNAseq data were analyzed to elucidate downstream molecules of CCDC50. Two-way analysis of variance and unpaired Student t test were used in statistical analysis. RESULTS Pre-mRNA of CCDC50 generated two transcripts, full-length transcript (CCDC50-FL) and truncated transcript (CCDC50-S) with exon 6 skipped. CCDC50-S was overexpressed in ccRCC tissues and cell lines compared to noncancerous counterparts, but CCDC50-FL was only detected in noncancerous tissues and normal renal epithelial cells. Higher percent spliced-in index was associated with better survival in ccRCC patients. In vitro and in vivo functional experiments indicated that CCDC50-S transcript promoted the proliferation, migration, invasion and tumorigenesis of ccRCC, while CCDC50-FL exerted opposite tumor suppressive functions. Besides, we identified that heterogeneous nuclear ribonucleoprotein A1 (HnRNP A1) could promote the skipping of exon 6, which resulted in higher portion of CCDC50-S and oncogenic transformation. Moreover, zinc finger protein 395 (ZNF395) was identified as a downstream protein of CCDC50-S, and the interaction initiated oncogenic pathways which were involved in ccRCC progression. CONCLUSIONS Aberrant alternative splicing of CCDC50 is regulated by HnRNP A1 in ccRCC. This splicing event contributes to cancer progression through the downstream pathway involving ZNF395.
Collapse
Affiliation(s)
- Guoliang Sun
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Hui Zhou
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Ke Chen
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Jin Zeng
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Yangjun Zhang
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Libin Yan
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Weimin Yao
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Junhui Hu
- Hubei Institute of Urology, Wuhan, 430030 P.R. China ,grid.19006.3e0000 0000 9632 6718Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 USA
| | - Tao Wang
- grid.412625.6Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, 361000 P.R. China
| | - Jinchun Xing
- grid.412625.6Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, 361000 P.R. China
| | - Kefeng Xiao
- Department of Urology, The People’s Hospital of Shenzhen City, Shenzhen, 518000 P.R. China
| | - Lily Wu
- grid.19006.3e0000 0000 9632 6718Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 USA
| | - Zhangqun Ye
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China. .,Hubei Institute of Urology, Wuhan, 430030, P.R. China.
| |
Collapse
|
20
|
Combining gene expression profiling and machine learning to diagnose B-cell non-Hodgkin lymphoma. Blood Cancer J 2020; 10:59. [PMID: 32444689 PMCID: PMC7244768 DOI: 10.1038/s41408-020-0322-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Non-Hodgkin B-cell lymphomas (B-NHLs) are a highly heterogeneous group of mature B-cell malignancies. Their classification thus requires skillful evaluation by expert hematopathologists, but the risk of error remains higher in these tumors than in many other areas of pathology. To facilitate diagnosis, we have thus developed a gene expression assay able to discriminate the seven most frequent B-cell NHL categories. This assay relies on the combination of ligation-dependent RT-PCR and next-generation sequencing, and addresses the expression of more than 130 genetic markers. It was designed to retrieve the main gene expression signatures of B-NHL cells and their microenvironment. The classification is handled by a random forest algorithm which we trained and validated on a large cohort of more than 400 annotated cases of different histology. Its clinical relevance was verified through its capacity to prevent important misclassification in low grade lymphomas and to retrieve clinically important characteristics in high grade lymphomas including the cell-of-origin signatures and the MYC and BCL2 expression levels. This accurate pan-B-NHL predictor, which allows a systematic evaluation of numerous diagnostic and prognostic markers, could thus be proposed as a complement to conventional histology to guide the management of patients and facilitate their stratification into clinical trials.
