1
|
Chen LM, Chai KX. Exosome-Mediated Activation of the Prostasin-Matriptase Serine Protease Cascade in B Lymphoma Cells. Cancers (Basel) 2023; 15:3848. [PMID: 37568664 PMCID: PMC10417574 DOI: 10.3390/cancers15153848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Prostasin and matriptase are extracellular membrane serine proteases with opposing effects in solid epithelial tumors. Matriptase is an oncoprotein that promotes tumor initiation and progression, and prostasin is a tumor suppressor that reduces tumor invasion and metastasis. Previous studies have shown that a subgroup of Burkitt lymphoma have high levels of ectopic matriptase expression but no prostasin. Reducing the matriptase level via small interfering RNAs in B lymphoma cells impeded tumor xenograft growth in mice. Here, we report a novel approach to matriptase regulation in B cancer cells by prostasin via exosomes to initiate a prostasin-matriptase protease activation cascade. The activation and shedding of matriptase were monitored by measuring its quantity and trypsin-like serine protease activity in conditioned media. Sustained activation of the protease cascade in the cells was achieved by the stable expression of prostasin. The B cancer cells with prostasin expression presented phenotypes consistent with its tumor suppressor role, such as reduced growth and increased apoptosis. Prostasin exosomes could be developed as an agent to initiate the prostasin-matriptase cascade for treating B lymphoma with further studies in animal models.
Collapse
Affiliation(s)
- Li-Mei Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Karl X. Chai
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
2
|
Xia J, Hou Y, Cai A, Xu Y, Yang W, Huang M, Mou S. An integrated co-expression network analysis reveals novel genetic biomarkers for immune cell infiltration in chronic kidney disease. Front Immunol 2023; 14:1129524. [PMID: 36875100 PMCID: PMC9981626 DOI: 10.3389/fimmu.2023.1129524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Background Chronic kidney disease (CKD) is characterized by persistent damage to kidney function or structure. Progression to end-stage leads to adverse effects on multiple systems. However, owing to its complex etiology and long-term cause, the molecular basis of CKD is not completely known. Methods To dissect the potential important molecules during the progression, based on CKD databases from Gene Expression Omnibus, we used weighted gene co-expression network analysis (WGCNA) to identify the key genes in kidney tissues and peripheral blood mononuclear cells (PBMC). Correlation analysis of these genes with clinical relevance was evaluated based on Nephroseq. Combined with a validation cohort and receiver operating characteristic curve (ROC), we found the candidate biomarkers. The immune cell infiltration of these biomarkers was evaluated. The expression of these biomarkers was further detected in folic acid-induced nephropathy (FAN) murine model and immunohistochemical staining. Results In total, eight genes (CDCP1, CORO1C, DACH1, GSTA4, MAFB, TCF21, TGFBR3, and TGIF1) in kidney tissue and six genes (DDX17, KLF11, MAN1C1, POLR2K, ST14, and TRIM66) in PBMC were screened from co-expression network. Correlation analysis of these genes with serum creatinine levels and estimated glomerular filtration rate from Nephroseq showed a well clinical relevance. Validation cohort and ROC identified TCF21, DACH1 in kidney tissue and DDX17 in PBMC as biomarkers for the progression of CKD. Immune cell infiltration analysis revealed that DACH1 and TCF21 were correlated with eosinophil, activated CD8 T cell, activated CD4 T cell, while the DDX17 was correlated with neutrophil, type-2 T helper cell, type-1 T helper cell, mast cell, etc. FAN murine model and immunohistochemical staining confirmed that these three molecules can be used as genetic biomarkers to distinguish CKD patients from healthy people. Moreover, the increase of TCF21 in kidney tubules might play important role in the CKD progression. Discussion We identified three promising genetic biomarkers which could play important roles in the progression of CKD.
