1
|
Zhou Y, Kang J, Lu X. Targeting Solvent-Front Mutations for Kinase Drug Discovery: From Structural Basis to Design Strategies. J Med Chem 2024; 67:14702-14722. [PMID: 39143914 DOI: 10.1021/acs.jmedchem.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Solvent-front mutations have emerged as a common mechanism leading to acquired resistance to kinase inhibitors, representing a major challenge in the clinic. Several new-generation kinase inhibitors targeting solvent-front mutations have either been approved or advanced to clinical trials. However, there remains a need to discover effective, new-generation inhibitors. In this Perspective, we systematically summarize the general types of solvent-front mutations across the kinome and describe the development of inhibitors targeting some key solvent-front mutations. Additionally, we highlight the challenges and opportunities for the next generation of kinase inhibitors directed toward overcoming solvent-front mutations.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Jibo Kang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaoyun Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| |
Collapse
|
2
|
Tavakoli GM, Yazdanpanah N, Rezaei N. Targeting Bruton's tyrosine kinase (BTK) as a signaling pathway in immune-mediated diseases: from molecular mechanisms to leading treatments. Adv Rheumatol 2024; 64:61. [PMID: 39169436 DOI: 10.1186/s42358-024-00401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase, plays a remarkable role in the transmission and amplification of extracellular signals to intracellular signaling pathways. Various types of cells use the BTK pathway to communicate, including hematopoietic cells particularly B cells and T cells. The BTK pathway plays a role in controlling the proliferation, survival, and functions of B cells as well as other myeloid cells. First, second, and third-generation BTK inhibitors are currently being evaluated for the treatment of immune-mediated diseases in addition to B cell malignancies. In this article, the available evidence on the action mechanisms of BTK inhibitors is reviewed. Then, the most recent data obtained from preclinical studies and ongoing clinical trials for the treatment of autoimmune diseases, such as pemphigus vulgaris, pemphigus foliaceus, bullous pemphigoid, systemic lupus erythematosus, Sjögren's disease, rheumatoid arthritis, systemic sclerosis, multiple sclerosis, myasthenia gravis, and inflammatory diseases such as psoriasis, chronic spontaneous urticaria, atopic dermatitis, and asthma are discussed. In addition, adverse effects and complications associated with BTK inhibitors as well as factors predisposing patients to BTK inhibitors complications are discussed.
Collapse
Affiliation(s)
- Gita Manzari Tavakoli
- Student's Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Student's Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Del Giudice I, Della Starza I, De Falco F, Gaidano G, Sportoletti P. Monitoring Response and Resistance to Treatment in Chronic Lymphocytic Leukemia. Cancers (Basel) 2024; 16:2049. [PMID: 38893168 PMCID: PMC11171231 DOI: 10.3390/cancers16112049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The recent evolution in chronic lymphocytic leukemia (CLL) targeted therapies led to a progressive change in the way clinicians manage the goals of treatment and evaluate the response to treatment in respect to the paradigm of the chemoimmunotherapy era. Continuous therapies with BTK inhibitors achieve prolonged and sustained control of the disease. On the other hand, venetoclax and anti-CD20 monoclonal antibodies or, more recently, ibrutinib plus venetoclax combinations, given for a fixed duration, achieve undetectable measurable residual disease (uMRD) in the vast majority of patients. On these grounds, a time-limited MRD-driven strategy, a previously unexplored scenario in CLL, is being attempted. On the other side of the spectrum, novel genetic and non-genetic mechanisms of resistance to targeted treatments are emerging. Here we review the response assessment criteria, the evolution and clinical application of MRD analysis and the mechanisms of resistance according to the novel treatment strategies within clinical trials. The extent to which this novel evidence will translate in the real-life management of CLL patients remains an open issue to be addressed.
Collapse
Affiliation(s)
- Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy;
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy;
- AIL Roma, ODV, 00161 Rome, Italy
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncological Research, University of Perugia, 06129 Perugia, Italy;
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncological Research, University of Perugia, 06129 Perugia, Italy;
| |
Collapse
|
4
|
Estupiñán HY, Bouderlique T, He C, Berglöf A, Cappelleri A, Frengen N, Zain R, Karlsson MCI, Månsson R, Smith CIE. In BTK, phosphorylated Y223 in the SH3 domain mirrors catalytic activity, but does not influence biological function. Blood Adv 2024; 8:1981-1990. [PMID: 38507738 PMCID: PMC11024922 DOI: 10.1182/bloodadvances.2024012706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
ABSTRACT Bruton's tyrosine kinase (BTK) is an enzyme needed for B-cell survival, and its inhibitors have become potent targeted medicines for the treatment of B-cell malignancies. The initial activation event of cytoplasmic protein-tyrosine kinases is the phosphorylation of a conserved regulatory tyrosine in the catalytic domain, which in BTK is represented by tyrosine 551. In addition, the tyrosine 223 (Y223) residue in the SRC homology 3 (SH3) domain has, for more than 2 decades, generally been considered necessary for full enzymatic activity. The initial recognition of its potential importance stems from transformation assays using nonlymphoid cells. To determine the biological significance of this residue, we generated CRISPR-Cas-mediated knockin mice carrying a tyrosine to phenylalanine substitution (Y223F), maintaining aromaticity and bulkiness while prohibiting phosphorylation. Using a battery of assays to study leukocyte subsets and the morphology of lymphoid organs, as well as the humoral immune responses, we were unable to detect any difference between wild-type mice and the Y223F mutant. Mice resistant to irreversible BTK inhibitors, through a cysteine 481 to serine substitution (C481S), served as an additional immunization control and mounted similar humoral immune responses as Y223F and wild-type animals. Collectively, our findings suggest that phosphorylation of Y223 serves as a useful proxy for phosphorylation of phospholipase Cγ2 (PLCG2), the endogenous substrate of BTK. However, in contrast to a frequently held conception, this posttranslational modification is dispensable for the function of BTK.
Collapse
Affiliation(s)
- H. Yesid Estupiñán
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Chenfei He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Berglöf
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Andrea Cappelleri
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
- Mouse and Animal Pathology Laboratory, UniMi Foundation, Milan, Italy
| | - Nicolai Frengen
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael C. I. Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Månsson
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - C. I. Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
5
|
Chirino A, Montoya S, Safronenka A, Taylor J. Resisting the Resistance: Navigating BTK Mutations in Chronic Lymphocytic Leukemia (CLL). Genes (Basel) 2023; 14:2182. [PMID: 38137005 PMCID: PMC10742473 DOI: 10.3390/genes14122182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) plays a key role in the B-cell receptor (BCR) signaling pathway and confers anti-apoptotic and proliferative properties to malignant B-cells in chronic lymphocytic leukemia (CLL). Small molecule BTK inhibitors were designed to bind BTK's active site and block downstream signaling. These drugs have now been used in the treatment of thousands of patients with CLL, the most common form of leukemia in the western hemisphere. However, adverse effects of early generations of BTK inhibitors and resistance to treatment have led to the development of newer, more selective and non-covalent BTK inhibitors. As the use of these newer generation BTK inhibitors has increased, novel BTK resistance mutations have come to light. This review aims to discuss previously known and novel BTK mutations, their mechanisms of resistance, and their relationship with patient treatment. Also discussed here are future studies that are needed to investigate the underlying cause allowing these mutations to occur and how they incite resistance. New treatments on the horizon that attempt to maneuver around these resistance mutations can be met with new resistance mutations, creating an unmet need for patients with CLL. Novel therapies and combinations that address all forms of resistance are discussed.
