1
|
Bardini M, Fazio G, Abascal LC, Meyer C, Maglia O, Sala S, Palamini S, Rebellato S, Marschalek R, Rizzari C, Biondi A, Cazzaniga G. Prenatal origin of NUTM1 gene rearrangement in infant B-cell precursor acute lymphoblastic leukaemia. Br J Haematol 2024; 205:1883-1888. [PMID: 39099338 DOI: 10.1111/bjh.19685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Rearrangement of NUTM1 gene (NUTM1r) is one of the most frequent aberrations occurring in infants (younger than 1 year at diagnosis) with B-cell precursor Acute Lymphoblastic Leukaemia (BCP-ALL). In this study we had the unique opportunity to analyze the umbilical cord blood (UCB) sample from one infant patient with NUTM1r BCP-ALL. Herein we reported for the first time that NUTM1r infant ALL arise prenatally, as both the patient-specific CUX1::NUTM1 fusion gene, as well as two IG/TR leukaemic markers were already present and detectable in the patient's UCB at birth. Our results clearly demonstrate the prenatal origin of NUTM1r infant BCP-ALL.
Collapse
Affiliation(s)
- Michela Bardini
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | | | - Claus Meyer
- DCAL/Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Oscar Maglia
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Simona Sala
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Sonia Palamini
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Stefano Rebellato
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Rolf Marschalek
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Carmelo Rizzari
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
2
|
Harman JR, Thorne R, Jamilly M, Tapia M, Crump NT, Rice S, Beveridge R, Morrissey E, de Bruijn MFTR, Roberts I, Roy A, Fulga TA, Milne TA. A KMT2A-AFF1 gene regulatory network highlights the role of core transcription factors and reveals the regulatory logic of key downstream target genes. Genome Res 2021; 31:1159-1173. [PMID: 34088716 PMCID: PMC8256865 DOI: 10.1101/gr.268490.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Abstract
Regulatory interactions mediated by transcription factors (TFs) make up complex networks that control cellular behavior. Fully understanding these gene regulatory networks (GRNs) offers greater insight into the consequences of disease-causing perturbations than can be achieved by studying single TF binding events in isolation. Chromosomal translocations of the lysine methyltransferase 2A (KMT2A) gene produce KMT2A fusion proteins such as KMT2A-AFF1 (previously MLL-AF4), causing poor prognosis acute lymphoblastic leukemias (ALLs) that sometimes relapse as acute myeloid leukemias (AMLs). KMT2A-AFF1 drives leukemogenesis through direct binding and inducing the aberrant overexpression of key genes, such as the anti-apoptotic factor BCL2 and the proto-oncogene MYC However, studying direct binding alone does not incorporate possible network-generated regulatory outputs, including the indirect induction of gene repression. To better understand the KMT2A-AFF1-driven regulatory landscape, we integrated ChIP-seq, patient RNA-seq, and CRISPR essentiality screens to generate a model GRN. This GRN identified several key transcription factors such as RUNX1 that regulate target genes downstream of KMT2A-AFF1 using feed-forward loop (FFL) and cascade motifs. A core set of nodes are present in both ALL and AML, and CRISPR screening revealed several factors that help mediate response to the drug venetoclax. Using our GRN, we then identified a KMT2A-AFF1:RUNX1 cascade that represses CASP9, as well as KMT2A-AFF1-driven FFLs that regulate BCL2 and MYC through combinatorial TF activity. This illustrates how our GRN can be used to better connect KMT2A-AFF1 behavior to downstream pathways that contribute to leukemogenesis, and potentially predict shifts in gene expression that mediate drug response.
Collapse
Affiliation(s)
- Joe R Harman
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Ross Thorne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Max Jamilly
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Marta Tapia
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Siobhan Rice
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Ryan Beveridge
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
- Virus Screening Facility, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Edward Morrissey
- Center for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 9DS, United Kingdom
- NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Anindita Roy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 9DS, United Kingdom
- NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Tudor A Fulga
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
- NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, OX3 9DS, United Kingdom
| |
Collapse
|
3
|
Tejedor JR, Bueno C, Vinyoles M, Petazzi P, Agraz-Doblas A, Cobo I, Torres-Ruiz R, Bayón GF, Pérez RF, López-Tamargo S, Gutierrez-Agüera F, Santamarina-Ojeda P, Ramírez-Orellana M, Bardini M, Cazzaniga G, Ballerini P, Schneider P, Stam RW, Varela I, Fraga MF, Fernández AF, Menéndez P. Integrative methylome-transcriptome analysis unravels cancer cell vulnerabilities in infant MLL-rearranged B cell acute lymphoblastic leukemia. J Clin Invest 2021; 131:138833. [PMID: 33983906 DOI: 10.1172/jci138833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/11/2021] [Indexed: 01/04/2023] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. As predicted by its prenatal origin, infant B-ALL (iB-ALL) shows an exceptionally silent DNA mutational landscape, suggesting that alternative epigenetic mechanisms may substantially contribute to its leukemogenesis. Here, we have integrated genome-wide DNA methylome and transcriptome data from 69 patients with de novo MLL-rearranged leukemia (MLLr) and non-MLLr iB-ALL leukemia uniformly treated according to the Interfant-99/06 protocol. iB-ALL methylome signatures display a plethora of common and specific alterations associated with chromatin states related to enhancer and transcriptional control in normal hematopoietic cells. DNA methylation, gene expression, and gene coexpression network analyses segregated MLLr away from non-MLLr iB-ALL and identified a coordinated and enriched expression of the AP-1 complex members FOS and JUN and RUNX factors in MLLr iB-ALL, consistent with the significant enrichment of hypomethylated CpGs in these genes. Integrative methylome-transcriptome analysis identified consistent cancer cell vulnerabilities, revealed a robust iB-ALL-specific gene expression-correlating dmCpG signature, and confirmed an epigenetic control of AP-1 and RUNX members in reshaping the molecular network of MLLr iB-ALL. Finally, pharmacological inhibition or functional ablation of AP-1 dramatically impaired MLLr-leukemic growth in vitro and in vivo using MLLr-iB-ALL patient-derived xenografts, providing rationale for new therapeutic avenues in MLLr-iB-ALL.
