1
|
Fang H, Wang SA, Beird HC, Tang Z, You MJ, Li S, Xu J, Hu S, Yin CC, El Hussein S, Lin P, Jelloul FZ, Vega F, Medeiros LJ, Wang W. Morphology, immunophenotype, and suggested diagnostic criteria of TCL1 family-negative T-prolymphocytic leukemia. Am J Clin Pathol 2024:aqae075. [PMID: 38946194 DOI: 10.1093/ajcp/aqae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024] Open
Abstract
OBJECTIVES We sought to investigate the morphologic and immunophenotypic characteristics of TCL1 family-negative T-cell prolymphocytic leukemia (T-PLL). METHODS Twenty cases of TCL1 family-negative T-PLL were studied. RESULTS The doubling time of leukemic cells ranged from less than 2 days to more than 5 years, with a median of 5.5 months. Leukemic cells were small to medium-sized, with round to irregular nuclei, variably condensed chromatin, and small amounts of agranular cytoplasm. A visible nucleolus was identified in 11 (55%) cases. Cytoplasmic blebs/protrusions were identified in all cases, but their occurrence was highly variable from case to case. Bone marrow biopsy showed an interstitial pattern in 90% of cases and a diffuse pattern in the remaining 10% of cases. Flow cytometric immunophenotypic analysis showed that the leukemic cells in all cases were CD4 positive; 3 (15%) also showed concurrent CD8 expression. All cases were positive for CD2 and CD5. Surface CD3 and CD7 were positive in 19 of 20 (95%) cases, and all CD3-positive cases expressed the T-cell receptor αβ. Compared with prototypic T-PLL cases, these 2 groups shared many immunophenotypic findings, except CD8 and CD26, both of which were more commonly expressed in prototypic T-PLL cases. CONCLUSIONS TCL1 family-negative T-PLL cases have morphologic and immunophenotypic features that are similar to prototypic T-PLL. They are characterized by neoplastic proliferation of small to medium-sized mature T cells with CD4-positive T-cell receptor αβ phenotype. Tumor cells frequently maintain pan-T antigen expression. Recognizing these morphologic and immunophenotypic features will aid in accurately diagnosing this rare subset of T-PLL.
Collapse
Affiliation(s)
- Hong Fang
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Sa A Wang
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Zhenya Tang
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - M James You
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Shaoying Li
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Jie Xu
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Shimin Hu
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - C Cameron Yin
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Siba El Hussein
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Pei Lin
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Fatima Zahra Jelloul
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Francisco Vega
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - L Jeffrey Medeiros
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Wei Wang
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| |
Collapse
|
2
|
Liongue C, Ratnayake T, Basheer F, Ward AC. Janus Kinase 3 (JAK3): A Critical Conserved Node in Immunity Disrupted in Immune Cell Cancer and Immunodeficiency. Int J Mol Sci 2024; 25:2977. [PMID: 38474223 DOI: 10.3390/ijms25052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | | | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
3
|
Liang D, Wang Q, Zhang W, Tang H, Song C, Yan Z, Liang Y, Wang H. JAK/STAT in leukemia: a clinical update. Mol Cancer 2024; 23:25. [PMID: 38273387 PMCID: PMC10811937 DOI: 10.1186/s12943-023-01929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Over the past three decades, considerable efforts have been expended on understanding the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in leukemia, following the identification of the JAK2V617F mutation in myeloproliferative neoplasms (MPNs). The aim of this review is to summarize the latest progress in our understanding of the involvement of the JAK/STAT signaling pathway in the development of leukemia. We also attempt to provide insights into the current use of JAK/STAT inhibitors in leukemia therapy and explore pertinent clinical trials in this field.
Collapse
Affiliation(s)
- Dong Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenbiao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhimin Yan
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Hua Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
4
|
Rodriguez Moncivais OJ, Chavez SA, Estrada Jimenez VH, Sun S, Li L, Kirken RA, Rodriguez G. Structural Analysis of Janus Tyrosine Kinase Variants in Hematological Malignancies: Implications for Drug Development and Opportunities for Novel Therapeutic Strategies. Int J Mol Sci 2023; 24:14573. [PMID: 37834019 PMCID: PMC10572942 DOI: 10.3390/ijms241914573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Janus tyrosine kinase (JAK) variants are known drivers for hematological disorders. With the full-length structure of mouse JAK1 being recently resolved, new observations on the localization of variants within closed, open, and dimerized JAK structures are possible. Full-length homology models of human wild-type JAK family members were developed using the Glassman et al. reported mouse JAK1 containing the V658F structure as a template. Many mutational sites related to proliferative hematological disorders reside in the JH2 pseudokinase domains facing the region important in dimerization of JAKs in both closed and open states. More than half of all JAK gain of function (GoF) variants are changes in polarity, while only 1.2% are associated with a change in charge. Within a JAK1-JAK3 homodimer model, IFNLR1 (PDB ID7T6F) and the IL-2 common gamma chain subunit (IL2Rγc) were aligned with the respective dimer implementing SWISS-MODEL coupled with ChimeraX. JAK3 variants were observed to encircle the catalytic site of the kinase domain, while mutations in the pseudokinase domain align along the JAK-JAK dimerization axis. FERM domains of JAK1 and JAK3 are identified as a hot spot for hematologic malignancies. Herein, we propose new allosteric surfaces for targeting hyperactive JAK dimers.
Collapse
Affiliation(s)
- Omar J. Rodriguez Moncivais
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
| | - Stephanie A. Chavez
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
| | - Victor H. Estrada Jimenez
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
| | - Shengjie Sun
- Department of Physics, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
- Computational Sciences Program, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
| | - Lin Li
- Department of Physics, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
- Computational Sciences Program, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
| | - Robert A. Kirken
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
| |
Collapse
|
5
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Yi H, Li A, Ouyang B, Da Q, Dong L, Liu Y, Xu H, Zhang X, Zhang W, Jin X, Gu Y, Wang Y, Liu Z, Wang C. Clinicopathological and molecular features of indolent natural killer-cell lymphoproliferative disorder of the gastrointestinal tract. Histopathology 2023; 82:567-575. [PMID: 36494712 DOI: 10.1111/his.14850] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
AIMS Indolent natural killer (NK) cell lymphoproliferative disorder of the gastrointestinal (GI) tract (iNKLPD) is a rare, recently recognised neoplasm. Most of the reported tumours are confined to the GI tract, while a small subset of the tumours harbour JAK3 mutations. We collected four cases of iNKLPD with the goal of adding additional information to the current knowledge of this disease regarding the clinicopathological, immunohistochemical and molecular features. METHODS AND RESULTS Similar features including medium- to large-sized lymphoid cells with variable amounts of pale or slightly eosinophilic cytoplasm, and no evidence of EBER, TCR rearrangement were found in four cases. JAK3 K563_C565del mutation was found in one of three cases that were subjected to targeted next-generation sequencing. Unique findings of our study include one iNKLPD encountered for the first time in nasopharynx, where lesions could be inadvertently diagnosed as extranodal NK/T cell lymphoma, and one iNKLPD located in the gallbladder extended deeply into muscular and adventitial layers. Exceptional CD8-positive expression was observed in one iNKLPD. In addition, positive staining of phospho-STAT5, phospho-STAT3 and phospho-p38 were found in our cases. None of the four patients received therapy for lymphoma, but all had a benign clinical outcome during a follow-up time of 20-99 months. CONCLUSIONS We present four iNKLPDs with clinical, immunohistochemical and molecular features similar to the reported cases, as well as some unusual characters, which expand our knowledge on this disease, and further support the neoplastic nature of iNKLPDs.
Collapse
Affiliation(s)
- Hongmei Yi
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Anqi Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Binshen Ouyang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Qian Da
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Yingting Liu
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Xiaoyun Zhang
- Department of Pathology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang
| | - Xiaofen Jin
- Department of Pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang
| | - Yijin Gu
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Yan Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Zebing Liu
- Department of Pathology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
| |
Collapse
|
7
|
Stuver R, Moskowitz AJ. Therapeutic Advances in Relapsed and Refractory Peripheral T-Cell Lymphoma. Cancers (Basel) 2023; 15:cancers15030589. [PMID: 36765544 PMCID: PMC9913081 DOI: 10.3390/cancers15030589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Historic outcomes for patients with relapsed or refractory nodal-based T-cell lymphomas are poor, with survival generally measured in months in multiple reports from the late 20th and early 21st century. Until recently, salvage strategies have mostly been borrowed from other aggressive lymphomas. However, dedicated investigations into the pathogenesis of T-cell lymphomas have resulted in an outpouring of therapies that target these diseases in biologically rational strategies. In particular, an evolving appreciation of the multiple complex oncogenic pathways and epigenetic changes that underlie these diseases has led to numerous agents targeting these aberrancies. Moreover, large reports of salvage allogeneic stem cell transplants in T-cell lymphoma have now been published, showing that adaptive immunotherapy is a potentially curative strategy for patients with relapsed or refractory disease. This review highlights therapeutic advances for relapsed or refractory T-cell lymphomas, including cellular therapy and allogeneic stem cell transplant, and provides a framework for management.