Collapse
Affiliation(s)
| | | | | | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
6
|
Bruzzese A, Martino EA, Labanca C, Mendicino F, Lucia E, Olivito V, Neri A, Morabito F, Vigna E, Gentile M. Zanubrutinib for the treatment of chronic lymphocytic leukemia. Expert Opin Pharmacother 2023; 24:1409-1413. [PMID: 37350553 DOI: 10.1080/14656566.2023.2229734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Affiliation(s)
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | | | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
7
|
Naeem A, Utro F, Wang Q, Cha J, Vihinen M, Martindale S, Zhou Y, Ren Y, Tyekucheva S, Kim AS, Fernandes SM, Saksena G, Rhrissorrakrai K, Levovitz C, Danysh BP, Slowik K, Jacobs RA, Davids MS, Lederer JA, Zain R, Smith CIE, Leshchiner I, Parida L, Getz G, Brown JR. Pirtobrutinib targets BTK C481S in ibrutinib-resistant CLL but second-site BTK mutations lead to resistance. Blood Adv 2023; 7:1929-1943. [PMID: 36287227 PMCID: PMC10202739 DOI: 10.1182/bloodadvances.2022008447] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 11/20/2022] Open
Abstract
Covalent inhibitors of Bruton tyrosine kinase (BTK) have transformed the therapy of chronic lymphocytic leukemia (CLL), but continuous therapy has been complicated by the development of resistance. The most common resistance mechanism in patients whose disease progresses on covalent BTK inhibitors (BTKis) is a mutation in the BTK 481 cysteine residue to which the inhibitors bind covalently. Pirtobrutinib is a highly selective, noncovalent BTKi with substantial clinical activity in patients whose disease has progressed on covalent BTKi, regardless of BTK mutation status. Using in vitro ibrutinib-resistant models and cells from patients with CLL, we show that pirtobrutinib potently inhibits BTK-mediated functions including B-cell receptor (BCR) signaling, cell viability, and CCL3/CCL4 chemokine production in both BTK wild-type and C481S mutant CLL cells. We demonstrate that primary CLL cells from responding patients on the pirtobrutinib trial show reduced BCR signaling, cell survival, and CCL3/CCL4 chemokine secretion. At time of progression, these primary CLL cells show increasing resistance to pirtobrutinib in signaling inhibition, cell viability, and cytokine production. We employed longitudinal whole-exome sequencing on 2 patients whose disease progressed on pirtobrutinib and identified selection of alternative-site BTK mutations, providing clinical evidence that secondary BTK mutations lead to resistance to noncovalent BTKis.
Collapse
MESH Headings
- Humans
- Agammaglobulinaemia Tyrosine Kinase
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Chemokine CCL4/genetics
- Chemokine CCL4/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Mutation
Collapse
Affiliation(s)
- Aishath Naeem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | | | - Qing Wang
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Huddinge, Sweden
| | - Justin Cha
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Mauno Vihinen
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Stephen Martindale
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yinglu Zhou
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Yue Ren
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Svitlana Tyekucheva
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Stacey M. Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Gordon Saksena
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | | | | | - Brian P. Danysh
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Kara Slowik
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Raquel A. Jacobs
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | | | - Rula Zain
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Huddinge, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - C. I. Edvard Smith
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Huddinge, Sweden
| | - Ignaty Leshchiner
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | | | - Gad Getz
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Pathology, Harvard Medical School, Boston, MA
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
8
|
Nakhoda S, Vistarop A, Wang YL. Resistance to Bruton tyrosine kinase inhibition in chronic lymphocytic leukaemia and non-Hodgkin lymphoma. Br J Haematol 2023; 200:137-149. [PMID: 36029036 PMCID: PMC9839590 DOI: 10.1111/bjh.18418] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 01/17/2023]
Abstract
Bruton tyrosine kinase inhibitors (BTKi) have transformed the therapeutic landscape of chronic lymphocytic leukaemia (CLL) and non-Hodgkin lymphoma. However, primary and acquired resistance to BTKi can be seen due to a variety of mechanisms including tumour intrinsic and extrinsic mechanisms such as gene mutations, activation of bypass signalling pathways and tumour microenvironment. Herein, we provide an updated review of the key clinical data of BTKi treatment in CLL, mantle cell lymphoma, and diffuse large B-cell lymphoma (DLBCL). We incorporate the most recent findings regarding mechanisms of resistance to covalent and non-covalent inhibitors, including ibrutinib, acalabrutinib, zanubrutinib and pirtobrutinib. We also cover the clinical sensitivity of certain molecular subtypes of DLBCL to an ibrutinib-containing regimen. Lastly, we summarise ongoing clinical investigations aimed at overcoming resistance via use of BTKi-containing combined therapies or the novel non-covalent BTKi. The review article targets an audience of clinical practitioners, clinical investigators and translational researchers.
Collapse
Affiliation(s)
- Shazia Nakhoda
- Department of Hematology, Fox Chase Cancer Center, Philadelphia, USA
| | - Aldana Vistarop
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, USA,Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, USA
| | - Y. Lynn Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, USA,Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, USA
| |
Collapse
|
9
|
Yuan H, Zhu Y, Cheng Y, Hou J, Jin F, Li M, Jia W, Cheng Z, Xing H, Liu M, Han T. BTK kinase activity is dispensable for the survival of diffuse large B-cell lymphoma. J Biol Chem 2022; 298:102555. [PMID: 36183831 PMCID: PMC9636578 DOI: 10.1016/j.jbc.2022.102555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Inhibitors targeting Bruton's tyrosine kinase (BTK) have revolutionized the treatment for various B-cell malignancies but are limited by acquired resistance after prolonged treatment as a result of mutations in BTK. Here, by a combination of structural modeling, in vitro assays, and deep phospho-tyrosine proteomics, we demonstrated that four clinically observed BTK mutations—C481F, C481Y, C481R, and L528W—inactivated BTK kinase activity both in vitro and in diffused large B-cell lymphoma (DLBCL) cells. Paradoxically, we found that DLBCL cells harboring kinase-inactive BTK exhibited intact B cell receptor (BCR) signaling, unperturbed transcription, and optimal cellular growth. Moreover, we determined that DLBCL cells with kinase-inactive BTK remained addicted to BCR signaling and were thus sensitive to targeted BTK degradation by the proteolysis-targeting chimera. By performing parallel genome-wide CRISPR-Cas9 screening in DLBCL cells with WT or kinase-inactive BTK, we discovered that DLBCL cells with kinase-inactive BTK displayed increased dependence on Toll-like receptor 9 (TLR9) for their growth and/or survival. Our study demonstrates that the kinase activity of BTK is not essential for oncogenic BCR signaling and suggests that BTK’s noncatalytic function is sufficient to sustain the survival of DLBCL.
Collapse
Affiliation(s)
- Hongwei Yuan
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Yutong Zhu
- BeiGene (Beijing) Co, Ltd, Beijing, China
| | - Yalong Cheng
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | | | | | | | - Wei Jia
- Deepkinase Co, Ltd, Beijing, China
| | | | | | - Mike Liu
- BeiGene (Beijing) Co, Ltd, Beijing, China
| | - Ting Han
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Sun SL, Wu SH, Kang JB, Ma YY, Chen L, Cao P, Chang L, Ding N, Xue X, Li NG, Shi ZH. Medicinal Chemistry Strategies for the Development of Bruton's Tyrosine Kinase Inhibitors against Resistance. J Med Chem 2022; 65:7415-7437. [PMID: 35594541 DOI: 10.1021/acs.jmedchem.2c00030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite significant efficacy, one of the major limitations of small-molecule Bruton's tyrosine kinase (BTK) agents is the presence of clinically acquired resistance, which remains a major clinical challenge. This Perspective focuses on medicinal chemistry strategies for the development of BTK small-molecule inhibitors against resistance, including the structure-based design of BTK inhibitors targeting point mutations, e.g., (i) developing noncovalent inhibitors from covalent inhibitors, (ii) avoiding steric hindrance from mutated residues, (iii) making interactions with the mutated residue, (iv) modifying the solvent-accessible region, and (v) developing new scaffolds. Additionally, a comparative analysis of multi-inhibitions of BTK is presented based on cross-comparisons between 2916 unique BTK ligands and 283 other kinases that cover 7108 dual/multiple inhibitions. Finally, targeting the BTK allosteric site and uding proteolysis-targeting chimera (PROTAC) as two potential strategies are addressed briefly, while also illustrating the possibilities and challenges to find novel ligands of BTK.
Collapse
Affiliation(s)
- Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shi-Han Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ji-Bo Kang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi-Yuan Ma
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
11
|
Zhang M, Xiong F, Zhang S, Guo W, He Y. Crucial Roles of miR-625 in Human Cancer. Front Med (Lausanne) 2022; 9:845094. [PMID: 35308517 PMCID: PMC8931282 DOI: 10.3389/fmed.2022.845094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/09/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic and epigenetic characteristics are core factors of cancer. MicroRNAs (miRNAs) are small non-coding RNAs which regulate gene expression at the post-transcriptional level via binding to corresponding mRNAs. Recently, increasing evidence has proven that miRNAs regulate the occurrence and development of human cancer. Here, we mainly review the abnormal expression of miR-625 in a variety of cancers. In summarizing the role and potential molecular mechanisms of miR-625 in various tumors in detail, we reveal that miR-625 is involved in a variety of biological processes, such as cell proliferation, invasion, migration, apoptosis, cell cycle regulation, and drug resistance. In addition, we discuss the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks and briefly explain the specific mechanisms of competing endogenous RNAs. In conclusion, we reveal the potential value of miR-625 in cancer diagnosis, treatment, and prognosis and hope to provide new ideas for the clinical application of miR-625.