Collapse
Affiliation(s)
- Jia Xia
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anxiang Cai
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
The serine protease matriptase inhibits migration and proliferation in multiple myeloma cells. Oncotarget 2022; 13:1175-1186. [PMID: 36268559 PMCID: PMC9584456 DOI: 10.18632/oncotarget.28300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable malignancy of plasma cells. The serine protease matriptase is frequently dysregulated in human carcinomas, which facilitates tumor progression and metastatic dissemination. The importance of matriptase in hematological malignancies is yet to be clarified. In this study, we aimed to characterize the role of matriptase in MM. MATERIALS AND METHODS mRNA expression of matriptase and its inhibitors hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2 was studied in primary MM cells from patient samples and human myeloma cell lines (HMCLs). We further investigated the effect of matriptase on migration and proliferation of myeloma cells in vitro. By use of the CoMMpass database, we assessed the clinical relevance of matriptase in MM patients. RESULTS Matriptase was expressed in 96% of patient samples and all HMCLs tested. Overexpression of matriptase in vitro reduced proliferation, and significantly decreased cytokine-induced migration. Conversely, matriptase knockdown significantly enhanced migration. Mechanistically, overexpression of matriptase inhibited activation of Src kinase. CONCLUSIONS Our findings may suggest a novel role of matriptase as a tumor suppressor in MM pathogenesis.
Collapse
|
4
|
Chiu YL, Wu YY, Barndt RB, Lin YW, Sytwo HP, Cheng A, Yang K, Chan KS, Wang JK, Johnson MD, Lin CY. Differential subcellular distribution renders HAI-2 a less effective protease inhibitor than HAI-1 in the control of extracellular matriptase proteolytic activity. Genes Dis 2020; 9:1049-1061. [PMID: 35685459 PMCID: PMC9170578 DOI: 10.1016/j.gendis.2020.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/02/2020] [Indexed: 01/09/2023] Open
|
5
|
Saberi Hosnijeh F, van der Straten L, Kater AP, van Oers MHJ, Posthuma WFM, Chamuleau MED, Bellido M, Doorduijn JK, van Gelder M, Hoogendoorn M, de Boer F, Te Raa GD, Kerst JM, Marijt EWA, Raymakers RAP, Koene HR, Schaafsma MR, Dobber JA, Tonino SH, Kersting SS, Langerak AW, Levin MD. Proteomic markers with prognostic impact on outcome of chronic lymphocytic leukemia patients under chemo-immunotherapy: results from the HOVON 109 study. Exp Hematol 2020; 89:55-60.e6. [PMID: 32781097 DOI: 10.1016/j.exphem.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Despite recent identification of several prognostic markers, there is still a need for new prognostic parameters able to predict clinical outcome in chronic lymphocytic leukemia (CLL) patients. Here, we aimed to validate the prognostic ability of known (proteomic) markers measured pretreatment and to search for new proteomic markers that might be related to treatment response in CLL. To this end, baseline serum samples of 51 CLL patients treated with chemo-immunotherapy were analyzed for 360 proteomic markers, using Olink technology. Median event-free survival (EFS) was 23 months (range: 1.25-60.9). Patients with high levels of sCD23 (>11.27, p = 0.026), sCD27 (>11.03, p = 0.04), SPINT1 (>1.6, p = 0.001), and LY9 (>8.22, p = 0.0003) had a shorter EFS than those with marker levels below the median. The effect of sCD23 on EFS differed between immunoglobulin heavy chain variable gene-mutated and unmutated patients, with the shortest EFS for unmutated CLL patients with sCD23 levels above the median. Taken together, our results validate the prognostic impact of sCD23 and highlight SPINT1 and LY9 as possible promising markers for treatment response in CLL patients.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Chlorambucil
- Disease-Free Survival
- Female
- Gene Expression
- Humans
- Immunoglobulin Heavy Chains/blood
- Immunoglobulin Heavy Chains/genetics
- Immunotherapy/methods
- Lenalidomide
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Middle Aged
- Mutation
- Prognosis
- Proteinase Inhibitory Proteins, Secretory/blood
- Proteinase Inhibitory Proteins, Secretory/genetics
- Proteomics/methods
- Receptors, IgE/blood
- Receptors, IgE/genetics
- Rituximab
- Signaling Lymphocytic Activation Molecule Family/blood
- Signaling Lymphocytic Activation Molecule Family/genetics
- Treatment Outcome
- Tumor Necrosis Factor Receptor Superfamily, Member 7/blood
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
Collapse
Affiliation(s)
- Fatemeh Saberi Hosnijeh
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands.