Collapse
|
8
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
9
|
In vivo impact of JAK3 A573V mutation revealed using zebrafish. Cell Mol Life Sci 2022; 79:322. [PMID: 35622134 PMCID: PMC9142468 DOI: 10.1007/s00018-022-04361-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
Background Janus kinase 3 (JAK3) acts downstream of the interleukin-2 (IL-2) receptor family to play a pivotal role in the regulation of lymphoid cell development. Activating JAK3 mutations are associated with a number of lymphoid and other malignancies, with mutations within the regulatory pseudokinase domain common. Methods The pseudokinase domain mutations A572V and A573V were separately introduced into the highly conserved zebrafish Jak3 and transiently expressed in cell lines and zebrafish embryos to examine their activity and impact on early T cells. Genome editing was subsequently used to introduce the A573V mutation into the zebrafish genome to study the effects of JAK3 activation on lymphoid cells in a physiologically relevant context throughout the life-course. Results Zebrafish Jak3 A573V produced the strongest activation of downstream STAT5 in vitro and elicited a significant increase in T cells in zebrafish embryos. Zebrafish carrying just a single copy of the Jak3 A573V allele displayed elevated embryonic T cells, which continued into adulthood. Hematopoietic precursors and NK cells were also increased, but not B cells. The lymphoproliferative effects of Jak3 A573V in embryos was shown to be dependent on zebrafish IL-2Rγc, JAK1 and STAT5B equivalents, and could be suppressed with the JAK3 inhibitor Tofacitinib. Conclusions This study demonstrates that a single JAK3 A573V allele expressed from the endogenous locus was able to enhance lymphopoiesis throughout the life-course, which was mediated via an IL-2Rγc/JAK1/JAK3/STAT5 signaling pathway and was sensitive to Tofacitinib. This extends our understanding of oncogenic JAK3 mutations and creates a novel model to underpin further translational investigations. Supplementary Information The online version contains supplementary material available at 10.1007/s00018-022-04361-8.
Collapse
|
10
|
Patil P, Hillebrecht S, Chteinberg E, López C, Toprak UH, Seufert J, Bernhart SH, Kretzmer H, Bergmann AK, Bens S, Högel J, Scheffold A, Chelliah Jebaraj BM, Schrader A, Johansson P, Costa D, Schlesner M, Dürig J, Herling M, Campo E, Stilgenbauer S, Wiehle L, Siebert R. T-cell prolymphocytic leukemia is associated with deregulation of oncogenic microRNAs on transcriptional and epigenetic level. Genes Chromosomes Cancer 2022; 61:432-436. [PMID: 35218115 DOI: 10.1002/gcc.23034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
Deregulation of micro(mi)-RNAs is a common mechanism in tumorigenesis. We investigated the expression of 2083 miRNAs in T-cell prolymphocytic leukemia (T-PLL). Compared to physiologic CD4+ and CD8+ T-cell subsets, 111 miRNAs were differentially expressed in T-PLL. Of these, 33 belonged to miRNA gene clusters linked to cancer. Genomic variants affecting miRNAs were infrequent with the notable exception of copy number aberrations. Remarkably, we found strong upregulation of the miR-200c/-141 cluster in T-PLL to be associated with DNA hypomethylation and active promoter marks. Our findings suggest that copy number aberrations and epigenetic changes could contribute to miRNA deregulation in T-PLL. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Paurnima Patil
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Sina Hillebrecht
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Emil Chteinberg
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Cristina López
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.,Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany.,Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Umut H Toprak
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Julian Seufert
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Stephan H Bernhart
- Interdisciplinary Center for Bioinformatics, Transcriptome Bioinformatics, University of Leipzig, Germany
| | - Helene Kretzmer
- Interdisciplinary Center for Bioinformatics, Transcriptome Bioinformatics, University of Leipzig, Germany
| | - Anke K Bergmann
- Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany.,Institute for Human Genetics, Hannover Medical School, Hannover, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.,Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Josef Högel
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Annika Scheffold
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | | | - Alexandra Schrader
- Department of Internal Medicine, Center for Integrated Oncology Köln Bonn, Deutsche CLL Study Group (DCLLSG), University of Cologne, Cologne, Germany
| | - Patricia Johansson
- Institute for Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Dolors Costa
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Informatics and Medical Faculty, Augsburg University, Augsburg, Germany
| | - Jan Dürig
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marco Herling
- Department of Internal Medicine, Center for Integrated Oncology Köln Bonn, Deutsche CLL Study Group (DCLLSG), University of Cologne, Cologne, Germany.,Clinic of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - Elias Campo
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | - Laura Wiehle
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.,Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
11
|
Sekine Y, Kikkawa K, Witthuhn BA, Kashiwakura JI, Muromoto R, Kitai Y, Fujimuro M, Oritani K, Matsuda T. A novel intramolecular negative regulation of mouse Jak3 activity by tyrosine 820. Int Immunol 2022; 34:303-312. [PMID: 35192696 DOI: 10.1093/intimm/dxac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Jak3, a member of the Janus kinase family, is essential for the cytokine receptor common gamma (γ) chain-mediated signaling. During activation of Jak3, tyrosine residues are phosphorylated and potentially regulate its kinase activity. We identified a novel tyrosine phosphorylation site within mouse Jak3, Y820, which is conserved in human Jak3, Y824. IL-2-induced tyrosine phosphorylation of Jak3 Y824 in human T cell line HuT78 cells was detected by using a phosphospecific, pY824, antibody. Mutation of mouse Jak3 Y820 to alanine (Y820A) showed increased autophosphorylation of Jak3 and enhanced STAT5 tyrosine phosphorylation and transcriptional activation. Stably expressed Jak3 Y820A in F7 cells, an IL-2 responsive mouse pro-B cell line Ba/F3, exhibited enhanced IL-2-dependent cell growth. Mechanistic studies demonstrated that interaction between Jak3 and STAT5 increased in Jak3 Y820A compared to Jak3 WT. These data suggest that Jak3 Y820 plays a role in negative regulation of Jak3-mediated STAT5 signaling cascade upon IL-2-stimulation. We speculate that this occurs through an interaction promoted by the tyrosine phosphorylated Y820 or a conformational change by Y820 mutation with either the STAT directly or with the recruitment of molecules such as phosphatases via a SH2 interaction. Additional studies will focus on these interactions as Jak3 plays a crucial role in disease and health.
Collapse
Affiliation(s)
- Yuichi Sekine
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazuna Kikkawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Bruce A Witthuhn
- Center for Mass Spectrometry and Proteomics, University of Minnesota, Minneapolis, MN, USA
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, 4-3 Kouzunomori, Narita, Chiba, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Braun T, Dechow A, Friedrich G, Seifert M, Stachelscheid J, Herling M. Advanced Pathogenetic Concepts in T-Cell Prolymphocytic Leukemia and Their Translational Impact. Front Oncol 2021; 11:775363. [PMID: 34869023 PMCID: PMC8639578 DOI: 10.3389/fonc.2021.775363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is the most common mature T-cell leukemia. It is a typically aggressively growing and chemotherapy-resistant malignancy with a poor prognosis. T-PLL cells resemble activated, post-thymic T-lymphocytes with memory-type effector functions. Constitutive transcriptional activation of genes of the T-cell leukemia 1 (TCL1) family based on genomic inversions/translocations is recognized as a key event in T-PLL's pathogenesis. TCL1's multiple effector pathways include the enhancement of T-cell receptor (TCR) signals. New molecular dependencies around responses to DNA damage, including repair and apoptosis regulation, as well as alterations of cytokine and non-TCR activation signaling were identified as perturbed hallmark pathways within the past years. We currently witness these vulnerabilities to be interrogated in first pre-clinical concepts and initial clinical testing in relapsed/refractory T-PLL patients. We summarize here the current knowledge on the molecular understanding of T-PLL's pathobiology and critically assess the true translational progress around this to help appraisal by caregivers and patients. Overall, the contemporary concepts on T-PLL's pathobiology are condensed in a comprehensive mechanistic disease model and promising interventional strategies derived from it are highlighted.