Collapse
|
21
|
Hansen MH, Cédile O, Blum MK, Hansen SV, Ebbesen LH, Bentzen HHN, Thomassen M, Kruse TA, Kavan S, Kjeldsen E, Kristensen TK, Haaber J, Abildgaard N, Nyvold CG. Molecular characterization of sorted malignant B cells from patients clinically identified with mantle cell lymphoma. Exp Hematol 2020; 84:7-18.e12. [PMID: 32173361 DOI: 10.1016/j.exphem.2020.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/06/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Mantle cell lymphoma (MCL) is a tumor with a poor prognosis. A few studies have examined the molecular landscape by next-generation sequencing and provided valuable insights into recurrent lesions driving this heterogeneous cancer. However, none has attempted to cross-link the individual genomic and transcriptomic profiles in sorted MCL cells to perform individual molecular characterizations of the lymphomas. Such approaches are relevant as MCL is heterogenous by nature, and thorough molecular diagnostics may potentially benefit the patient with more focused treatment options. In the work described here, we used sorted lymphoma cells from four patients at diagnosis and relapse by intersecting the coding DNA and mRNA. Even though only a few patients were included, this method enabled us to pinpoint a specific set of expressed somatic mutations, to present an overall expression profile different from the normal B cell counterparts, and to track molecular aberrations from diagnosis to relapse. Changes in single-nucleotide coding variants, subtle clonal changes in large-copy-number alterations, subclonal involvement, and changes in expression levels in the clinical course provided detailed information on each of the individual malignancies. In addition to mutations in known genes (e.g., TP53, CCND1, NOTCH1, ATM), we identified others, not linked to MCL, such as a nonsense mutation in SPEN and an MYD88 missense mutation in one patient, which along with copy number alterations exhibited a molecular resemblance to splenic marginal zone lymphoma. The detailed exonic and transcriptomic portraits of the individual MCL patients obtained by the methodology presented here could help in diagnostics, surveillance, and potentially more precise usage of therapeutic drugs by efficient screening of biomarkers.
Collapse
Affiliation(s)
- Marcus Høy Hansen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Oriane Cédile
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Mia Koldby Blum
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Simone Valentin Hansen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | | | | | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Stephanie Kavan
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Eigil Kjeldsen
- Department of Hematology, Aarhus University Hospital, Denmark
| | - Thomas Kielsgaard Kristensen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Jacob Haaber
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Niels Abildgaard
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark.
| |
Collapse
|
22
|
Identification of CD5/Cyclin D1 Double-negative Pleomorphic Mantle Cell Lymphoma. Am J Surg Pathol 2019; 44:232-240. [DOI: 10.1097/pas.0000000000001390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Wang H, Zhang CZ, Lu SX, Zhang MF, Liu LL, Luo RZ, Yang X, Wang CH, Chen SL, He YF, Xie D, Xu RH, Yun JP. A Coiled-Coil Domain Containing 50 Splice Variant Is Modulated by Serine/Arginine-Rich Splicing Factor 3 and Promotes Hepatocellular Carcinoma in Mice by the Ras Signaling Pathway. Hepatology 2019; 69:179-195. [PMID: 30028541 DOI: 10.1002/hep.30147] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
Deregulation of alternative splicing contributes to the malignant progression of cancer. Little is known about the significant alternative splicing events in hepatocellular carcinoma (HCC). High-throughput sequencing revealed that coiled-coil domain containing 50 (CCDC50) pre-mRNA is aberrantly spliced in 50% of our HCC cases. A BaseScope assay was performed to examine the expression of CCDC50S (a truncated oncogenic splice variant) in HCC tissues. Compared with benign liver tumors and several other types of solid tumors, CCDC50S mRNA was up-regulated in HCC, with a diagnostic potential (sensitivity, 0.711; specificity, 0.793). High expression of CCDC50S mRNA in HCC was significantly correlated with poor tumor differentiation, advanced tumor node metastasis (TNM) stage, and unfavorable prognosis. Overexpression of CCDC50S exerted tumorigenic activities that promoted HCC growth and metastasis by activation of Ras/forkhead box protein O4 (Foxo4) signaling. Either suppression of mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) phosphorylation or overexpression of Foxo4 markedly attenuated CCDC50S-mediated phenotypes. Furthermore, serine- and arginine-rich splicing factor 3 (SRSF3) directly bound to CCDC50S mRNA to maintain its stability in the cytoplasm. The cytosolic retention of SRSF3 was mediated by the interaction of hepatitis B virus-encoded X protein (HBx) and 14-3-3β. Ectopic HBx expression induced expression of cytosolic SRSF3 and CCDC50S. Conclusion: Our study provided compelling evidence that up-regulation of CCDC50S was modulated by HBx/SRSF3/14-3-3β complex and enhanced oncogenic progression of HCC through the Ras/Foxo4 signaling pathway. These data suggest that CCDC50S may serve as a diagnostic and prognostic biomarker and probably a promising therapeutic target in HCC.