| | - Lina van der Straten
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Arnon P Kater
- Department of Hematology and Lymphoma and Myeloma Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Marinus H J van Oers
- Department of Hematology and Lymphoma and Myeloma Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Ward F M Posthuma
- Department of Internal Medicine, Reinier de Graaf Hospital, Delft, The Netherlands; Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Mar Bellido
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeanette K Doorduijn
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Michel van Gelder
- Department of Hematology, University Medical Center, Maastricht, The Netherlands
| | - Mels Hoogendoorn
- Department of Internal Medicine, Medical Center, Leeuwarden, The Netherlands
| | - Fransien de Boer
- Department of Internal Medicine, Ikazia Hospital, Rotterdam, The Netherlands
| | - G Doreen Te Raa
- Department of Internal Medicine, Gelderland Valley Hospital, Ede, The Netherlands
| | - J Martijn Kerst
- Department of Medical Oncology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Erik W A Marijt
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Harry R Koene
- Department of Internal Medicine, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Martijn R Schaafsma
- Department of Hematology, Medical Spectrum Twente, Enschede, The Netherlands
| | - Johan A Dobber
- Laboratory Special Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | - Sanne H Tonino
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Anton W Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| |
Collapse
|
6
|
Rapid Assessment of Surface Markers on Cancer Cells Using Immuno-Magnetic Separation and Multi-frequency Impedance Cytometry for Targeted Therapy. Sci Rep 2020; 10:3015. [PMID: 32080205 PMCID: PMC7033175 DOI: 10.1038/s41598-020-57540-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/06/2019] [Indexed: 12/29/2022] Open
Abstract
The rapid qualitative assessment of surface markers on cancer cells can allow for point-of-care prediction of patient response to various cancer drugs. Preclinical studies targeting cells with an antibody to "activated" matriptase conjugated to a potent toxin show promise as a selective treatment for a variety of solid tumors. In this paper, we implemented a novel technique for electrical detection of proteins on surfaces of cancer cells using multi-frequency microfluidic impedance cytometry. The biosensor, consists of two gold microelectrodes on a glass substrate embedded in a PDMS microfluidic channel, is used in conjugation with immuno-magnetic separation of cancer cells, and is capable of differentiating between bare magnetic beads, cancer cells and bead-cell aggregates based on their various impedance and frequency responses. We demonstrated proof-of-concept based on detection of "activated" matriptase proteins on the surface of cultured Mantle cells.
Collapse
|
7
|
Abstract
Over the last two decades, a novel subgroup of serine proteases, the cell surface-anchored serine proteases, has emerged as an important component of the human degradome, and several members have garnered significant attention for their roles in cancer progression and metastasis. A large body of literature describes that cell surface-anchored serine proteases are deregulated in cancer and that they contribute to both tumor formation and metastasis through diverse molecular mechanisms. The loss of precise regulation of cell surface-anchored serine protease expression and/or catalytic activity may be contributing to the etiology of several cancer types. There is therefore a strong impetus to understand the events that lead to deregulation at the gene and protein levels, how these precipitate in various stages of tumorigenesis, and whether targeting of selected proteases can lead to novel cancer intervention strategies. This review summarizes current knowledge about cell surface-anchored serine proteases and their role in cancer based on biochemical characterization, cell culture-based studies, expression studies, and in vivo experiments. Efforts to develop inhibitors to target cell surface-anchored serine proteases in cancer therapy will also be summarized.