Collapse
Affiliation(s)
- Juan Ramón Tejedor
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and.,RICORS-TERAV Network, ISCIII, Madrid, Spain
| | - Meritxell Vinyoles
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and
| | - Paolo Petazzi
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and
| | - Antonio Agraz-Doblas
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Isabel Cobo
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Raúl Torres-Ruiz
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,RICORS-TERAV Network, ISCIII, Madrid, Spain.,Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gustavo F Bayón
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain
| | - Raúl F Pérez
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Sara López-Tamargo
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain
| | - Francisco Gutierrez-Agüera
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,RICORS-TERAV Network, ISCIII, Madrid, Spain
| | - Pablo Santamarina-Ojeda
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain
| | - Manuel Ramírez-Orellana
- RICORS-TERAV Network, ISCIII, Madrid, Spain.,Hematology Diagnostic Laboratory, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Michela Bardini
- Centro Ricerca Tettamanti, Department of Paediatrics, University of Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Department of Paediatrics, University of Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Paola Ballerini
- Pediatric Hematology, Armand Trousseau Hospital, Paris, France
| | - Pauline Schneider
- Princess Maxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Ronald W Stam
- Princess Maxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Mario F Fraga
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Agustín F Fernández
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and.,RICORS-TERAV Network, ISCIII, Madrid, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
4
|
Britten O, Ragusa D, Tosi S, Kamel YM. MLL-Rearranged Acute Leukemia with t(4;11)(q21;q23)-Current Treatment Options. Is There a Role for CAR-T Cell Therapy? Cells 2019; 8:cells8111341. [PMID: 31671855 PMCID: PMC6912830 DOI: 10.3390/cells8111341] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
The MLL (mixed-lineage leukemia) gene, located on chromosome 11q23, is involved in chromosomal translocations in a subtype of acute leukemia, which represents approximately 10% of acute lymphoblastic leukemia and 2.8% of acute myeloid leukemia cases. These translocations form fusions with various genes, of which more than 80 partner genes for MLL have been identified. The most recurrent fusion partner in MLL rearrangements (MLL-r) is AF4, mapping at chromosome 4q21, accounting for approximately 36% of MLL-r leukemia and particularly prevalent in MLL-r acute lymphoblastic leukemia (ALL) cases (57%). MLL-r leukemia is associated with a sudden onset, aggressive progression, and notoriously poor prognosis in comparison to non-MLL-r leukemias. Despite modern chemotherapeutic interventions and the use of hematopoietic stem cell transplantations, infants, children, and adults with MLL-r leukemia generally have poor prognosis and response to these treatments. Based on the frequency of patients who relapse, do not achieve complete remission, or have brief event-free survival, there is a clear clinical need for a new effective therapy. In this review, we outline the current therapy options for MLL-r patients and the potential application of CAR-T therapy.
Collapse
MESH Headings
- Adult
- Child
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 4/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Immunotherapy, Adoptive/methods
- Infant
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Myeloid-Lymphoid Leukemia Protein/genetics
- Oncogene Proteins, Fusion/genetics
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Oliver Britten
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Denise Ragusa
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Sabrina Tosi
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Yasser Mostafa Kamel
- ASYS Pharmaceutical Consultants-APC Inc. 2, Bedford, Nova Scotia B4A 4L2, Canada.
| |
Collapse
|
5
|
Agraz-Doblas A, Bueno C, Bashford-Rogers R, Roy A, Schneider P, Bardini M, Ballerini P, Cazzaniga G, Moreno T, Revilla C, Gut M, Valsecchi MG, Roberts I, Pieters R, De Lorenzo P, Varela I, Menendez P, Stam RW. Unraveling the cellular origin and clinical prognostic markers of infant B-cell acute lymphoblastic leukemia using genome-wide analysis. Haematologica 2019; 104:1176-1188. [PMID: 30679323 PMCID: PMC6545849 DOI: 10.3324/haematol.2018.206375] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
B-cell acute lymphoblastic leukemia is the commonest childhood cancer. In infants, B-cell acute lymphoblastic leukemia remains fatal, especially in patients with t(4;11), present in ~80% of cases. The pathogenesis of t(4;11)/KMT2A-AFF1+ (MLL-AF4+) infant B-cell acute lymphoblastic leukemia remains difficult to model, and the pathogenic contribution in cancer of the reciprocal fusions resulting from derivative translocated-chromosomes remains obscure. Here, “multi-layered” genome-wide analyses and validation were performed on a total of 124 de novo cases of infant B-cell acute lymphoblastic leukemia uniformly diagnosed and treated according to the Interfant 99/06 protocol. These patients showed the most silent mutational landscape reported so far for any sequenced pediatric cancer. Recurrent mutations were exclusively found in K-RAS and N-RAS, were subclonal and were frequently lost at relapse, despite a larger number of non-recurrent/non-silent mutations. Unlike non-MLL-rearranged B-cell acute lymphoblastic leukemias, B-cell receptor repertoire analysis revealed minor, non-expanded B-cell clones in t(4;11)+ infant B-cell acute lymphoblastic leukemia, and RNA-sequencing showed transcriptomic similarities between t(4;11)+ infant B-cell acute lymphoblastic leukemias and the most immature human fetal liver hematopoietic stem and progenitor cells, confirming a “pre-VDJ” fetal cellular origin for both t(4;11) and RASmut. The reciprocal fusion AF4-MLL was expressed in only 45% (19/43) of the t(4;11)+ patients, and HOXA cluster genes are exclusively expressed in AF4-MLL-expressing patients. Importantly, AF4-MLL/HOXA-expressing patients had a significantly better 4-year event-free survival (62.4% vs. 11.7%, P=0.001), and overall survival (73.7 vs. 25.2%, P=0.016). AF4-MLL expression retained its prognostic significance when analyzed in a Cox model adjusting for risk stratification according to the Interfant-06 protocol based on age at diagnosis, white blood cell count and response to prednisone. This study has clinical implications for disease outcome and diagnostic risk-stratification of t(4;11)+ infant B-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Antonio Agraz-Doblas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain.,Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | | | - Anindita Roy
- Department of Paediatrics, University of Oxford, UK
| | - Pauline Schneider
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Michela Bardini
- Centro Ricerca Tettamanti, Department of Pediatrics, University of Milano Bicocca, Fondazione MBBM, Monza, Italy
| | | | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Department of Pediatrics, University of Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Thaidy Moreno
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Carlos Revilla
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Marta Gut
- CNAG-CRG, Center for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria G Valsecchi
- Interfant Trial Data Center, University of Milano-Bicocca, Monza, Italy
| | - Irene Roberts
- Department of Paediatrics, University of Oxford, UK.,MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Rob Pieters
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Paola De Lorenzo
- Interfant Trial Data Center, University of Milano-Bicocca, Monza, Italy
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Spain .,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Barcelona, Spain
| | - Ronald W Stam
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
6
|
Abstract
Leukemia in infants is rare but generates tremendous interest due to its aggressive clinical presentation in a uniquely vulnerable host, its poor response to current therapies, and its fascinating biology. Increasingly, these biological insights are pointing the way toward novel therapeutic approaches. Using representative clinical case presentations, we review the key clinical, pathologic, and epidemiologic features of infant leukemia, including the high frequency of KMT2A gene rearrangements. We describe the current approach to risk-stratified treatment of infant leukemia in the major international cooperative groups. We highlight recent discoveries that elucidate the molecular biology of infant leukemia and suggest novel targeted therapeutic strategies, including modulation of aberrant epigenetic programs, inhibition of signaling pathways, and immunotherapeutics. Finally, we underscore the need for increased global collaboration to translate these discoveries into improved outcomes.