Collapse
Affiliation(s)
- Hong Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chris Zhiyi Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shi-Xun Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mei-Fang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Li Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong-Zhen Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chun-Hua Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shi-Lu Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang-Fan He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
24
|
Xu R, Han M, Xu Y, Zhang X, Zhang C, Zhang D, Ji J, Wei Y, Wang S, Huang B, Chen A, Zhang Q, Li W, Sun T, Wang F, Li X, Wang J. Coiled-coil domain containing 109B is a HIF1α-regulated gene critical for progression of human gliomas. J Transl Med 2017; 15:165. [PMID: 28754121 PMCID: PMC5534085 DOI: 10.1186/s12967-017-1266-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Background The coiled-coil domain is a structural motif found in proteins that participate in a variety of biological processes. Aberrant expression of such proteins has been shown to be associated with the malignant behavior of human cancers. In this study, we investigated the role of a specific family member, coiled-coil domain containing 109B (CCDC109B), in human gliomas. Methods and results We confirmed that CCDC109B was highly expressed in high grade gliomas (HGG; WHO III–IV) using immunofluorescence, western blot analysis, immunohistochemistry (IHC) and open databases. Through Cox regression analysis of The Cancer Genome Atlas (TCGA) database, we found that the expression levels of CCDC109B were inversely correlated with patient overall survival and it could serve as a prognostic marker. Then, a serious of cell functional assays were performed in human glioma cell lines, U87MG and U251, which indicated that silencing of CCDC109B attenuated glioma proliferation and migration/invasion both in vitro and in vivo. Notably, IHC staining in primary glioma samples interestingly revealed localization of elevated CCDC109B expression in necrotic areas which are typically hypoxic. Moreover, small interfering RNA (siRNA) and specific inhibiters of HIF1α led to decreased expression of CCDC109B in vitro and in vivo. Transwell assay further showed that CCDC109B is a critical factor in mediating HIF1α-induced glioma cell migration and invasion. Conclusion Our study elucidated a role for CCDC109B as an oncogene and a prognostic marker in human gliomas. CCDC109B may provide a novel therapeutic target for the treatment of human glioma. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1266-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Chao Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Yuzhen Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China.,Department of Neurosurgery, Jining No.1 People's Hospital, Jiankang Road, Jining, 272011, China
| | - Shuai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Feng Wang
- Ningxia Key Laboratory of Craniocerebral Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China.
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China. .,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
25
|
Chuang WY, Chang H, Chang GJ, Wang TH, Chang YS, Wang TH, Yeh CJ, Ueng SH, Chien HP, Chang CY, Wan YL, Hsueh C. Pleomorphic mantle cell lymphoma morphologically mimicking diffuse large B cell lymphoma: common cyclin D1 negativity and a simple immunohistochemical algorithm to avoid the diagnostic pitfall. Histopathology 2017; 70:986-999. [DOI: 10.1111/his.13161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/11/2016] [Accepted: 12/26/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Wen-Yu Chuang
- Department of Pathology; Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Taoyuan Taiwan
- Graduate Institute of Clinical Medical Sciences; College of Medicine; Chang Gung University; Taoyuan Taiwan
- Center for Vascularized Composite Allotransplantation; Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - Hung Chang
- Division of Hematology and Oncology; Department of Internal Medicine; Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Taoyuan Taiwan
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medical Sciences; College of Medicine; Chang Gung University; Taoyuan Taiwan
| | - Tzu-Hao Wang
- Genomic Medicine Research Core Laboratory; Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - Yu-Sun Chang
- Chang Gung Molecular Medicine Research Center and Graduate Institute of Basic Medical Sciences; Chang Gung University; Taoyuan Taiwan
| | - Tong-Hong Wang
- Tissue Bank; Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - Chi-Ju Yeh
- Department of Pathology; Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Taoyuan Taiwan
| | - Shir-Hwa Ueng
- Department of Pathology; Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Taoyuan Taiwan
| | - Hui-Ping Chien
- Department of Pathology; Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Taoyuan Taiwan
| | - Chiu-Yueh Chang
- Department of Pathology; Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Taoyuan Taiwan
| | - Yung-Liang Wan
- Department of Medical Imaging and Intervention; Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Taoyuan Taiwan
| | - Chuen Hsueh
- Department of Pathology; Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Taoyuan Taiwan