Collapse
|
8
|
Hu P, Shang L, Chen J, Chen X, Chen C, Hong W, Huang M, Xu P, Chen Z. A nanometer-sized protease inhibitor for precise cancer diagnosis and treatment. J Mater Chem B 2020; 8:504-514. [PMID: 31840729 DOI: 10.1039/c9tb02081k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibition of pro-cancer proteases is a potent anticancer strategy. However, protease inhibitors are mostly developed in the forms of small molecules or peptides, which normally suffer from insufficient metabolic stability. The fast clearance significantly impairs the antitumor effects of these inhibitors. In this study, we report a nanometer-sized inhibitor of a pro-cancer protease, suppressor of tumorigenicity 14 (st14), which has been reported as a potent prognostic marker for multiple cancers. This st14 inhibitor was fabricated by conjugating a recombinant st14 inhibitor (KD1) with carbon quantum dots (CQDs). CQD-KD1 not only demonstrated high potency of inhibiting st14 activity in biochemical experiments, but also remarkably suppressed the invasion of breast cancer cells. In contrast to the original recombinant KD1, CQD-KD1 demonstrated a prolonged retention time in plasma and at the tumor site because of the reduced renal clearance. Consistently, CQD-KD1 demonstrated enhanced efficacies of suppressing tumor growth and cancer metastases in vivo. In addition, CQD-KD1 precisely imaged tumor tissues in cancer-grafted mice by specifically targeting the over-expressed st14 on the tumor cell surface, which indicates CQD-KD1 as a potent probe for the fluorescence guided surgery of tumor resection. In conclusion, this study demonstrates that CQD-KD1 is a highly potent diagnostic and therapeutic agent for cancer treatments.
Collapse
Affiliation(s)
- Ping Hu
- State Key Laboratory of Structural Chemistry, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yan R, Liu M, Hu Y, Wang L, Wang C, Jiang Y, Zhou Q, Qi X, Dong N, Wu Q. Ectopic expression of human airway trypsin-like protease 4 in acute myeloid leukemia promotes cancer cell invasion and tumor growth. Cancer Med 2019; 8:2348-2359. [PMID: 30843660 PMCID: PMC6537003 DOI: 10.1002/cam4.2074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/17/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Transmembrane serine proteases have been implicated in the development and progression of solid and hematological cancers. Human airway trypsin-like protease 4 (HAT-L4) is a transmembrane serine protease expressed in epithelial cells and exocrine glands. In the skin, HAT-L4 is important for normal epidermal barrier function. Here, we report an unexpected finding of ectopic HAT-L4 expression in neutrophils and monocytes from acute myeloid leukemia (AML) patients. Such expression was not detected in bone marrow cells from normal individuals or patients with chronic myeloid leukemia, acute lymphocytic leukemia and chronic lymphocytic leukemia. In AML patients who underwent chemotherapy, persistent HAT-L4 expression in bone marrow cells was associated with minimal residual disease and poor prognostic outcomes. In culture, silencing HAT-L4 expression in AML-derived THP-1 cells by short hairpin RNAs inhibited matrix metalloproteinase-2 activation and Matrigel invasion. In mouse xenograft models, inhibition of HAT-L4 expression reduced the proliferation and growth of THP-1 cell-derived tumors. Our results indicate that ectopic HAT-L4 expression is a pathological mechanism in AML and that HAT-L4 may be used as a cell surface marker for AML blast detection and targeting.
Collapse
Affiliation(s)
- Ruhong Yan
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yae Hu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Lina Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Can Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yizhi Jiang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xiaofei Qi
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Suzhou, China.,Department of Urology of the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine of Geriatric Disease, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine of Geriatric Disease, Suzhou, China.,Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
10
|
Chiu YL, Wu YY, Barndt RB, Yeo YH, Lin YW, Sytwo HP, Liu HC, Xu Y, Jia B, Wang JK, Johnson MD, Lin CY. Aberrant regulation favours matriptase proteolysis in neoplastic B-cells that co-express HAI-2. J Enzyme Inhib Med Chem 2019; 34:692-702. [PMID: 30777474 PMCID: PMC6383611 DOI: 10.1080/14756366.2019.1577831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Matriptase is ectopically expressed in neoplastic B-cells, in which matriptase activity is enhanced by negligible expression of its endogenous inhibitor, hepatocyte growth factor activator inhibitor (HAI)-1. HAI-1, however, is also involved in matriptase synthesis and intracellular trafficking. The lack of HAI-1 indicates that other related inhibitor, such as HAI-2, might be expressed. Here, we show that HAI-2 is commonly co-expressed in matriptase-expressing neoplastic B-cells. The level of active matriptase shed after induction of matriptase zymogen activation in 7 different neoplastic B-cells was next determined and characterised. Our data reveal that active matriptase can only be generated and shed by those cells able to activate matriptase and in a rough correlation with the levels of matriptase protein. While HAI-2 can potently inhibit matriptase, the levels of active matriptase are not proportionally suppressed in those cells with high HAI-2. Our survey suggests that matriptase proteolysis might aberrantly remain high in neoplastic B-cells regardless of the levels of HAI-2.