Collapse
Affiliation(s)
- Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Fei Xiong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
12
|
De Novellis D, Cacace F, Caprioli V, Wierda WG, Mahadeo KM, Tambaro FP. The TKI Era in Chronic Leukemias. Pharmaceutics 2021; 13:2201. [PMID: 34959482 PMCID: PMC8709313 DOI: 10.3390/pharmaceutics13122201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Tyrosine kinases are proteins involved in physiological cell functions including proliferation, differentiation, and survival. However, the dysregulation of tyrosine kinase pathways occurs in malignancy, including hematological leukemias such as chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Particularly, the fusion oncoprotein BCR-ABL1 in CML and the B-cell receptor (BCR) signaling pathway in CLL are critical for leukemogenesis. Therapeutic management of these two hematological conditions was fundamentally changed in recent years, making the role of conventional chemotherapy nearly obsolete. The first, second, and third generation inhibitors (imatinib, dasatinib, nilotinib, bosutinib, and ponatinib) of BCR-ABL1 and the allosteric inhibitor asciminib showed deep genetic and molecular remission rates in CML, leading to the evaluation of treatment discontinuation in prospective trials. The irreversible BTK inhibitors (ibrutinib, acalabrutinib, zanubrutinib, tirabrutinib, and spebrutinib) covalently bind to the C481 amino acid of BTK. The reversible BTK inhibitor pirtobrutinib has a different binding site, overcoming resistance associated with mutations at C481. The PI3K inhibitors (idelalisib and duvelisib) are also effective in CLL but are currently less used because of their toxicity profiles. These tyrosine kinase inhibitors are well-tolerated, do have some associated in-class side effects that are manageable, and have remarkably improved outcomes for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Danilo De Novellis
- Hematology and Transplant Center, University “Hospital San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Fabiana Cacace
- Unità Operativa di Trapianto di Cellule Staminali Ematopoietiche e Terapie Cellulari, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, 80123 Napoli, Italy; (F.C.); (V.C.); (F.P.T.)
| | - Valeria Caprioli
- Unità Operativa di Trapianto di Cellule Staminali Ematopoietiche e Terapie Cellulari, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, 80123 Napoli, Italy; (F.C.); (V.C.); (F.P.T.)
| | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kris M. Mahadeo
- Pediatric Stem Cell Transplantation and Cellular Therapy, CARTOX Program, University of Texas at MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Francesco Paolo Tambaro
- Unità Operativa di Trapianto di Cellule Staminali Ematopoietiche e Terapie Cellulari, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, 80123 Napoli, Italy; (F.C.); (V.C.); (F.P.T.)
| |
Collapse
|
13
|
Torabi S, Anjamrooz SH, Zeraatpisheh Z, Aligholi H, Azari H. Ibrutinib reduces neutrophil infiltration, preserves neural tissue and enhances locomotor recovery in mouse contusion model of spinal cord injury. Anat Cell Biol 2021; 54:350-360. [PMID: 34031271 PMCID: PMC8493027 DOI: 10.5115/acb.20.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022] Open
Abstract
Following acute spinal cord injury (SCI), excessive recruitment of neutrophils can result in inflammation, neural tissue loss and exacerbation of neurological outcomes. Ibrutinib is a bruton's tyrosine kinase inhibitor in innate immune cells such as the neutrophils that diminishes their activation and influx to the site of injury. The present study evaluated the efficacy of ibrutinib administration in the acute phase of SCI on neural tissue preservation and locomotor recovery. Ibrutinib was delivered intravenously at 3.125 mg/kg either immediately, 12 hours after, or both immediately and 12 hours after SCI induction in adult male C57BL/6 mice. Neutrophil influx into the lesion area was evaluated 24 hours following SCI using light microscopy and immunohistochemistry methods. Animals' body weight changes were recorded, and their functional motor recovery was assessed based on the Basso mouse scale during 28 days after treatment. Finally, spinal cord lesion volume was estimated by an unbiased stereological method. While animals' weight in the control group started to increase one week after injury, it stayed unchanged in treatment groups. However, the double injection of ibrutinib led to a significantly lower body weight compared to the control group at 4 weeks post-injury. Mean neutrophil counts per visual field and the lesion volume were significantly decreased in all ibrutinib-treated groups. In addition, ibrutinib significantly improved locomotor functional recovery in all treated groups, especially in immediate and double-injection groups. Neural tissue protection and locomotor functional recovery suggest ibrutinib treatment as a potent immunotherapeutic intervention for traumatic SCI that warrants clinical testing.
Collapse
Affiliation(s)
- Somayyeh Torabi
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Hadi Anjamrooz
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zeraatpisheh
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Azari
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Fournier JCL, Evans JP, Zappacosta F, Thomas DA, Patel VK, White GV, Campos S, Tomkinson NCO. Acetylation of the Catalytic Lysine Inhibits Kinase Activity in PI3Kδ. ACS Chem Biol 2021; 16:1644-1653. [PMID: 34397208 DOI: 10.1021/acschembio.1c00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covalent inhibition is a powerful strategy to develop potent and selective small molecule kinase inhibitors. Targeting the conserved catalytic lysine is an attractive method for selective kinase inactivation. We have developed novel, selective inhibitors of phosphoinositide 3-kinase δ (PI3Kδ) which acylate the catalytic lysine, Lys779, using activated esters as the reactive electrophiles. The acylating agents were prepared by adding the activated ester motif to a known selective dihydroisobenzofuran PI3Kδ inhibitor. Three esters were designed, including an acetate ester which was the smallest lysine modification evaluated in this work. Covalent binding to the enzyme was characterized by intact protein mass spectrometry of the PI3Kδ-ester adducts. An enzymatic digest coupled with tandem mass spectrometry identified Lys779 as the covalent binding site, and a biochemical activity assay confirmed that PI3Kδ inhibition was a direct result of covalent lysine acylation. These results indicate that a simple chemical modification such as lysine acetylation is sufficient to inhibit kinase activity. The selectivity of the compounds was evaluated against lipid kinases in cell lysates using a chemoproteomic binding assay. Due to the conserved nature of the catalytic lysine across the kinome, we believe the covalent inhibition strategy presented here could be applicable to a broad range of clinically relevant targets.
Collapse
Affiliation(s)
- Julie C. L. Fournier
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - John P. Evans
- Arctoris, 120E Olympic Avenue, Milton Park, Oxford, OX14 4SA, United Kingdom
| | | | - Daniel A. Thomas
- Arctoris, 120E Olympic Avenue, Milton Park, Oxford, OX14 4SA, United Kingdom
| | - Vipulkumar K. Patel
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Gemma V. White
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Sebastien Campos
- Pharmaron, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, United Kingdom
| | - Nicholas C. O. Tomkinson
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
15
|
Smith CIE, Burger JA. Resistance Mutations to BTK Inhibitors Originate From the NF-κB but Not From the PI3K-RAS-MAPK Arm of the B Cell Receptor Signaling Pathway. Front Immunol 2021; 12:689472. [PMID: 34177947 PMCID: PMC8222783 DOI: 10.3389/fimmu.2021.689472] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Since the first clinical report in 2013, inhibitors of the intracellular kinase BTK (BTKi) have profoundly altered the treatment paradigm of B cell malignancies, replacing chemotherapy with targeted agents in patients with chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and Waldenström's macroglobulinemia. There are over 20 BTKi, both irreversible and reversible, in clinical development. While loss-of-function (LoF) mutations in the BTK gene cause the immunodeficiency X-linked agammaglobulinemia, neither inherited, nor somatic BTK driver mutations are known. Instead, BTKi-sensitive malignancies are addicted to BTK. BTK is activated by upstream surface receptors, especially the B cell receptor (BCR) but also by chemokine receptors, and adhesion molecules regulating B cell homing. Consequently, BTKi therapy abrogates BCR-driven proliferation and the tissue homing capacity of the malignant cells, which are being redistributed into peripheral blood. BTKi resistance can develop over time, especially in MCL and high-risk CLL patients. Frequently, resistance mutations affect the BTKi binding-site, cysteine 481, thereby reducing drug binding. Less common are gain-of-function (GoF) mutations in downstream signaling components, including phospholipase Cγ2 (PLCγ2). In a subset of patients, mechanisms outside of the BCR pathway, related e.g. to resistance to apoptosis were described. BCR signaling depends on many proteins including SYK, BTK, PI3K; still based on the resistance pattern, BTKi therapy only selects GoF alterations in the NF-κB arm, whereas an inhibitor of the p110δ subunit of PI3K instead selects resistance mutations in the RAS-MAP kinase pathway. BTK and PLCγ2 resistance mutations highlight BTK's non-redundant role in BCR-mediated NF-κB activation. Of note, mutations affecting BTK tend to generate clone sizes larger than alterations in PLCγ2. This infers that BTK signaling may go beyond the PLCγ2-regulated NF-κB and NFAT arms. Collectively, when comparing the primary and acquired mutation spectrum in BTKi-sensitive malignancies with the phenotype of the corresponding germline alterations, we find that certain observations do not readily fit with the existing models of BCR signaling.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet (KI), Huddinge, Sweden
| | - Jan A. Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
16
|
Novel mouse model resistant to irreversible BTK inhibitors: a tool identifying new therapeutic targets and side effects. Blood Adv 2021; 4:2439-2450. [PMID: 32492159 DOI: 10.1182/bloodadvances.2019001319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
Pharmacological inhibitors of Bruton tyrosine kinase (BTK) have revolutionized treatment of B-lymphocyte malignancies and show great promise for dampening autoimmunity. The predominant BTK inhibitors tether irreversibly by covalently binding to cysteine 481 in the BTK catalytic domain. Substitution of cysteine 481 for serine (C481S) is the most common mechanism for acquired drug resistance. We generated a novel C481S knock-in mouse model and, using a battery of tests, no overt B-lymphocyte phenotype was found. B lymphocytes from C481S animals were resistant to irreversible, but sensitive to reversible, BTK inhibitors. In contrast, irreversible inhibitors equally impaired T-lymphocyte activation in mice, mimicking the effect of treatment in patients. This demonstrates that T-lymphocyte blockage is independent of BTK. We suggest that the C481S knock-in mouse can serve as a useful tool for the study of BTK-independent effects of irreversible inhibitors, allowing for the identification of novel therapeutic targets and pinpointing potential side effects.
