1
|
Al Sbihi A, Alasfour M, Pongas G. Innovations in Antibody-Drug Conjugate (ADC) in the Treatment of Lymphoma. Cancers (Basel) 2024; 16:827. [PMID: 38398219 PMCID: PMC10887180 DOI: 10.3390/cancers16040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Chemoimmunotherapy and cellular therapy are the mainstay of the treatment of relapsed/refractory (R/R) lymphomas. Development of resistance and commonly encountered toxicities of these treatments limit their role in achieving desired response rates and durable remissions. The Antibody-Drug Conjugate (ADC) is a novel class of targeted therapy that has demonstrated significant efficacy in treating various cancers, including lymphomas. To date, three ADC agents have been approved for different lymphomas, marking a significant advancement in the field. In this article, we aim to review the concept of ADCs and their application in lymphoma treatment, provide an analysis of currently approved agents, and discuss the ongoing advancements of ADC development.
Collapse
Affiliation(s)
| | | | - Georgios Pongas
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
2
|
Menéndez V, Solórzano JL, García-Cosío M, Alonso-Alonso R, Rodríguez M, Cereceda L, Fernández S, Díaz E, Montalbán C, Estévez M, Piris MA, García JF. Immune and stromal transcriptional patterns that influence the outcome of classic Hodgkin lymphoma. Sci Rep 2024; 14:710. [PMID: 38184757 PMCID: PMC10771441 DOI: 10.1038/s41598-024-51376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024] Open
Abstract
Classic Hodgkin lymphoma (cHL) is characterized by a rich immune microenvironment as the main tumor component. It involves a broad range of cell populations, which are largely unexplored, even though they are known to be essential for growth and survival of Hodgkin and Reed-Sternberg cells. We profiled the gene expression of 25 FFPE cHL samples using NanoString technology and resolved their microenvironment compositions using cell-deconvolution tools, thereby generating patient-specific signatures. The results confirm individual immune fingerprints and recognize multiple clusters enriched in refractory patients, highlighting the relevance of: (1) the composition of immune cells and their functional status, including myeloid cell populations (M1-like, M2-like, plasmacytoid dendritic cells, myeloid-derived suppressor cells, etc.), CD4-positive T cells (exhausted, regulatory, Th17, etc.), cytotoxic CD8 T and natural killer cells; (2) the balance between inflammatory signatures (such as IL6, TNF, IFN-γ/TGF-β) and MHC-I/MHC-II molecules; and (3) several cells, pathways and genes related to the stroma and extracellular matrix remodeling. A validation model combining relevant immune and stromal signatures identifies patients with unfavorable outcomes, producing the same results in an independent cHL series. Our results reveal the heterogeneity of immune responses among patients, confirm previous findings, and identify new functional phenotypes of prognostic and predictive utility.
Collapse
Affiliation(s)
- Victoria Menéndez
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
| | - José L Solórzano
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
- Pathology Department, MD Anderson Cancer Center Madrid, C/Arturo Soria, 270, 28033, Madrid, Spain
| | - Mónica García-Cosío
- Pathology Department, Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain
| | - Ruth Alonso-Alonso
- Pathology Department, IIS Hospital Universitario Fundación Jiménez Díaz, 28040, Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Marta Rodríguez
- Pathology Department, IIS Hospital Universitario Fundación Jiménez Díaz, 28040, Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Laura Cereceda
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
- Pathology Department, MD Anderson Cancer Center Madrid, C/Arturo Soria, 270, 28033, Madrid, Spain
| | - Sara Fernández
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
- Pathology Department, MD Anderson Cancer Center Madrid, C/Arturo Soria, 270, 28033, Madrid, Spain
| | - Eva Díaz
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
| | - Carlos Montalbán
- Hematology Department, MD Anderson Cancer Center Madrid, 28033, Madrid, Spain
| | - Mónica Estévez
- Hematology Department, MD Anderson Cancer Center Madrid, 28033, Madrid, Spain
| | - Miguel A Piris
- Pathology Department, IIS Hospital Universitario Fundación Jiménez Díaz, 28040, Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Juan F García
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain.
- Pathology Department, MD Anderson Cancer Center Madrid, C/Arturo Soria, 270, 28033, Madrid, Spain.
- Center for Biomedical Network Research on Cancer (CIBERONC), ISCIII, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Georgoulis V, Papoudou-Bai A, Makis A, Kanavaros P, Hatzimichael E. Unraveling the Immune Microenvironment in Classic Hodgkin Lymphoma: Prognostic and Therapeutic Implications. BIOLOGY 2023; 12:862. [PMID: 37372147 PMCID: PMC10294989 DOI: 10.3390/biology12060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Classic Hodgkin lymphoma (cHL) is a lymphoid neoplasm composed of rare neoplastic Hodgkin and Reed-Sternberg (HRS) cells surrounded by a reactive tumor microenvironment (TME) with suppressive properties against anti-tumor immunity. TME is mainly composed of T cells (CD4 helper, CD8 cytotoxic and regulatory) and tumor-associated macrophages (TAMs), but the impact of these cells on the natural course of the disease is not absolutely understood. TME contributes to the immune evasion of neoplastic HRS cells through the production of various cytokines and/or the aberrant expression of immune checkpoint molecules in ways that have not been fully understood yet. Herein, we present a comprehensive review of findings regarding the cellular components and the molecular features of the immune TME in cHL, its correlation with treatment response and prognosis, as well as the potential targeting of the TME with novel therapies. Among all cells, macrophages appear to be a most appealing target for immunomodulatory therapies, based on their functional plasticity and antitumor potency.