Collapse
Affiliation(s)
- Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), Cologne, Germany
| | - Annika Dechow
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), Cologne, Germany
| | - Gregor Friedrich
- Department of Hematology and Cellular Therapy, University of Leipzig, Leipzig, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Johanna Stachelscheid
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), Cologne, Germany
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), Cologne, Germany.,Department of Hematology and Cellular Therapy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
13
|
Fan WJ, Xu TT, Guo JJ, Li YF, Jiang ZX. [Prognostic analysis of patients with mutations in the JAK/STAT signaling pathway in adult acute lymphoblastic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:594-597. [PMID: 34455748 PMCID: PMC8408485 DOI: 10.3760/cma.j.issn.0253-2727.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 11/25/2022]
Affiliation(s)
- W J Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - T T Xu
- Department of Blood Transfusion, Henan Provincial People's Hospital, Zhengzhou 450000, China
| | - J J Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Y F Li
- Department of Hematology Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Z X Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
14
|
Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors-A Strategy for Hematological Malignancies? Cancers (Basel) 2021; 13:cancers13112611. [PMID: 34073410 PMCID: PMC8197909 DOI: 10.3390/cancers13112611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is aberrantly activated in many malignancies. Inhibition of this pathway via JAK inhibitors (JAKinibs) is therefore an attractive therapeutic strategy underlined by Ruxolitinib (JAK1/2 inhibitor) being approved for the treatment of myeloproliferative neoplasms. As a consequence of the crucial role of the JAK-STAT pathway in the regulation of immune responses, inhibition of JAKs suppresses the immune system. This review article provides a thorough overview of the current knowledge on JAKinibs’ effects on immune cells in the context of hematological malignancies. We also discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of the malignancy. Abstract The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being the main driver mutation in myeloproliferative neoplasms (MPN). Therefore, inhibition of this pathway is an attractive therapeutic strategy for different types of cancer. Numerous JAK inhibitors (JAKinibs) have entered clinical trials, including the JAK1/2 inhibitor Ruxolitinib approved for the treatment of MPN. Importantly, loss of function mutations in JAK-STAT members are a cause of immune suppression or deficiencies. MPN patients undergoing Ruxolitinib treatment are more susceptible to infections and secondary malignancies. This highlights the suppressive effects of JAKinibs on immune responses, which renders them successful in the treatment of autoimmune diseases but potentially detrimental for cancer patients. Here, we review the current knowledge on the effects of JAKinibs on immune cells in the context of hematological malignancies. Furthermore, we discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of malignancies. In summary, this review underlines the necessity of a robust immune profiling to provide the best benefit for JAKinib-treated patients.
Collapse
|
15
|
Janus Kinases in Leukemia. Cancers (Basel) 2021; 13:cancers13040800. [PMID: 33672930 PMCID: PMC7918039 DOI: 10.3390/cancers13040800] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/12/2023] Open
Abstract
Janus kinases (JAKs) transduce signals from dozens of extracellular cytokines and function as critical regulators of cell growth, differentiation, gene expression, and immune responses. Deregulation of JAK/STAT signaling is a central component in several human diseases including various types of leukemia and other malignancies and autoimmune diseases. Different types of leukemia harbor genomic aberrations in all four JAKs (JAK1, JAK2, JAK3, and TYK2), most of which are activating somatic mutations and less frequently translocations resulting in constitutively active JAK fusion proteins. JAKs have become important therapeutic targets and currently, six JAK inhibitors have been approved by the FDA for the treatment of both autoimmune diseases and hematological malignancies. However, the efficacy of the current drugs is not optimal and the full potential of JAK modulators in leukemia is yet to be harnessed. This review discusses the deregulation of JAK-STAT signaling that underlie the pathogenesis of leukemia, i.e., mutations and other mechanisms causing hyperactive cytokine signaling, as well as JAK inhibitors used in clinic and under clinical development.
Collapse
|
16
|
Braun T, Glass M, Wahnschaffe L, Otte M, Mayer P, Franitza M, Altmüller J, Hallek M, Hüttelmaier S, Schrader A, Herling M. Micro-RNA networks in T-cell prolymphocytic leukemia reflect T-cell activation and shape DNA damage response and survival pathways. Haematologica 2020; 107:187-200. [PMID: 33543866 PMCID: PMC8719084 DOI: 10.3324/haematol.2020.267500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a poor-prognostic mature T-cell malignancy. It typically presents with exponentially rising lymphocyte counts, splenomegaly, and bone marrow infiltration. Effective treatment options are scarce and a better understanding of TPLL’s pathogenesis is desirable. Activation of the TCL1 proto-oncogene and loss-of-function perturbations of the tumor suppressor ATM are TPLL’s genomic hallmarks. The leukemic cell reveals a phenotype of active T-cell receptor (TCR) signaling and aberrant DNA damage responses. Regulatory networks based on the profile of microRNA (miR) have not been described for T-PLL. In a combined approach of small-RNA and transcriptome sequencing in 46 clinically and moleculary well-characterized T-PLL, we identified a global T-PLL-specific miR expression profile that involves 34 significantly deregulated miR species. This pattern strikingly resembled miR-ome signatures of TCR-activated T cells. By integrating these T-PLL miR profiles with transcriptome data, we uncovered regulatory networks associated with cell survival signaling and DNA damage response pathways. Despite a miR-ome that discerned leukemic from normal T cells, there were also robust subsets of T-PLL defined by a small set of specific miR. Most prominently, miR-141 and the miR- 200c-cluster separated cases into two major subgroups. Furthermore, increased expression of miR-223-3p as well as reduced expression of miR-21 and the miR-29 cluster were associated with more activated Tcell phenotypes and more aggressive disease presentations. Based on the implicated pathobiological role of these miR deregulations, targeting strategies around their effectors appear worth pursuing. We also established a combinatorial miR-based overall survival score for T-PLL (miROS-T-PLL), that might improve current clinical stratifications.
Collapse
Affiliation(s)
- Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicin Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Markus Glass
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford protein center, 06120 Halle
| | - Linus Wahnschaffe
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Moritz Otte
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Petra Mayer
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Marek Franitza
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne
| | - Janine Altmüller
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford protein center, 06120 Halle
| | - Alexandra Schrader
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne.
| |
Collapse
|
17
|
Rummelt C, Gorantla SP, Meggendorfer M, Charlet A, Endres C, Döhner K, Heidel FH, Fischer T, Haferlach T, Duyster J, von Bubnoff N. Activating JAK-mutations confer resistance to FLT3 kinase inhibitors in FLT3-ITD positive AML in vitro and in vivo. Leukemia 2020; 35:2017-2029. [PMID: 33149267 DOI: 10.1038/s41375-020-01077-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
Abstract
An important limitation of FLT3 tyrosine kinase inhibitors (TKIs) in FLT3-ITD positive AML is the development of resistance. To better understand resistance to FLT3 inhibition, we examined FLT3-ITD positive cell lines which had acquired resistance to midostaurin or sorafenib. In 6 out of 23 TKI resistant cell lines we were able to detect a JAK1 V658F mutation, a mutation that led to reactivation of the CSF2RB-STAT5 pathway. Knockdown of JAK1, or treatment with a JAK inhibitor, resensitized cells to FLT3 inhibition. Out of 136 patients with FLT3-ITD mutated AML and exposed to FLT3 inhibitor, we found seven different JAK family mutations in six of the cases (4.4%), including five bona fide, activating mutations. Except for one patient, the JAK mutations occurred de novo (n = 4) or displayed increasing variant allele frequency after exposure to FLT3 TKI (n = 1). In vitro each of the five activating variants were found to induce resistance to FLT3-ITD inhibition, which was then overcome by dual FLT3/JAK inhibition. In conclusion, our data characterize a novel mechanism of resistance to FLT3-ITD inhibition and may offer a potential therapy, using dual JAK and FLT3 inhibition.
Collapse
Affiliation(s)
- Christoph Rummelt
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sivahari P Gorantla
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | | | - Anne Charlet
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelia Endres
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Florian H Heidel
- Innere Medizin 2, Universitätsklinikum Jena, Jena, Germany.,Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Thomas Fischer
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Nikolas von Bubnoff
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany.
| |
Collapse
|
18
|
Wong J, Wall M, Corboy GP, Taubenheim N, Gregory GP, Opat S, Shortt J. Failure of tofacitinib to achieve an objective response in a DDX3X-MLLT10 T-lymphoblastic leukemia with activating JAK3 mutations. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004994. [PMID: 32843425 PMCID: PMC7476415 DOI: 10.1101/mcs.a004994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/05/2020] [Indexed: 02/01/2023] Open
Abstract
T-cell lymphoblastic lymphoma/T-cell acute lymphoblastic leukemia (T-LBL/T ALL) is an aggressive hematological malignancy arising from malignant transformation of T-cell progenitors with poor prognosis in adult patients. Outcomes are particularly dismal in the relapsed/refractory setting, and therapeutic options are limited in this context. Genomic profiling has shown frequent aberrations in the JAK-STAT pathway, including recurrent mutations in JAK3 (15%–20% of T-ALL cases), suggesting that JAK kinase inhibition may be a promising therapeutic approach. Activating JAK3 mutations are capable of transforming cytokine-dependent progenitor cells in vitro and causing T-ALL-like disease when expressed in hematopoietic progenitors in vivo. We describe a case of relapsed T-ALL in an adult patient, with two JAK3 activating mutations identified by whole-exome sequencing (WES), leading to hypothesis-based treatment with the JAK1 and JAK3 inhibitor, tofacitinib, following failure of salvage chemotherapy reinduction. Despite the molecularly targeted rationale, tofacitinib did not induce an objective clinical response. Our report suggests that the presence of activating JAK3 mutations does not necessarily confer sensitivity to pharmacological JAK3 inhibition.