Collapse
|
17
|
Pérez-Carretero C, González-Gascón-y-Marín I, Rodríguez-Vicente AE, Quijada-Álamo M, Hernández-Rivas JÁ, Hernández-Sánchez M, Hernández-Rivas JM. The Evolving Landscape of Chronic Lymphocytic Leukemia on Diagnosis, Prognosis and Treatment. Diagnostics (Basel) 2021; 11:diagnostics11050853. [PMID: 34068813 PMCID: PMC8151186 DOI: 10.3390/diagnostics11050853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
The knowledge of chronic lymphocytic leukemia (CLL) has progressively deepened during the last forty years. Research activities and clinical studies have been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease, improving CLL diagnosis, prognosis and treatment. Whereas the diagnostic criteria for CLL have not substantially changed over time, prognostication has experienced an expansion with the identification of new biological and genetic biomarkers. Thanks to next-generation sequencing (NGS), an unprecedented number of gene mutations were identified with potential prognostic and predictive value in the 2010s, although significant work on their validation is still required before they can be used in a routine clinical setting. In terms of treatment, there has been an impressive explosion of new approaches based on targeted therapies for CLL patients during the last decade. In this current chemotherapy-free era, BCR and BCL2 inhibitors have changed the management of CLL patients and clearly improved their prognosis and quality of life. In this review, we provide an overview of these novel advances, as well as point out questions that should be further addressed to continue improving the outcomes of patients.
Collapse
Affiliation(s)
- Claudia Pérez-Carretero
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Ana E. Rodríguez-Vicente
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Miguel Quijada-Álamo
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - José-Ángel Hernández-Rivas
- Department of Hematology, Infanta Leonor University Hospital, 28031 Madrid, Spain; (I.G.-G.-y-M.); (J.-Á.H.-R.)
- Department of Medicine, Complutense University, 28040 Madrid, Spain
| | - María Hernández-Sánchez
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| | - Jesús María Hernández-Rivas
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| |
Collapse
|
18
|
Estupiñán HY, Berglöf A, Zain R, Smith CIE. Comparative Analysis of BTK Inhibitors and Mechanisms Underlying Adverse Effects. Front Cell Dev Biol 2021; 9:630942. [PMID: 33777941 PMCID: PMC7991787 DOI: 10.3389/fcell.2021.630942] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
The cytoplasmic protein-tyrosine kinase BTK plays an essential role for differentiation and survival of B-lineage cells and, hence, represents a suitable drug target. The number of BTK inhibitors (BTKis) in the clinic has increased considerably and currently amounts to at least 22. First-in-class was ibrutinib, an irreversible binder forming a covalent bond to a cysteine in the catalytic region of the kinase, for which we have identified 228 active trials listed at ClinicalTrials.gov. Next-generation inhibitors, acalabrutinib and zanubrutinib, are approved both in the United States and in Europe, and zanubrutinib also in China, while tirabrutinib is currently only registered in Japan. In most cases, these compounds have been used for the treatment of B-lymphocyte tumors. However, an increasing number of trials instead addresses autoimmunity and inflammation in multiple sclerosis, rheumatoid arthritis, pemphigus and systemic lupus erythematosus with the use of either irreversibly binding inhibitors, e.g., evobrutinib and tolebrutinib, or reversibly binding inhibitors, like fenebrutinib. Adverse effects (AEs) have predominantly implicated inhibition of other kinases with a BTKi-binding cysteine in their catalytic domain. Analysis of the reported AEs suggests that ibrutinib-associated atrial fibrillation is caused by binding to ERBB2/HER2 and ERBB4/HER4. However, the binding pattern of BTKis to various additional kinases does not correlate with the common assumption that skin manifestations and diarrhoeas are off-target effects related to EGF receptor inhibition. Moreover, dermatological toxicities, diarrhoea, bleedings and invasive fungal infections often develop early after BTKi treatment initiation and subsequently subside. Conversely, cardiovascular AEs, like hypertension and various forms of heart disease, often persist.
Collapse
Affiliation(s)
- H. Yesid Estupiñán
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
- Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Anna Berglöf
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - C. I. Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
19
|
Estupiñán HY, Wang Q, Berglöf A, Schaafsma GCP, Shi Y, Zhou L, Mohammad DK, Yu L, Vihinen M, Zain R, Smith CIE. BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib. Leukemia 2021; 35:1317-1329. [PMID: 33526860 PMCID: PMC8102192 DOI: 10.1038/s41375-021-01123-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the "gatekeeper" residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.
Collapse
Affiliation(s)
- H. Yesid Estupiñán
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden ,grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Universidad Industrial de Santander, 680002 Bucaramanga, Colombia
| | - Qing Wang
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden
| | - Anna Berglöf
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden
| | - Gerard C. P. Schaafsma
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Yuye Shi
- Department of Hematology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, 223300 Jiangsu Republic of China
| | - Litao Zhou
- Department of Hematology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, 223300 Jiangsu Republic of China
| | - Dara K. Mohammad
- grid.4714.60000 0004 1937 0626Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, 17177 Stockholm, Sweden ,grid.444950.8College of Agricultural Engineering Sciences, Salahaddin University-Erbil, 44002 Erbil, Kurdistan Region Iraq
| | - Liang Yu
- Department of Hematology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, 223300 Jiangsu Republic of China
| | - Mauno Vihinen
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Rula Zain
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden ,grid.24381.3c0000 0000 9241 5705Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - C. I. Edvard Smith
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden
| |
Collapse
|
20
|
Joseph RE, Amatya N, Fulton DB, Engen JR, Wales TE, Andreotti A. Differential impact of BTK active site inhibitors on the conformational state of full-length BTK. eLife 2020; 9:60470. [PMID: 33226337 PMCID: PMC7834017 DOI: 10.7554/elife.60470] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is targeted in the treatment of B-cell disorders including leukemias and lymphomas. Currently approved BTK inhibitors, including Ibrutinib, a first-in-class covalent inhibitor of BTK, bind directly to the kinase active site. While effective at blocking the catalytic activity of BTK, consequences of drug binding on the global conformation of full-length BTK are unknown. Here, we uncover a range of conformational effects in full-length BTK induced by a panel of active site inhibitors, including large-scale shifts in the conformational equilibria of the regulatory domains. Additionally, we find that a remote Ibrutinib resistance mutation, T316A in the BTK SH2 domain, drives spurious BTK activity by destabilizing the compact autoinhibitory conformation of full-length BTK, shifting the conformational ensemble away from the autoinhibited form. Future development of BTK inhibitors will need to consider long-range allosteric consequences of inhibitor binding, including the emerging application of these BTK inhibitors in treating COVID-19. Treatments for blood cancers, such as leukemia and lymphoma, rely heavily on chemotherapy, using drugs that target a vulnerable aspect of the cancer cells. B-cells, a type of white blood cell that produces antibodies, require a protein called Bruton’s tyrosine kinase, or BTK for short, to survive. The drug ibrutinib (Imbruvica) is used to treat B-cell cancers by blocking BTK. The BTK protein consists of several regions. One of them, known as the kinase domain, is responsible for its activity as an enzyme (which allows it to modify other proteins by adding a ‘tag’ known as a phosphate group). The other regions of BTK, known as regulatory modules, control this activity. In BTK’s inactive form, the regulatory modules attach to the kinase domain, blocking the regulatory modules from interacting with other proteins. When BTK is activated, it changes its conformation so the regulatory regions detach and become available for interactions with other proteins, at the same time exposing the active kinase domain. Ibrutinib and other BTK drugs in development bind to the kinase domain to block its activity. However, it is not known how this binding affects the regulatory modules. Previous efforts to study how drugs bind to BTK have used a version of the protein that only had the kinase domain, instead of the full-length protein. Now, Joseph et al. have studied full-length BTK and how it binds to five different drugs. The results reveal that ibrutinib and another drug called dasatinib both indirectly disrupt the normal position of the regulatory domains pushing BTK toward a conformation that resembles the activated state. By contrast, the three other compounds studied do not affect the inactive structure. Joseph et al. also examined a mutation in BTK that confers resistance against ibrutinib. This mutation increases the activity of BTK by disrupting the inactive structure, leading to B cells surviving better. Understanding how drug resistance mechanisms can work will lead to better drug treatment strategies for cancer. BTK is also a target in other diseases such as allergies or asthma and even COVID-19. If interactions between partner proteins and the regulatory domain are important in these diseases, then they may be better treated with drugs that maintain the regulatory modules in their inactive state. This research will help to design drugs that are better able to control BTK activity.