- Chang Gung Molecular Medicine Research Center and Graduate Institute of Basic Medical Sciences; Chang Gung University; Taoyuan Taiwan
- Tissue Bank; Chang Gung Memorial Hospital; Taoyuan Taiwan
| |
Collapse
|
26
|
Identification of subtype specific miRNA-mRNA functional regulatory modules in matched miRNA-mRNA expression data: multiple myeloma as a case. BIOMED RESEARCH INTERNATIONAL 2015; 2015:501262. [PMID: 25874214 PMCID: PMC4385567 DOI: 10.1155/2015/501262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/19/2014] [Accepted: 10/27/2014] [Indexed: 12/30/2022]
Abstract
Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it is important to identify subtype specific miRNA-mRNA modules. In this study, we integrated the Ping-Pong algorithm and multiobjective genetic algorithm to identify subtype specific miRNA-mRNA functional regulatory modules (MFRMs) through integrative analysis of three biological data sets: GO biological processes, miRNA target information, and matched miRNA and mRNA expression data. We applied our method on a heterogeneous disease, multiple myeloma (MM), to identify MM subtype specific MFRMs. The constructed miRNA-mRNA regulatory networks provide modular outlook at subtype specific miRNA-mRNA interactions. Furthermore, clustering analysis demonstrated that heterogeneous MFRMs were able to separate corresponding MM subtypes. These subtype specific MFRMs may aid in the further elucidation of the pathogenesis of each subtype and may serve to guide MM subtype diagnosis and treatment.
Collapse
|
27
|
Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver. PLoS One 2015; 10:e0117370. [PMID: 25658845 PMCID: PMC4319907 DOI: 10.1371/journal.pone.0117370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022] Open
Abstract
Xenopus is an excellent tetrapod model for studying normal and pathological motoneuron ontogeny due to its developmental morpho-physiological advantages. In mammals, the urotensin II-related peptide (UTS2B) gene is primarily expressed in motoneurons of the brainstem and the spinal cord. Here, we show that this expression pattern was conserved in Xenopus and established during the early embryonic development, starting at the early tailbud stage. In late tadpole stage, uts2b mRNA was detected both in the hindbrain and in the spinal cord. Spinal uts2b+ cells were identified as axial motoneurons. In adult, however, the uts2b expression was only detected in the hindbrain. We assessed the ability of the uts2b promoter to drive the expression of a fluorescent reporter in motoneurons by recombineering a green fluorescent protein (GFP) into a bacterial artificial chromosome (BAC) clone containing the entire X. tropicalis uts2b locus. After injection of this construction in one-cell stage embryos, a transient GFP expression was observed in the spinal cord of about a quarter of the resulting animals from the early tailbud stage and up to juveniles. The GFP expression pattern was globally consistent with that of the endogenous uts2b in the spinal cord but no fluorescence was observed in the brainstem. A combination of histological and electrophysiological approaches was employed to further characterize the GFP+ cells in the larvae. More than 98% of the GFP+ cells expressed choline acetyltransferase, while their projections were co-localized with α-bungarotoxin labeling. When tail myotomes were injected with rhodamine dextran amine crystals, numerous double-stained GFP+ cells were observed. In addition, intracellular electrophysiological recordings of GFP+ neurons revealed locomotion-related rhythmic discharge patterns during fictive swimming. Taken together our results provide evidence that uts2b is an appropriate driver to express reporter genes in larval motoneurons of the Xenopus spinal cord.
Collapse
|
28
|
Defective DROSHA processing contributes to downregulation of MiR-15/-16 in chronic lymphocytic leukemia. Leukemia 2013; 28:98-107. [PMID: 23974981 DOI: 10.1038/leu.2013.246] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022]
Abstract
The MIR-15A/-16-1 tumor suppressor microRNAs (miRNAs) are deleted in leukemic cells from more than 50% of patients with chronic lymphocytic leukemia (CLL). As these miRNAs are also less abundant in patients without genomic deletion, their downregulation in CLL is likely to be caused by additional mechanisms. We found the primary transcripts (pri-miRNAs) of MIR-15a/-16/-15b to be elevated and processing intermediates (precursor miRNAs) to be reduced in cells from CLL patients (22/38) compared with non-malignant B-cells (n=14), indicating a block of miRNA maturation at the DROSHA processing step. Using a luciferase reporter assay for pri-miR processing we validated the defect in primary CLL cells. The block of miRNA maturation is restricted to specific miRNAs and can be found in the cell line MEC-2, but not in MEC-1, even though both are derived from the same CLL patient. In these cells, the RNA-specific deaminase ADARB1 leads to reduced pri-miRNA processing, but full processing efficiency is recovered upon deletion of the RNA-binding domains or nuclear localization of ADARB1. Thus, we show that, apart from genomic deletion or transcriptional downregulation, aberrant processing of miRNA leads to specific reduction of miRNAs in leukemic cells. This represents a novel oncogenic mechanism in the pathogenesis of CLL.