Collapse
Affiliation(s)
- Vasileios Georgoulis
- Department of Hematology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Alexandra Papoudou-Bai
- Department of Pathology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Alexandros Makis
- Department of Child Health, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 000 Ioannina, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| |
Collapse
|
4
|
Krishnan SN, Thanasupawat T, Arreza L, Wong GW, Sfanos K, Trock B, Arock M, Shah GG, Glogowska A, Ghavami S, Hombach-Klonisch S, Klonisch T. Human C1q Tumor Necrosis Factor 8 (CTRP8) defines a novel tryptase+ mast cell subpopulation in the prostate cancer microenvironment. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166681. [PMID: 36921737 DOI: 10.1016/j.bbadis.2023.166681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
The adipokine C1q Tumor Necrosis Factor 8 (CTRP8) is the least known member of the 15 CTRP proteins and a ligand of the relaxin receptor RXFP1. We previously demonstrated the ability of the CTRP8-RXFP1 interaction to promote motility, matrix invasion, and drug resistance. The lack of specific tools to detect CTRP8 protein severely limits our knowledge on CTRP8 biological functions in normal and tumor tissues. Here, we have generated and characterized the first specific antiserum to human CTRP8 which identified CTRP8 as a novel marker of tryptase+ mast cells (MCT) in normal human tissues and in the prostate cancer (PC) microenvironment. Using human PC tissue microarrays composed of neoplastic and corresponding tumor-adjacent prostate tissues, we have identified a significantly higher number of CTRP8+ MCT in the peritumor versus intratumor compartment of PC tissues of Gleason scores 6 and 7. Higher numbers of CTRP8+ MCT correlated with the clinical parameter of biochemical recurrence. We showed that the human MC line ROSAKIT WT expressed RXFP1 transcripts and responded to CTRP8 treatment with a small but significant increase in cell proliferation. Like the cognate RXFP1 ligand RLN-2 and the small molecule RXFP1 agonist ML-290, CTRP8 reduced degranulation of ROSAKIT WT MC stimulated by the Ca2+-ionophore A14187. In conclusion, this is the first report to identify the RXFP1 agonist CTRP8 as a novel marker of MCT and autocrine/paracrine oncogenic factor within the PC microenvironment.
Collapse
Affiliation(s)
- Sai Nivedita Krishnan
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Thatchawan Thanasupawat
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Leanne Arreza
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - G William Wong
- Dept. of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Sfanos
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bruce Trock
- Dept. of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Arock
- Laboratoire d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Paris, France
| | - G Girish Shah
- Dept. of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, CHU de Quebec-Laval, Quebec, Canada
| | - Aleksandra Glogowska
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Saeid Ghavami
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Hombach-Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| | - Thomas Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Dept. of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada.
| |
Collapse
|
5
|
Ribatti D, Tamma R, Annese T, Ingravallo G, Specchia G. Inflammatory microenvironment in classical Hodgkin’s lymphoma with special stress on mast cells. Front Oncol 2022; 12:964573. [PMID: 36313712 PMCID: PMC9606700 DOI: 10.3389/fonc.2022.964573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Classical Hodgkin’s lymphoma (CHL) accounts for 10% of all lymphomas. Nodular sclerosis and mixed cellularity accounts for nearly 80% of all CHL cases. The number of mast cells in CHL correlates with poor prognosis, is significantly higher in nodular sclerosis than in other CHL subtypes, and an association between the degree of angiogenesis and the number of intratumoral mast cells has been demonstrated in CHL. Even with the best available treatment, a significant percentage of CHL patients progress or relapse after first-line therapy. 50% of patients with disease relapse achieve subsequent long-term disease control with salvage therapies. In this context, new potential therapeutic opportunities are required, and mast cells may be regarded as a new target for adjuvant treatment of CHL through the inhibition of angiogenesis and tissue remodeling and allowing the secretion of cytotoxic cytokines.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- *Correspondence: Domenico Ribatti,
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, Bari, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, Bari, Italy
| |
Collapse
|
6
|
Expanding the armory for treating lymphoma: Targeting redox cellular status through thioredoxin reductase inhibition. Pharmacol Res 2022; 177:106134. [DOI: 10.1016/j.phrs.2022.106134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
|
7
|
Opinto G, Agostinelli C, Ciavarella S, Guarini A, Maiorano E, Ingravallo G. Hodgkin Lymphoma: A Special Microenvironment. J Clin Med 2021; 10:4665. [PMID: 34682791 PMCID: PMC8541076 DOI: 10.3390/jcm10204665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Classical Hodgkin's lymphoma (cHL) is one of the most particular lymphomas for the few tumor cells surrounded by an inflammatory microenvironment. Reed-Sternberg (RS) and Hodgkin (H) cells reprogram and evade antitumor mechanisms of the normal cells present in the microenvironment. The cells of microenvironment are essential for growth and survival of the RS/H cells and are recruited through the effect of cytokines/chemokines. We summarize recent advances in gene expression profiling (GEP) analysis applied to study microenvironment component in cHL. We also describe the main therapies that target not only the neoplastic cells but also the cellular components of the background.
Collapse
Affiliation(s)
- Giuseppina Opinto
- Haematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, 70124 Bari, Italy; (G.O.); (S.C.); (A.G.)
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Sabino Ciavarella
- Haematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, 70124 Bari, Italy; (G.O.); (S.C.); (A.G.)
| | - Attilio Guarini
- Haematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, 70124 Bari, Italy; (G.O.); (S.C.); (A.G.)
| | - Eugenio Maiorano
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
8
|
Mehtani D, Puri N. Steering Mast Cells or Their Mediators as a Prospective Novel Therapeutic Approach for the Treatment of Hematological Malignancies. Front Oncol 2021; 11:731323. [PMID: 34631562 PMCID: PMC8497976 DOI: 10.3389/fonc.2021.731323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023] Open
Abstract
Tumor cells require signaling and close interaction with their microenvironment for their survival and proliferation. In the recent years, Mast cells have earned a greater importance for their presence and role in cancers. It is known that mast cells are attracted towards tumor microenvironment by secreted soluble chemotactic factors. Mast cells seem to exert a pro-tumorigenic role in hematological malignancies with a few exceptions where they showed anti-cancerous role. This dual role of mast cells in tumor growth and survival may be dependent on the intrinsic characteristics of the particular tumor, differences in tumor microenvironment according to tumor type, and the interactions and heterogeneity of mediators released by mast cells in the tumor microenvironment. In many studies, Mast cells and their mediators have been shown to affect tumor survival and growth, prognosis, inflammation, tumor vascularization and angiogenesis. Modulating mast cell accumulation, viability, activity and mediator release patterns may thus be important in controlling these malignancies. In this review, we emphasize on the role of mast cells in lymphoid malignancies and discuss strategies for targeting and steering mast cells or their mediators as a potential therapeutic approach for the treatment of these malignancies.