Collapse
Affiliation(s)
- Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| | - Neha Amatya
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Amy Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| |
Collapse
|
21
|
Abstract
Systematics is described for annotation of variations in RNA molecules. The conceptual framework is part of Variation Ontology (VariO) and facilitates depiction of types of variations, their functional and structural effects and other consequences in any RNA molecule in any organism. There are more than 150 RNA related VariO terms in seven levels, which can be further combined to generate even more complicated and detailed annotations. The terms are described together with examples, usually for variations and effects in human and in diseases. RNA variation type has two subcategories: variation classification and origin with subterms. Altogether six terms are available for function description. Several terms are available for affected RNA properties. The ontology contains also terms for structural description for affected RNA type, post-transcriptional RNA modifications, secondary and tertiary structure effects and RNA sugar variations. Together with the DNA and protein concepts and annotations, RNA terms allow comprehensive description of variations of genetic and non-genetic origin at all possible levels. The VariO annotations are readable both for humans and computer programs for advanced data integration and mining.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Sedlarikova L, Petrackova A, Papajik T, Turcsanyi P, Kriegova E. Resistance-Associated Mutations in Chronic Lymphocytic Leukemia Patients Treated With Novel Agents. Front Oncol 2020; 10:894. [PMID: 32670873 PMCID: PMC7330112 DOI: 10.3389/fonc.2020.00894] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/06/2020] [Indexed: 12/27/2022] Open
Abstract
Inhibitors of B-cell receptor signaling, ibrutinib and idelalisib, and BCL-2 antagonist, venetoclax, have become the mainstay of treatment for chronic lymphocytic leukemia (CLL). Despite significant efficacy in most CLL patients, some patients develop resistance to these agents and progress on these drugs. We provide a state-of-the-art overview of the acquired resistance to novel agents. In 80% of patients with ibrutinib failure, acquired mutations in BTK and PLCG2 genes were detected. No distinct unifying resistance-associated mutations or deregulated signaling pathways have been reported in idelalisib failure. Acquired mutations in the BCL2 gene were detected in patients who had failed on venetoclax. In most cases, patients who have progressed on ibrutinib and venetoclax experience resistance-associated mutations, often present at low allelic frequencies. Resistance-associated mutations tend to occur between the second and fourth years of treatment and may already be detected several months before clinical relapse. We also discuss the development of next-generation agents for CLL patients who have acquired resistant mutations to current inhibitors.
Collapse
Affiliation(s)
- Lenka Sedlarikova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - Anna Petrackova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - Tomas Papajik
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - Peter Turcsanyi
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| |
Collapse
|
23
|
Zhou H, Hu P, Yan X, Zhang Y, Shi W. Ibrutinib in Chronic Lymphocytic Leukemia: Clinical Applications, Drug Resistance, and Prospects. Onco Targets Ther 2020; 13:4877-4892. [PMID: 32581549 PMCID: PMC7266824 DOI: 10.2147/ott.s249586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK), a pivotal component of B-cell receptor (BCR) signaling, has been recognized as an important driver of the pathogenesis of chronic lymphocytic leukemia. Ibrutinib is a highly active and selectively irreversible inhibitor of BTK, which has been approved to be effective in both frontline and recurrent therapy of CLL. Acquired resistance has become a greater problem than initially anticipated with the widespread use of ibrutinib. An ongoing exploration of the mechanisms of ibrutinib resistance (IR) in CLL has revealed potentially useful therapeutic targets. New drugs expected to overcome IR in CLL are in the early stages of clinical development. This study aimed to summarize the possible mechanisms of IR and retrospectively analyze promising therapies that might have superior efficacy in overcoming IR.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Pan Hu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Xiyue Yan
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China.,Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
24
|
Delman M, Avcı ST, Akçok İ, Kanbur T, Erdal E, Çağır A. Antiproliferative activity of (R)-4'-methylklavuzon on hepatocellular carcinoma cells and EpCAM +/CD133 + cancer stem cells via SIRT1 and Exportin-1 (CRM1) inhibition. Eur J Med Chem 2019; 180:224-237. [PMID: 31306909 DOI: 10.1016/j.ejmech.2019.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Cytotoxic effects of (R)-4'-methylklavuzon were investigated on hepatocellular carcinoma cells (HuH-7 and HepG2) and HuH-7 EpCAM+/CD133+ cancer stem cells. IC50 of (R)-4'-methylklavuzon was found as 1.25 μM for HuH-7 parental cells while it was found as 2.50 μM for HuH-7 EpCAM+/CD133+ cancer stem cells. (R)-4'-methylklavuzon tended to show more efficient in vitro cytotoxicity with its lower IC50 values on hepatocellular carcinoma cell lines compared to its lead molecule, goniothalamin and FDA-approved drugs, sorafenib and regorafenib. Cell-based Sirtuin/HDAC enzyme activity measurements revealed that endogenous Sirtuin/HDAC enzymes were reduced by 40% compared to control. SIRT1 protein levels were upregulated indicating triggered DNA repair mechanism. p53 was overexpressed in HepG2 cells. (R)-4'-methylklavuzon inhibited CRM1 protein providing increased retention of p53 and RIOK2 protein in the nucleus. HuH-7 parental and EpCAM+/CD133+ cancer stem cell spheroids lost intact morphology. 3D HepG2 spheroid viabilities were decreased in a correlation with upregulation in p53 protein levels.
Collapse
Affiliation(s)
- Murat Delman
- Department of Biotechnology and Bioengineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Sanem Tercan Avcı
- Izmir Biomedicine and Genome Center, 35340, Balcova, Izmir, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - İsmail Akçok
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Tuğçe Kanbur
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, 35340, Balcova, Izmir, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.
| | - Ali Çağır
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| |
Collapse
|
25
|
Guo X, Yang D, Fan Z, Zhang N, Zhao B, Huang C, Wang F, Ma R, Meng M, Deng Y. Discovery and structure-activity relationship of novel diphenylthiazole derivatives as BTK inhibitor with potent activity against B cell lymphoma cell lines. Eur J Med Chem 2019; 178:767-781. [DOI: 10.1016/j.ejmech.2019.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
|
26
|
Pre-clinical anti-tumor activity of Bruton's Tyrosine Kinase inhibitor in Hodgkin's Lymphoma cellular and subcutaneous tumor model. Heliyon 2019; 5:e02290. [PMID: 31508518 PMCID: PMC6726720 DOI: 10.1016/j.heliyon.2019.e02290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/31/2019] [Accepted: 08/08/2019] [Indexed: 11/21/2022] Open
Abstract
Bruton's Tyrosine Kinase (BTK) is a member of the TEC family and plays a central role in B-cell signaling, activation, proliferation and differentiation. Here we evaluated the impact of BTK inhibitor Ibrutinib on a panel of HL models in vitro and in vivo. Ibrutinib suppressed viability and induced apoptosis in 4 HL cell lines in a dose and time dependent manner. Molecular analysis showed induction of both apoptotic and autophagy markers. Ibrutinib treatment resulted in suppression of BTK and other downstream targets including PI3K, mTOR and RICTOR. Ibrutinib given at 50 mg/kg p.o daily for three weeks caused statistically significant inhibition of HL cell line derived subcutaneous xenografts (p < 0.01) in ICR-SCID mice. Molecular analysis of residual tumor tissue revealed down-regulation of BTK; its related markers and autophagy markers. Our studies are the first showing in vitro and in vivo action of BTK inhibition in classical HL. A phase II study examining the activity of ibrutinib in relapsed or refractory HL is currently enrolling (NCT02824029).
