1
|
dos Santos PMF, Díaz Acosta CC, Rosa TLSA, Ishiba MH, Dias AA, Pereira AMR, Gutierres LD, Pereira MP, da Silva Rocha M, Rosa PS, Bertoluci DFF, Meyer-Fernandes JR, da Mota Ramalho Costa F, Marques MAM, Belisle JT, Pinheiro RO, Rodrigues LS, Pessolani MCV, Berrêdo-Pinho M. Adenosine A 2A receptor as a potential regulator of Mycobacterium leprae survival mechanisms: new insights into leprosy neural damage. Front Pharmacol 2024; 15:1399363. [PMID: 39005937 PMCID: PMC11239521 DOI: 10.3389/fphar.2024.1399363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Background Leprosy is a chronic infectious disease caused by Mycobacterium leprae, which can lead to a disabling neurodegenerative condition. M. leprae preferentially infects skin macrophages and Schwann cells-glial cells of the peripheral nervous system. The infection modifies the host cell lipid metabolism, subverting it in favor of the formation of cholesterol-rich lipid droplets (LD) that are essential for bacterial survival. Although researchers have made progress in understanding leprosy pathogenesis, many aspects of the molecular and cellular mechanisms of host-pathogen interaction still require clarification. The purinergic system utilizes extracellular ATP and adenosine as critical signaling molecules and plays several roles in pathophysiological processes. Furthermore, nucleoside surface receptors such as the adenosine receptor A2AR involved in neuroimmune response, lipid metabolism, and neuron-glia interaction are targets for the treatment of different diseases. Despite the importance of this system, nothing has been described about its role in leprosy, particularly adenosinergic signaling (AdoS) during M. leprae-Schwann cell interaction. Methods M. leprae was purified from the hind footpad of athymic nu/nu mice. ST88-14 human cells were infected with M. leprae in the presence or absence of specific agonists or antagonists of AdoS. Enzymatic activity assays, fluorescence microscopy, Western blotting, and RT-qPCR analysis were performed. M. leprae viability was investigated by RT-qPCR, and cytokines were evaluated by enzyme-linked immunosorbent assay. Results We demonstrated that M. leprae-infected Schwann cells upregulated CD73 and ADA and downregulated A2AR expression and the phosphorylation of the transcription factor CREB (p-CREB). On the other hand, activation of A2AR with its selective agonist, CGS21680, resulted in: 1) reduced lipid droplets accumulation and pro-lipogenic gene expression; 2) reduced production of IL-6 and IL-8; 3) reduced intracellular M. leprae viability; 4) increased levels of p-CREB. Conclusion These findings suggest the involvement of the AdoS in leprosy neuropathogenesis and support the idea that M. leprae, by downmodulating the expression and activity of A2AR in Schwann cells, decreases A2AR downstream signaling, contributing to the maintenance of LD accumulation and intracellular viability of the bacillus.
Collapse
Affiliation(s)
| | - Chyntia Carolina Díaz Acosta
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | | | - Michelle Harumi Ishiba
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Alves Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Luísa Domingos Gutierres
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Melissa Pontes Pereira
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Matheus da Silva Rocha
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Daniele F. F. Bertoluci
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, São Paulo, Brazil
- Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Angela M. Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratório de Imunopatologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Qi C, Feng Y, Jiang Y, Chen W, Vakal S, Chen JF, Zheng W. A 2AR antagonist treatment for multiple sclerosis: Current progress and future prospects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:185-223. [PMID: 37741692 DOI: 10.1016/bs.irn.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Emerging evidence suggests that both selective and non-selective Adenosine A2A receptor (A2AR) antagonists could effectively protect mice from experimental autoimmune encephalomyelitis (EAE), which is the most commonly used animal model for multiple sclerosis (MS) research. Meanwhile, the recent FDA approval of Nourianz® (istradefylline) in 2019 as an add-on treatment to levodopa in Parkinson's disease (PD) with "OFF" episodes, along with its proven clinical safety, has prompted us to explore the potential of A2AR antagonists in treating multiple sclerosis (MS) through clinical trials. However, despite promising findings in experimental autoimmune encephalomyelitis (EAE), the complex and contradictory role of A2AR signaling in EAE pathology has raised concerns about the feasibility of using A2AR antagonists as a therapeutic approach for MS. This review addresses the potential effect of A2AR antagonists on EAE/MS in both the peripheral immune system (PIS) and the central nervous system (CNS). In brief, A2AR antagonists had a moderate effect on the proliferation and inflammatory response, while exhibiting a potent anti-inflammatory effect in the CNS through their impact on microglia, astrocytes, and the endothelial cells/epithelium of the blood-brain barrier. Consequently, A2AR signaling remains an essential immunomodulator in EAE/MS, suggesting that A2AR antagonists hold promise as a drug class for treating MS.
Collapse
Affiliation(s)
- Chenxing Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yijia Feng
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yiwei Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wangchao Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jiang-Fan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wu Zheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.
| |
Collapse
|
3
|
Shao B, Ren SH, Wang ZB, Wang HD, Zhang JY, Qin H, Zhu YL, Sun CL, Xu YN, Li X, Wang H. CD73 mediated host purinergic metabolism in intestine contributes to the therapeutic efficacy of a novel mesenchymal-like endometrial regenerative cells against experimental colitis. Front Immunol 2023; 14:1155090. [PMID: 37180168 PMCID: PMC10167049 DOI: 10.3389/fimmu.2023.1155090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Background The disruption of intestinal barrier functions and the dysregulation of mucosal immune responses, mediated by aberrant purinergic metabolism, are involved in the pathogenesis of inflammatory bowel diseases (IBD). A novel mesenchymal-like endometrial regenerative cells (ERCs) has demonstrated a significant therapeutic effect on colitis. As a phenotypic marker of ERCs, CD73 has been largely neglected for its immunosuppressive function in regulating purinergic metabolism. Here, we have investigated whether CD73 expression on ERCs is a potential molecular exerting its therapeutic effect against colitis. Methods ERCs either unmodified or with CD73 knockout (CD73-/-ERCs), were intraperitoneally administered to dextran sulfate sodium (DSS)-induced colitis mice. Histopathological analysis, colon barrier function, the proportion of T cells, and maturation of dendritic cells (DCs) were investigated. The immunomodulatory effect of CD73-expressing ERCs was evaluated by co-culture with bone marrow-derived DCs under LPS stimulation. FACS determined DCs maturation. The function of DCs was detected by ELISA and CD4+ cell proliferation assays. Furthermore, the role of the STAT3 pathway in CD73-expressing ERCs-induced DC inhibition was also elucidated. Results Compared with untreated and CD73-/-ERCs-treated groups, CD73-expressing ERCs effectively attenuated body weight loss, bloody stool, shortening of colon length, and pathological damage characterized by epithelial hyperplasia, goblet cell depletion, the focal loss of crypts and ulceration, and the infiltration of inflammatory cells. Knockout of CD73 impaired ERCs-mediated colon protection. Surprisingly, CD73-expressing ERCs significantly decreased the populations of Th1 and Th17 cells but increased the proportions of Tregs in mouse mesenteric lymph nodes. Furthermore, CD73-expressing ERCs markedly reduced the levels of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) and increased anti-inflammatory factors (IL-10) levels in the colon. CD73-expressing ERCs inhibited the antigen presentation and stimulatory function of DCs associated with the STAT-3 pathway, which exerted a potent therapeutic effect against colitis. Conclusions The knockout of CD73 dramatically abrogates the therapeutic ability of ERCs for intestinal barrier dysfunctions and the dysregulation of mucosal immune responses. This study highlights the significance of CD73 mediates purinergic metabolism contributing to the therapeutic effects of human ERCs against colitis in mice.