Collapse
Affiliation(s)
| | - Niti Puri
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Immune Microenvironment Features and Dynamics in Hodgkin Lymphoma. Cancers (Basel) 2021; 13:cancers13143634. [PMID: 34298847 PMCID: PMC8304929 DOI: 10.3390/cancers13143634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary As happens in all neoplasms, the many reciprocal interactions taking place between neoplastic cells and the other reactive cells impact the course of the disease. Hodgkin Lymphoma is an haematologic malignancy where most of the pathological tissue is indeed composed by reactive cells and few neoplastic cells. Consequently, it represents an interesting subject for the description of the neoplastic and non-neoplastic cells interaction. In this review we report and discuss the more recent findings of microenvironmental studies about this disease. Abstract Classical Hodgkin’s lymphoma (cHL) accounts for 10% of all lymphoma diagnosis. The peculiar feature of the disease is the presence of large multinucleated Reed–Sternberg and mononuclear Hodgkin cells interspersed with a reactive microenvironment (ME). Due to the production of a large number of cytokines, Hodgkin cells (HCs) and Hodgkin Reed–Sternberg cells (HRSCs) attract and favour the expansion of different immune cell populations, modifying their functional status in order to receive prosurvival stimuli and to turn off the antitumour immune response. To this purpose HRSCs shape a biological niche by organizing the spatial distribution of cells in the ME. This review will highlight the contribution of the ME in the pathogenesis and prognosis of cHL and its role as a possible therapeutic target.
Collapse
|
10
|
Bekaert S, Rocks N, Vanwinge C, Noel A, Cataldo D. Asthma-related inflammation promotes lung metastasis of breast cancer cells through CCL11-CCR3 pathway. Respir Res 2021; 22:61. [PMID: 33608009 PMCID: PMC7893955 DOI: 10.1186/s12931-021-01652-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/07/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mechanisms that preclude lung metastasis are still barely understood. The possible consequences of allergic airways inflammation on cancer dissemination were studied in a mouse model of breast cancer. METHODS Balb/c mice were immunized and daily exposed to ovalbumin (OVA) from day 21. They were subcutaneously injected with 4T1 mammary tumor cells on day 45 and sacrificed on day 67. Lung metastases were measured by biophotonic imaging (IVIS® 200 Imaging System) and histological measurement of tumor area (Cytomine software). Effects of CCL11 were assessed in vivo by intratracheal instillations of recCCL11 and in vitro using Boyden chambers. CCR3 expression on cell surface was assessed by flow cytometry. RESULTS The extent of tumor metastases was significantly higher in lungs of OVA-exposed mice and increased levels of CCL11 expression were measured after OVA exposure. Migration of 4T1 cells and neutrophils was stimulated in vitro and in vivo by recCCL11. 4T1 cells and neutrophils express CCR3 as shown by flow cytometry and a selective CCR3 antagonist (SB-297006) inhibited the induction of 4T1 cells migration and proliferation in response to recCCL11. CONCLUSIONS Allergic inflammation generated by exposure to allergens triggers the implantation of metastatic cells from primary breast tumor into lung tissues plausibly in a CCL11-CCR3-dependent manner. This indicates that asthma related inflammation in lungs might be a risk factor for lung metastasis in breast cancer patients.
Collapse
Affiliation(s)
- S Bekaert
- Laboratory of Tumor and Development Biology, GIGA-Cancer - University of Liege and CHU Liege, 4000, Liege, Belgium
| | - N Rocks
- Laboratory of Tumor and Development Biology, GIGA-Cancer - University of Liege and CHU Liege, 4000, Liege, Belgium
| | - C Vanwinge
- Laboratory of Tumor and Development Biology, GIGA-Cancer - University of Liege and CHU Liege, 4000, Liege, Belgium
| | - A Noel
- Laboratory of Tumor and Development Biology, GIGA-Cancer - University of Liege and CHU Liege, 4000, Liege, Belgium
| | - D Cataldo
- Laboratory of Tumor and Development Biology, GIGA-Cancer - University of Liege and CHU Liege, 4000, Liege, Belgium. .,University of Liege, Tower of Pathology (B23), 3rd Floor, 4000, Liege, Belgium.
| |
Collapse
|
11
|
Abstract
Early mast cell (MC) infiltration has been reported in a wide range of human and animal tumors particularly malignant melanoma and breast and colorectal cancer. The consequences of their presence in the tumor microenvironment (TME) or at their margins still remain unclear as it is associated with a good or poor prognosis based on the type and anatomical site of the tumor. Within the tumor, MC interactions occur with infiltrated immune cells, tumor cells, and extracellular matrix (ECM) through direct cell-to-cell interactions or release of a broad range of mediators capable of remodeling the TME. MCs actively contribute to angiogenesis and induce neovascularization by releasing the classical proangiogenic factors including VEGF, FGF-2, PDGF, and IL-6, and nonclassical proangiogenic factors mainly proteases including tryptase and chymase. MCs support tumor invasiveness by releasing a broad range of matrix metalloproteinases (MMPs). MC presence within the tumor gained additional significance when it was assumed that controlling its activation by tyrosine kinase inhibitors (imatinib and masitinib) and tryptase inhibitors (gabexate and nafamostat mesylate) or controlling their interactions with other cell types may have therapeutic benefit.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Frank A Redegeld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Drug Resistance in Non-Hodgkin Lymphomas. Int J Mol Sci 2020; 21:ijms21062081. [PMID: 32197371 PMCID: PMC7139754 DOI: 10.3390/ijms21062081] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022] Open
Abstract
Non-Hodgkin lymphomas (NHL) are lymphoid tumors that arise by a complex process of malignant transformation of mature lymphocytes during various stages of differentiation. The WHO classification of NHL recognizes more than 90 nosological units with peculiar pathophysiology and prognosis. Since the end of the 20th century, our increasing knowledge of the molecular biology of lymphoma subtypes led to the identification of novel druggable targets and subsequent testing and clinical approval of novel anti-lymphoma agents, which translated into significant improvement of patients’ outcome. Despite immense progress, our effort to control or even eradicate malignant lymphoma clones has been frequently hampered by the development of drug resistance with ensuing unmet medical need to cope with relapsed or treatment-refractory disease. A better understanding of the molecular mechanisms that underlie inherent or acquired drug resistance might lead to the design of more effective front-line treatment algorithms based on reliable predictive markers or personalized salvage therapy, tailored to overcome resistant clones, by targeting weak spots of lymphoma cells resistant to previous line(s) of therapy. This review focuses on the history and recent advances in our understanding of molecular mechanisms of resistance to genotoxic and targeted agents used in clinical practice for the therapy of NHL.