Collapse
|
29
|
ZRANB2 localizes to supraspliceosomes and influences the alternative splicing of multiple genes in the transcriptome. Mol Biol Rep 2013; 40:5381-95. [DOI: 10.1007/s11033-013-2637-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 05/01/2013] [Indexed: 11/27/2022]
|
30
|
Liao M, Shi D, Wang Y, Zhang K, Chen X, Gao Y, Tan A, Xuan Q, Yang X, Hu Y, Qin X, Zhang H, Mo Z. Genome-wide scan on total serum IgE levels identifies no common variants in a healthy Chinese male population. Immunogenetics 2013; 65:561-8. [PMID: 23661040 DOI: 10.1007/s00251-013-0706-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 04/18/2013] [Indexed: 12/30/2022]
Abstract
Immunoglobulin E (IgE) provides important information on the humoral immune status, and the IgE level is routinely detected in clinical practice. There are many diseases associated with IgE, such as atopic disease, autoimmune diseases, and so on. IgE is a genetically complex trait, but comprehensive genetic assessment of the variability in serum IgE levels is lacking. Previous genome-wide association studies (GWAS) on total serum IgE levels have identified FCER1A as the susceptibility locus; however, the candidate gene association study in southern Chinese patients reported no association. Given the genetic difference in different populations, we firstly conducted this two-stage GWAS in a Chinese population of 3,495 men, including 1,999 unrelated subjects in the first stage and 1,496 independent individuals replicated in the second stage. In the first stage, we totally identified three single nucleotide polymorphisms (SNPs) which reached a P value of 1.0 × 10⁻⁵. Rs17090302 on chromosome 3 and Rs28708846 on chromosome 13 are intergenic. Rs432085 from chromosome 3p28 is located in the gene CCDC50. When the two-stage data was combined, none of the SNPs reached the genome-wide significant level. Collectively, we did not identify novel loci associated with the serum IgE level in Chinese males, but we hypothesized that CCDC50 was a candidate gene in regulation on IgE level.
Collapse
Affiliation(s)
- Ming Liao
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Volkmann J, Reuning U, Rudelius M, Häfner N, Schuster T, Becker V Ros A, Weimer J, Hilpert F, Kiechle M, Dürst M, Arnold N, Schmalfeldt B, Meindl A, Ramser J. High expression of crystallin αB represents an independent molecular marker for unfavourable ovarian cancer patient outcome and impairs TRAIL- and cisplatin-induced apoptosis in human ovarian cancer cells. Int J Cancer 2012; 132:2820-32. [PMID: 23225306 DOI: 10.1002/ijc.27975] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/19/2012] [Indexed: 01/27/2023]
Abstract
Dysregulated apoptotic pathways are regarded as major reasons for chemoresistance development as a particular challenge in ovarian cancer therapy. In search of molecular factors affecting human ovarian cancer cell apoptosis and, consequently, patient survival, we examined tumors of 103 platinum-/taxane-treated ovarian cancer patients by mRNA-array hybridization, qPCR, and immunohistochemistry. We identified high expression of crystallin αB (CRYAB), a proposed negative regulator of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-mediated apoptosis. By Kaplan Meier analysis, this factor turned out to be significantly associated with poor patient outcome [overall survival (OS) p = 0.001, recurrence-free survival (RFS) p = 0.003]. Elevated hazard ratios (HR) were estimated with regard to OS (HR = 2.11, 95% CI 1.10-4.06) and RFS (HR = 1.92, 95% CI 1.07-3.47) in multivariable analyses. These associations were confirmed in independent, publicly available mRNA data comprising 431 patients for OS (p < 0.001) and 413 for RFS (p < 0.001). Our findings were validated by studying apoptotic events in cultured human ovarian cancer cells which were stably transfected to express elevated CRYAB levels. These data emphasized the crucial role of CRYAB in human ovarian cancer biology since TRAIL- as well as cisplatin-induced apoptosis was significantly impaired as a function of enhanced CRYAB expression. Taken together, we identified CRYAB as an independent biomarker for unfavourable outcome of human ovarian cancer patients. Since TRAIL is currently tested as anti-cancer drug and large proportions of the present patient cohort displayed low CRYAB levels in their tumors, CRYAB may enable the selection of patient subgroups benefiting most from TRAIL-containing therapy.