Collapse
Affiliation(s)
- Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shao-hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhao-bo Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-ni Xu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Rios-Covian D, Butcher LD, Ablack AL, den Hartog G, Matsubara MT, Ly H, Oates AW, Xu G, Fisch KM, Ahrens ET, Toden S, Brown CC, Kim K, Le D, Eckmann L, Dhar B, Izumi T, Ernst PB, Crowe SE. A Novel Hypomorphic Apex1 Mouse Model Implicates Apurinic/Apyrimidinic Endonuclease 1 in Oxidative DNA Damage Repair in Gastric Epithelial Cells. Antioxid Redox Signal 2023; 38:183-197. [PMID: 35754343 PMCID: PMC10039277 DOI: 10.1089/ars.2021.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/20/2023]
Abstract
Aims: Though best known for its role in oxidative DNA damage repair, apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein that regulates multiple host responses during oxidative stress, including the reductive activation of transcription factors. As knockout of the APE1-encoding gene, Apex1, is embryonically lethal, we sought to create a viable model with generalized inhibition of APE1 expression. Results: A hypomorphic (HM) mouse with decreased APE1 expression throughout the body was generated using a construct containing a neomycin resistance (NeoR) cassette knocked into the Apex1 site. Offspring were assessed for APE1 expression, breeding efficiency, and morphology with a focused examination of DNA damage in the stomach. Heterozygotic breeding pairs yielded 50% fewer HM mice than predicted by Mendelian genetics. APE1 expression was reduced up to 90% in the lungs, heart, stomach, and spleen. The HM offspring were typically smaller, and most had a malformed tail. Oxidative DNA damage was increased spontaneously in the stomachs of HM mice. Further, all changes were reversed when the NeoR cassette was removed. Primary gastric epithelial cells from HM mice differentiated more quickly and had more evidence of oxidative DNA damage after stimulation with Helicobacter pylori or a chemical carcinogen than control lines from wildtype mice. Innovation: A HM mouse with decreased APE1 expression throughout the body was generated and extensively characterized. Conclusion: The results suggest that HM mice enable studies of APE1's multiple functions throughout the body. The detailed characterization of the stomach showed that gastric epithelial cells from HM were more susceptible to DNA damage. Antioxid. Redox Signal. 38, 183-197.
Collapse
Affiliation(s)
- David Rios-Covian
- Center for Veterinary Sciences and Comparative Medicine, Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Lindsay D. Butcher
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Amber L. Ablack
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Gerco den Hartog
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mason T. Matsubara
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Hong Ly
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Andrew W. Oates
- Center for Veterinary Sciences and Comparative Medicine, Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Guorong Xu
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Kathleen M. Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eric T. Ahrens
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Shusuke Toden
- Molecular Stethoscope, Inc., San Diego, California, USA
| | - Corrie C. Brown
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Dzung Le
- Center for Veterinary Sciences and Comparative Medicine, Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Lars Eckmann
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Bithika Dhar
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter B. Ernst
- Center for Veterinary Sciences and Comparative Medicine, Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, La Jolla, California, USA
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Immunology, Chiba University, Chiba, Japan
| | - Sheila E. Crowe
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Da M, Chen L, Enk A, Mahnke K. Tolerance to 2,4-Dinitrofluorobenzene‒Induced Contact Hypersensitivity Is Mediated by CD73-Expressing Tissue-homing Regulatory T Cells. J Invest Dermatol 2022; 143:1011-1022.e8. [PMID: 36539031 DOI: 10.1016/j.jid.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Regulatory T cells (Tregs) express CD73, an ectonucleotidase that converts adenosine (Ado) monophosphate to Ado, which has been shown to suppress immune reactions. To investigate the role(s) of CD73+ Tregs during the induction of tolerance, we used a 2,4-dinitrofluorobenzene‒driven contact hypersensitivity model, in which tolerance can be induced by pretreating wild type mice with 2,4-dinitrothiocyanobenzene. CD73-deficient mice were unable to acquire tolerance. Likewise, transfer of CD73‒/‒ Tregs failed to suppress 2,4-dinitrofluorobenzene‒induced ear swelling in wild type mice, whereas transfer of wild type‒derived Tregs into CD73‒/‒ mice re-established tolerance. This indicates a crucial role of CD73+ Tregs for skin-induced tolerance. Furthermore, we found that 2,4-dinitrothiocyanobenzene induces more activated CD73+ tissue-homing Tregs (marked by Ki-67, CTLA4, CCR4, CD103, CCR6, and CD49b expression) in draining lymph nodes and blood, eventually accumulating in the skin. The application of anti-CD73 antibodies that block CD73-derived Ado production as well as the injection of Ado deaminase, which degrades Ado in tissues, abrogated tolerance induction. Thus, our data indicate that CD73+ Ado-producing Tregs are crucial for the regulation of contact hypersensitivity reactions and tolerance induction in the skin and that manipulating the function(s) of CD73 in tissues may offer a tool to influence autoimmunity and inflammation in vivo.