Collapse
|
7
|
Taniguchi R, Muramatsu H, Okuno Y, Suzuki K, Obu S, Nakatochi M, Shimamura T, Takahashi Y, Horikoshi Y, Watanabe K, Kojima S. Comprehensive genetic analysis of donor cell derived leukemia with KMT2A rearrangement. Pediatr Blood Cancer 2018; 65. [PMID: 28921816 DOI: 10.1002/pbc.26823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/03/2017] [Accepted: 08/24/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Donor cell leukemia (DCL) occurs after allogeneic hematopoietic stem cell transplantation. Several mechanisms, including occult leukemic/preleukemic subclones in the donor graft and germline predisposition to leukemia, are proposed to be associated with DCL's molecular pathogenesis. We report a comprehensive genetic analysis of a patient with KMT2A-rearranged DCL after allogeneic bone marrow transplantation for refractory cytopenia of childhood. PROCEDURE We performed a whole-exome sequencing of the recipient's peripheral blood before transplant and the donor's peripheral blood and the recipient's bone marrow at the time of DCL diagnosis. RNA sequencing was also performed to detect fusion genes in DCL blasts. RESULTS There were no germline mutations that were associated with a predisposition to leukemia in the recipient and donor. Furthermore, there were no detectable somatic alterations except KMT2A-MLLT10 and other related gene fusions in DCL. KMT2A-MLLT10 was not detectable in the donor's bone marrow. CONCLUSION We propose a novel pattern of the molecular pathogenesis of DCL solely involving a genetic mutation acquired after transplant with no identifiable genetic factor related to the donor and recipient.
Collapse
Affiliation(s)
- Rieko Taniguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Kyogo Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Obu
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Masahiro Nakatochi
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuo Horikoshi
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
The role of RAS mutations in MLL-rearranged leukaemia: A path to intervention? Biochim Biophys Acta Rev Cancer 2017; 1868:521-526. [PMID: 29056538 DOI: 10.1016/j.bbcan.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022]
Abstract
Childhood acute lymphoblastic leukaemia (ALL) with MLL rearrangement (MLL-r) is an aggressive disease still associated with a high mortality rate. Recent investigations have identified co-operating mutations in the RAS pathway and although the functional consequences of these mutations are not yet fully understood, aberrant regulation of RAS pathway signalling at both transcriptional and protein levels is observed. Studies investigating the efficacy of specific inhibitors of this pathway, e.g. MEK-inhibitors, have also achieved encouraging results. In this context, this mini-review summarizes the available data surrounding MLL-r infant ALL with RAS mutation in relation to other well-known features of this intriguing disease.
Collapse
|
9
|
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Smith R, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Angeli K, Fritsche E, Hernandez-Jerez AF, Leist M, Mantovani A, Menendez P, Pelkonen O, Price A, Viviani B, Chiusolo A, Ruffo F, Terron A, Bennekou SH. Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemia. EFSA J 2017; 15:e04691. [PMID: 32625422 PMCID: PMC7233269 DOI: 10.2903/j.efsa.2017.4691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In 2013, EFSA published a literature review on epidemiological studies linking exposure to pesticides and human health outcome. As a follow up, the EFSA Panel on Plant Protection Products and their residues (PPR Panel) was requested to investigate the plausible involvement of pesticide exposure as a risk factor for Parkinson's disease (PD) and childhood leukaemia (CHL). A systematic literature review on PD and CHL and mode of actions for pesticides was published by EFSA in 2016 and used as background documentation. The Panel used the Adverse Outcome Pathway (AOP) conceptual framework to define the biological plausibility in relation to epidemiological studies by means of identification of specific symptoms of the diseases as AO. The AOP combines multiple information and provides knowledge of biological pathways, highlights species differences and similarities, identifies research needs and supports regulatory decisions. In this context, the AOP approach could help in organising the available experimental knowledge to assess biological plausibility by describing the link between a molecular initiating event (MIE) and the AO through a series of biologically plausible and essential key events (KEs). As the AOP is chemically agnostic, tool chemical compounds were selected to empirically support the response and temporal concordance of the key event relationships (KERs). Three qualitative and one putative AOP were developed by the Panel using the results obtained. The Panel supports the use of the AOP framework to scientifically and transparently explore the biological plausibility of the association between pesticide exposure and human health outcomes, identify data gaps, define a tailored testing strategy and suggests an AOP's informed Integrated Approach for Testing and Assessment (IATA).
Collapse
|
10
|
Fu JF, Liang ST, Huang YJ, Liang KH, Yen TH, Liang DC, Shih LY. Cooperation of MLL/AF10(OM-LZ) with PTPN11 activating mutation induced monocytic leukemia with a shorter latency in a mouse bone marrow transplantation model. Int J Cancer 2016; 140:1159-1172. [PMID: 27859216 DOI: 10.1002/ijc.30515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023]
Abstract
PTPN11 mutation, a RAS signaling pathway mutation, is associated with MLL translocations in acute leukemia. A girl with MLL/AF10 AML was found to carry PTPN11G503A . To study the impact of PTPN11G503A cooperating with MLL/AF10 on leukemogenesis, we established a retroviral transduction/transplantation mouse model. Compared to the MLL/AF10(OM-LZ) leukemia cells harboring PTPN11wt , the cells harboring PTPN11G503A were hypersensitive to GM-CSF and IL3, and more resistant to death upon treatment with daunorubicin but sensitive to cytarabine. The cells harboring PTPN11G503A autonomously differentiated into macrophages (1.8%) in the medium containing IL3. Further studies showed that the cells had an elevated (∼2.9-fold) Csf1 transcription level and secreted more (∼4.5-fold) M-CSF to the medium which can stimulate monocyte/macrophage differentiation of BM cells. Mice transplanted with the cells harboring PTPN11G503A had a higher concentration of M-CSF in plasma. When mixed with the MLL/AF10(OM-LZ) leukemia cells harboring PTPN11wt , the cells harboring PTPN11G503A had an increased competitive engraftment and clonal expansion in the BM and spleen of recipient mice, although no competitive growth advantage was observed in the in vitro co-culturing assays. The mice transplanted with the MLL/AF10(OM-LZ) cells harboring PTPN11wt developed myelomonocytic leukemia, while those transplanted with the cells harboring PTPN11G503A -induced monocytic leukemia in a shorter latency. Our results demonstrated that addition of PTPN11G503A to MLL/AF10 affected cell proliferation, chemo-resistance, differentiation, in vivo BM recruitment/clonal expansion and accelerated disease progression.
Collapse
Affiliation(s)
- Jen-Fen Fu
- Department of Medical Research, Chang Gung Memorial Hospital, and Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Sung-Tzu Liang
- Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ying-Jung Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kung-Hao Liang
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology, Chang Gung Memorial Hospital and Chang Gung University, Taipei, Taiwan
| | - Der-Cherng Liang
- Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Internal Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
11
|
Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis. Sci Rep 2016; 6:34449. [PMID: 27698462 PMCID: PMC5048141 DOI: 10.1038/srep34449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.
Collapse
|
12
|
Moschiano E, Raca G, Fu C, Pattengale PK, Oberley MJ. Congenital B-lymphoblastic leukemia with a cryptic MLL rearrangement and post-treatment evolution to mixed phenotype acute leukemia. Leuk Res Rep 2016; 6:29-32. [PMID: 27547725 PMCID: PMC4982915 DOI: 10.1016/j.lrr.2016.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/24/2016] [Indexed: 01/26/2023] Open
Abstract
Congenital leukemia is a rare event with a poor prognosis. We report a case of congenital leukemia with a cryptic rearrangement of MLL demonstrable only with RT-PCR. Interestingly, with treatment, the patient showed lineage plasticity of the leukemia with the development of monocytic lineage blasts after presenting with B-cell lineage blasts. This was heralded by the development of a new clonal cytogenetic abnormality. This case highlights the primitive nature of the leukemic cells in congenital leukemia, and emphasizes that RT-PCR for MLL rearrangements may identify a subset of cases which are otherwise negative by karyotyping, FISH, and chromosomal microarrays.