Collapse
Affiliation(s)
- Juliane Volkmann
- Clinic of Gynecology and Obstetrics, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Deeb SJ, D'Souza RCJ, Cox J, Schmidt-Supprian M, Mann M. Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles. Mol Cell Proteomics 2012; 11:77-89. [PMID: 22442255 PMCID: PMC3418848 DOI: 10.1074/mcp.m111.015362] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Correct classification of cancer patients into subtypes is a prerequisite for acute diagnosis and effective treatment. Currently this classification relies mainly on histological assessment, but gene expression analysis by microarrays has shown great promise. Here we show that high accuracy, quantitative proteomics can robustly segregate cancer subtypes directly at the level of expressed proteins. We investigated two histologically indistinguishable subtypes of diffuse large B-cell lymphoma (DLBCL): activated B-cell-like (ABC) and germinal-center B-cell-like (GCB) subtypes, by first developing a general lymphoma stable isotope labeling with amino acids in cell culture (SILAC) mix from heavy stable isotope-labeled cell lines. This super-SILAC mix was combined with cell lysates from five ABC-DLBCL and five GCB-DLBCL cell lines. Shotgun proteomic analysis on a linear ion trap Orbitrap mass spectrometer with high mass accuracy at the MS and MS/MS levels yielded a proteome of more than 7,500 identified proteins. High accuracy of quantification allowed robust separation of subtypes by principal component analysis. The main contributors to the classification included proteins known to be differentially expressed between the subtypes such as the transcription factors IRF4 and SPI1/PU.1, cell surface markers CD44 and CD27, as well as novel candidates. We extracted a signature of 55 proteins that segregated subtypes and contained proteins connected to functional differences between the ABC and GCB-DLBCL subtypes, including many NF-κB-regulated genes. Shortening the analysis time to single-shot analysis combined with use of the new linear quadrupole Orbitrap analyzer (Q Exactive) also clearly differentiated between the subtypes. These results show that high resolution shotgun proteomics combined with super-SILAC-based quantification is a promising new technology for tumor characterization and classification.
Collapse
Affiliation(s)
- Sally J Deeb
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
33
|
Kovaleva V, Mora R, Park YJ, Plass C, Chiramel AI, Bartenschlager R, Döhner H, Stilgenbauer S, Pscherer A, Lichter P, Seiffert M. miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells. Cancer Res 2012; 72:1763-72. [PMID: 22350415 DOI: 10.1158/0008-5472.can-11-3671] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toxicity and relapses from the immunochemotherapy used to treat chronic lymphocytic leukemia (CLL) prompt continued interest in gentle but effective targeted treatment options for the mainly elderly population suffering from this disease. Here, we report the definition of critical CLL cell survival pathways that can be targeted by ectopic reexpression of the miRNA genes miR-130a and miR-143 which are widely downregulated in CLL. Notably, miR-130a inhibited autophagy by reducing autophagosome formation, an effect mediated by downregulation of the genes ATG2B and DICER1, the latter of which is a major component of the miRNA silencing machinery. In support of the concept of a fundamental connection between miRNA disregulation and altered autophagic flux in this cancer, we showed that RNA interference-mediated knockdown of DICER1 expression was sufficient to reduce autophagy in primary or established cultures of CLL cells. Together, our findings show that miR-130a modulates cell survival programs by regulating autophagic flux, and they define roles for miR-130a and Dicer1 in a regulatory feedback loop that mediates CLL cell survival.
Collapse
|
34
|
Metzig M, Nickles D, Boutros M. Large-scale RNAi screens to dissect TNF and NF-κB signaling pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:131-9. [PMID: 21153317 DOI: 10.1007/978-1-4419-6612-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marie Metzig
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), University of Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|