Collapse
|
27
|
Wang S, Mondal S, Zhao C, Berishaj M, Ghanakota P, Batlevi CL, Dogan A, Seshan VE, Abel R, Green MR, Younes A, Wendel HG. Noncovalent inhibitors reveal BTK gatekeeper and auto-inhibitory residues that control its transforming activity. JCI Insight 2019; 4:127566. [PMID: 31217352 DOI: 10.1172/jci.insight.127566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Inhibition of Bruton tyrosine kinase (BTK) is a breakthrough therapy for certain B cell lymphomas and B cell chronic lymphatic leukemia. Covalent BTK inhibitors (e.g., ibrutinib) bind to cysteine C481, and mutations of this residue confer clinical resistance. This has led to the development of noncovalent BTK inhibitors that do not require binding to cysteine C481. These new compounds are now entering clinical trials. In a systematic BTK mutagenesis screen, we identify residues that are critical for the activity of noncovalent inhibitors. These include a gatekeeper residue (T474) and mutations in the kinase domain. Strikingly, co-occurrence of gatekeeper and kinase domain lesions (L512M, E513G, F517L, L547P) in cis results in a 10- to 15-fold gain of BTK kinase activity and de novo transforming potential in vitro and in vivo. Computational BTK structure analyses reveal how these lesions disrupt an intramolecular mechanism that attenuates BTK activation. Our findings anticipate clinical resistance mechanisms to a new class of noncovalent BTK inhibitors and reveal intramolecular mechanisms that constrain BTK's transforming potential.
Collapse
Affiliation(s)
- Shenqiu Wang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York USA
| | | | - Chunying Zhao
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York USA
| | - Marjan Berishaj
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York USA
| | | | | | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, and
| | - Venkatraman E Seshan
- Department of Epidemiology-Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | - Michael R Green
- Department of Lymphoma and Myeloma and Department of Genomic Medicine, University of Texas MD Anderson Cancer, Houston, Texas, USA
| | | | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York USA
| |
Collapse
|
28
|
Sun Y, Ding N, Song Y, Yang Z, Liu W, Zhu J, Rao Y. Degradation of Bruton’s tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas. Leukemia 2019; 33:2105-2110. [DOI: 10.1038/s41375-019-0440-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 12/17/2022]
|
29
|
Tyagi S, Mazumdar PA, Mayee P, Shivaraj SM, Anand S, Singh A, Madhurantakam C, Sharma P, Das S, Kumar A, Singh A. Natural variation in Brassica FT homeologs influences multiple agronomic traits including flowering time, silique shape, oil profile, stomatal morphology and plant height in B. juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:251-266. [PMID: 30466591 DOI: 10.1016/j.plantsci.2018.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Natural structural variants of regulatory proteins causing quantitative phenotypic consequences have not been reported in plants. Herein, we show that 28 natural structural variants of FT homeologs, isolated from 6 species of Brassica, differ with respect to amino-acid substitutions in regions critical for interactions with FD and represent two evolutionarily distinct categories. Analysis of structural models of selected candidates from Brassica juncea (BjuFT_AAMF1) and Brassica napus (BnaFT_CCLF) predicted stronger binding between BjuFT and Arabidopsis thaliana FD. Over-expression of BjuFT and BnaFT in wild type and ft-10 mutant backgrounds of Arabidopsis validated higher potency of BjuFT in triggering floral transition. Analysis of gain-of-function and artificial miRNA mediated silenced lines of B. juncea implicated Brassica FT in multiple agronomic traits beyond flowering, consistent with a pleiotropic effect. Several dependent and independent traits such as lateral branching, silique shape, seed size, oil-profile, stomatal morphology and plant height were found altered in mutant lines. Enhanced FT levels caused early flowering, which in turn was positively correlated to a higher proportion of desirable fatty acids (PUFA). However, higher FT levels also resulted in altered silique shape and reduced seed size, suggesting trait trade-offs. Modulation of FT levels for achieving optimal balance of trait values and parsing pair-wise interactions among a reportoire of regulatory protein homeologs in polyploid genomes are indeed future areas of crop research.
Collapse
Affiliation(s)
- Shikha Tyagi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | | | - Pratiksha Mayee
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India; Department of Research, Ankur Seeds Pvt. Ltd., 27, Nagpur, Maharashtra, 440018, India
| | - S M Shivaraj
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India; Departement de Phytologie, Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Saurabh Anand
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Anupama Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Chaithanya Madhurantakam
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Prateek Sharma
- Department of Energy and Environment, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Sandip Das
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Arun Kumar
- National Phytotron Facility, IARI, New Delhi, 110012, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India.
| |
Collapse
|
30
|
Fathi NN, Mohammad DK, Görgens A, Andaloussi SE, Zain R, Nore BF, Smith CIE. Translocation-generated ITK-FER and ITK-SYK fusions induce STAT3 phosphorylation and CD69 expression. Biochem Biophys Res Commun 2018; 504:749-752. [PMID: 30217447 DOI: 10.1016/j.bbrc.2018.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022]
Abstract
Many cancer types carry mutations in protein tyrosine kinase (PTK) and such alterations frequently drive tumor progression. One category is gene translocation of PTKs yielding chimeric proteins with transforming capacity. In this study, we characterized the role of ITK-FER [Interleukin-2-inducible T-cell Kinase (ITK) gene fused with Feline Encephalitis Virus-Related kinase (FER) gene] and ITK-SYK [Interleukin-2-inducible T-cell Kinase (ITK) gene fused with the Spleen Tyrosine Kinase (SYK)] in Peripheral T Cell Lymphoma (PTCL) signaling. We observed an induction of tyrosine phosphorylation events in the presence of both ITK-FER and ITK-SYK. The downstream targets of ITK-FER and ITK-SYK were explored and STAT3 was found to be highly phosphorylated by these fusion kinases. In addition, the CD69 T-cell activation marker was significantly elevated. Apart from tyrosine kinase inhibitors acting directly on the fusions, we believe that drugs acting on downstream targets could serve as alternative cancer therapies for fusion PTKs.
Collapse
Affiliation(s)
- Narmeen N Fathi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Huddinge, Sweden; Department of Microbiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Kurdistan Region-Iraq, Iraq
| | - Dara K Mohammad
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Huddinge, Sweden; Department of Biology, College of Science, Salahaddin University-Erbil, 44002, Erbil, Kurdistan Region-Iraq, Iraq
| | - André Görgens
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Huddinge, Sweden; Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Huddinge, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Huddinge, Sweden; Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Beston F Nore
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Huddinge, Sweden; Department of Biochemistry, College of Medicine, University of Sulaimani, Sulaimaniyah, Kurdistan Region-Iraq, Iraq.
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Huddinge, Sweden.
| |
Collapse
|
31
|
Transformation of chronic lymphocytic leukemia into B-cell acute lymphoblastic leukemia. Blood 2018; 131:1258-1261. [DOI: 10.1182/blood-2017-11-819276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
32
|
Lampson BL, Brown JR. Are BTK and PLCG2 mutations necessary and sufficient for ibrutinib resistance in chronic lymphocytic leukemia? Expert Rev Hematol 2018; 11:185-194. [PMID: 29381098 DOI: 10.1080/17474086.2018.1435268] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Ibrutinib is the first BTK inhibitor to show efficacy in chronic lymphocytic leukemia (CLL) and is also the first BTK inhibitor to which patients have developed resistance. Mutations in BTK and PLCG2 are found in ≈80% of CLL patients with acquired resistance to ibrutinib, but it remains unclear if these mutations are merely associated with disease relapse or directly cause it. Areas covered: Unique properties of both CLL and ibrutinib that complicate attempts to definitively conclude whether BTK/PLCG2 mutations are passengers or drivers of ibrutinib-resistant disease are reviewed. Characteristics of mutations that drive drug resistance are summarized and whether BTK/PLCG2 mutations possess these is discussed. These characteristics include (1) identification in multiple patients with acquired resistance, (2) in vitro validation of drug-resistant properties, (3) mutual exclusivity with one another, (4) increasing frequency over time on drug, and (5) high frequency at the time and site of clinical relapse. Expert commentary: While BTK/PLCG2 mutations have characteristics suggesting that they can drive ibrutinib resistance, this conclusion remains formally unproven until specific inhibition of such mutations is shown to cause regression of ibrutinib-resistant CLL. Data suggest that alternative mechanisms of resistance do exist in some patients.