Collapse
Affiliation(s)
- Meihong Da
- Department of Dermatology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Luxia Chen
- Department of Dermatology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Alexander Enk
- Department of Dermatology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
6
|
Hasan D, Shono A, van Kalken CK, van der Spek PJ, Krenning EP, Kotani T. A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling. Purinergic Signal 2021; 18:13-59. [PMID: 34757513 PMCID: PMC8578920 DOI: 10.1007/s11302-021-09814-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.
Collapse
Affiliation(s)
| | - Atsuko Shono
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | | | - Peter J van der Spek
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE, Rotterdam, The Netherlands
| | | | - Toru Kotani
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| |
Collapse
|
7
|
Schneider E, Winzer R, Rissiek A, Ricklefs I, Meyer-Schwesinger C, Ricklefs FL, Bauche A, Behrends J, Reimer R, Brenna S, Wasielewski H, Lauten M, Rissiek B, Puig B, Cortesi F, Magnus T, Fliegert R, Müller CE, Gagliani N, Tolosa E. CD73-mediated adenosine production by CD8 T cell-derived extracellular vesicles constitutes an intrinsic mechanism of immune suppression. Nat Commun 2021; 12:5911. [PMID: 34625545 PMCID: PMC8501027 DOI: 10.1038/s41467-021-26134-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells at sites of inflammation are continuously activated by local antigens and cytokines, and regulatory mechanisms must be enacted to control inflammation. The stepwise hydrolysis of extracellular ATP by ectonucleotidases CD39 and CD73 generates adenosine, a potent immune suppressor. Here we report that human effector CD8 T cells contribute to adenosine production by releasing CD73-containing extracellular vesicles upon activation. These extracellular vesicles have AMPase activity, and the resulting adenosine mediates immune suppression independently of regulatory T cells. In addition, we show that extracellular vesicles isolated from the synovial fluid of patients with juvenile idiopathic arthritis contribute to T cell suppression in a CD73-dependent manner. Our results suggest that the generation of adenosine upon T cell activation is an intrinsic mechanism of human effector T cells that complements regulatory T cell-mediated suppression in the inflamed tissue. Finally, our data underscore the role of immune cell-derived extracellular vesicles in the control of immune responses.
Collapse
Affiliation(s)
- Enja Schneider
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Riekje Winzer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Anne Rissiek
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Isabell Ricklefs
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, 23538, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research, Lübeck, Germany
| | - Catherine Meyer-Schwesinger
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Andreas Bauche
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, 23845, Borstel, Germany
| | - Rudolph Reimer
- Technology Platform Microscopy and Image Analysis, Heinrich Pette Institute/Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Santra Brenna
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hauke Wasielewski
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Melchior Lauten
- Department of Pediatrics and Adolescent Medicine, University of Lübeck, 23538, Lübeck, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Berta Puig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Filippo Cortesi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ralf Fliegert
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christa E Müller
- Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
8
|
Bringué J, Guillamat-Prats R, Martinez ML, Torrents E, Camprubí-Rimblas M, Blanch L, Artigas A. Methotrexate Ameliorates Systemic Inflammation and Septic Associated-Lung Damage in a Cecal Ligation and Puncture Septic Rat Model. Int J Mol Sci 2021; 22:9612. [PMID: 34502521 PMCID: PMC8431751 DOI: 10.3390/ijms22179612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sepsis is a serious, heterogeneous clinical entity produced by a severe and systemic host inflammatory response to infection. Methotrexate (MTX) is a folate-antagonist that induces the generation of adenosine and also inhibits JAK/STAT pathway; MTX it is widely used as an anti-inflammatory drug to control the immune system. OBJECTIVE The aim of this study was to assess the beneficial effects of a single and low dose of MTX in the systemic response and acute lung injury (ALI) induced by sepsis. As in the clinics, we treated our animals with antibiotics and fluids and performed the source control to mimic the current clinic treatment. METHODS AND MAIN RESULTS Sepsis was induced in rats by a cecal ligation puncture (CLP) procedure. Six hours after induction of sepsis, we proceeded to the source control; fluids and antibiotics were administered at 6 h and 24 h after CLP. MTX (2.5 mg/Kg) was administered 6 h after the first surgery in one CLP experimental group and to one Sham group. A protective effect of MTX was observed through a significant reduction of pro-inflammatory cytokines and a decrease infiltration of inflammatory cells in the lung. In addition, we found a regulation in adenosine receptor A2aR and the metalloproteinases by MTX. CONCLUSION A single, low dose of MTX attenuates sepsis lung-associated damage by decreasing pro-inflammatory response, infiltration of pro-inflammatory cells and avoiding defective tissue lung remodeling.
Collapse
Affiliation(s)
- Josep Bringué
- Institut d’ Investigació i Innovació Parc Taulí (I3PT), 08201 Sabadell, Spain; (J.B.); (M.C.-R.); (L.B.); (A.A.)
- CIBER de Enfermedades Respiratorias (CIBERES), 08201 Sabadell, Spain
- Facultat de Medicina, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Raquel Guillamat-Prats
- Institut d’ Investigació i Innovació Parc Taulí (I3PT), 08201 Sabadell, Spain; (J.B.); (M.C.-R.); (L.B.); (A.A.)
- CIBER de Enfermedades Respiratorias (CIBERES), 08201 Sabadell, Spain
| | - Maria Luisa Martinez
- Critical Care Center—Hospital Universitario General de Catalunya, 08190 Sant Cugat del Valles, Spain;
| | - Eva Torrents
- Critical Care Center—Corporació Sanitària i Universitària Parc Taulí, 08201 Sabadell, Spain;
| | - Marta Camprubí-Rimblas
- Institut d’ Investigació i Innovació Parc Taulí (I3PT), 08201 Sabadell, Spain; (J.B.); (M.C.-R.); (L.B.); (A.A.)
- CIBER de Enfermedades Respiratorias (CIBERES), 08201 Sabadell, Spain
- Facultat de Medicina, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Lluís Blanch
- Institut d’ Investigació i Innovació Parc Taulí (I3PT), 08201 Sabadell, Spain; (J.B.); (M.C.-R.); (L.B.); (A.A.)
- CIBER de Enfermedades Respiratorias (CIBERES), 08201 Sabadell, Spain
- Critical Care Center—Corporació Sanitària i Universitària Parc Taulí, 08201 Sabadell, Spain;
| | - Antonio Artigas
- Institut d’ Investigació i Innovació Parc Taulí (I3PT), 08201 Sabadell, Spain; (J.B.); (M.C.-R.); (L.B.); (A.A.)