Collapse
|
13
|
Menter T, Tzankov A. Lymphomas and Their Microenvironment: A Multifaceted Relationship. Pathobiology 2019; 86:225-236. [PMID: 31574515 DOI: 10.1159/000502912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/24/2019] [Indexed: 11/19/2022] Open
Abstract
It has become evident that the microenvironment - lymphocytes, macrophages, fibroblasts as well as the extracellular matrix, cytokines, chemokines, and a plethora of other cells, structures and substances residing in the vicinity of tumor cells - plays an important part in the maintenance of cancer growth and survival. This is also relevant in lymphomas. In this review, we give an outline on the importance of the microenvironment for tumors in general and lymphomas in particular, by highlighting certain basic principles of tumor-microenvironment interaction. The relationship of lymphomas and their microenvironment is multifaceted: lymphoma cells need growth factors and cytokines derived from microenvironmental cells for their sustenance and growth. On the contrary, many lymphomas silence or at least deregulate the immune system to escape recognition and subsequent elimination by immune cells, while giving advantage to suppressive microenvironmental compounds such as M2 polarized macrophages, regulatory T-cells, mast cells, and immunosuppressive fibroblasts. We also give a detailed insight across different lymphoma types to show the variety of tumor-microenvironment interactions. Due to its tremendous importance, the microenvironment has also become a new target for oncologic therapy. The most important finding concerning lymphomas with a focus on immunomodulatory substances is also, therefore, highlighted.
Collapse
Affiliation(s)
- Thomas Menter
- Institute of Medical Genetics and Pathology, University of Basel Hospital, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University of Basel Hospital, Basel, Switzerland,
| |
Collapse
|
14
|
Ayers LW, Barbachano-Guerrero A, McAllister SC, Ritchie JA, Asiago-Reddy E, Bartlett LC, Cesarman E, Wang D, Rochford R, Martin JN, King CA. Mast Cell Activation and KSHV Infection in Kaposi Sarcoma. Clin Cancer Res 2018; 24:5085-5097. [PMID: 30084838 PMCID: PMC6191350 DOI: 10.1158/1078-0432.ccr-18-0873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/31/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022]
Abstract
Purpose: Kaposi sarcoma (KS) is a vascular tumor initiated by infection of endothelial cells (ECs) with KS-associated herpesvirus (KSHV). KS is dependent on sustained proinflammatory signals provided by intralesional leukocytes and continued infection of new ECs. However, the sources of these cytokines and infectious virus within lesions are not fully understood. Here, mast cells (MCs) are identified as proinflammatory cells within KS lesions that are permissive for, and activated by, infection with KSHV.Experimental Design: Three validated MC lines were used to assess permissivity of MCs to infection with KSHV and to evaluate MCs activation following infection. Biopsies from 31 AIDS-KS cases and 11 AIDS controls were evaluated by IHC for the presence of MCs in KS lesions and assessment of MC activation state and infection with KSHV. Plasma samples from 26 AIDS-KS, 13 classic KS, and 13 healthy adults were evaluated for levels of MC granule contents tryptase and histamine.Results: In culture, MCs supported latent and lytic KSHV infection, and infection-induced MC degranulation. Within KS lesions, MCs were closely associated with spindle cells. Furthermore, MC activation was extensive within patients with KS, reflected by elevated circulating levels of tryptase and a histamine metabolite. One patient with clinical signs of extensive MC activation was treated with antagonists of MC proinflammatory mediators, which resulted in a rapid and durable regression of AIDS-KS lesions.Conclusions: Using complimentary in vitro and in vivo studies we identify MCs as a potential long-lived reservoir for KSHV and a source of proinflammatory mediators within the KS lesional microenvironment. In addition, we identify MC antagonists as a promising novel therapeutic approach for KS. Clin Cancer Res; 24(20); 5085-97. ©2018 AACR.
Collapse
Affiliation(s)
- Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | | | - Shane C McAllister
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Julie A Ritchie
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York
| | | | - Linda C Bartlett
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Dongliang Wang
- Department of Public Health and Preventative Medicine, SUNY Upstate Medical University, Syracuse, New York
| | - Rosemary Rochford
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Christine A King
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York.
| |
Collapse
|
15
|
Ruella M, Klichinsky M, Kenderian SS, Shestova O, Ziober A, Kraft DO, Feldman M, Wasik MA, June CH, Gill S. Overcoming the Immunosuppressive Tumor Microenvironment of Hodgkin Lymphoma Using Chimeric Antigen Receptor T Cells. Cancer Discov 2017; 7:1154-1167. [PMID: 28576927 PMCID: PMC5628114 DOI: 10.1158/2159-8290.cd-16-0850] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/19/2017] [Accepted: 05/31/2017] [Indexed: 01/03/2023]
Abstract
Patients with otherwise treatment-resistant Hodgkin lymphoma could benefit from chimeric antigen receptor T-cell (CART) therapy. However, Hodgkin lymphoma lacks CD19 and contains a highly immunosuppressive tumor microenvironment (TME). We hypothesized that in Hodgkin lymphoma, CART should target both malignant cells and the TME. We demonstrated CD123 on both Hodgkin lymphoma cells and TME, including tumor-associated macrophages (TAM). In vitro, Hodgkin lymphoma cells convert macrophages toward immunosuppressive TAMs that inhibit T-cell proliferation. In contrast, anti-CD123 CART recognized and killed TAMs, thus overcoming immunosuppression. Finally, we showed in immunodeficient mouse models that CART123 eradicated Hodgkin lymphoma and established long-term immune memory. A novel platform that targets malignant cells and the microenvironment may be needed to successfully treat malignancies with an immunosuppressive milieu.Significance: Anti-CD123 chimeric antigen receptor T cells target both the malignant cells and TAMs in Hodgkin lymphoma, thereby eliminating an important immunosuppressive component of the tumor microenvironment. Cancer Discov; 7(10); 1154-67. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1047.