Collapse
Affiliation(s)
- Jonathan Wong
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| | - Meaghan Wall
- School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia.,Victorian Cancer Cytogenetics Service, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia.,St Vincent's Institute, Fitzroy, 3065, Victoria, Australia.,Monash Pathology, Monash Health, Clayton, 3168, Victoria, Australia
| | - Gregory Philip Corboy
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Nadine Taubenheim
- Monash Pathology, Monash Health, Clayton, 3168, Victoria, Australia.,Center for Cancer Research, Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia
| | - Gareth Peter Gregory
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| | - Stephen Opat
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| | - Jake Shortt
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| |
Collapse
|
19
|
Sun S, Fang W. Current understandings on T-cell prolymphocytic leukemia and its association with TCL1 proto-oncogene. Biomed Pharmacother 2020; 126:110107. [PMID: 32247279 DOI: 10.1016/j.biopha.2020.110107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/02/2023] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare mature T cell leukemia with aggressive clinical course, poor response to conventional therapies and high mortality rates. Classical cytogenetics and various genetic techniques have observed complex karyotypes and associated genes involved in the molecular pathogenesis of T-PLL, among which the proto-oncogene T-cell leukemia/lymphoma 1 (TCL1) as a hallmark of malignancy is hyper-activated and abnormally expressed in many T-PLL cases. Progress has been made to identify the presence of chromosomal rearrangements and subsequent changes in key molecular pathways typically involving Akt, which may hint cytogenetic mechanisms underlying the pathogenesis of T-PLL and indicate new treatment targets. In this article, we describe current insights of T-PLL with an emphasis on the potential role of TCL1 gene disorders and TCL1-Akt interactions in cell transformation and disease progression, followed by discussion on current treatment options and novel therapeutic approaches based on cytogenetics, which still remains to be explored for the effective management of T-PLL and other TCL1-driven hematological malignancies.
Collapse
Affiliation(s)
- Siyu Sun
- Medical College of Nanchang University, Nanchang, 330000, China; Queen Mary University of London, London, E1 4NS, UK.
| | - Wenjia Fang
- Medical College of Nanchang University, Nanchang, 330000, China; Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
20
|
Alfayez M, Thakral B, Jain P, Ravandi F, Ferrajoli A, Jain N, Pemmaraju N, Wierda W, Kadia T. First report of clinical response to venetoclax combination with pentostatin in T-cell-prolymphocytic leukemia (T-PLL). Leuk Lymphoma 2020; 61:445-449. [PMID: 31566032 DOI: 10.1080/10428194.2019.1660967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/26/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Mansour Alfayez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Preetesh Jain
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Wang TT, Yang J, Dighe S, Schmachtenberg MW, Leigh NT, Farber E, Onengut-Gumuscu S, Feith DJ, Ratan A, Loughran TP, Olson TL. Whole Genome Sequencing of Spontaneously Occurring Rat Natural Killer Large Granular Lymphocyte Leukemia Identifies JAK1 Somatic Activating Mutation. Cancers (Basel) 2020; 12:cancers12010126. [PMID: 31947841 PMCID: PMC7017127 DOI: 10.3390/cancers12010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 02/08/2023] Open
Abstract
Large granular lymphocyte (LGL) leukemia arises spontaneously in elderly Fischer (F344) rats. This rodent model has been shown to emulate many aspects of the natural killer (NK) variant of human LGL leukemia. Previous transplantation of leukemic material into young F344 rats resulted in several strains of rat NK (RNK) primary leukemic cells. One strain, RNK-16, was adapted into the RNK-16 cell line and established as an aggressive NK-LGL leukemia model. Whole genome sequencing of the RNK-16 cell line identified 255,838 locations where the RNK16 had an alternate allele that was different from F334, including a mutation in Jak1. Functional studies showed Jak1 Y1034C to be a somatic activating mutation that mediated increased STAT signaling, as assessed by phosphoprotein levels. Sanger sequencing of Jak1 in RNK-1, -3, -7, and -16 found only RNK-16 to harbor the Y1034C Jak1 mutation. In vivo studies revealed that rats engrafted with RNK-16 primary material developed leukemia more rapidly than those engrafted with RNK-1, -3, and -7. Additionally, ex vivo RNK-16 spleen cells from leukemic rats exhibited increased STAT1, STAT3, and STAT5 phosphorylation compared to other RNK strains. Therefore, we report and characterize a novel gain-of-function Jak1 mutation in a spontaneous LGL leukemia model that results in increased downstream STAT signaling.
Collapse
Affiliation(s)
- T. Tiffany Wang
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Jun Yang
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Shubha Dighe
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Matthew W. Schmachtenberg
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Nathan T. Leigh
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; (E.F.); (S.O.-G.); (A.R.)
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; (E.F.); (S.O.-G.); (A.R.)
| | - David J. Feith
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; (E.F.); (S.O.-G.); (A.R.)
| | - Thomas P. Loughran
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Thomas L. Olson
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
- Correspondence: ; Tel.: +1-(434)-243-8332
| |
Collapse
|
22
|
Abstract
Mature T-cell and NK-cell leukemias represent a clinically heterogeneous group of diseases, ranging from indolent expansions of large granular lymphocytes, to aggressive diseases that are associated with a fulminant clinical course. Recent advances in genomic methodologies have massively increased the understanding of the pathogenesis of this group of diseases. While the entities are genetically heterogeneous, JAK-STAT pathway activation appears to be important across these disorders. The identification of constitutively activated pathways and the emergence of novel targeted pharmaceutical agents raise the expectation that more effective therapies will be identified for these disorders in the coming years.
Collapse
Affiliation(s)
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19102, United States.
| |
Collapse
|
23
|
JAK/STAT-Activating Genomic Alterations Are a Hallmark of T-PLL. Cancers (Basel) 2019; 11:cancers11121833. [PMID: 31766351 PMCID: PMC6966610 DOI: 10.3390/cancers11121833] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell leukemia. Recent studies detected genomic aberrations affecting JAK and STAT genes in T-PLL. Due to the limited number of primary patient samples available, genomic analyses of the JAK/STAT pathway have been performed in rather small cohorts. Therefore, we conducted—via a primary-data based pipeline—a meta-analysis that re-evaluated the genomic landscape of T-PLL. It included all available data sets with sequence information on JAK or STAT gene loci in 275 T-PLL. We eliminated overlapping cases and determined a cumulative rate of 62.1% of cases with mutated JAK or STAT genes. Most frequently, JAK1 (6.3%), JAK3 (36.4%), and STAT5B (18.8%) carried somatic single-nucleotide variants (SNVs), with missense mutations in the SH2 or pseudokinase domains as most prevalent. Importantly, these lesions were predominantly subclonal. We did not detect any strong association between mutations of a JAK or STAT gene with clinical characteristics. Irrespective of the presence of gain-of-function (GOF) SNVs, basal phosphorylation of STAT5B was elevated in all analyzed T-PLL. Fittingly, a significant proportion of genes encoding for potential negative regulators of STAT5B showed genomic losses (in 71.4% of T-PLL in total, in 68.4% of T-PLL without any JAK or STAT mutations). They included DUSP4, CD45, TCPTP, SHP1, SOCS1, SOCS3, and HDAC9. Overall, considering such losses of negative regulators and the GOF mutations in JAK and STAT genes, a total of 89.8% of T-PLL revealed a genomic aberration potentially explaining enhanced STAT5B activity. In essence, we present a comprehensive meta-analysis on the highly prevalent genomic lesions that affect genes encoding JAK/STAT signaling components. This provides an overview of possible modes of activation of this pathway in a large cohort of T-PLL. In light of new advances in JAK/STAT inhibitor development, we also outline translational contexts for harnessing active JAK/STAT signaling, which has emerged as a ‘secondary’ hallmark of T-PLL.
Collapse
|
24
|
|
25
|
Staber PB, Herling M, Bellido M, Jacobsen ED, Davids MS, Kadia TM, Shustov A, Tournilhac O, Bachy E, Zaja F, Porkka K, Hoermann G, Simonitsch-Klupp I, Haferlach C, Kubicek S, Mayerhoefer ME, Hopfinger G, Jaeger U, Dearden C. Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia. Blood 2019; 134:1132-1143. [PMID: 31292114 PMCID: PMC7042666 DOI: 10.1182/blood.2019000402] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare, mature T-cell neoplasm with a heterogeneous clinical course. With the advent of novel treatment options that will potentially change the management of patients with T-PLL, it has become necessary to produce consensus guidelines for the design and conduct of clinical trials. The T-PLL International Study group (TPLL-ISG) set out to define standardized criteria for diagnosis, treatment indication, and evaluation of response. These criteria will facilitate comparison of results from clinical trials in T-PLL, and will thus support clinical decision making, as well as the approval of new therapeutics by healthcare authorities.