Collapse
Affiliation(s)
- Yi-Lin Chiu
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA.,b Department of Biochemistry , National Defense Medical Center , Taipei , Taiwan
| | - Yi-Ying Wu
- c Division of Hematology/Oncology, Department of Internal Medicine , Tri-Service General Hospital, National Defense Medical Center , Taipei , Taiwan
| | - Robert B Barndt
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA
| | - Yee Hui Yeo
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA
| | - Yu-Wen Lin
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA.,b Department of Biochemistry , National Defense Medical Center , Taipei , Taiwan
| | - Hou-Ping Sytwo
- d School of Medicine , National Defense Medical Center , Taipei , Taiwan
| | - Huan-Cheng Liu
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA.,e Langley High School , McLean , VA, USA
| | - Yuan Xu
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA
| | - Bailing Jia
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA.,f Department of Gastroenterology , Henan Provincial People's Hospital , Zhengzhou , China
| | - Jehng-Kang Wang
- b Department of Biochemistry , National Defense Medical Center , Taipei , Taiwan
| | - Michael D Johnson
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA
| | - Chen-Yong Lin
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA
| |
Collapse
|
11
|
Gitlin-Domagalska A, Dębowski D, Łęgowska A, Stirnberg M, Okońska J, Gütschow M, Rolka K. Design and chemical syntheses of potent matriptase-2 inhibitors based on trypsin inhibitor SFTI-1 isolated from sunflower seeds. Biopolymers 2017; 108. [DOI: 10.1002/bip.23031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Agata Gitlin-Domagalska
- Department of Molecular Biochemistry; Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63; Gdansk 80-308 Poland
| | - Dawid Dębowski
- Department of Molecular Biochemistry; Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63; Gdansk 80-308 Poland
| | - Anna Łęgowska
- Department of Molecular Biochemistry; Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63; Gdansk 80-308 Poland
| | - Marit Stirnberg
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4; Bonn 53121 Germany
| | - Joanna Okońska
- Department of Molecular Biochemistry; Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63; Gdansk 80-308 Poland
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4; Bonn 53121 Germany
| | - Krzysztof Rolka
- Department of Molecular Biochemistry; Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63; Gdansk 80-308 Poland
| |
Collapse
|
12
|
Zhou H, Zhu J, Liu M, Wu Q, Dong N. Role of the protease corin in chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med 2017; 12:973-982. [PMID: 28714548 DOI: 10.1002/term.2514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/30/2017] [Accepted: 07/11/2017] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potency to differentiate into chondrocytes, osteocytes and adipocytes. Corin is a cardiac protease that activates the natriuretic peptides, thereby regulating blood volume and pressure. In addition to the heart, corin gene upregulation was reported in bone marrow- and adipose tissue-derived MSCs that underwent osteogenic differentiation. To date, the biological significance of corin expression in MSC differentiation remains unknown. In this study we isolated and cultured human bone marrow-derived MSCs that were capable of undergoing chondrogenic, osteogenic and adipogenic lineage differentiation. By reverse transcription polymerase chain reaction (RT-PCR) and immunostaining, we found that corin expression was upregulated when these MSCs underwent chondrogenic, osteogenic and adipogenic differentiation. The upregulation of corin expression was most significant in the cells undergoing chondrogenic lineage differentiation. Silencing corin gene expression by small hairpin RNA in the MSCs inhibited chondrogenic, but not osteogenic and adipogenic, differentiation. These results suggest a novel function of corin in MSC differentiation and chondrocyte development.