Collapse
Affiliation(s)
- Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Klichinsky
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saad S Kenderian
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Olga Shestova
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy Ziober
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel O Kraft
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Saar Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
16
|
Aldinucci D, Celegato M, Casagrande N. Microenvironmental interactions in classical Hodgkin lymphoma and their role in promoting tumor growth, immune escape and drug resistance. Cancer Lett 2016; 380:243-52. [DOI: 10.1016/j.canlet.2015.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 12/22/2022]
|
17
|
Linke F, Harenberg M, Nietert MM, Zaunig S, von Bonin F, Arlt A, Szczepanowski M, Weich HA, Lutz S, Dullin C, Janovská P, Krafčíková M, Trantírek L, Ovesná P, Klapper W, Beissbarth T, Alves F, Bryja V, Trümper L, Wilting J, Kube D. Microenvironmental interactions between endothelial and lymphoma cells: a role for the canonical WNT pathway in Hodgkin lymphoma. Leukemia 2016; 31:361-372. [DOI: 10.1038/leu.2016.232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/07/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023]
|
18
|
Sugimoto K, Miyata Y, Nakayama T, Saito S, Suzuki R, Hayakawa F, Nishiwaki S, Mizuno H, Takeshita K, Kato H, Ueda R, Takami A, Naoe T. Fibroblast Growth Factor-2 facilitates the growth and chemo-resistance of leukemia cells in the bone marrow by modulating osteoblast functions. Sci Rep 2016; 6:30779. [PMID: 27481339 PMCID: PMC4969776 DOI: 10.1038/srep30779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/07/2016] [Indexed: 11/08/2022] Open
Abstract
Stromal cells and osteoblasts play major roles in forming and modulating the bone marrow (BM) hematopoietic microenvironment. We have reported that FGF2 compromises stromal cell support of normal hematopoiesis. Here, we examined the effects of FGF2 on the leukemia microenvironment. In vitro, FGF2 significantly decreased the number of stromal-dependent and stromal-independent G0-leukemia cells in the stromal layers. Accordingly, CML cells placed on FGF2-treated stromal layers were more sensitive to imatinib. Conversely, FGF2 increased the proliferation of osteoblasts via FGFR1 IIIc, but its effects on osteoblast support of leukemia cell growth were limited. We next treated a human leukemia mouse model with Ara-C with/without systemic FGF2 administration. BM sections from FGF2-treated mice had thickened bone trabeculae and increased numbers of leukemia cells compared to controls. Leukemia cell density was increased, especially in the endosteal region in FGF2/Ara-C -treated mice compared to mice treated with Ara-C only. Interestingly, FGF2 did not promote leukemia cell survival in Ara-C treated spleen. Microarray analysis showed that FGF2 did not alter expression of many genes linked to hematopoiesis in osteoblasts, but modulated regulatory networks involved in angiogenesis and osteoblastic differentiation. These observations suggest that FGF2 promotes leukemia cell growth in the BM by modulating osteoblast functions.
Collapse
Affiliation(s)
- Keiki Sugimoto
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co. Ltd., Otsu, Shiga, Japan
| | - Yasuhiko Miyata
- Departments of Hematology, Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Takayuki Nakayama
- Department of Transfusion Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shigeki Saito
- Departments of Hematology, Japanese Red Cross Nagoya Daiini Hospital, Nagoya, Aichi, Japan
| | - Ritsuro Suzuki
- Departments of Hematology, Shimane University, Izumo, Shimane, Japan
| | - Fumihiko Hayakawa
- Departments of Hematology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Nishiwaki
- Depertment of Hematology and Oncology, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Hiroki Mizuno
- Laboratory of Cellular Dynamics, World Premier International Research Center Initiative-Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kyosuke Takeshita
- Departments of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hidefumi Kato
- Department of Transfusion Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Akiyoshi Takami
- Department of Hematology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomoki Naoe
- Departments of Hematology, Nagoya Medical Center, Nagoya, Aichi, Japan
| |
Collapse
|
19
|
Insights into the molecular roles of heparan sulfate proteoglycans (HSPGs—syndecans) in autocrine and paracrine growth factor signaling in the pathogenesis of Hodgkin’s lymphoma. Tumour Biol 2016; 37:11573-11588. [DOI: 10.1007/s13277-016-5118-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/09/2016] [Indexed: 12/25/2022] Open
|
20
|
Yaacoub K, Pedeux R, Tarte K, Guillaudeux T. Role of the tumor microenvironment in regulating apoptosis and cancer progression. Cancer Lett 2016; 378:150-9. [PMID: 27224890 DOI: 10.1016/j.canlet.2016.05.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/11/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023]
Abstract
Apoptosis is a gene-directed program that is engaged to efficiently eliminate dysfunctional cells. Evasion of apoptosis may be an important gate to tumor initiation and therapy resistance. Like any other developmental program, apoptosis can be disrupted by several genetic aberrations driving malignant cells into an uncontrolled progression and survival. For its sustained growth, cancer develops in a complex environment, which provides survival signals and rescues malignant cells from apoptosis. Recent studies have clearly shown a wide interaction between tumor cells and their microenvironment, confirming the influence of the surrounding cells on tumor expansion and invasion. These non-malignant cells not only intensify tumor cells growth but also upgrade the process of metastasis. The strong crosstalk between malignant cells and a reactive microenvironment is mediated by soluble chemokines and cytokines, which act on tumor cells through surface receptors. Disturbing the microenvironment signaling might be an encouraging approach for patient's treatment. Therefore, the ultimate knowledge of "tumor-microenvironment" interactions facilitates the identification of novel therapeutic procedures that mobilize cancer cells from their supportive cells. This review focuses on cancer progression mediated by the dysfunction of apoptosis and by the fundamental relationship between tumor and reactive cells. New insights and valuable targets for cancer prevention and therapy are also presented.