Collapse
Affiliation(s)
- Philipp B Staber
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marco Herling
- Department of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf, and
- Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Mar Bellido
- Hematology Department, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eric D Jacobsen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Tapan Mahendra Kadia
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Andrei Shustov
- Seattle Cancer Care Alliance, University of Washington, Seattle, WA
| | | | - Emmanuel Bachy
- Department of Hematology, Hospices Civils de Lyon, Lyon, France
| | - Francesco Zaja
- S.C. Ematologia Azienda Sanitaria Universitaria Integrata, Trieste, Italy
| | - Kimmo Porkka
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Gregor Hoermann
- Central Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Innsbruck, Innsbruck, Austria
- Department of Laboratory Medicine and
| | | | | | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Christian Doppler Laboratory for Chemical Epigenetics and Anti-Infectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marius E Mayerhoefer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Georg Hopfinger
- Division of Blood and Marrow Transplantation, Department of Medicine I, Medical University of Vienna, Vienna, Austria; and
| | - Ulrich Jaeger
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Claire Dearden
- The Royal Marsden Hospital, NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
26
|
|
27
|
Liang X, Liu H, Zhang Y. Novel-targeted therapy for hematological malignancies with JAK and HDAC dual inhibitors. Future Med Chem 2019; 11:1849-1852. [PMID: 31517536 DOI: 10.4155/fmc-2019-0168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Affiliation(s)
- Xuewu Liang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, Shandong, 250012, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, Shandong, 250012, PR China
| |
Collapse
|
28
|
Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine 2019; 118:48-63. [DOI: 10.1016/j.cyto.2018.03.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023]
|
29
|
Gomez-Arteaga A, Margolskee E, Wei MT, van Besien K, Inghirami G, Horwitz S. Combined use of tofacitinib (pan-JAK inhibitor) and ruxolitinib (a JAK1/2 inhibitor) for refractory T-cell prolymphocytic leukemia (T-PLL) with a JAK3 mutation. Leuk Lymphoma 2019; 60:1626-1631. [PMID: 30997845 DOI: 10.1080/10428194.2019.1594220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexandra Gomez-Arteaga
- a Department of Medicine , Weill Cornell Medicine/New York Presbyterian Hospital , New York , NY , USA
| | - Elizabeth Margolskee
- b Department of Pathology and Laboratory Medicine , Weill Cornell Medicine/New York Presbyterian Hospital , New York , NY , USA
| | - Mike T Wei
- a Department of Medicine , Weill Cornell Medicine/New York Presbyterian Hospital , New York , NY , USA
| | - Koen van Besien
- a Department of Medicine , Weill Cornell Medicine/New York Presbyterian Hospital , New York , NY , USA
| | - Giorgio Inghirami
- b Department of Pathology and Laboratory Medicine , Weill Cornell Medicine/New York Presbyterian Hospital , New York , NY , USA
| | - Steven Horwitz
- c Memorial Sloan Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
30
|
Are peptides a solution for the treatment of hyperactivated JAK3 pathways? Inflammopharmacology 2019; 27:433-452. [PMID: 30929155 DOI: 10.1007/s10787-019-00589-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023]
Abstract
While the inactivation mutations that eliminate JAK3 function lead to the immunological disorders such as severe combined immunodeficiency, activation mutations, causing constitutive JAK3 signaling, are known to trigger various types of cancer or are responsible for autoimmune diseases, such as rheumatoid arthritis, psoriasis, or inflammatory bowel diseases. Treatment of hyperactivated JAK3 is still an obstacle, due to different sensibility of mutation types to conventional drugs and unwanted side effects, because these drugs are not absolutely specific for JAK3, thus inhibiting other members of the JAK family, too. Lack of information, in which way sole inhibition of JAK3 is necessary for elimination of the disease, calls for the development of isoform-specific JAK3 inhibitors. Beside this strategy, up to date peptides are a rising alternative as chemo- or immunotherapeutics, but still sparsely represented in drug development and clinical trials. Beyond a possible direct inhibition function, crossing the cancer cell membrane and interfering in disease-causing pathways or triggering apoptosis, peptides could be used in future as adjunct remedies to potentialize traditional therapy and preserve non-affected cells. To discuss such feasible topics, this review deals with the knowledge about the structure-function of JAK3 and the actual state-of-the-art of isoform-specific inhibitor development, as well as the function of currently approved drugs or those currently being tested in clinical trials. Furthermore, several strategies for the application of peptide-based drugs for cancer therapy and the physicochemical and structural relations to peptide efficacy are discussed, and an overview of peptide sequences, which were qualified for clinical trials, is given.
Collapse
|
31
|
Luo XY, Zhou H, Wang SY, Xiong J, Mo CF, Guo HJ, Wang YT, Yang SX, Li LM, Zou Q, Liu Y. A benzoxazole derivative PO-296 inhibits T lymphocyte proliferation by the JAK3/STAT5 signal pathway. J Cell Biochem 2018; 120:9193-9202. [PMID: 30506723 DOI: 10.1002/jcb.28195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
Abstract
Immunosuppressants have shown striking achievements in treating autoimmune diseases in recent years. It is urgent to develop more immunosuppressants to provide more options for patients. PO-296 [2-(6-chlorobenzo[d]oxazol-2-yl)-4,5,6,7-tetrahydro-2H-indazol-3-ol] was identified as a novel benzoxazole derivative. We observed that it exhibits an obvious immunosuppressive activity to T lymphocytes. PO-296 significantly inhibited the proliferation of activated human T lymphocyte without cytotoxicity. Moreover, PO-296 did not affect the expression of cluster of differentiation (CD)-25 or CD69 but induced T lymphocyte cycle arrest in the G0/G1 phase. Furthermore, PO-296 inhibited interleukin (IL)-6, IL-17, and interferon gamma expression but had no effect on IL-2, IL-4, or IL-10. Yet, importantly, PO-296 inhibited the phosphorylation of signal transducer and activator of transcription 5 (STAT5), increased the phosphorylation of p70S6K, but did not affect the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mitogen-activated protein kinase pathway. In conclusion, these findings indicate that PO-296 inhibits human activated T-lymphocyte proliferation by affecting the janus kinase 3 (JAK3)/STAT5 pathway. PO-296 possesses a potential lead compound for the design and development of new immunosuppressants for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Xing-Yan Luo
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hong Zhou
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China.,Development of Radiology, The Second People's Hospital of Shanwei City, Guangzhou, Shanwei, China
| | - Si-Yu Wang
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jing Xiong
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chun-Fen Mo
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hui-Jie Guo
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan-Tang Wang
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shu-Xia Yang
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Li-Mei Li
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qiang Zou
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yang Liu
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China.,Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Bousoik E, Montazeri Aliabadi H. "Do We Know Jack" About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front Oncol 2018; 8:287. [PMID: 30109213 PMCID: PMC6079274 DOI: 10.3389/fonc.2018.00287] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Janus tyrosine kinase (JAK) family of proteins have been identified as crucial proteins in signal transduction initiated by a wide range of membrane receptors. Among the proteins in this family JAK2 has been associated with important downstream proteins, including signal transducers and activators of transcription (STATs), which in turn regulate the expression of a variety of proteins involved in induction or prevention of apoptosis. Therefore, the JAK/STAT signaling axis plays a major role in the proliferation and survival of different cancer cells, and may even be involved in resistance mechanisms against molecularly targeted drugs. Despite extensive research focused on the protein structure and mechanisms of activation of JAKs, and signal transduction through these proteins, their importance in cancer initiation and progression seem to be underestimated. This manuscript is an attempt to highlight the role of JAK proteins in cancer biology, the most recent developments in targeting JAKs, and the central role they play in intracellular cross-talks with other signaling cascades.
Collapse
Affiliation(s)
- Emira Bousoik
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States.,School of Pharmacy, Omar Al-Mukhtar University, Dèrna, Libya
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States
| |
Collapse
|
33
|
Dual JAK1 and STAT3 mutations in a breast implant-associated anaplastic large cell lymphoma. Virchows Arch 2018; 473:505-511. [PMID: 29637270 DOI: 10.1007/s00428-018-2352-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/12/2018] [Accepted: 03/28/2018] [Indexed: 01/12/2023]
|
34
|
STAT5 inhibition induces TRAIL/DR4 dependent apoptosis in peripheral T-cell lymphoma. Oncotarget 2018; 9:16792-16806. [PMID: 29682185 PMCID: PMC5908286 DOI: 10.18632/oncotarget.24698] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare, aggressive, heterogeneous, Non-Hodgkin's lymphoma with poor prognosis and inadequate response to current therapies. Recent sequencing studies indicate a prevalence of activating mutations in the JAK/STAT signaling pathway. Oncogenic mutations in STAT5B, observed in approximately one third of cases of multiple different PTCL subtypes, correlate with inferior patient outcomes. Therefore, interest in the development of therapeutic strategies for targeting STAT5 in PTCL is warranted. In this study, we show that the drug pimozide inhibits STAT5 in PTCL, leading to apoptotic cell death by means of the TRAIL/DR4 dependent extrinsic apoptotic pathway. Pimozide induced PTCL cell death is caspase 8 dependent, increases the expression of the TRAIL receptor, DR4, on the surface of pre-apoptotic PTCL cells, and enhances TRAIL induced apoptosis in a TRAIL dependent manner. In parallel, we show that mRNA and protein levels of intrinsic pathway BCL-2 family members and mitochondrial membrane potential remain unaffected by STAT5 knockdown and/or inhibition. In primary PTCL patient samples, pimozide inhibits STAT5 activation and induces apoptosis. Our data support a role for STAT5 inhibition in PTCL and implicate potential utility for inhibition of STAT5 and activation of the extrinsic apoptotic pathway as combination therapy in PTCL.