Collapse
Affiliation(s)
- Benjamin L Lampson
- a Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Jennifer R Brown
- a Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
33
|
Design, synthesis and biological evaluation of 7 H -pyrrolo[2,3- d ]pyrimidin-4-amine derivatives as selective Btk inhibitors with improved pharmacokinetic properties for the treatment of rheumatoid arthritis. Eur J Med Chem 2018; 145:96-112. [DOI: 10.1016/j.ejmech.2017.12.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022]
|
34
|
Hershkovitz-Rokah O, Pulver D, Lenz G, Shpilberg O. Ibrutinib resistance in mantle cell lymphoma: clinical, molecular and treatment aspects. Br J Haematol 2018; 181:306-319. [PMID: 29359797 DOI: 10.1111/bjh.15108] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mantle cell lymphoma (MCL) is a lymphoproliferative disorder comprising about 6-10% of all B cell lymphoma cases. Ibrutinib is an inhibitor of Bruton tyrosine kinase (BTK), a key component of early B-cell receptor (BCR) signalling pathways. Although treatment with ibrutinib has significantly improved the outcome of MCL patients, approximately one-third of the patients have primary drug resistance while others appear to develop acquired resistance. Understanding the molecular events leading to the primary and acquired resistance to ibrutinib is essential for achieving better outcomes in patients with MCL. In this review, we describe the biology of the BCR signalling pathway and summarize the landmark clinical trials that have led to the approval of ibrutinib. We review the molecular mechanisms underlying primary and acquired ibrutinib resistance as well as recent studies dealing with overcoming ibrutinib resistance.
Collapse
Affiliation(s)
- Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.,Translational Research Laboratory, Assuta Medical Centres, Tel Aviv, Israel.,Institute of Haematology, Assuta Medical Centres, Tel Aviv, Israel
| | - Dana Pulver
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.,Translational Research Laboratory, Assuta Medical Centres, Tel Aviv, Israel.,Institute of Haematology, Assuta Medical Centres, Tel Aviv, Israel
| | - Georg Lenz
- University Hospital Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Ofer Shpilberg
- Translational Research Laboratory, Assuta Medical Centres, Tel Aviv, Israel.,Institute of Haematology, Assuta Medical Centres, Tel Aviv, Israel.,Pre-Medicine Department, School of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
35
|
Strategies to overcome resistance mutations of Bruton's tyrosine kinase inhibitor ibrutinib. Future Med Chem 2018; 10:343-356. [PMID: 29347836 DOI: 10.4155/fmc-2017-0145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ibrutinib, as the first Bruton's tyrosine kinase (Btk) inhibitor, has been shown to have clinically significant activity in leukemias and lymphomas. However, the initially responsive tumors will develop resistance during the process of treatment in few patients. Here, we summarized the mechanism of acquired resistance and suggested the next-generation Btk inhibitors that override the target resistance. Moreover, the development of combination of selective antagonists or inhibitors targeting to multiple protein kinases have increased therapeutic potency to reduce the risk of the emergence of kinases inhibitor resistance. Thus, the reported combination of therapeutic drugs as an alternative therapy to overcome ibrutinib collapse or reduce the risk of the emergence of Btk inhibitor resistance also has been reviewed.
Collapse
|
36
|
Itchaki G, Brown JR. Experience with ibrutinib for first-line use in patients with chronic lymphocytic leukemia. Ther Adv Hematol 2018; 9:3-19. [PMID: 29317997 PMCID: PMC5753924 DOI: 10.1177/2040620717741861] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/17/2017] [Indexed: 01/17/2023] Open
Abstract
Ibrutinib is the first in-class, orally administered, Bruton's tyrosine kinase (BTK) inhibitor that abrogates the critical signaling downstream of the B-cell receptor (BCR). This signaling is required for B-cell survival, proliferation and interaction with the microenvironment. Ibrutinib proved active in preclinical models of lymphoproliferative diseases and achieved impressive response rates in heavily pretreated relapsed and refractory (R/R) patients with chronic lymphocytic leukemia (CLL). Ibrutinib prolonged survival compared to standard therapy and mitigated the effect of most poor prognostic factors in CLL, thus becoming the main therapeutic option in high-risk populations. Moreover, compared with standard chemoimmunotherapy (CIT) for adults, ibrutinib causes fewer cytopenias and infections, while having its own unique toxicity profile. Its efficacy in relapsed patients as well as its tolerability have led to its increased use in previously untreated patients, especially in those with poor prognostic markers and/or the elderly. This review elaborates on ibrutinib's unique toxicity profile and the mechanisms of acquired resistance leading to progression on ibrutinib, since both are critical for understanding the obstacles to its first-line use. We will further evaluate the data from ongoing clinical trials in this setting and explore future options for combination therapy.
Collapse
|
37
|
Smith CIE. From identification of the BTK kinase to effective management of leukemia. Oncogene 2017; 36:2045-2053. [PMID: 27669440 PMCID: PMC5395699 DOI: 10.1038/onc.2016.343] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
BTK is a cytoplasmic protein-tyrosine kinase, whose corresponding gene was isolated in the early 1990s. BTK was initially identified by positional cloning of the gene causing X-linked agammaglobulinemia and independently in a search for new kinases. Given the phenotype of affected patients, namely lack of B-lymphocytes and plasma cells with the ensuing inability to mount humoral immune responses, BTK inhibitors were anticipated to have beneficial effects on antibody-mediated pathologies, such as autoimmunity. In contrast to, for example, the SRC-family of cytoplasmic kinases, there was no obvious way in which structural alterations would yield constitutively active forms of BTK, and such mutations were also not found in leukemias or lymphomas. In 2007, the first efficient inhibitor, ibrutinib, was reported and soon became approved both in the United States and in Europe for the treatment of three B-cell malignancies, mantle cell lymphoma, chronic lymphocytic leukemia and Waldenström's macroglobulinemia. Over the past few years, additional inhibitors have been developed, with acalabrutinib being more selective, and recently demonstrating fewer clinical adverse effects. The antitumor mechanism is also not related to mutations in BTK. Instead tumor residency in lymphoid organs is inhibited, making these drugs highly versatile. BTK is one of the only 10 human kinases that carry a cysteine in the adenosine triphosphate-binding cleft. As this allows for covalent, irreversible inhibitor binding, it provides these compounds with a highly advantageous character. This quality may be crucial and bodes well for the future of BTK-modifying medicines, which have been estimated to reach annual multi-billion dollar sales in the future.
Collapse
Affiliation(s)
- C I E Smith
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
38
|
Acquired mutations associated with ibrutinib resistance in Waldenström macroglobulinemia. Blood 2017; 129:2519-2525. [PMID: 28235842 DOI: 10.1182/blood-2017-01-761726] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/21/2017] [Indexed: 01/28/2023] Open
Abstract
Ibrutinib produces high response rates and durable remissions in Waldenström macroglobulinemia (WM) that are impacted by MYD88 and CXCR4WHIM mutations. Disease progression can develop on ibrutinib, although the molecular basis remains to be clarified. We sequenced sorted CD19+ lymphoplasmacytic cells from 6 WM patients who progressed after achieving major responses on ibrutinib using Sanger, TA cloning and sequencing, and highly sensitive and allele-specific polymerase chain reaction (AS-PCR) assays that we developed for Bruton tyrosine kinase (BTK) mutations. AS-PCR assays were used to screen patients with and without progressive disease on ibrutinib, and ibrutinib-naïve disease. Targeted next-generation sequencing was used to validate AS-PCR findings, assess for other BTK mutations, and other targets in B-cell receptor and MYD88 signaling. Among the 6 progressing patients, 3 had BTKCys481 variants that included BTKCys481Ser(c.1635G>C and c.1634T>A) and BTKCys481Arg(c.1634T>C) Two of these patients had multiple BTK mutations. Screening of 38 additional patients on ibrutinib without clinical progression identified BTKCys481 mutations in 2 (5.1%) individuals, both of whom subsequently progressed. BTKCys481 mutations were not detected in baseline samples or in 100 ibrutinib-naive WM patients. Using mutated MYD88 as a tumor marker, BTKCys481 mutations were subclonal, with a highly variable clonal distribution. Targeted deep-sequencing confirmed AS-PCR findings, and identified an additional BTKCys481Tyr(c.1634G>A) mutation in the 2 patients with multiple other BTKCys481 mutations, as well as CARD11Leu878Phe(c.2632C>T) and PLCγ2Tyr495His(c.1483T>C) mutations. Four of the 5 patients with BTKC481 variants were CXCR4 mutated. BTKCys481 mutations are common in WM patients with clinical progression on ibrutinib, and are associated with mutated CXCR4.