Collapse
Affiliation(s)
- Elizabeth Moschiano
- Veteran Administration Greater Los Angeles Healthcare, West Los Angeles Medical Center, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Cecilia Fu
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Paul K Pattengale
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Mathew J Oberley
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| |
Collapse
|
13
|
Mll-AF4 Confers Enhanced Self-Renewal and Lymphoid Potential during a Restricted Window in Development. Cell Rep 2016; 16:1039-1054. [PMID: 27396339 PMCID: PMC4967476 DOI: 10.1016/j.celrep.2016.06.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/27/2016] [Accepted: 06/09/2016] [Indexed: 01/15/2023] Open
Abstract
MLL-AF4+ infant B cell acute lymphoblastic leukemia is characterized by an early onset and dismal survival. It initiates before birth, and very little is known about the early stages of the disease’s development. Using a conditional Mll-AF4-expressing mouse model in which fusion expression is targeted to the earliest definitive hematopoietic cells generated in the mouse embryo, we demonstrate that Mll-AF4 imparts enhanced B lymphoid potential and increases repopulation and self-renewal capacity during a putative pre-leukemic state. This occurs between embryonic days 12 and 14 and manifests itself most strongly in the lymphoid-primed multipotent progenitor population, thus pointing to a window of opportunity and a potential cell of origin. However, this state alone is insufficient to generate disease, with the mice succumbing to B cell lymphomas only after a long latency. Future analysis of the molecular details of this pre-leukemic state will shed light on additional events required for progression to acute leukemia. Mll-AF4 confers enhanced B cell potential and causes an expansion of pro-B cells Mll-AF4 increases self-renewal potential Mll-AF4 exerts its effects in a restricted developmental window The LMPP is a potential cell of origin for Mll-AF4-associated disease
Collapse
|
14
|
Castaño J, Herrero AB, Bursen A, González F, Marschalek R, Gutiérrez NC, Menendez P. Expression of MLL-AF4 or AF4-MLL fusions does not impact the efficiency of DNA damage repair. Oncotarget 2016; 7:30440-52. [PMID: 27119507 PMCID: PMC5058691 DOI: 10.18632/oncotarget.8938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/30/2022] Open
Abstract
The most frequent rearrangement of the human MLL gene fuses MLL to AF4 resulting in high-risk infant B-cell acute lymphoblastic leukemia (B-ALL). MLL fusions are also hallmark oncogenic events in secondary acute myeloid leukemia. They are a direct consequence of mis-repaired DNA double strand breaks (DNA-DSBs) due to defects in the DNA damage response associated with exposure to topoisomerase-II poisons such as etoposide. It has been suggested that MLL fusions render cells susceptible to additional chromosomal damage upon exposure to etoposide. Conversely, the genome-wide mutational landscape in MLL-rearranged infant B-ALL has been reported silent. Thus, whether MLL fusions compromise the recognition and/or repair of DNA damage remains unanswered. Here, the fusion proteins MLL-AF4 (MA4) and AF4-MLL (A4M) were CRISPR/Cas9-genome edited in the AAVS1 locus of HEK293 cells as a model to study MLL fusion-mediated DNA-DSB formation/repair. Repair kinetics of etoposide- and ionizing radiation-induced DSBs was identical in WT, MA4- and A4M-expressing cells, as revealed by flow cytometry, by immunoblot for γH2AX and by comet assay. Accordingly, no differences were observed between WT, MA4- and A4M-expressing cells in the presence of master proteins involved in non-homologous end-joining (NHEJ; i.e.KU86, KU70), alternative-NHEJ (Alt-NHEJ; i.e.LigIIIa, WRN and PARP1), and homologous recombination (HR, i.e.RAD51). Moreover, functional assays revealed identical NHEJ and HR efficiency irrespective of the genotype. Treatment with etoposide consistently induced cell cycle arrest in S/G2/M independent of MA4/A4M expression, revealing a proper activation of the DNA damage checkpoints. Collectively, expression of MA4 or A4M does neither influence DNA signaling nor DNA-DSB repair.
Collapse
Affiliation(s)
- Julio Castaño
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Ana B. Herrero
- Hematology Department, University Hospital of Salamanca, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Aldeheid Bursen
- Institute Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | | | - Rolf Marschalek
- Institute Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Norma C. Gutiérrez
- Hematology Department, University Hospital of Salamanca, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
15
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia. Blood 2015; 126:2676-85. [PMID: 26463423 DOI: 10.1182/blood-2015-09-667378] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Infant B-cell acute lymphoblastic leukemia (B-ALL) accounts for 10% of childhood ALL. The genetic hallmark of most infant B-ALL is chromosomal rearrangements of the mixed-lineage leukemia (MLL) gene. Despite improvement in the clinical management and survival (∼85-90%) of childhood B-ALL, the outcome of infants with MLL-rearranged (MLL-r) B-ALL remains dismal, with overall survival <35%. Among MLL-r infant B-ALL, t(4;11)+ patients harboring the fusion MLL-AF4 (MA4) display a particularly poor prognosis and a pro-B/mixed phenotype. Studies in monozygotic twins and archived blood spots have provided compelling evidence of a single cell of prenatal origin as the target for MA4 fusion, explaining the brief leukemia latency. Despite its aggressiveness and short latency, current progress on its etiology, pathogenesis, and cellular origin is limited as evidenced by the lack of mouse/human models recapitulating the disease phenotype/latency. We propose this is because infant cancer is from an etiologic and pathogenesis standpoint distinct from adult cancer and should be seen as a developmental disease. This is supported by whole-genome sequencing studies suggesting that opposite to the view of cancer as a "multiple-and-sequential-hit" model, t(4;11) alone might be sufficient to spawn leukemia. The stable genome of these patients suggests that, in infant developmental cancer, one "big-hit" might be sufficient for overt disease and supports a key contribution of epigenetics and a prenatal cell of origin during a critical developmental window of stem cell vulnerability in the leukemia pathogenesis. Here, we revisit the biology of t(4;11)+ infant B-ALL with an emphasis on its origin, genetics, and disease models.