Collapse
|
35
|
Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL. Nat Commun 2018; 9:697. [PMID: 29449575 PMCID: PMC5814445 DOI: 10.1038/s41467-017-02688-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. Here we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identify novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor/cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM toward a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution. T-cell prolymphocytic leukemia (T-PLL) is a rare malignancy with a poor prognosis. Here, the authors investigate the genomic landscape, gene expression profiles and functional mechanisms in 111 patients, highlighting TCL1 overexpression and ATM aberrations as core lesions which co-operate to impair DNA damage processing.
Collapse
|
36
|
Jain P, Aoki E, Keating M, Wierda WG, O'Brien S, Gonzalez GN, Ferrajoli A, Jain N, Thompson PA, Jabbour E, Kanagal-Shamanna R, Pierce S, Alousi A, Hosing C, Khouri I, Estrov Z, Cortes J, Kantarjian H, Ravandi F, Kadia TM. Characteristics, outcomes, prognostic factors and treatment of patients with T-cell prolymphocytic leukemia (T-PLL). Ann Oncol 2018; 28:1554-1559. [PMID: 28379307 DOI: 10.1093/annonc/mdx163] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 11/13/2022] Open
Abstract
Background T-cell prolymphocytic leukemia (T-PLL) is a rare and aggressive disease. In this study, we report our experience from 119 patients with T-PLL. Patients and methods We reviewed the clinico-pathologic records of 119 consecutive patients with T-PLL, who presented to our institution between 1990 and 2016. Results One hundred and nineteen patients with T-PLL were analysed. Complex karyotype and aberrations in chromosome 14 were seen in 65% and 52% patients, respectively. Seventy-five patients (63%) were previously untreated and 43 (37%) were initially treated outside our institution. Sixty-three previously untreated patients (84%) received frontline therapies. Overall, 95 patients (80%) have died. Median overall survival (OS) from diagnosis was 19 months [95% confidence interval (CI) 16-26 months]. Using recursive partitioning (RP), we found that patients with hemoglobin < 9.3 g/dl, lactate dehydrogenase (LDH) ≥ 1668 IU/l, white blood cell ≥ 208 K/l and β2M ≥ 8 mg/l had significantly inferior OS and patients with hemoglobin < 9.3 g/dl had inferior progression-free survival (PFS). In multivariate analysis, we identified that presence of pleural effusion [hazard ratio (HR) 2.08 (95% CI 1.11-3.9); P = 0.02], high LDH (≥ 1668 IU/l) [HR 2.5 (95% CI 1.20-4.24); P < 0.001)], and low hemoglobin (< 9.3 g/dl) [HR 0.33 (95% CI 0.14-0.75); P = 0.008] were associated with shorter OS. Fifty-five previously untreated patients received treatment with an alemtuzumab-based regimen (42 monotherapy and 13 combination with pentostatin). Overall response rate, complete remission rate (CR) for single-agent alemtuzumab and alemtuzumab combined with pentostatin were 83%, 66% and 82%, 73% respectively. In patients who achieved initial CR, stem cell transplantation was not associated with longer PFS and OS. Conclusion Outcomes in T-PLL remain poor. Multicenter collaborative effort is required to conduct prospective studies.
Collapse
Affiliation(s)
- P Jain
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| | - E Aoki
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| | - M Keating
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| | - W G Wierda
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| | - S O'Brien
- Division of Hematology/Oncology, Chao Family Comprehensive Cancer Center, UC Irvine, Irvine
| | | | - A Ferrajoli
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| | - N Jain
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| | - P A Thompson
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| | - E Jabbour
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| | | | - S Pierce
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| | - A Alousi
- Stem Cell Transplantation, The MD Anderson Cancer Center, Houston, USA
| | - C Hosing
- Stem Cell Transplantation, The MD Anderson Cancer Center, Houston, USA
| | - I Khouri
- Stem Cell Transplantation, The MD Anderson Cancer Center, Houston, USA
| | - Z Estrov
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| | - J Cortes
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| | - H Kantarjian
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| | - F Ravandi
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| | - T M Kadia
- Department of Leukemia, The MD Anderson Cancer Center, Houston
| |
Collapse
|
37
|
Pizzi M, Margolskee E, Inghirami G. Pathogenesis of Peripheral T Cell Lymphoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 13:293-320. [DOI: 10.1146/annurev-pathol-020117-043821] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marco Pizzi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, 35121 Padova, Italy
| | - Elizabeth Margolskee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, 10126 Torino, Italy
- Department of Pathology and NYU Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
38
|
Johansson P, Klein-Hitpass L, Choidas A, Habenberger P, Mahboubi B, Kim B, Bergmann A, Scholtysik R, Brauser M, Lollies A, Siebert R, Zenz T, Dührsen U, Küppers R, Dürig J. SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia. Blood Cancer J 2018; 8:11. [PMID: 29352181 PMCID: PMC5802577 DOI: 10.1038/s41408-017-0036-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 01/19/2023] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is an aggressive malignancy with a median survival of the patients of less than two years. Besides characteristic chromosomal translocations, frequent mutations affect the ATM gene, JAK/STAT pathway members, and epigenetic regulators. We here performed a targeted mutation analysis for 40 genes selected from a RNA sequencing of 10 T-PLL in a collection of 28 T-PLL, and an exome analysis of five further cases. Nonsynonymous mutations were identified in 30 of the 40 genes, 18 being recurrently mutated. We identified recurrently mutated genes previously unknown to be mutated in T-PLL, which are SAMHD1, HERC1, HERC2, PRDM2, PARP10, PTPRC, and FOXP1. SAMHD1 regulates cellular deoxynucleotide levels and acts as a potential tumor suppressor in other leukemias. We observed destructive mutations in 18% of cases as well as deletions in two further cases. Taken together, we identified additional genes involved in JAK/STAT signaling (PTPRC), epigenetic regulation (PRDM2), or DNA damage repair (SAMHD1, PARP10, HERC1, and HERC2) as being recurrently mutated in T-PLL. Thus, our study considerably extends the picture of pathways involved in molecular pathogenesis of T-PLL and identifies the tumor suppressor gene SAMHD1 with ~20% of T-PLL affected by destructive lesions likely as major player in T-PLL pathogenesis.
Collapse
Affiliation(s)
- Patricia Johansson
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany. .,Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ludger Klein-Hitpass
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Bijan Mahboubi
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Anke Bergmann
- Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig Holstein, Kiel, Germany
| | - René Scholtysik
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martina Brauser
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Lollies
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Reiner Siebert
- Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig Holstein, Kiel, Germany.,Institute of Human Genetics, University of Ulm and University Hospital of Ulm, Ulm, Germany
| | - Thorsten Zenz
- Department of Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ulrich Dührsen
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jan Dürig
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
39
|
Vainchenker W, Leroy E, Gilles L, Marty C, Plo I, Constantinescu SN. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. F1000Res 2018; 7:82. [PMID: 29399328 PMCID: PMC5773931 DOI: 10.12688/f1000research.13167.1] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 01/04/2023] Open
Abstract
JAK inhibitors have been developed following the discovery of the
JAK2V617F in 2005 as the driver mutation of the majority of non-
BCR-ABL1 myeloproliferative neoplasms (MPNs). Subsequently, the search for JAK2 inhibitors continued with the discovery that the other driver mutations (
CALR and
MPL) also exhibited persistent JAK2 activation. Several type I ATP-competitive JAK inhibitors with different specificities were assessed in clinical trials and exhibited minimal hematologic toxicity. Interestingly, these JAK inhibitors display potent anti-inflammatory activity. Thus, JAK inhibitors targeting preferentially JAK1 and JAK3 have been developed to treat inflammation, autoimmune diseases, and graft-versus-host disease. Ten years after the beginning of clinical trials, only two drugs have been approved by the US Food and Drug Administration: one JAK2/JAK1 inhibitor (ruxolitinib) in intermediate-2 and high-risk myelofibrosis and hydroxyurea-resistant or -intolerant polycythemia vera and one JAK1/JAK3 inhibitor (tofacitinib) in methotrexate-resistant rheumatoid arthritis. The non-approved compounds exhibited many off-target effects leading to neurological and gastrointestinal toxicities, as seen in clinical trials for MPNs. Ruxolitinib is a well-tolerated drug with mostly anti-inflammatory properties. Despite a weak effect on the cause of the disease itself in MPNs, it improves the clinical state of patients and increases survival in myelofibrosis. This limited effect is related to the fact that ruxolitinib, like the other type I JAK2 inhibitors, inhibits equally mutated and wild-type JAK2 (JAK2WT) and also the JAK2 oncogenic activation. Thus, other approaches need to be developed and could be based on either (1) the development of new inhibitors specifically targeting
JAK2V617F or (2) the combination of the actual JAK2 inhibitors with other therapies, in particular with molecules targeting pathways downstream of JAK2 activation or the stability of JAK2 molecule. In contrast, the strong anti-inflammatory effects of the JAK inhibitors appear as a very promising therapeutic approach for many inflammatory and auto-immune diseases.