Collapse
Affiliation(s)
- Katherine Yaacoub
- Université Rennes 1, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France; UMR INSERM, 917, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France; INSERM ER440-OSS, CLCC Eugène Marquis, Rue Bataille Flandres Dunkerque, Rennes 35042, France
| | - Remy Pedeux
- Université Rennes 1, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France; INSERM ER440-OSS, CLCC Eugène Marquis, Rue Bataille Flandres Dunkerque, Rennes 35042, France
| | - Karin Tarte
- Université Rennes 1, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France; UMR INSERM, 917, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France
| | - Thierry Guillaudeux
- Université Rennes 1, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France; UMR INSERM, 917, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France; INSERM ER440-OSS, CLCC Eugène Marquis, Rue Bataille Flandres Dunkerque, Rennes 35042, France; UMS CNRS3480/US 018 INSERM BIOSIT, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France.
| |
Collapse
|
21
|
Nakayama S, Yokote T, Hiraoka N, Nishiwaki U, Hanafusa T, Nishimura Y, Tsuji M. Role of mast cells in fibrosis of classical Hodgkin lymphoma. Int J Immunopathol Pharmacol 2016; 29:603-611. [PMID: 27095287 DOI: 10.1177/0394632016644447] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022] Open
Abstract
The underlying mechanism of fibrosis in classical Hodgkin lymphoma (CHL) remains uncertain. This study aimed to investigate the association of fibrosis in the lymph nodes of patients with CHL through histological examination of the expression of cytokines associated with fibrosis and mast cell proliferation. Additionally, we sought to determine the degree of mast cell infiltration in a nodular sclerosis subtype of CHL (NSCHL) compared with that in non-NSCHL. We analyzed lymph nodes from 22 patients with CHL, of which eight were of the NSCHL and 14 of the non-NSCHL subtype, using immunohistochemical staining of forkhead box P3 (FOXP3), transforming growth factor (TGF)-β, interleukin (IL)-3, IL-13, and stem cell factor (SCF). Mast cells were positive for TGF-β and IL-13, and FOXP3-positive cells were negative for TGF-β. Only the expression of IL-13 in Hodgkin and Reed-Sternberg (HRS) cells was significantly more frequently observed in NSCHL than that in non-NSCHL (P = 0.0028) and was associated with a higher rate of fibrosis (P = 0.0097). The number of mast cells was significantly higher in NSCHL than that in non-NSCHL (P = 0.0001). A significantly positive correlation was observed between the rate of fibrosis and the number of mast cells (correlation coefficient, 0.8524; 95% CI, 0.6725-0.9372) (P <0.0001). The number of mast cells was significantly higher in the group with IL-13-positive HRS cells than that in the group with IL-13-negative HRS cells (P = 0.0157). Based on these findings, we hypothesize that IL-13 production by HRS cells may lead to fibrosis, and furthermore, promote mast cell proliferation and infiltration. This in turn might further produce the fibrotic cytokines IL-13 and TGF-β, resulting in fibrosis typical of NSCHL.
Collapse
Affiliation(s)
- Shoko Nakayama
- Department of Internal Medicine (I), Osaka Medical College, Osaka, Japan
| | - Taiji Yokote
- Department of Internal Medicine (I), Osaka Medical College, Osaka, Japan
| | - Nobuya Hiraoka
- Department of Internal Medicine (I), Osaka Medical College, Osaka, Japan
| | - Uta Nishiwaki
- Department of Internal Medicine (I), Osaka Medical College, Osaka, Japan
| | - Toshiaki Hanafusa
- Department of Internal Medicine (I), Osaka Medical College, Osaka, Japan
| | | | - Motomu Tsuji
- Division of Surgical Pathology, Osaka Medical College, Osaka, Japan
| |
Collapse
|
22
|
Abstract
Tumor microenvironment is involved in the pathogenesis and progression of human lymphomas. The lymphoma microenvironment is composed by stromal cells, immune cells (macrophages, plasma cells, mast cells, eosinophils, basophils, T- and B-cells), blood vessels and extracellular matrix proteins. This article is focused on the role of mast cells in lymphoma progression and angiogenesis. Mast cells might be regarded in a future perspective as a new target for the adjuvant treatment of tumors, including lymphomas.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy, National Cancer Institute "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
23
|
Han H, Xue-Franzén Y, Miao X, Nagy E, Li N, Xu D, Sjöberg J, Björkholm M, Claesson HE. Early growth response gene (EGR)-1 regulates leukotriene D4-induced cytokine transcription in Hodgkin lymphoma cells. Prostaglandins Other Lipid Mediat 2015; 121:122-30. [DOI: 10.1016/j.prostaglandins.2015.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/29/2015] [Accepted: 06/16/2015] [Indexed: 12/29/2022]
|
24
|
Andersen MD, Kamper P, Nielsen PS, Bendix K, Riber-Hansen R, Steiniche T, Hamilton-Dutoit S, Clausen M, d'Amore F. Tumour-associated mast cells in classical Hodgkin's lymphoma: correlation with histological subtype, other tumour-infiltrating inflammatory cell subsets and outcome. Eur J Haematol 2015; 96:252-9. [DOI: 10.1111/ejh.12583] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Maja D. Andersen
- Department of Hematology; Aarhus University Hospital; Aarhus Denmark
| | - Peter Kamper
- Department of Hematology; Aarhus University Hospital; Aarhus Denmark
| | | | - Knud Bendix
- Institute of Pathology; Aarhus University Hospital; Aarhus Denmark
| | | | - Torben Steiniche
- Institute of Pathology; Aarhus University Hospital; Aarhus Denmark
| | | | - Michael Clausen
- Department of Hematology; Aarhus University Hospital; Aarhus Denmark
| | - Francesco d'Amore
- Department of Hematology; Aarhus University Hospital; Aarhus Denmark
| |
Collapse
|
25
|
Wang LD, Rao TN, Rowe RG, Nguyen PT, Sullivan JL, Pearson DS, Doulatov S, Wu L, Lindsley RC, Zhu H, DeAngelo DJ, Daley GQ, Wagers AJ. The role of Lin28b in myeloid and mast cell differentiation and mast cell malignancy. Leukemia 2015; 29:1320-30. [PMID: 25655194 PMCID: PMC4456252 DOI: 10.1038/leu.2015.19] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/23/2014] [Accepted: 12/31/2014] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) are critical components of the innate immune system and important for host defense, allergy, autoimmunity, tissue regeneration and tumor progression. Dysregulated MC development leads to systemic mastocytosis (SM), a clinically variable but often devastating family of hematologic disorders. Here we report that induced expression of Lin28, a heterochronic gene and pluripotency factor implicated in driving a fetal hematopoietic program, caused MC accumulation in adult mice in target organs such as the skin and peritoneal cavity. In vitro assays revealed a skewing of myeloid commitment in LIN28B-expressing hematopoietic progenitors, with increased levels of LIN28B in common myeloid and basophil-MC progenitors altering gene expression patterns to favor cell fate choices that enhanced MC specification. In addition, LIN28B-induced MCs appeared phenotypically and functionally immature, and in vitro assays suggested a slowing of MC terminal differentiation in the context of LIN28B upregulation. Finally, interrogation of human MC leukemia samples revealed upregulation of LIN28B in abnormal MCs from patients with SM. This work identifies Lin28 as a novel regulator of innate immune function and a new protein of interest in MC disease.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Blotting, Western