Collapse
|
17
|
Barbosa TC, Terra-Granado E, Quezado Magalhães IM, Neves GR, Gadelha A, Guedes Filho GE, Souza MS, Melaragno R, Emerenciano M, Pombo-de-Oliveira MS. Frequency of copy number abnormalities in common genes associated with B-cell precursor acute lymphoblastic leukemia cytogenetic subtypes in Brazilian children. Cancer Genet 2015; 208:492-501. [PMID: 26277549 DOI: 10.1016/j.cancergen.2015.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/08/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
Copy number alterations (CNAs) in genes committed to B-cell precursors have been associated with poor survival in subgroups of patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We investigated submicroscopic alterations in a series of 274 Brazilian children with BCP-ALL by multiplex ligation-dependent probe amplification and evaluated their correlation with clinical and laboratory features. The relevance of overlapping CNA abnormalities was also explored. Deletions/amplifications in at least one gene were identified in 83% of the total series. In children older than 2 years, there was a predominance of CNAs involving deletions in IKZF1, CDKN2A, and CDKN2B, whereas the pseudoautosomal region 1 (PAR1) had deletions that were found more frequently in infants (P <0.05). Based on the cytogenetic subgroups, favorable cytogenetic subgroups showed more deletions than other subgroups that occurred simultaneously, specifically ETV6 deletions (P <0.05). TCF3-PBX1 was frequently deleted in RB1, and an absence of deletions was observed in IKZF1 and genes localized to the PAR1 region. The results corroborate with previous genome-wide studies and aggregate new markers for risk stratification of BCP-ALL in Brazil.
Collapse
Affiliation(s)
- Thayana Conceição Barbosa
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Eugenia Terra-Granado
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Mariana Emerenciano
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Andersson AK, Ma J, Wang J, Chen X, Gedman AL, Dang J, Nakitandwe J, Holmfeldt L, Parker M, Easton J, Huether R, Kriwacki R, Rusch M, Wu G, Li Y, Mulder H, Raimondi S, Pounds S, Kang G, Shi L, Becksfort J, Gupta P, Payne-Turner D, Vadodaria B, Boggs K, Yergeau D, Manne J, Song G, Edmonson M, Nagahawatte P, Wei L, Cheng C, Pei D, Sutton R, Venn NC, Chetcuti A, Rush A, Catchpoole D, Heldrup J, Fioretos T, Lu C, Ding L, Pui CH, Shurtleff S, Mullighan CG, Mardis ER, Wilson RK, Gruber TA, Zhang J, Downing JR. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet 2015; 47:330-7. [PMID: 25730765 PMCID: PMC4553269 DOI: 10.1038/ng.3230] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/02/2015] [Indexed: 12/13/2022]
Abstract
Infant acute lymphoblastic leukemia (ALL) with MLL rearrangements (MLL-R) represents a distinct leukemia with a poor prognosis. To define its mutational landscape, we performed whole genome, exome, RNA and targeted DNA sequencing on 65 infants (47 MLL-R and 18 non-MLL-R) and 20 older children (MLL-R cases) with leukemia. Our data demonstrated infant MLL-R ALL to have one of the lowest frequencies of somatic mutations of any sequenced cancer, with the predominant leukemic clone carrying a mean of 1.3 non-silent mutations. Despite the paucity of mutations, activating mutations in kinase/PI3K/RAS signaling pathways were detected in 47%. Surprisingly, however, these mutations were often sub-clonal and frequently lost at relapse. In contrast to infant cases, MLL-R leukemia in older children had more somatic mutations (a mean of 6.5/case versus 1.3/case, P=7.15×10−5) and contained frequent mutations (45%) in epigenetic regulators, a category of genes that with the exception of MLL was rarely mutated in infant MLL-R ALL.
Collapse
Affiliation(s)
- Anna K Andersson
- 1] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Clinical Genetics, Lund University, Lund, Sweden
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jianmin Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Amanda Larson Gedman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jinjun Dang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Joy Nakitandwe
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Linda Holmfeldt
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew Parker
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John Easton
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert Huether
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Heather Mulder
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Susana Raimondi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jared Becksfort
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Pankaj Gupta
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bhavin Vadodaria
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kristy Boggs
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Donald Yergeau
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jayanthi Manne
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michael Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Panduka Nagahawatte
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lei Wei
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rosemary Sutton
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicola C Venn
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Albert Chetcuti
- Tumor Bank, Children's Cancer Research Unit, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Amanda Rush
- Tumor Bank, Children's Cancer Research Unit, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Daniel Catchpoole
- Tumor Bank, Children's Cancer Research Unit, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Jesper Heldrup
- Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Lund University, Lund, Sweden
| | - Charles Lu
- 1] Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA. [2] Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Li Ding
- 1] Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA. [2] Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ching-Hon Pui
- 1] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sheila Shurtleff
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Elaine R Mardis
- 1] Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA. [2] Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Richard K Wilson
- 1] Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA. [2] Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Tanja A Gruber
- 1] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
19
|
Hu Y, Duan Q, Chen Y, Yao L, Chen Z, Li K, Sun W. A Novel Multiplex RT-PCR Assay for the Detection of Four Chromosomal Translocations of Leukemia. Genet Test Mol Biomarkers 2014; 18:810-9. [PMID: 25387311 DOI: 10.1089/gtmb.2014.0243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yingxi Hu
- 1 Laboratory of Molecular Diagnostics, College of Pharmaceutical Sciences, Soochow University , Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement. Leukemia 2014; 29:38-50. [PMID: 24798483 DOI: 10.1038/leu.2014.154] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 12/14/2022]
Abstract
Distinct from other forms of acute lymphoblastic leukemia (ALL), infant ALL with mixed lineage leukemia (MLL) gene rearrangement, the most common leukemia occurring within the first year of life, might arise without the need for cooperating genetic lesions. Through Ig/TCR rearrangement analysis of MLL-AF4+ infant ALL at diagnosis and xenograft leukemias from mice transplanted with the same diagnostic samples, we established that MLL-AF4+ infant ALL is composed of a branching subclonal architecture already at diagnosis, frequently driven by an Ig/TCR-rearranged founder clone. Some MLL-AF4+ clones appear to be largely quiescent at diagnosis but can reactivate and dominate when serially transplanted into immunodeficient mice, whereas other dominant clones at diagnosis can become more quiescent, suggesting a dynamic competition between actively proliferating and quiescent subclones. Investigation of paired diagnostic and relapse samples suggested that relapses often occur from subclones already present but more quiescent at diagnosis. Copy-number alterations identified at relapse might contribute to the activation and expansion of previously quiescent subclones. Finally, each of the identified subclones is able to contribute to the diverse phenotypic pool of MLL-AF4+ leukemia-propagating cells. Unraveling of the subclonal architecture and dynamics in MLL+ infant ALL may provide possible explanations for the therapy resistance and frequent relapses observed in this group of poor prognosis ALL.