Collapse
Affiliation(s)
- William Vainchenker
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Emilie Leroy
- Signal Transduction & Molecular Hematology Unit, Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure Gilles
- Institut National de la Transfusion Sanguine, Paris, France
| | - Caroline Marty
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Stefan N Constantinescu
- Signal Transduction & Molecular Hematology Unit, Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
40
|
T-cell prolymphocytic leukemia in an adolescent with ataxia-telangiectasia: novel approach with a JAK3 inhibitor (tofacitinib). Blood Adv 2017; 1:2724-2728. [PMID: 29296924 DOI: 10.1182/bloodadvances.2017010470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023] Open
Abstract
A 19-year-old ataxia-telangiectasia patient with T-cell prolymphocytic leukemia harbored 2 JAK3-activating hotspot mutations.The patient suffered toxicities with chemotherapy, but demonstrated a clinical response to novel use of a JAK3 inhibitor (tofacitinib).
Collapse
|
41
|
Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL. Blood 2017; 131:421-425. [PMID: 29187379 DOI: 10.1182/blood-2017-07-797597] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022] Open
Abstract
The Janus kinase 3 (JAK3) tyrosine kinase is mutated in 10% to 16% of T-cell acute lymphoblastic leukemia (T-ALL) cases. JAK3 mutants induce constitutive JAK/STAT signaling and cause leukemia when expressed in the bone marrow cells of mice. Surprisingly, we observed that one third of JAK3-mutant T-ALL cases harbor 2 JAK3 mutations, some of which are monoallelic and others that are biallelic. Our data suggest that wild-type JAK3 competes with mutant JAK3 (M511I) for binding to the common γ chain and thereby suppresses its oncogenic potential. We demonstrate that JAK3 (M511I) can increase its limited oncogenic potential through the acquisition of an additional mutation in the mutant JAK3 allele. These double JAK3 mutants show increased STAT5 activation and increased potential to transform primary mouse pro-T cells to interleukin-7-independent growth and were not affected by wild-type JAK3 expression. These data extend our insight into the oncogenic properties of JAK3 mutations and provide an explanation of why progression of JAK3-mutant T-ALL cases can be associated with the accumulation of additional JAK3 mutations.
Collapse
|
42
|
Laribi K, Lemaire P, Sandrini J, Baugier de Materre A. Advances in the understanding and management of T-cell prolymphocytic leukemia. Oncotarget 2017; 8:104664-104686. [PMID: 29262669 PMCID: PMC5732835 DOI: 10.18632/oncotarget.22272] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/27/2017] [Indexed: 12/02/2022] Open
Abstract
T-prolymphocytic leukemia (T-PLL) is a rare T-cell neoplasm with an aggressive clinical course. Leukemic T-cells exhibit a post-thymic T-cell phenotype (Tdt-, CD1a-, CD5+, CD2+ and CD7+) and are generally CD4+/CD8-, but CD4+/CD8+ or CD8+/CD4- T-PLL have also been reported. The hallmark of T-PLL is the rearrangement of chromosome 14 involving genes for the subunits of the T-cell receptor (TCR) complex, leading to overexpression of the proto-oncogene TCL1. In addition, molecular analysis shows that T-PLL exhibits substantial mutational activation of the IL2RG-JAK1-JAK3-, STAT5B axis. T-PLL patients have a poor prognosis, due to a poor response to conventional chemotherapy. Monoclonal antibody therapy with antiCD52-alemtuzumab has considerably improved outcomes, but the responses to treatment are transient; hence, patients who achieve a response to therapy are considered for stem cell transplantation (SCT). This combined approach has extended the median survival to four years or more. Nevertheless, new approaches using well-tolerated therapies that target growth and survival signals are needed for most patients unable to receive intensive chemotherapy.
Collapse
Affiliation(s)
- Kamel Laribi
- Department of Hematology, Centre Hospitalier du Mans, Le Mans, France
| | - Pierre Lemaire
- Laboratory of Biology and Hematology, Centre Hospitalier du Mans, Le Mans, France
| | - Jeremy Sandrini
- Laboratory of Anatomopathology, Centre Hospitalier du Mans, Le Mans, France
| | | |
Collapse
|
43
|
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is central to signaling by receptors of diverse cytokines, growth factors, and other related molecules. Many of these receptors transmit anti-apoptosis, proliferation, and differentiation signals that are critical for normal hematopoiesis and immune response. However, the JAK/STAT signaling pathway is deregulated in many hematologic malignancies, and as such is co-opted by malignant cells to promote their survival and proliferation. It has recently come to light that an alternative mechanism, wherein nuclear JAKs epigenetically modify the chromatin to increase gene expression independent of STATs, also plays an important role in the pathogenesis of many hematologic malignancies. In this review, we will focus on common genetic alterations of the JAK family members in leukemia and lymphoma, and provide examples in which JAKs regulate gene expression by targeting the cancer epigenome.
Collapse
Affiliation(s)
- Amanda C Drennan
- a Department of Medicine and Carbone Cancer Center , University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| | - Lixin Rui
- a Department of Medicine and Carbone Cancer Center , University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| |
Collapse
|
44
|
Mahajan AS, Sugita BM, Duttargi AN, Saenz F, Krawczyk E, McCutcheon JN, Fonseca AS, Kallakury B, Pohlmann P, Gusev Y, Cavalli LR. Genomic comparison of early-passage conditionally reprogrammed breast cancer cells to their corresponding primary tumors. PLoS One 2017; 12:e0186190. [PMID: 29049316 PMCID: PMC5648156 DOI: 10.1371/journal.pone.0186190] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
Conditionally reprogrammed cells (CRCs) are epithelial cells that are directly isolated from patients' specimens and propagated in vitro with feeder cells and a Rho kinase inhibitor. A number of these cells have been generated from biopsies of breast cancer patients, including ductal carcinoma in situ and invasive carcinomas. The characterization of their genomic signatures is essential to determine their ability to reflect the natural biology of their tumors of origin. In this study, we performed the genomic characterization of six newly established invasive breast cancer CRC cultures in comparison to the original patients' primary breast tumors (PBT) from which they derived. The CRCs and corresponding PBTs were simultaneously profiled by genome-wide array-CGH, targeted next generation sequencing and global miRNA expression to determine their molecular similarities in the patterns of copy number alterations (CNAs), gene mutations and miRNA expression levels, respectively. The CRCs' epithelial cells content and ploidy levels were also evaluated by flow cytometry. A similar level of CNAs was observed in the pairs of CRCs/PBTs analyzed by array-CGH, with >95% of overlap for the most frequently affected cytobands. Consistently, targeted next generation sequencing analysis showed the retention of specific somatic variants in the CRCs as present in their original PBTs. Global miRNA profiling closely clustered the CRCs with their PBTs (Pearson Correlation, ANOVA paired test, P<0.05), indicating also similarity at the miRNA expression level; the retention of tumor-specific alterations in a subset of miRNAs in the CRCs was further confirmed by qRT-PCR. These data demonstrated that the human breast cancer CRCs of this study maintained at early passages the overall copy number, gene mutations and miRNA expression patterns of their original tumors. The further characterization of these cells by other molecular and cellular phenotypes at late cell passages, are required to further expand their use as a unique and representative ex-vivo tumor model for basic science and translational breast cancer studies.
Collapse
Affiliation(s)
- Akanksha S. Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, United States of America
| | - Bruna M. Sugita
- Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Anju N. Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, United States of America
| | - Francisco Saenz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, United States of America
| | - Ewa Krawczyk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, United States of America
| | - Justine N. McCutcheon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, United States of America
| | - Aline S. Fonseca
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, United States of America
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University, Washington DC, United States of America
| | - Paula Pohlmann
- Division of Hematology-Oncology, MedStar Georgetown University Hospital, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, United States of America
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, United States of America
| | - Luciane R. Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, United States of America
- * E-mail:
| |
Collapse
|
45
|
First-in-human response of BCL-2 inhibitor venetoclax in T-cell prolymphocytic leukemia. Blood 2017; 130:2499-2503. [PMID: 28972014 DOI: 10.1182/blood-2017-05-785683] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and aggressive T-lymphoid malignancy usually refractory to current treatment strategies and associated with short overall survival. By applying next-generation functional testing of primary patient-derived lymphoma cells using a library of 106 US Food and Drug Administration (FDA)-approved anticancer drugs or compounds currently in clinical development, we set out to identify novel effective treatments for T-PLL patients. We found that the B-cell lymphoma 2 (BCL-2) inhibitor venetoclax (ABT-199) demonstrated the strongest T-PLL-specific response when comparing individual ex vivo drug response in 86 patients with refractory hematologic malignancies. Mechanistically, responses to venetoclax correlated with protein expression of BCL-2 but not with expression of the BCL-2 family members myeloid cell leukemia 1 (MCL-1) and BCL-XL in lymphoma cells. BCL-2 expression was inversely correlated with the expression of MCL-1. Based on the ex vivo responses, venetoclax treatment was commenced in 2 late-stage refractory T-PLL patients resulting in clinical responses. Our findings demonstrate first evidence of single-agent activity of venetoclax both ex vivo and in humans, offering a novel agent in T-PLL.