- Bone Marrow Transplantation
- Cell Differentiation
- Cells, Cultured
- DNA-Binding Proteins/physiology
- Female
- Flow Cytometry
- Hematopoiesis/physiology
- Humans
- Leukemia, Mast-Cell/metabolism
- Leukemia, Mast-Cell/pathology
- Leukemia, Mast-Cell/therapy
- Male
- Mast Cells/cytology
- Mast Cells/metabolism
- Mastocytosis, Systemic/metabolism
- Mastocytosis, Systemic/pathology
- Mastocytosis, Systemic/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Myeloid Cells/cytology
- Myeloid Cells/metabolism
- RNA, Messenger/genetics
- RNA-Binding Proteins/metabolism
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Leo D. Wang
- Joslin Diabetes Center, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Dana-Farber/Boston Children’s Center for Cancer and Blood Disorders, Boston, MA, USA
- Department of Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Tata Nageswara Rao
- Joslin Diabetes Center, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - R. Grant Rowe
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Dana-Farber/Boston Children’s Center for Cancer and Blood Disorders, Boston, MA, USA
- Department of Medicine, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Phi T. Nguyen
- Joslin Diabetes Center, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jessica L. Sullivan
- Joslin Diabetes Center, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Daniel S. Pearson
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Dana-Farber/Boston Children’s Center for Cancer and Blood Disorders, Boston, MA, USA
- Department of Medicine, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Medical Scientist Training Program, Harvard Medical School, Boston, MA, USA
| | - Sergei Doulatov
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Dana-Farber/Boston Children’s Center for Cancer and Blood Disorders, Boston, MA, USA
- Department of Medicine, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Linwei Wu
- Children’s Research Institute, Department of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - R. Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hao Zhu
- Children’s Research Institute, Department of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J. DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - George Q. Daley
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Dana-Farber/Boston Children’s Center for Cancer and Blood Disorders, Boston, MA, USA
- Department of Medicine, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Amy J. Wagers
- Joslin Diabetes Center, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
26
|
Marinaccio C, Nico B, Maiorano E, Specchia G, Ribatti D. Insights in Hodgkin Lymphoma angiogenesis. Leuk Res 2014; 38:857-61. [DOI: 10.1016/j.leukres.2014.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
|
27
|
Mast cells, basophils and B cell connection network. Mol Immunol 2014; 63:94-103. [PMID: 24671125 DOI: 10.1016/j.molimm.2014.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/27/2022]
Abstract
It has been proven that both resting and activated mast cells (MCs) and basophils are able to induce a significant increase in proliferation and survival of naïve and activated B cells, and their differentiation into antibody-producing cells. The immunological context in which this regulation occurs is of particular interest and the idea that these innate cells induce antibody class switching and production is increasingly gaining ground. This direct role of MCs and basophils in acquired immunity requires cell to cell contact as well as soluble factors and exosomes. Here, we review our current understanding of the interaction between B cells and MCs or basophils as well as the evidence supporting B lymphocyte-MC/basophil crosstalk in pathological settings. Furthermore, we underline the obscure aspects of this interaction that could serve as important starting points for future research in the field of MC and basophil biology in the peculiar context of the connection between innate and adaptive immunity.
Collapse
|
28
|
Eom S, Kim Y, Park D, Lee H, Lee YS, Choe J, Kim YM, Jeoung D. Histone deacetylase-3 mediates positive feedback relationship between anaphylaxis and tumor metastasis. J Biol Chem 2014; 289:12126-12144. [PMID: 24619412 DOI: 10.1074/jbc.m113.521245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Allergic inflammation has been known to enhance the metastatic potential of tumor cells. The role of histone deacetylase-3 (HDAC3) in allergic skin inflammation was reported. We investigated HDAC3 involvement in the allergic inflammation-promotion of metastatic potential of tumor cells. Passive systemic anaphylaxis (PSA) induced HDAC3 expression and FcεRI signaling in BALB/c mice. PSA enhanced the tumorigenic and metastatic potential of mouse melanoma cells in HDAC3- and monocyte chemoattractant protein 1-(MCP1)-dependent manner. The PSA-mediated enhancement of metastatic potential involved the induction of HDAC3, MCP1, and CD11b (a macrophage marker) expression in the lung tumor tissues. We examined an interaction between anaphylaxis and tumor growth and metastasis at the molecular level. Conditioned medium from antigen-stimulated bone marrow-derived mouse mast cell cultures induced the expression of HDAC3, MCP1, and CCR2, a receptor for MCP1, in B16F1 mouse melanoma cells and enhanced migration and invasion potential of B16F1 cells. The conditioned medium from B16F10 cultures induced the activation of FcεRI signaling in lung mast cells in an HDAC3-dependent manner. FcεRI signaling was observed in lung tumors derived from B16F10 cells. Target scan analysis predicted HDAC3 to be as a target of miR-384, and miR-384 and HDAC3 were found to form a feedback regulatory loop. miR-384, which is decreased by PSA, negatively regulated HDAC3 expression, allergic inflammation, and the positive feedback regulatory loop between anaphylaxis and tumor metastasis. We show the miR-384/HDAC3 feedback loop to be a novel regulator of the positive feedback relationship between anaphylaxis and tumor metastasis.