Collapse
Affiliation(s)
- Haibin Zhou
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinsong Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Li J, Qin Y, Zhang H. Identification of key miRNA-gene pairs in chronic lymphocytic leukemia through integrated analysis of mRNA and miRNA microarray. Oncol Lett 2017; 15:361-367. [PMID: 29285196 PMCID: PMC5738675 DOI: 10.3892/ol.2017.7287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to explore the miRNA-Gene regulatory mechanism in chronic lymphocytic leukemia (CLL), and identify new targets for the therapy of CLL. The miRNA expression dataset GSE62137 and mRNA expression dataset GSE22529 were downloaded from National Center of Biotechnology Information Gene Expression Omnibus database. In CLL samples compared with normal B cell samples, differentially expressed miRNAs (DEMs) were identified via the GEO2R instrument of GEO and differentially expressed genes (DEGs) were obtained via the limma package of R. Functional enrichment analysis of the DEGs was performed via the Database for Annotation, Visualization and Integrated Discovery. The targets of the DEMs were identified based on the miRNAWalk platform. The overlaps between the DEGs and the targets of the DEMs were selected, and the miRNA-Gene regulatory network was constructed based on the overlaps and the corresponding DEMs. A total of 63 DEMs and 504 DEGs were identified in CLL samples compared with normal B cell samples. Eleven enriched functional clusters of the DEGs were obtained. 405 miRNA-Gene regulatory pairs were identified. The miRNA-Gene regulatory pairs contained 351 target genes of the DEMs, including 9 overlaps with the DEGs. A miRNA-Gene regulatory network was constructed. Bioinformatics methods could help us develop a better understanding of the molecular mechanism of CLL. MiRNAs may play a critical role in regulating the process of CLL. They may affect CLL by regulating the processes of immunoreactivity and protein degradation. Genes such as Neurogenic Locus Notch Homolog Protein 2, PR/SET domain 4 and A-kinase anchoring protein 12 may be their regulating targets in CLL.
Collapse
Affiliation(s)
- Jie Li
- Department of Transfusion Medicine, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yi Qin
- Institute of Medical Laboratory, Tianjin Medical University, Tianjin 300072, P.R. China
| | - Haiyan Zhang
- Department of Medical Record Management, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| |
Collapse
|
14
|
Murray AS, Varela FA, List K. Type II transmembrane serine proteases as potential targets for cancer therapy. Biol Chem 2017; 397:815-26. [PMID: 27078673 DOI: 10.1515/hsz-2016-0131] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022]
Abstract
Carcinogenesis is accompanied by increased protein and activity levels of extracellular cell-surface proteases that are capable of modifying the tumor microenvironment by directly cleaving the extracellular matrix, as well as activating growth factors and proinflammatory mediators involved in proliferation and invasion of cancer cells, and recruitment of inflammatory cells. These complex processes ultimately potentiate neoplastic progression leading to local tumor cell invasion, entry into the vasculature, and metastasis to distal sites. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression. In this review the knowledge collected over the past two decades about the molecular mechanisms underlying the pro-cancerous properties of selected TTSPs will be summarized. Furthermore, we will discuss how these insights may facilitate the translation into clinical settings in the future by specifically targeting TTSPs as part of novel cancer treatment regimens.