Collapse
|
39
|
Yahiaoui A, Meadows SA, Sorensen RA, Cui ZH, Keegan KS, Brockett R, Chen G, Quéva C, Li L, Tannheimer SL. PI3Kδ inhibitor idelalisib in combination with BTK inhibitor ONO/GS-4059 in diffuse large B cell lymphoma with acquired resistance to PI3Kδ and BTK inhibitors. PLoS One 2017; 12:e0171221. [PMID: 28178345 PMCID: PMC5298344 DOI: 10.1371/journal.pone.0171221] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Activated B-cell-like diffuse large B-cell lymphoma relies on B-cell receptor signaling to drive proliferation and survival. Downstream of the B-cell receptor, the key signaling kinases Bruton’s tyrosine kinase and phosphoinositide 3-kinase δ offer opportunities for therapeutic intervention by agents such as ibrutinib, ONO/GS-4059, and idelalisib. Combination therapy with such targeted agents could provide enhanced efficacy due to complimentary mechanisms of action. In this study, we describe both the additive interaction of and resistance mechanisms to idelalisib and ONO/GS-4059 in a model of activated B-cell-like diffuse large B-cell lymphoma. Significant tumor regression was observed with a combination of PI3Kδ and Bruton’s tyrosine kinase inhibitors in the mouse TMD8 xenograft. Acquired resistance to idelalisib in the TMD8 cell line occurred by loss of phosphatase and tensin homolog and phosphoinositide 3-kinase pathway upregulation, but not by mutation of PIK3CD. Sensitivity to idelalisib could be restored by combining idelalisib and ONO/GS-4059. Further evaluation of targeted inhibitors revealed that the combination of idelalisib and the phosphoinositide-dependent kinase-1 inhibitor GSK2334470 or the AKT inhibitor MK-2206 could partially overcome resistance. Characterization of acquired Bruton’s tyrosine kinase inhibitor resistance revealed a novel tumor necrosis factor alpha induced protein 3 mutation (TNFAIP3 Q143*), which led to a loss of A20 protein, and increased p-IκBα. The combination of idelalisib and ONO/GS-4059 partially restored sensitivity in this resistant line. Additionally, a mutation in Bruton’s tyrosine kinase at C481F was identified as a mechanism of resistance. The combination activity observed with idelalisib and ONO/GS-4059, taken together with the ability to overcome resistance, could lead to a new therapeutic option in activated B-cell-like diffuse large B-cell lymphoma. A clinical trial is currently underway to evaluate the combination of idelalisib and ONO/GS-4059 (NCT02457598).
Collapse
Affiliation(s)
- Anella Yahiaoui
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Sarah A. Meadows
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Rick A. Sorensen
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Zhi-Hua Cui
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Kathleen S. Keegan
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Robert Brockett
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Guang Chen
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Christophe Quéva
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Li Li
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Stacey L. Tannheimer
- Gilead Sciences, Inc., Foster City, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Bender AT, Gardberg A, Pereira A, Johnson T, Wu Y, Grenningloh R, Head J, Morandi F, Haselmayer P, Liu-Bujalski L. Ability of Bruton's Tyrosine Kinase Inhibitors to Sequester Y551 and Prevent Phosphorylation Determines Potency for Inhibition of Fc Receptor but not B-Cell Receptor Signaling. Mol Pharmacol 2017; 91:208-219. [PMID: 28062735 DOI: 10.1124/mol.116.107037] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Bruton's tyrosine kinase (Btk) is expressed in a variety of hematopoietic cells. Btk has been demonstrated to regulate signaling downstream of the B-cell receptor (BCR), Fc receptors (FcRs), and toll-like receptors. It has become an attractive drug target because its inhibition may provide significant efficacy by simultaneously blocking multiple disease mechanisms. Consequently, a large number of Btk inhibitors have been developed. These compounds have diverse binding modes, and both reversible and irreversible inhibitors have been developed. Reported herein, we have tested nine Btk inhibitors and characterized on a molecular level how their interactions with Btk define their ability to block different signaling pathways. By solving the crystal structures of Btk inhibitors bound to the enzyme, we discovered that the compounds can be classified by their ability to trigger sequestration of Btk residue Y551. In cells, we found that sequestration of Y551 renders it inaccessible for phosphorylation. The ability to sequester Y551 was an important determinant of potency against FcεR signaling as Y551 sequestering compounds were more potent for inhibiting basophils and mast cells. This result was true for the inhibition of FcγR signaling as well. In contrast, Y551 sequestration was less a factor in determining potency against BCR signaling. We also found that Btk activity is regulated differentially in basophils and B cells. These results elucidate important determinants for Btk inhibitor potency against different signaling pathways and provide insight for designing new compounds with a broader inhibitory profile that will likely result in greater efficacy.
Collapse
Affiliation(s)
- Andrew T Bender
- TIP Immunology (A.T.B., A.P., Y.W., R.G.) and Discovery Technologies (A.G., T.J., J.H., F.M., L.L.-B.), EMD Serono Research and Development Institute, Billerica, Massachusetts; and TIP Immunology, Merck, Darmstadt, Germany (P.H.)
| | - Anna Gardberg
- TIP Immunology (A.T.B., A.P., Y.W., R.G.) and Discovery Technologies (A.G., T.J., J.H., F.M., L.L.-B.), EMD Serono Research and Development Institute, Billerica, Massachusetts; and TIP Immunology, Merck, Darmstadt, Germany (P.H.)
| | - Albertina Pereira
- TIP Immunology (A.T.B., A.P., Y.W., R.G.) and Discovery Technologies (A.G., T.J., J.H., F.M., L.L.-B.), EMD Serono Research and Development Institute, Billerica, Massachusetts; and TIP Immunology, Merck, Darmstadt, Germany (P.H.)
| | - Theresa Johnson
- TIP Immunology (A.T.B., A.P., Y.W., R.G.) and Discovery Technologies (A.G., T.J., J.H., F.M., L.L.-B.), EMD Serono Research and Development Institute, Billerica, Massachusetts; and TIP Immunology, Merck, Darmstadt, Germany (P.H.)
| | - Yin Wu
- TIP Immunology (A.T.B., A.P., Y.W., R.G.) and Discovery Technologies (A.G., T.J., J.H., F.M., L.L.-B.), EMD Serono Research and Development Institute, Billerica, Massachusetts; and TIP Immunology, Merck, Darmstadt, Germany (P.H.)
| | - Roland Grenningloh
- TIP Immunology (A.T.B., A.P., Y.W., R.G.) and Discovery Technologies (A.G., T.J., J.H., F.M., L.L.-B.), EMD Serono Research and Development Institute, Billerica, Massachusetts; and TIP Immunology, Merck, Darmstadt, Germany (P.H.)
| | - Jared Head
- TIP Immunology (A.T.B., A.P., Y.W., R.G.) and Discovery Technologies (A.G., T.J., J.H., F.M., L.L.-B.), EMD Serono Research and Development Institute, Billerica, Massachusetts; and TIP Immunology, Merck, Darmstadt, Germany (P.H.)
| | - Federica Morandi
- TIP Immunology (A.T.B., A.P., Y.W., R.G.) and Discovery Technologies (A.G., T.J., J.H., F.M., L.L.-B.), EMD Serono Research and Development Institute, Billerica, Massachusetts; and TIP Immunology, Merck, Darmstadt, Germany (P.H.)
| | - Philipp Haselmayer
- TIP Immunology (A.T.B., A.P., Y.W., R.G.) and Discovery Technologies (A.G., T.J., J.H., F.M., L.L.-B.), EMD Serono Research and Development Institute, Billerica, Massachusetts; and TIP Immunology, Merck, Darmstadt, Germany (P.H.)
| | - Lesley Liu-Bujalski
- TIP Immunology (A.T.B., A.P., Y.W., R.G.) and Discovery Technologies (A.G., T.J., J.H., F.M., L.L.-B.), EMD Serono Research and Development Institute, Billerica, Massachusetts; and TIP Immunology, Merck, Darmstadt, Germany (P.H.)
| |
Collapse
|