Collapse
|
21
|
Montes R, Ayllón V, Prieto C, Bursen A, Prelle C, Romero-Moya D, Real PJ, Navarro-Montero O, Chillón C, Marschalek R, Bueno C, Menendez P. Ligand-independent FLT3 activation does not cooperate with MLL-AF4 to immortalize/transform cord blood CD34+ cells. Leukemia 2013; 28:666-74. [PMID: 24240202 DOI: 10.1038/leu.2013.346] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 10/18/2013] [Accepted: 11/08/2013] [Indexed: 01/11/2023]
Abstract
MLL-AF4 fusion is hallmark in high-risk infant pro-B-acute lymphoblastic leukemia (pro-B-ALL). Our limited understanding of MLL-AF4-mediated transformation reflects the absence of human models reproducing this leukemia. Hematopoietic stem/progenitor cells (HSPCs) constitute likely targets for transformation. We previously reported that MLL-AF4 enhanced hematopoietic engraftment and clonogenic potential in cord blood (CB)-derived CD34+ HSPCs but was not sufficient for leukemogenesis, suggesting that additional oncogenic lesions are required for MLL-AF4-mediated transformation. MLL-AF4+ pro-B-ALL display enormous levels of FLT3, and occasionally FLT3-activating mutations, thus representing a candidate cooperating event in MLL-AF4+ pro-B-ALL. We have explored whether FLT3.TKD (tyrosine kinase domain) mutation or increased expression of FLT3.WT (wild type) cooperates with MLL-AF4 to immortalize/transform CB-CD34+ HSPCs. In vivo, FLT3.TKD/FLT3.WT alone, or in combination with MLL-AF4, enhances hematopoietic repopulating function of CB-CD34+ HSPCs without impairing migration or hematopoietic differentiation. None of the animals transplanted with MLL-AF4+FLT3.TKD/WT-CD34+ HSPCs showed any sign of disease after 16 weeks. In vitro, enforced expression of FLT3.TKD/FLT3.WT conveys a transient overexpansion of MLL-AF4-expressing CD34+ HSPCs associated to higher proportion of cycling cells coupled to lower apoptotic levels, but does not augment clonogenic potential nor confer stable replating. Together, FLT3 activation does not suffice to immortalize/transform MLL-AF4-expressing CB-CD34+ HSPCs, suggesting the need of alternative (epi)-genetic cooperating oncogenic lesions.
Collapse
Affiliation(s)
- R Montes
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - V Ayllón
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - C Prieto
- 1] GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain [2] Faculty of Medicine, Department of Stem Cells, Development and Cancer, Cell Therapy Program of the University of Barcelona, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - A Bursen
- Institute of Pharmaceutical Biology/ZAFES/DCAL, Goethe-University of Frankfurt, Biocenter, Frankfurt, Germany
| | - C Prelle
- Institute of Pharmaceutical Biology/ZAFES/DCAL, Goethe-University of Frankfurt, Biocenter, Frankfurt, Germany
| | - D Romero-Moya
- 1] GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain [2] Faculty of Medicine, Department of Stem Cells, Development and Cancer, Cell Therapy Program of the University of Barcelona, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - P J Real
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - O Navarro-Montero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - C Chillón
- Hospital Universitario de Salamanca, Servicio de Hematología, Salamanca, Spain
| | - R Marschalek
- Institute of Pharmaceutical Biology/ZAFES/DCAL, Goethe-University of Frankfurt, Biocenter, Frankfurt, Germany
| | - C Bueno
- 1] GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain [2] Faculty of Medicine, Department of Stem Cells, Development and Cancer, Cell Therapy Program of the University of Barcelona, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - P Menendez
- 1] GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain [2] Faculty of Medicine, Department of Stem Cells, Development and Cancer, Cell Therapy Program of the University of Barcelona, Josep Carreras Leukemia Research Institute, Barcelona, Spain [3] Instituciò Catalana de Reserca i Estudis Avançats (ICREA)
| |
Collapse
|
22
|
Dobbins SE, Sherborne AL, Ma YP, Bardini M, Biondi A, Cazzaniga G, Lloyd A, Chubb D, Greaves MF, Houlston RS. The silent mutational landscape of infant MLL-AF4 pro-B acute lymphoblastic leukemia. Genes Chromosomes Cancer 2013; 52:954-60. [PMID: 23893660 DOI: 10.1002/gcc.22090] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/17/2013] [Indexed: 01/20/2023] Open
Abstract
Over 90% of infants (< 1-year-old) diagnosed with leukemia have pro-B acute lymphoblastic leukemia (ALL) containing the MLL-AF4 fusion. When compared with other forms of paediatric ALL affecting later B-cell differentiation, MLL-AF4 pro-B is associated with a dismal prognosis with a typical 5-year disease-free survival of <20%. MLL-AF4 may be sufficient on its own for leukemogenesis or the gene-fusion product may alternatively predispose transformed cells to global genetic instability, enhancing the acquisition of additional key mutations. To gain insight into the genomic landscape of infant MLL-AF4 pro-B ALL we performed whole genome sequencing of diagnostic leukemic blasts and matched germline samples from three MLL-AF4 pro-B ALL infants. Our analysis revealed few somatic changes (copy number abnormalities, loss of heterozygosity, or single nucleotide variants), demonstrating that only a very small number of mutations are necessary to generate infant MLL-leukemia.
Collapse
Affiliation(s)
- Sara E Dobbins
- Molecular and Population Genetics, Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Marks DI, Moorman AV, Chilton L, Paietta E, Enshaie A, DeWald G, Harrison CJ, Fielding AK, Foroni L, Goldstone AH, Litzow MR, Luger SM, McMillan AK, Racevskis J, Rowe JM, Tallman MS, Wiernik P, Lazarus HM. The clinical characteristics, therapy and outcome of 85 adults with acute lymphoblastic leukemia and t(4;11)(q21;q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial. Haematologica 2013; 98:945-52. [PMID: 23349309 PMCID: PMC3669452 DOI: 10.3324/haematol.2012.081877] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/11/2013] [Indexed: 12/28/2022] Open
Abstract
The biology and outcome of adult t(4;11)(q21;q23)/MLL-AFF1 acute lymphoblastic leukemia are poorly understood. We describe the outcome and delineate prognostic factors and optimal post-remission therapy in 85 consecutive patients (median age 38 years) treated uniformly in the prospective trial UKALLXII/ECOG2993. The immunophenotype of this leukemia was pro-B (CD10(NEG)). Immaturity was further suggested by high expression of the stem-cell antigens, CD133 and CD135, although CD34 expression was significantly lower than in t(4;11)-negative patients. Complete remission was achieved in 77 (93%) patients but only 35% survived 5 years (95% CI: 25-45%); the relapse rate was 45% (95% CI: 33-58%). Thirty-one patients underwent allogeneic transplantation in first remission (15 sibling donors and 16 unrelated donors): with 5-year survival rates of 56% and 67% respectively, only 2/31 patients relapsed. This compares with a 24% survival rate and 59% relapse rate in 46 patients who received post-remission chemotherapy. A major determinant of outcome was age with 71% of patients aged <25 years surviving. Younger patients had lower relapse rates (19%) but most received allografts in first complete remission. In conclusion, multivariate analysis did not demonstrate an advantage of allografting over chemotherapy but only five younger patients received chemotherapy. Prospective trials are required to determine whether poor outcomes in older patients can be improved by reduced-intensity conditioning allografts. NCT00002514 www.clinicaltrials.gov.