Collapse
|
15
|
Gitlin A, Dębowski D, Karna N, Łęgowska A, Stirnberg M, Gütschow M, Rolka K. Inhibitors of Matriptase-2 Based on the Trypsin Inhibitor SFTI-1. Chembiochem 2015; 16:1601-7. [DOI: 10.1002/cbic.201500200] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 12/12/2022]
|
16
|
Chou FP, Chen YW, Zhao XF, Xu-Monette ZY, Young KH, Gartenhaus RB, Wang JK, Kataoka H, Zuo AH, Barndt RJ, Johnson M, Lin CY. Imbalanced matriptase pericellular proteolysis contributes to the pathogenesis of malignant B-cell lymphomas. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 183:1306-17. [PMID: 24070417 DOI: 10.1016/j.ajpath.2013.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 05/17/2013] [Accepted: 06/24/2013] [Indexed: 02/08/2023]
Abstract
Membrane-associated serine protease matriptase is widely expressed by epithelial/carcinoma cells in which its proteolytic activity is tightly controlled by the Kunitz-type protease inhibitor, hepatocyte growth factor activator inhibitor (HAI-1). We demonstrate that, although matriptase is not expressed in lymphoid hyperplasia, roughly half of the non-Hodgkin B-cell lymphomas analyzed express significant amounts of matriptase. Furthermore, a significant proportion of these tumors express matriptase in the absence of HAI-1. Aggressive Burkitt lymphoma was more likely than indolent follicular lymphoma to express matriptase alone (86% versus 36%). In the absence of significant HAI-1 expression, the lymphoma cells activate and shed active matriptase when the cells are stimulated with mildly acidic buffer or the hypoxia-mimicking agent, CoCl2. The shed active matriptase can initiate pericellular proteolytic cascades by activating urokinase-type plasminogen activator on the cell surface of monocytes, and it can activate prohepatocyte growth factor. In addition, matriptase knockdown suppressed proliferation and colony-forming ability of neoplastic B cells in culture and growth as tumor xenografts in mice. Furthermore, exogenous expression of HAI-1 significantly suppressed proliferation of neoplastic B cells. These studies suggest that dysregulated pericellular proteolysis as a result of unregulated matriptase expression with limited HAI-1 may contribute to the pathological characteristics of several human B-cell lymphomas through modulation of the tumor microenvironment and enhanced tumor growth.
Collapse
Affiliation(s)
- Feng-Pai Chou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fittler H, Avrutina O, Empting M, Kolmar H. Potent inhibitors of human matriptase-1 based on the scaffold of sunflower trypsin inhibitor. J Pept Sci 2014; 20:415-20. [DOI: 10.1002/psc.2629] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Heiko Fittler
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Olga Avrutina
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS); Department Drug Design and Optimization; Campus C2.3 66123 Saarbrücken Germany
| | - Harald Kolmar
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| |
Collapse
|
18
|
The role of fucosylation in the promotion of endothelial progenitor cells in neovascularization and bone repair. Biomaterials 2014; 35:3777-85. [DOI: 10.1016/j.biomaterials.2014.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/09/2014] [Indexed: 01/07/2023]
|
19
|
Chu LL, Xu Y, Yang JR, Hu YA, Chang HH, Lai HY, Tseng CC, Wang HY, Johnson MD, Wang JK, Lin CY. Human cancer cells retain modest levels of enzymatically active matriptase only in extracellular milieu following induction of zymogen activation. PLoS One 2014; 9:e92244. [PMID: 24663123 PMCID: PMC3963879 DOI: 10.1371/journal.pone.0092244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/09/2014] [Indexed: 11/18/2022] Open
Abstract
The type 2 transmembrane serine protease matriptase is broadly expressed in human carcinomas and hematological cancers. The proteolytic activity of matriptase is a potential target of drugs and imaging probes. We assessed the fate of active matriptase following the induction of matriptase zymogen activation. Exposing eight human carcinoma cells to pH 6.0 buffer induced robust matriptase zymogen activation followed by rapid inhibition of the nascent active matriptase by hepatocyte growth factor activator inhibitor (HAI)-1. Consequently, no enzymatically active matriptase was detected in these cells. Some active matriptase is, however, rapidly shed to the extracellular milieu by these carcinoma cells. The lack of cell-associated active matriptase and the shedding of active matriptase were also observed in two hematological cancer lines. Matriptase shedding is correlated closely with the induction of matriptase activation, suggesting that matriptase activation and shedding are kinetically coupled. The coupling allows a proportion of active matriptase to survive HAI-1 inhibition by rapid shedding from cell surface. Our study suggests that cellular free, active matriptase is scarce and might not be an effective target for in vivo imaging and drug development.
Collapse
Affiliation(s)
- Li-Ling Chu
- Department of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yuan Xu
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
| | - Jie-Ru Yang
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-An Hu
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsiang-Hua Chang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hong-Yu Lai
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
| | - Chun-Che Tseng
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
- Department of Biology, Carleton College, Northfield, Minnesota, United States of America
| | - Hue-Yu Wang
- Department of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan
| | - Michael D. Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
- * E-mail: (C-YL); (J-KW)
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
- * E-mail: (C-YL); (J-KW)
| |
Collapse
|