- CIBER de Enfermedades Respiratorias (CIBERES), 08201 Sabadell, Spain
- Facultat de Medicina, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
- Critical Care Center—Corporació Sanitària i Universitària Parc Taulí, 08201 Sabadell, Spain;
| |
Collapse
|
9
|
Alam MS, Gangiredla J, Hasan NA, Barnaba T, Tartera C. Aging-Induced Dysbiosis of Gut Microbiota as a Risk Factor for Increased Listeria monocytogenes Infection. Front Immunol 2021; 12:672353. [PMID: 33995413 PMCID: PMC8115019 DOI: 10.3389/fimmu.2021.672353] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Invasive foodborne Listeria monocytogenes infection causes gastroenteritis, septicemia, meningitis, and chorioamnionitis, and is associated with high case-fatality rates in the elderly. It is unclear how aging alters gut microbiota, increases risk of listeriosis, and causes dysbiosis post-infection. We used a geriatric murine model of listeriosis as human surrogate of listeriosis for aging individuals to study the effect of aging and L. monocytogenes infection. Aging and listeriosis-induced perturbation of gut microbiota and disease severity were compared between young-adult and old mice. Young-adult and old mice were dosed intragastrically with L. monocytogenes. Fecal pellets were collected pre- and post-infection for microbiome analysis. Infected old mice had higher Listeria colonization in liver, spleen, and feces. Metagenomics analyses of fecal DNA-sequences showed increase in α-diversity as mice aged, and infection reduced its diversity. The relative abundance of major bacterial phylum like, Bacteroidetes and Firmicutes remained stable over aging or infection, while the Verrucomicrobia phylum was significantly reduced only in infected old mice. Old mice showed a marked reduction in Clostridaiceae and Lactobacillaceae bacteria even before infection when compared to uninfected young-adult mice. L. monocytogenes infection increased the abundance of Porphyromonadaceae and Prevotellaceae in young-adult mice, while members of the Ruminococcaceae and Lachnospiraceae family were significantly increased in old mice. The abundance of the genera Blautia and Alistipes were significantly reduced post-infection in young-adult and in old mice as compared to their uninfected counterparts. Butyrate producing, immune-modulating bacterial species, like Pseudoflavonifractor and Faecalibacterium were significantly increased only in old infected mice, correlating with increased intestinal inflammatory mRNA up-regulation from old mice tissue. Histologic analyses of gastric tissues showed extensive lesions in the Listeria-infected old mice, more so in the non-glandular region and fundus than in the pylorus. Commensal species like Lactobacillus, Clostridiales, and Akkermansia were only abundant in infected young-adult mice but their abundance diminished in the infected old mice. Listeriosis in old mice enhances the abundance of butyrate-producing inflammatory members of the Ruminococcaceae/Lachnospiraceae bacteria while reducing/eliminating beneficial commensals in the gut. Results of this study indicate that, aging may affect the composition of gut microbiota and increase the risk of invasive L. monocytogenes infection.
Collapse
Affiliation(s)
- Mohammad S Alam
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | | | - Tammy Barnaba
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Carmen Tartera
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
10
|
Abstract
Epithelia are structurally integral elements in the fabric of oral mucosa with significant functional roles. Similarly, the gingival epithelium performs uniquely critical tasks in responding to a variety of external stimuli and dangers through the regulation of specific built-in molecular mechanisms in a context-dependent fashion at cellular levels. Gingival epithelial cells form an anatomic architecture that confers defense, robustness, and adaptation toward external aggressions, most critically to colonizing microorganisms, among other functions. Accordingly, recent studies unraveled previously uncharacterized response mechanisms in gingival epithelial cells that are constructed to rapidly exert biocidal effects against invader pathobiotic bacteria, such as Porphyromonas gingivalis, through small danger molecule signaling. The host-adapted bacteria, however, have developed adroit strategies to 1) exploit the epithelia as privileged growth niches and 2) chronically target cellular bactericidal and homeostatic metabolic pathways for successful bacterial persistence. As the overgrowth of colonizing microorganisms in the gingival mucosa can shift from homeostasis to dysbiosis or a diseased state, it is crucial to understand how the innate modulatory molecules are intricately involved in antibacterial pathways and how they shape susceptibility versus resistance in the epithelium toward pathogens. Thus, in this review, we highlight recent discoveries in gingival epithelial cell research in the context of bacterial colonizers. The current knowledge outlined here demonstrates the ability of epithelial cells to possess highly organized defense machineries, which can jointly regulate host-derived danger molecule signaling and integrate specific global responses against opportunistic bacteria to combat microbial incursion and maintain host homeostatic balance. These novel examples collectively suggest that the oral epithelia are equipped with a dynamically robust and interconnected defense system encompassing sensors and various effector molecules that arrange and achieve a fine-tuned and advanced response to diverse bacteria.
Collapse
Affiliation(s)
- J.S. Lee
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ö. Yilmaz
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
11
|
Lee JS, Chowdhury N, Roberts JS, Yilmaz Ö. Host surface ectonucleotidase-CD73 and the opportunistic pathogen, Porphyromonas gingivalis, cross-modulation underlies a new homeostatic mechanism for chronic bacterial survival in human epithelial cells. Virulence 2021; 11:414-429. [PMID: 32419582 PMCID: PMC7239027 DOI: 10.1080/21505594.2020.1763061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell surface nucleotide-metabolizing enzyme, ectonucleotidase-CD73, has emerged as a central component of the cellular homeostatic-machinery that counterbalances the danger-molecule (extracellular-ATP)-driven proinflammatory response in immune cells. While the importance of CD73 in microbial host fitness and symbiosis is gradually being unraveled, there remains a significant gap in knowledge of CD73 and its putative role in epithelial cells. Here, we depict a novel host-pathogen adaptation mechanism where CD73 takes a center role in the intracellular persistence of Porphyromonas gingivalis, a major colonizer of oral mucosa, using human primary gingival epithelial cell (GEC) system. Temporal analyses revealed, upon invasion into the GECs, P. gingivalis can significantly elevate the host-surface CD73 activity and expression. The enhanced and active CD73 significantly increases P. gingivalis intracellular growth in the presence of substrate-AMP and simultaneously acts as a negative regulator of reactive oxygen species (ROS) generation upon eATP treatment. The inhibition of CD73 by siRNA or by a specific inhibitor markedly increases ROS production. Moreover, CD73 and P. gingivalis cross-signaling significantly modulates pro-inflammatory interleukin-6 (IL-6) in the GECs. Conversely, exogenous treatment of the infected GECs with IL-6 suppresses the intracellular bacteria via amplified ROS generation. However, the decreased bacterial levels can be restored by overexpressing functionally active CD73. Together, these findings illuminate how the local extracellular-purine-metabolism, in which CD73 serves as a core molecular switch, can alter intracellular microbial colonization resistance. Further, host-adaptive pathogens such as P. gingivalis can target host ectonucleotidases to disarm specific innate defenses for successful intracellular persistence in mucosal epithelia.