Collapse
|
46
|
Cervera P, Gilhot A, Marzac C, Féger F, Tang R, Jaff N, Coppo P. T-cell prolymphocytic leukemia and tuberculosis: a puzzling association. Clin Case Rep 2017; 5:1536-1541. [PMID: 28878921 PMCID: PMC5582236 DOI: 10.1002/ccr3.1121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/29/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
T‐cell prolymphocytic leukemia can result in severe immune T‐cell deficiency. Clinicians should be aware of this complication in this rare lymphoid malignancy, and opportunistic infections should be ruled out before the use of usual immunosuppressive procedures such as alemtuzumab and hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Pascale Cervera
- Service d'Anatomopathologie Hôpital Saint-Antoine AP-HP Paris France
| | - Amélie Gilhot
- Laboratory of Immunology Groupe Hospitalier Pitié-Salpétrière AP-HP Paris France
| | - Christophe Marzac
- Laboratoire d'Hématologie et Immunologie Hôpital Saint-Antoine AP-HP Paris France
| | - Frédéric Féger
- Laboratoire d'Hématologie et Immunologie Hôpital Saint-Antoine AP-HP Paris France
| | - Ruoping Tang
- Laboratoire d'Hématologie et Immunologie Hôpital Saint-Antoine AP-HP Paris France
| | - Nabaz Jaff
- Service d'Hématologie Hôpital Saint-Antoine AP-HP Paris France
| | - Paul Coppo
- Service d'Hématologie Hôpital Saint-Antoine AP-HP Paris France.,Université Pierre et Marie Curie (UPMC Paris 6) Paris France.,Centre de Référence des Microangiopathies Thrombotiques AP-HP Paris France.,Inserm U1170 Institut Gustave Roussy Villejuif France
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW We aimed to produce a comprehensive update on clinical and biological data regarding two rare lymphoid neoplasms, B and T prolymphocytic leukemias, and assess therapeutic management in the light of new molecular insights and the advent of targeted therapies. RECENT FINDINGS B cell prolymphocytic leukemia (B-PLL) diagnosis remains challenging in the absence of clear immunophenotypic or cytogenetic signature and overlap with mantle cell lymphoma. New molecular defects have been identified in T cell prolymphocytic leukemia (T-PLL), especially in the JAK STAT pathway. Like in chronic lymphocytic leukemia (CLL), B-PLL treatment depends on the presence of TP53 dysfunction. In T-PLL, alemtuzumab still remains the standard of care. Allogeneic transplantation is the only curable option. Thanks to reduced intensity conditioning regimens, it has become accessible to a larger number of patients. PLL prognosis remains poor with conventional therapies. However, great advances in the understanding of both T- and B-PLL pathogenesis lead to promising new therapeutic agents.
Collapse
|
48
|
Waldmann TA. JAK/STAT pathway directed therapy of T-cell leukemia/lymphoma: Inspired by functional and structural genomics. Mol Cell Endocrinol 2017; 451:66-70. [PMID: 28214593 PMCID: PMC5469693 DOI: 10.1016/j.mce.2017.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/28/2022]
Abstract
Abnormal activation of the γc cytokine JAK/STAT signaling pathway assessed by STAT3 or STAT5b phosphorylation was present in a proportion of many T-cell malignancies. Activating mutations of STAT3/STAT5b and JAK1/3 were present in some but not in all cases with constitutive signaling pathway activation. Using shRNA analysis pSTAT malignant T-cell lines were addicted to JAKs/STATs whether they were mutated or not. Activating JAK/STAT mutations were not sufficient to support leukemic cell proliferation but only augmented upstream pathway signals. Functional cytokine receptors were required for pSTAT expression. Combining a JAK1/2 inhibitor with a Bcl-xL inhibitor navitoclax provided additive/synergistic activity with IL-2 dependent ATLL cell lines and in a mouse model of human IL-2 dependent ATLL. The insight that disorders of the γc/JAK/STAT system are pervasive suggests approaches including those that target gamma cytokines, their receptors or that use JAK kinase inhibitors may be of value in multicomponent therapy for T-cell malignancies.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
49
|
Andersson EI, Pützer S, Yadav B, Dufva O, Khan S, He L, Sellner L, Schrader A, Crispatzu G, Oleś M, Zhang H, Adnan-Awad S, Lagström S, Bellanger D, Mpindi JP, Eldfors S, Pemovska T, Pietarinen P, Lauhio A, Tomska K, Cuesta-Mateos C, Faber E, Koschmieder S, Brümmendorf TH, Kytölä S, Savolainen ER, Siitonen T, Ellonen P, Kallioniemi O, Wennerberg K, Ding W, Stern MH, Huber W, Anders S, Tang J, Aittokallio T, Zenz T, Herling M, Mustjoki S. Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia 2017; 32:774-787. [PMID: 28804127 DOI: 10.1038/leu.2017.252] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and aggressive neoplasm of mature T-cells with an urgent need for rationally designed therapies to address its notoriously chemo-refractory behavior. The median survival of T-PLL patients is <2 years and clinical trials are difficult to execute. Here we systematically explored the diversity of drug responses in T-PLL patient samples using an ex vivo drug sensitivity and resistance testing platform and correlated the findings with somatic mutations and gene expression profiles. Intriguingly, all T-PLL samples were sensitive to the cyclin-dependent kinase inhibitor SNS-032, which overcame stromal-cell-mediated protection and elicited robust p53-activation and apoptosis. Across all patients, the most effective classes of compounds were histone deacetylase, phosphoinositide-3 kinase/AKT/mammalian target of rapamycin, heat-shock protein 90 and BH3-family protein inhibitors as well as p53 activators, indicating previously unexplored, novel targeted approaches for treating T-PLL. Although Janus-activated kinase-signal transducer and activator of transcription factor (JAK-STAT) pathway mutations were common in T-PLL (71% of patients), JAK-STAT inhibitor responses were not directly linked to those or other T-PLL-specific lesions. Overall, we found that genetic markers do not readily translate into novel effective therapeutic vulnerabilities. In conclusion, novel classes of compounds with high efficacy in T-PLL were discovered with the comprehensive ex vivo drug screening platform warranting further studies of synergisms and clinical testing.
Collapse
Affiliation(s)
- E I Andersson
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Pützer
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - B Yadav
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - O Dufva
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Khan
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - L He
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - L Sellner
- Department of Translational Oncology and Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - A Schrader
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - G Crispatzu
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - M Oleś
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - H Zhang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - S Adnan-Awad
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Lagström
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - D Bellanger
- Institut Curie, INSERM U830, PSL Research University, Paris, France
| | - J P Mpindi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - S Eldfors
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - T Pemovska
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - P Pietarinen
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - A Lauhio
- Department of Medicine, Division of Infectious Disease, Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | - K Tomska
- Department of Translational Oncology and Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - C Cuesta-Mateos
- Departamento de Immunología, Hospital Universitario de la Princesa, Madrid, Spain
| | - E Faber
- Department of Hemato-oncology, University Hospital Olomouc, Olomouc, Czech Republic
| | - S Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - T H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - S Kytölä
- Helsinki University Central Hospital (HUCH), Laboratory of Genetics, HUSLAB, Helsinki, Finland
| | - E-R Savolainen
- Nordlab Oulu, Hematology Laboratory, MRC Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - T Siitonen
- Department of Hematology, Oulu University Hospital, MRC Oulu, University of Oulu, Oulu, Finland
| | - P Ellonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - O Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - K Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - W Ding
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - M-H Stern
- Institut Curie, INSERM U830, PSL Research University, Paris, France
| | - W Huber
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - S Anders
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - J Tang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - T Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - T Zenz
- Department of Translational Oncology and Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - M Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - S Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
50
|
Arulogun SO, Choong HL, Taylor D, Ambrosoli P, Magor G, Irving IM, Keng TB, Perkins AC. JAK1 somatic mutation in a myeloproliferative neoplasm. Haematologica 2017; 102:e324-e327. [PMID: 28550193 DOI: 10.3324/haematol.2017.170266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | | | | | | | - Graham Magor
- Mater Research, Translational Research Institute, University of Queensland, Woolloongabba, Australia
| | - Ian M Irving
- Townsville Hospital, South Brisbane, Australia.,ICON Cancer Care, South Brisbane, Australia
| | | | - Andrew C Perkins
- Mater Pathology, South Brisbane, Australia .,Mater Research, Translational Research Institute, University of Queensland, Woolloongabba, Australia.,ICON Cancer Care, South Brisbane, Australia
| |
Collapse
|