Collapse
Affiliation(s)
- David I Marks
- Adult BMT Unit, University Hospitals Bristol NHS Foundation Trust, Bristol, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in childhood, accounting for almost 30% of pediatric cancers. Despite the high rate of cure, ALL is one of the leading causes of death in children with tumor. For this reason, there is a keen interest in identifying genetic and biological features that influence the pathogenesis of ALL and the risk of treatment failure. The application of standard diagnostic technologies such as a conventional karyotype and polymerase chain reaction methodologies, together with gene expression profiling and genome-wide analyses, allows us to genetically characterize almost 100% of children with ALL. This review provides basic information about well-established genetic alterations associated with specific clinical subtypes and new molecular lesions with potential prognostic impact. New insights are reported on the natural history of ALL. Genetic aberrations in childhood ALL are considered both markers of disease and potential targets of treatment. Here, each biological subtype under the genetic point of view has been dissected, including genes involved in the development of lymphocytes and considerations on ALL in infancy. It is also crucial to discuss the issue of relapse. Finally, as future treatment will be individualized on the basis of biological features, the pediatric hemato-oncologists need to be ready and prepared to tailor the "right treatment" to the "right children" with ALL.
Collapse
|
25
|
FLT3 activation cooperates with MLL-AF4 fusion protein to abrogate the hematopoietic specification of human ESCs. Blood 2013; 121:3867-78, S1-3. [PMID: 23479570 DOI: 10.1182/blood-2012-11-470146] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mixed-lineage leukemia (MLL)-AF4 fusion arises prenatally in high-risk infant acute pro-B-lymphoblastic leukemia (pro-B-ALL). In human embryonic stem cells (hESCs), MLL-AF4 skewed hematoendothelial specification but was insufficient for transformation, suggesting that additional oncogenic insults seem required for MLL-AF4-mediated transformation. MLL-AF4+ pro-B-ALL expresses enormous levels of FLT3, occasionally because of activating mutations, thus representing a candidate cooperating event in MLL-AF4+ pro-B-ALL. Here, we explored the developmental impact of FLT3 activation alone, or together with MLL-AF4, in the hematopoietic fate of hESCs. FLT3 activation does not affect specification of hemogenic precursors but significantly enhances the formation of CD45(+) blood cells, and CD45(+)CD34(+) blood progenitors with clonogenic potential. However, overexpression of FLT3 mutations or wild-type FLT3 (FLT3-WT) completely abrogates hematopoietic differentiation from MLL-AF4-expressing hESCs, indicating that FLT3 activation cooperates with MLL-AF4 to inhibit human embryonic hematopoiesis. Cell cycle/apoptosis analyses suggest that FLT3 activation directly affects hESC specification rather than proliferation or survival of hESC-emerging hematopoietic derivatives. Transcriptional profiling of hESC-derived CD45(+) cells supports the FLT3-mediated inhibition of hematopoiesis in MLL-AF4-expressing hESCs, which is associated with large transcriptional changes and downregulation of genes involved in hematopoietic system development and function. Importantly, FLT3 activation does not cooperate with MLL-AF4 to immortalize/transform hESC-derived hematopoietic cells, suggesting the need of alternative (epi)-genetic cooperating hits.
Collapse
|
26
|
Casolaro A, Golay J, Albanese C, Ceruti R, Patton V, Cribioli S, Pezzoni A, Losa M, Texido G, Giussani U, Marchesi F, Amboldi N, Valsasina B, Bungaro S, Cazzaniga G, Rambaldi A, Introna M, Pesenti E, Alzani R. The Polo-Like Kinase 1 (PLK1) inhibitor NMS-P937 is effective in a new model of disseminated primary CD56+ acute monoblastic leukaemia. PLoS One 2013; 8:e58424. [PMID: 23520509 PMCID: PMC3592825 DOI: 10.1371/journal.pone.0058424] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/06/2013] [Indexed: 11/29/2022] Open
Abstract
CD56 is expressed in 15-20% of acute myeloid leukaemias (AML) and is associated with extramedullary diffusion, multidrug resistance and poor prognosis. We describe the establishment and characterisation of a novel disseminated model of AML (AML-NS8), generated by injection into mice of leukaemic blasts freshly isolated from a patient with an aggressive CD56(+) monoblastic AML (M5a). The model reproduced typical manifestations of this leukaemia, including presence of extramedullary masses and central nervous system involvement, and the original phenotype, karyotype and genotype of leukaemic cells were retained in vivo. Recently Polo-Like Kinase 1 (PLK1) has emerged as a new candidate drug target in AML. We therefore tested our PLK1 inhibitor NMS-P937 in this model either in the engraftment or in the established disease settings. Both schedules showed good efficacy compared to standard therapies, with a significant increase in median survival time (MST) expecially in the established disease setting (MST = 28, 36, 62 days for vehicle, cytarabine and NMS-P937, respectively). Importantly, we could also demonstrate that NMS-P937 induced specific biomarker modulation in extramedullary tissues. This new in vivo model of CD56(+) AML that recapitulates the human tumour lends support for the therapeutic use of PLK1 inhibitors in AML.
Collapse
MESH Headings
- Adult
- Animals
- CD56 Antigen
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/enzymology
- Neoplasms, Experimental/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Pyrazoles/pharmacology
- Quinazolines/pharmacology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Polo-Like Kinase 1
Collapse
Affiliation(s)
| | - Josee Golay
- Laboratory of Cellular Therapy “G. Lanzani”, USC Haematology, Ospedali Riuniti, Bergamo, Italy
| | - Clara Albanese
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| | - Roberta Ceruti
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| | - Veronica Patton
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| | | | - Alice Pezzoni
- Department of Oncology and Haematology, Istituto Clinico Humanitas, Rozzano, Milano, Italy
| | - Marco Losa
- Pathology, Fondazione Filarete, Milano, Italy
| | - Gemma Texido
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| | - Ursula Giussani
- Department of Medical Genetics, Ospedali Riuniti, Bergamo, Italy
| | | | - Nadia Amboldi
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| | | | - Silvia Bungaro
- Tettamanti Research Center, Pediatric Clinic, University of Milano–Bicocca, Monza, Italy
| | - Gianni Cazzaniga
- Tettamanti Research Center, Pediatric Clinic, University of Milano–Bicocca, Monza, Italy
| | - Alessandro Rambaldi
- Laboratory of Cellular Therapy “G. Lanzani”, USC Haematology, Ospedali Riuniti, Bergamo, Italy
| | - Martino Introna
- Laboratory of Cellular Therapy “G. Lanzani”, USC Haematology, Ospedali Riuniti, Bergamo, Italy
| | - Enrico Pesenti
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| | - Rachele Alzani
- Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy
| |
Collapse
|
27
|
Wilkinson A, Ballabio E, Geng H, North P, Tapia M, Kerry J, Biswas D, Roeder R, Allis C, Melnick A, de Bruijn M, Milne T. RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep 2013; 3:116-27. [PMID: 23352661 PMCID: PMC3607232 DOI: 10.1016/j.celrep.2012.12.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/08/2012] [Accepted: 12/26/2012] [Indexed: 12/22/2022] Open
Abstract
The Mixed Lineage Leukemia (MLL) protein is an important epigenetic regulator required for the maintenance of gene activation during development. MLL chromosomal translocations produce novel fusion proteins that cause aggressive leukemias in humans. Individual MLL fusion proteins have distinct leukemic phenotypes even when expressed in the same cell type, but how this distinction is delineated on a molecular level is poorly understood. Here, we highlight a unique molecular mechanism whereby the RUNX1 gene is directly activated by MLL-AF4 and the RUNX1 protein interacts with the product of the reciprocal AF4-MLL translocation. These results support a mechanism of transformation whereby two oncogenic fusion proteins cooperate by activating a target gene and then modulating the function of its downstream product.