Collapse
Affiliation(s)
- Jaden S Lee
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Nityananda Chowdhury
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - JoAnn S Roberts
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.,Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
12
|
Longhi MS, Feng L, Robson SC. Targeting ectonucleotidases to treat inflammation and halt cancer development in the gut. Biochem Pharmacol 2021; 187:114417. [PMID: 33460629 DOI: 10.1016/j.bcp.2021.114417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 01/28/2023]
Abstract
CD39 and CD73 control cell immunity by hydrolyzing proinflammatory ATP and ADP (CD39) into AMP, subsequently converted into anti-inflammatory adenosine (CD73). By regulating the balance between effector and regulatory cells, these ectonucleotidases promote immune homeostasis in acute and chronic inflammation; while also appearing to limit antitumor effector immunity in gut cancer. This manuscript focuses on the pivotal role of CD39 and CD73 ectonucleotidase function in shaping immune responses in the gut. We focus on those mechanisms deployed by these critical and pivotal ectoenzymes and the regulation in the setting of gastrointestinal tract infections, inflammatory bowel disease and tumors of the gastrointestinal tract. We will highlight translational and clinical implications of the latest and most innovative basic research discoveries of these important players of the purinergic signaling. Immunotherapeutic strategies that have been developed to either boost or control ectonucleotidase expression and activity in important disease settings are also reviewed and the in vivo effects discussed.
Collapse
Affiliation(s)
- Maria Serena Longhi
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA.
| | - Lili Feng
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA; Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA.
| |
Collapse
|
13
|
Song W, Tang Y, Wei L, Zhang C, Song D, Li X, Jiang S. Protective effect of CD73 inhibitor α, β-methylene ADP against amyloid-β-induced cognitive impairment by inhibiting adenosine production in hippocampus. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Meriño M, Martín SS, Sandaña P, Herlitz K, Aguayo C, Godoy A, Torres-Vergara P, Gonzalez M, Troncoso F, Acurio J, Escudero C. Deletion of the adenosine A 2A receptor increases the survival rate in a mice model of polymicrobial sepsis. Purinergic Signal 2020; 16:427-437. [PMID: 32808144 DOI: 10.1007/s11302-020-09719-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
We aim to investigate the role of A2A receptor in peritonitis-related sepsis by injection of a fecal solution (FS) as a model of polymicrobial infection. C57/black J6 wild-type (WT) and A2A-deficient mice (A2AKO) were exposed to sepsis induced by intraperitoneal injection of a FS (FS-induced peritonitis) or instead was injected with saline buffer (Sham). Survival rate and sepsis score were measured up to 48 h. The presence of bacteria in tissue homogenates was analyzed. Telemetry and speckle laser Doppler were used for systemic blood pressure and peripheral blood perfusion analysis, respectively. Histological analysis and identification of active caspase 3 were performed in selected organs, including the liver. The survival rate of A2AKO mice exposed to FS-induced peritonitis was significantly higher, and the sepsis score was lower than their respective WT counterpart. Injection of FS increases (50 to 150 folds) the number of colonies forming units in the liver, kidney, blood, and lung in WT mice, while these effects were significantly attenuated in A2AKO mice exposed to FS-induced peritonitis. A significant reduction in both systolic and diastolic blood pressure, as well as in the peripheral perfusion was observed in WT and A2AKO mice exposed to FS-induced peritonitis. Although, these last effects were significantly attenuated in A2AKO mice. Histological analysis showed a large perivascular infiltration of polymorphonuclear in the liver of WT and A2AKO mice exposed to FS-induced peritonitis, but again, this effect was attenuated in A2AKO mice. Finally, high expression of active caspase 3 was found only in the liver of WT mice exposed to FS-induced peritonitis. The absence of the A2A receptor increases the survival rate in mice exposed to polymicrobial sepsis. This outcome was associated with both hemodynamic compensation and enhanced anti-bacterial response.
Collapse
Affiliation(s)
- Miguel Meriño
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile
- Facultad de Ciencias de la Salud, Universidad Adventista de Chile, Chillan, Chile
| | - Sebastián San Martín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Valparaíso, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Pedro Sandaña
- Anatomo-pathology Service, Clinical Hospital Herminda Martín, Chillán, Chile
- Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Kurt Herlitz
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile
| | - Claudio Aguayo
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Alejandro Godoy
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Pablo Torres-Vergara
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Marcelo Gonzalez
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Laboratorio de Investigación Materno-Fetal (LIMaf), Department of Obstetrics and Gynecology, Faculty of Medicine, University of Concepción, Concepción, Chile
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
| |
Collapse
|
15
|
Basu M, Gupta P, Dutta A, Jana K, Ukil A. Increased host ATP efflux and its conversion to extracellular adenosine is crucial for establishing Leishmania infection. J Cell Sci 2020; 133:jcs239939. [PMID: 32079656 DOI: 10.1242/jcs.239939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Intracellular survival of Leishmania donovani demands rapid production of host ATP for its sustenance. However, a gradual decrease in intracellular ATP in spite of increased glycolysis suggests ATP efflux during infection. Accordingly, upon infection, we show here that ATP is exported and the major exporter was pannexin-1, leading to raised extracellular ATP levels. Extracellular ATP shows a gradual decrease after the initial increase, and analysis of cell surface ATP-degrading enzymes revealed induction of the ectonucleotidases CD39 and CD73. Ectonucleotidase-mediated ATP degradation leads to increased extracellular adenosine (eADO), and inhibition of CD39 and CD73 in infected cells decreased adenosine concentration and parasite survival, documenting the importance of adenosine in infection. Inhibiting adenosine uptake by cells did not affect parasite survival, suggesting that eADO exerts its effect through receptor-mediated signalling. We also show that Leishmania induces the expression of adenosine receptors A2AR and A2BR, both of which are important for anti-inflammatory responses. Treating infected BALB/c mice with CD39 and CD73 inhibitors resulted in decreased parasite burden and increased host-favourable cytokine production. Collectively, these observations indicate that infection-induced ATP is exported, and after conversion into adenosine, propagates infection via receptor-mediated signalling.