Collapse
Affiliation(s)
- Sangkyung Eom
- Departments of Biochemistry, Kangwon National University, Chunchon 200-701
| | - Youngmi Kim
- Departments of Biochemistry, Kangwon National University, Chunchon 200-701
| | - Deokbum Park
- Departments of Biochemistry, Kangwon National University, Chunchon 200-701
| | - Hansoo Lee
- Departments of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon 200-701
| | - Yun Sil Lee
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jongseon Choe
- Graduate School of Medicine, Kangwon National University, Chunchon 200-701
| | - Young Myeong Kim
- Graduate School of Medicine, Kangwon National University, Chunchon 200-701
| | - Dooil Jeoung
- Departments of Biochemistry, Kangwon National University, Chunchon 200-701.
| |
Collapse
|
29
|
Woldemeskel M, Mann E, Whittington L. Tumor microvessel density-associated mast cells in canine nodal lymphoma. SAGE Open Med 2014; 2:2050312114559575. [PMID: 26770752 PMCID: PMC4607238 DOI: 10.1177/2050312114559575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/16/2014] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. METHODS Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. RESULTS The mast cell count in lymphoma (2.95 ± 2.4) was significantly higher (p < 0.05) than that in the control (0.83 ± 0.3) and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009). Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. CONCLUSIONS Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended.
Collapse
Affiliation(s)
- Moges Woldemeskel
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, Department of Pathology, The University of Georgia, Tifton, GA, USA
| | - Elizabeth Mann
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, Department of Pathology, The University of Georgia, Tifton, GA, USA
| | - Lisa Whittington
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, Department of Pathology, The University of Georgia, Tifton, GA, USA
| |
Collapse
|
30
|
Bucur O, Stancu AL, Goganau I, Petrescu SM, Pennarun B, Bertomeu T, Dewar R, Khosravi-Far R. Combination of bortezomib and mitotic inhibitors down-modulate Bcr-Abl and efficiently eliminates tyrosine-kinase inhibitor sensitive and resistant Bcr-Abl-positive leukemic cells. PLoS One 2013; 8:e77390. [PMID: 24155950 PMCID: PMC3796452 DOI: 10.1371/journal.pone.0077390] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/06/2013] [Indexed: 12/17/2022] Open
Abstract
Emergence of resistance to Tyrosine-Kinase Inhibitors (TKIs), such as imatinib, dasatinib and nilotinib, in Chronic Myelogenous Leukemia (CML) demands new therapeutic strategies. We and others have previously established bortezomib, a selective proteasome inhibitor, as an important potential treatment in CML. Here we show that the combined regimens of bortezomib with mitotic inhibitors, such as the microtubule-stabilizing agent Paclitaxel and the PLK1 inhibitor BI2536, efficiently kill TKIs-resistant and -sensitive Bcr-Abl-positive leukemic cells. Combined treatment activates caspases 8, 9 and 3, which correlate with caspase-induced PARP cleavage. These effects are associated with a marked increase in activation of the stress-related MAP kinases p38MAPK and JNK. Interestingly, combined treatment induces a marked decrease in the total and phosphorylated Bcr-Abl protein levels, and inhibits signaling pathways downstream of Bcr-Abl: downregulation of STAT3 and STAT5 phosphorylation and/or total levels and a decrease in phosphorylation of the Bcr-Abl-associated proteins CrkL and Lyn. Moreover, we found that other mitotic inhibitors (Vincristine and Docetaxel), in combination with bortezomib, also suppress the Bcr-Abl-induced pro-survival signals and result in caspase 3 activation. These results open novel possibilities for the treatment of Bcr-Abl-positive leukemias, especially in the imatinib, dasatinib and nilotinib-resistant CML cases.
Collapse
Affiliation(s)
- Octavian Bucur
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Andreea Lucia Stancu
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ioana Goganau
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Bodvael Pennarun
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Thierry Bertomeu
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Rajan Dewar
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Roya Khosravi-Far
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts, United States of America;
- * E-mail:
| |
Collapse
|
31
|
Liu Y, Sattarzadeh A, Diepstra A, Visser L, van den Berg A. The microenvironment in classical Hodgkin lymphoma: an actively shaped and essential tumor component. Semin Cancer Biol 2013; 24:15-22. [PMID: 23867303 DOI: 10.1016/j.semcancer.2013.07.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/20/2013] [Accepted: 07/06/2013] [Indexed: 12/19/2022]
Abstract
Classical Hodgkin lymphoma (cHL) is characterized by a minority of tumor cells derived from germinal center B-cells and a vast majority of non-malignant reactive cells. The tumor cells show a loss of B-cell phenotype including lack of the B-cell receptor, which makes the tumor cells vulnerable to apoptosis. To overcome this threat, tumor cells and their precursors depend on anti-apoptotic and growth stimulating factors that are obtained via triggering of multiple membrane receptors. In addition, tumor cells shape the environment by producing a wide variety of chemokines and cytokines. These factors alter the composition of the microenvironment and modulate the nature and effectiveness of the infiltrating cells. The attracted cells enhance the pro-survival and growth stimulating signals for the tumor cells. To escape from an effective anti-tumor response tumor cells avoid recognition by T and NK cells, by downregulation of HLA molecules and modulating NK and T-cell receptors. In addition, the tumor cells produce immune suppressive cytokines that inhibit cytotoxic responses. In this review the relevance of the microenvironment in the pathogenesis of cHL will be discussed.
Collapse
Affiliation(s)
- Yuxuan Liu
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Netherlands.
| | - Ahmad Sattarzadeh
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Netherlands.
| | - Arjan Diepstra
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Netherlands.
| | - Lydia Visser
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Netherlands.
| | - Anke van den Berg
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Netherlands.
| |
Collapse
|
32
|
Celegato M, Borghese C, Casagrande N, Carbone A, Colombatti A, Aldinucci D. Bortezomib down-modulates the survival factor interferon regulatory factor 4 in Hodgkin lymphoma cell lines and decreases the protective activity of Hodgkin lymphoma-associated fibroblasts. Leuk Lymphoma 2013; 55:149-59. [DOI: 10.3109/10428194.2013.800196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|