Collapse
Affiliation(s)
- Adam C. Wilkinson
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Erica Ballabio
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Huimin Geng
- Departments of Medicine/Hematology and Oncology Division, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Phillip North
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Marta Tapia
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jon Kerry
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Debabrata Biswas
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Ari Melnick
- Departments of Medicine/Hematology and Oncology Division, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Marella F.T.R. de Bruijn
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Thomas A. Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
28
|
Bødker J, Gyrup C, Johansen P, Schmitz A, Madsen J, Johnsen H, Bøgsted M, Dybkær K, Nyegaard M. Performance Comparison of Affymetrix SNP6.0 and Cytogenetic 2.7M Whole-Genome Microarrays in Complex Cancer Samples. Cytogenet Genome Res 2012. [DOI: 10.1159/000345125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Ballabio E, Milne TA. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis. Cancers (Basel) 2012; 4:904-44. [PMID: 24213472 PMCID: PMC3712720 DOI: 10.3390/cancers4030904] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 01/20/2023] Open
Abstract
Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.
Collapse
Affiliation(s)
- Erica Ballabio
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital Headington, Oxford OX3 9DS, UK.
| | | |
Collapse
|
30
|
Chillón MC, Gómez-Casares MT, López-Jorge CE, Rodriguez-Medina C, Molines A, Sarasquete ME, Alcoceba M, Miguel JDGS, Bueno C, Montes R, Ramos F, Rodríguez JN, Giraldo P, Ramírez M, García-Delgado R, Fuster JL, González-Díaz M, Menendez P. Prognostic significance of FLT3 mutational status and expression levels in MLL-AF4+ and MLL-germline acute lymphoblastic leukemia. Leukemia 2012; 26:2360-6. [DOI: 10.1038/leu.2012.161] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Kotecha RS, Ford J, Beesley AH, Anderson D, Cole CH, Kees UR. Molecular characterization of identical, novel MLL-EPS15 translocation and individual genomic copy number alterations in monozygotic infant twins with acute lymphoblastic leukemia. Haematologica 2012; 97:1447-50. [PMID: 22581003 DOI: 10.3324/haematol.2012.065730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Rishi S Kotecha
- Department of Haematology and Oncology, Princess Margaret Hospital for Children, GPO Box D184, Perth, Western Australia.
| | | | | | | | | | | |
Collapse
|
32
|
Marschalek R. [Translocations of the MLL gene: New insights into high-risk leukemia]. PHARMAZIE IN UNSERER ZEIT 2012; 41:196-200. [PMID: 22844666 DOI: 10.1002/pauz.201200468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Rolf Marschalek
- Universität Frankfurt, Institut für Pharmazeutische Biologie, Frankfurt am Main.
| |
Collapse
|
33
|
Kotecha RS, Murch A, Kees U, Cole CH. Pre-natal, clonal origin of t(1;11)(p32;q23) acute lymphoblastic leukemia in monozygotic twins. Leuk Res 2012; 36:46-50. [DOI: 10.1016/j.leukres.2011.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 11/29/2022]
|
34
|
Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children's Oncology Group study. Blood 2011; 119:1872-81. [PMID: 22210879 DOI: 10.1182/blood-2011-10-382861] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gene expression profiling was performed on 97 cases of infant ALL from Children's Oncology Group Trial P9407. Statistical modeling of an outcome predictor revealed 3 genes highly predictive of event-free survival (EFS), beyond age and MLL status: FLT3, IRX2, and TACC2. Low FLT3 expression was found in a group of infants with excellent outcome (n = 11; 5-year EFS of 100%), whereas differential expression of IRX2 and TACC2 partitioned the remaining infants into 2 groups with significantly different survivals (5-year EFS of 16% vs 64%; P < .001). When infants with MLL-AFF1 were analyzed separately, a 7-gene classifier was developed that split them into 2 distinct groups with significantly different outcomes (5-year EFS of 20% vs 65%; P < .001). In this classifier, elevated expression of NEGR1 was associated with better EFS, whereas IRX2, EPS8, and TPD52 expression were correlated with worse outcome. This classifier also predicted EFS in an independent infant ALL cohort from the Interfant-99 trial. When evaluating expression profiles as a continuous variable relative to patient age, we further identified striking differences in profiles in infants less than or equal to 90 days of age and those more than 90 days of age. These age-related patterns suggest different mechanisms of leukemogenesis and may underlie the differential outcomes historically seen in these age groups.
Collapse
|
35
|
van der Veken LT, Buijs A. Array CGH in human leukemia: from somatics to genetics. Cytogenet Genome Res 2011; 135:260-70. [PMID: 21893961 DOI: 10.1159/000330629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During the past decade, array CGH has been applied to study copy number alterations in the genome in human leukemia in relation to prediction of prognosis or responsiveness to therapy. In the first segment of this review, we will focus on the identification of acquired mutations by array CGH, followed by studies on the pathogenesis of leukemia associated with germline genetic variants, phenotypic presentation and response to treatment. In the last section, we will discuss constitutional genomic aberrations causally related to myeloid leukemogenesis.
Collapse
Affiliation(s)
- L T van der Veken
- Section of Genome Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
36
|
Enforced expression of MLL-AF4 fusion in cord blood CD34+ cells enhances the hematopoietic repopulating cell function and clonogenic potential but is not sufficient to initiate leukemia. Blood 2011; 117:4746-58. [PMID: 21389315 DOI: 10.1182/blood-2010-12-322230] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infant acute lymphoblastic leukemia harboring the fusion mixed-lineage leukemia (MLL)-AF4 is associated with a dismal prognosis and very brief latency. Our limited understanding of transformation by MLL-AF4 is reflected in murine models, which do not accurately recapitulate the human disease. Human models for MLL-AF4 disease do not exist. Hematopoietic stem or progenitor cells (HSPCs) represent probable targets for transformation. Here, we explored in vitro and in vivo the impact of the enforced expression of MLL-AF4 in human cord blood-derived CD34(+) HSPCs. Intrabone marrow transplantation into NOD/SCID-IL2Rγ(-/-) mice revealed an enhanced multilineage hematopoietic engraftment, efficiency, and homing to other hematopoietic sites on enforced expression of MLL-AF4. Lentiviral transduction of MLL-AF4 into CD34(+) HSPCs increased the in vitro clonogenic potential of CD34(+) progenitors and promoted their proliferation. Consequently, cell cycle and apoptosis analyses suggest that MLL-AF4 conveys a selective proliferation coupled to a survival advantage, which correlates with changes in the expression of genes involved in apoptosis, sensing DNA damage and DNA repair. However, MLL-AF4 expression was insufficient to initiate leukemogenesis on its own, indicating that either additional hits (or reciprocal AF4-MLL product) may be required to initiate ALL or that cord blood-derived CD34(+) HSPCs are not the appropriate cellular target for MLL-AF4-mediated ALL.
Collapse
|