Collapse
Affiliation(s)
- Moumita Basu
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Purnima Gupta
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 69372, Lyon Cedex 08, France
| | - Ananya Dutta
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme, VIIM, Kolkata, 700054, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme, VIIM, Kolkata, 700054, West Bengal, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India
| |
Collapse
|
16
|
Carbamazepine Attenuates Astroglial L-Glutamate Release Induced by Pro-Inflammatory Cytokines via Chronically Activation of Adenosine A 2A Receptor. Int J Mol Sci 2019; 20:ijms20153727. [PMID: 31366130 PMCID: PMC6695599 DOI: 10.3390/ijms20153727] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
Abstract
Carbamazepine (CBZ) binds adenosine receptors, but detailed effects of CBZ on astroglial transmission associated with adenosine receptor still need to be clarified. To clarify adenosinergic action of CBZ on astroglial transmission, primary cultured astrocytes were acutely or chronically treated with CBZ, proinflammatory cytokines (interferon γ (IFNγ) and tumor necrosis factor α (TNFα)), and adenosine A2A receptor (A2AR) agonist (CGS21680). IFNγ and TNFα increased basal, adenophostin-A (AdA)-evoked, and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)-evoked astroglial L-glutamate releases. In physiological condition, CGS21680 increased basal astroglial L-glutamate release but glutamate transporter inhibition prevented this CGS21680 action. CBZ did not affect basal release, whereas glutamate transporter inhibition generated CBZ-induced glutamate release. Furthermore, AdA-evoked and AMPA-evoked releases were inhibited by CBZ but were unaffected by CGS21680. Contrary to physiological condition, chronic administrations of IFNγ and TNFα enhanced basal, AdA-, and AMPA-evoked releases, whereas IFNγ and TNFα decreased and increased CGS21680-evoked releases via modulation A2AR expression. Both chronic administration of CGS21680 and CBZ suppressed astroglial L-glutamate release responses induced by chronic cytokine exposer. Especifically, chronic administration of CBZ and CGS21680 prevented the reduction and elevation of A2AR expression by respective IFNγ and TNFα. These findings suggest that A2AR agonistic effects of CBZ contribute to chronic prevention of pathomechanisms developments of several neuropsychiatric disorders associated with proinflammatory cytokines.
Collapse
|
17
|
Vigano S, Alatzoglou D, Irving M, Ménétrier-Caux C, Caux C, Romero P, Coukos G. Targeting Adenosine in Cancer Immunotherapy to Enhance T-Cell Function. Front Immunol 2019; 10:925. [PMID: 31244820 PMCID: PMC6562565 DOI: 10.3389/fimmu.2019.00925] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
T cells play a critical role in cancer control, but a range of potent immunosuppressive mechanisms can be upregulated in the tumor microenvironment (TME) to abrogate their activity. While various immunotherapies (IMTs) aiming at re-invigorating the T-cell-mediated anti-tumor response, such as immune checkpoint blockade (ICB), and the adoptive cell transfer (ACT) of natural or gene-engineered ex vivo expanded tumor-specific T cells, have led to unprecedented clinical responses, only a small proportion of cancer patients benefit from these treatments. Important research efforts are thus underway to identify biomarkers of response, as well as to develop personalized combinatorial approaches that can target other inhibitory mechanisms at play in the TME. In recent years, adenosinergic signaling has emerged as a powerful immuno-metabolic checkpoint in tumors. Like several other barriers in the TME, such as the PD-1/PDL-1 axis, CTLA-4, and indoleamine 2,3-dioxygenase (IDO-1), adenosine plays important physiologic roles, but has been co-opted by tumors to promote their growth and impair immunity. Several agents counteracting the adenosine axis have been developed, and pre-clinical studies have demonstrated important anti-tumor activity, alone and in combination with other IMTs including ICB and ACT. Here we review the regulation of adenosine levels and mechanisms by which it promotes tumor growth and broadly suppresses protective immunity, with extra focus on the attenuation of T cell function. Finally, we present an overview of promising pre-clinical and clinical approaches being explored for blocking the adenosine axis for enhanced control of solid tumors.
Collapse
Affiliation(s)
- Selena Vigano
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Alatzoglou
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christine Ménétrier-Caux
- Department of Immunology Virology and Inflammation, INSERM 1052, CNRS 5286, Léon Bérard Cancer Center, Cancer Research Center of Lyon, University of Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Christophe Caux
- Department of Immunology Virology and Inflammation, INSERM 1052, CNRS 5286, Léon Bérard Cancer Center, Cancer Research Center of Lyon, University of Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Li X, Liang D, Shao H, Born WK, Kaplan HJ, Sun D. Adenosine receptor activation in the Th17 autoimmune responses of experimental autoimmune uveitis. Cell Immunol 2019; 339:24-28. [DOI: 10.1016/j.cellimm.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023]
|
19
|
Vuerich M, Robson SC, Longhi MS. Ectonucleotidases in Intestinal and Hepatic Inflammation. Front Immunol 2019; 10:507. [PMID: 30941139 PMCID: PMC6433995 DOI: 10.3389/fimmu.2019.00507] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Purinergic signaling modulates systemic and local inflammatory responses. Extracellular nucleotides, including eATP, promote inflammation, at least in part via the inflammasome upon engagement of P2 purinergic receptors. In contrast, adenosine generated during eATP phosphohydrolysis by ectonucleotidases, triggers immunosuppressive/anti-inflammatory pathways. Mounting evidence supports the role of ectonucleotidases, especially ENTPD1/CD39 and CD73, in the control of several inflammatory conditions, ranging from infectious disease, organ fibrosis to oncogenesis. Our experimental data generated over the years have indicated both CD39 and CD73 serve as pivotal regulators of intestinal and hepatic inflammation. In this context, immune cell responses are regulated by the balance between eATP and adenosine, potentially impacting disease outcomes as in gastrointestinal infection, inflammatory bowel disease, ischemia reperfusion injury of the bowel and liver, autoimmune or viral hepatitis and other inflammatory conditions, such as cancer. In this review, we report the most recent discoveries on the role of ENTPD1/CD39, CD73, and other ectonucleotidases in the regulation of intestinal and hepatic inflammation. We discuss the present knowledge, highlight the most intriguing and promising experimental data and comment on important aspects that still need to be addressed to develop purinergic-based therapies for these important illnesses.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Liang D, Shao H, Born WK, O'Brien RL, Kaplan HJ, Sun D. High level expression of A2ARs is required for the enhancing function, but not for the inhibiting function, of γδ T cells in the autoimmune responses of EAU. PLoS One 2018; 13:e0199601. [PMID: 29928041 PMCID: PMC6013223 DOI: 10.1371/journal.pone.0199601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
We previously reported that activated γδ T cells greatly enhance autoimmune responses, particularly the Th17 response. To determine the mechanisms involved, we made a series of comparisons between activated and non-activated γδ T cells. Our results showed that activated γδ T cells expressed greatly increased levels of A2A adenosine receptor (A2AR) and decreased amounts of CD73, as well as increased amounts of T cell activation markers such as CD69, CD44 and CD25. We show that A2AR is a major functional molecule in the enhancing activity of γδ T cells. A2AR-/- γδ T cells (isolated from A2AR-/- mouse), lost their Th17-enhancing activity as did A2AR+/+ γδ T cells (isolated from wt-B6 mouse) after treatment with an A2AR antagonist. Since γδ T cells possess either an enhancing or an inhibiting effect, we also tested whether A2AR expression on γδ T cells is essential to their inhibiting effect. Our results showed that the inhibiting effect of A2AR-/- γδ T cells was as potent as that of A2AR+/+ γδ T cells. In a previous report we showed that the expression of different levels of CD73 molecule allowed γδ T cells to adjust their suppressive activity; in the current study, we show that expression of increased amounts of A2AR allows γδ T cells to more effectively exert their enhancing function.
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Willi K. Born
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
| | - Rebecca L. O'Brien
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
21
|
Kjaergaard J, Hatfield S, Jones G, Ohta A, Sitkovsky M. A 2A Adenosine Receptor Gene Deletion or Synthetic A 2A Antagonist Liberate Tumor-Reactive CD8 + T Cells from Tumor-Induced Immunosuppression. THE JOURNAL OF IMMUNOLOGY 2018; 201:782-791. [PMID: 29802128 DOI: 10.4049/jimmunol.1700850] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Abstract
Tumor hypoxia-driven accumulation of extracellular adenosine was shown to facilitate tumor evasion by engaging the immunosuppressive, intracellular cAMP-elevating A2 adenosine receptors (A2R) on tumor-reactive effector T cells, but there remains a need for careful evaluation of the limiting factors and properties of A2R blockade-enabled antitumor immunity. In studies of A2AR and/or A2BR gene-deficient mice, we found that A2AR deletion-but not A2BR deletion-liberates endogenous CD8+ T cell antitumor immunity against weakly immunogenic MCA205 sarcomas. Studies of adoptively transferred A2AR-/-, A2BR-/-, or A2AR-/-/A2BR-/- tumor-reactive T cells confirmed that immunosuppression in the tumor microenvironment was mediated by A2AR on CD8+ T cells. Treatment with A2AR antagonist mimicked A2AR gene deletion in adoptive T cell immunotherapy. This therapeutic benefit of targeting A2AR was independent of the anatomical location of tumor growth. The enhanced antitumor reactivity also led to the eradication of established intracranial tumors, which was associated with mouse survival and the maintenance of long-lasting, tumor-specific immunological memory. The blockade of the A2AR on adoptively transferred T cells by synthetic A2AR antagonist led to higher levels of IFN-γ secretion by tumor-infiltrating CD8+ T cells. These data clarify the mechanism of hypoxia-driven immunosuppression in the tumor microenvironment by A2AR on tumor-reactive CD8+ T cells and show that selective A2AR antagonists can be effective in improving the outcomes of T cell-based immunotherapies. Demonstration of the T cell dose dependency of tumor rejection points to a major limitation of current cancer immunotherapies, in which the presence of sufficient numbers of tumor-reactive T cells in a patient is not known.
Collapse
Affiliation(s)
- Jorgen Kjaergaard
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115; and
| | - Stephen Hatfield
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115; and
| | - Graham Jones
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Akio Ohta
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115; and
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115; and
| |
Collapse
|
22
|
Ohradanova-Repic A, Machacek C, Charvet C, Lager F, Le Roux D, Platzer R, Leksa V, Mitulovic G, Burkard TR, Zlabinger GJ, Fischer MB, Feuillet V, Renault G, Blüml S, Benko M, Suchanek M, Huppa JB, Matsuyama T, Cavaco-Paulo A, Bismuth G, Stockinger H. Extracellular Purine Metabolism Is the Switchboard of Immunosuppressive Macrophages and a Novel Target to Treat Diseases With Macrophage Imbalances. Front Immunol 2018; 9:852. [PMID: 29780382 PMCID: PMC5946032 DOI: 10.3389/fimmu.2018.00852] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
If misregulated, macrophage (Mϕ)-T cell interactions can drive chronic inflammation thereby causing diseases, such as rheumatoid arthritis (RA). We report that in a proinflammatory environment, granulocyte-Mϕ (GM-CSF)- and Mϕ colony-stimulating factor (M-CSF)-dependent Mϕs have dichotomous effects on T cell activity. While GM-CSF-dependent Mϕs show a highly stimulatory activity typical for M1 Mϕs, M-CSF-dependent Mϕs, marked by folate receptor β (FRβ), adopt an immunosuppressive M2 phenotype. We find the latter to be caused by the purinergic pathway that directs release of extracellular ATP and its conversion to immunosuppressive adenosine by co-expressed CD39 and CD73. Since we observed a misbalance between immunosuppressive and immunostimulatory Mϕs in human and murine arthritic joints, we devised a new strategy for RA treatment based on targeted delivery of a novel methotrexate (MTX) formulation to the immunosuppressive FRβ+CD39+CD73+ Mϕs, which boosts adenosine production and curtails the dominance of proinflammatory Mϕs. In contrast to untargeted MTX, this approach leads to potent alleviation of inflammation in the murine arthritis model. In conclusion, we define the Mϕ extracellular purine metabolism as a novel checkpoint in Mϕ cell fate decision-making and an attractive target to control pathological Mϕs in immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Machacek
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Celine Charvet
- Institut National de la Santé et de la Recherche Médicale, INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
| | - Franck Lager
- Institut National de la Santé et de la Recherche Médicale, INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
| | - Delphine Le Roux
- Institut National de la Santé et de la Recherche Médicale, INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
| | - René Platzer
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vladimir Leksa
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Goran Mitulovic
- Clinical Department of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Thomas R Burkard
- Bioinformatics Department of the Research Institute of Molecular Pathology and the Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael B Fischer
- Department of Transfusion Medicine, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Technology, Danube University Krems, Krems, Austria
| | - Vincent Feuillet
- Institut National de la Santé et de la Recherche Médicale, INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
| | - Gilles Renault
- Institut National de la Santé et de la Recherche Médicale, INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
| | - Stephan Blüml
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | - Johannes B Huppa
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Takami Matsuyama
- The Center for Advanced Biomedical Sciences and Swine Research, Kagoshima University, Kagoshima, Japan
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho, Campus of Gualtar, Braga, Portugal
| | - Georges Bismuth
- Institut National de la Santé et de la Recherche Médicale, INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
| | - Hannes Stockinger
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Rol del receptor de adenosina A 2A , óxido nítrico y factor de crecimiento de endotelio vascular en la sepsis: una revisión no sistemática. ANGIOLOGIA 2018. [DOI: 10.1016/j.angio.2017.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Lee JS, Yilmaz Ö. Unfolding Role of a Danger Molecule Adenosine Signaling in Modulation of Microbial Infection and Host Cell Response. Int J Mol Sci 2018; 19:E199. [PMID: 29315226 PMCID: PMC5796148 DOI: 10.3390/ijms19010199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/10/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
Ectonucleotidases CD39 and CD73, specific nucleotide metabolizing enzymes located on the surface of the host, can convert a pro-inflammatory environment driven by a danger molecule extracellular-ATP to an adenosine-mediated anti-inflammatory milieu. Accordingly, CD39/CD73 signaling have has strongly implicated in modulating the intensity, duration, and composition of purinergic danger signals delivered to host. Recent studies have eluted potential roles for CD39 and CD73 in selective triggering of a variety of host immune cells and molecules in the presence of pathogenic microorganisms or microbial virulence molecules. Growing evidence also suggests that CD39 and CD73 present complimentary, but likely differential, actions against pathogens to shape the course and severity of microbial infection as well as the associated immune response. Similarly, adenosine receptors A2A and A2B have been proposed to be major immunomodulators of adenosine signaling during chronic inflammatory conditions induced by opportunistic pathogens, such as oral colonizer Porphyromonas gingivalis. Therefore, we here review the recent studies that demonstrate how complex network of molecules in the extracellular adenosine signaling machinery and their interactions can reshape immune responses and may also be targeted by opportunistic pathogens to establish successful colonization in human mucosal tissues and modulate the host immune response.
Collapse
Affiliation(s)
- Jaden S Lee
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
| | - Özlem Yilmaz
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
| |
Collapse
|
25
|
Liang D, Shao H, Born WK, O’Brien RL, Kaplan HJ, Sun D. Connection between γδ T-cell- and Adenosine- Mediated Immune Regulation in the Pathogenesis of Experimental Autoimmune Uveitis. Crit Rev Immunol 2018; 38:233-243. [PMID: 30004859 PMCID: PMC6361114 DOI: 10.1615/critrevimmunol.2018026150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Regulatory effects of γδ T-cells on immune responses have been studied for years. We have investigated the regulatory effect of γδ T-cells on Th1 and Th17 autoimmune responses, and have studied molecular and cellular mechanisms by which γδ T-cells enhance or inhibit immune responses, exploiting a well-characterized murine model of experimental autoimmune uveitis (EAU). Our results show that (1) aberrant γδ T-cell activation is an important pathogenic event in EAU; (2) γδ T-cells have a unique regulatory effect on Th17 autoimmune responses, which is shaped by the activation status of γδ T-cells; and (3) γδ-mediated immunoregulation is closely linked with the extracellular adenosine metabolism. Reciprocal interactions between γδ T-cells and extracellular adenosine partially determine the development of EAU.
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky
| | - Willi K. Born
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
| | - Rebecca L. O’Brien
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
26
|
Costales MG, Alam MS, Cavanaugh C, Williams KM. Extracellular adenosine produced by ecto-5'-nucleotidase (CD73) regulates macrophage pro-inflammatory responses, nitric oxide production, and favors Salmonella persistence. Nitric Oxide 2017; 72:7-15. [PMID: 29108754 DOI: 10.1016/j.niox.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/21/2017] [Accepted: 11/02/2017] [Indexed: 12/24/2022]
Abstract
Surface enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) mediate the synthesis of extracellular adenosine that can regulate immune responses. Adenosine produced by CD39/CD73 acts via adenosine receptors (ARs). CD73 is expressed by a variety of cell types and mediates anti-inflammatory responses. Because efficient innate immune responses are required for clearance of Salmonella infection, we investigated the role of CD73 in macrophage function, including phagocytosis, intracellular killing of Salmonella, and anti-bacterial pro-inflammatory responses to Salmonella-whole cell lysate (ST-WCL) or Salmonella infection. Additionally, RAW 264.7 macrophage mRNA expression of CD39, CD73, and all ARs were measured by qPCR after ST-WCL treatment. Pro-inflammatory cytokine mRNA and nitric oxide (NO) production were quantitated in the ST-WCL treated macrophage with and without CD73-inhibitor (APCP) treatment. Phagocytosis and intracellular killing by peritoneal macrophages from CD73-deficent mice were also evaluated using E. coli BioParticles® and GFP-Salmonella infection, respectively. CD73, CD39, and A2BAR mRNA were predominantly expressed in RAW cells. ST-WCL treatment significantly reduced CD73 expression, suggesting endogenous down-regulation of CD73, and an enhanced pro-inflammatory response. ST-WCL treated and CD73-inhibited macrophages produced more NO and a higher level of pro-inflammatory cytokines than CD73-competent macrophages (e.g. IL-1β, TNF-α). Phagocytosis of E. coli BioParticles® was significantly higher in the macrophages treated with APCP and in the peritoneal macrophages from CD73-deficent mice as compared to APCP-untreated, and CD73-competent macrophages. Internalized bacteria were more efficiently cleared from macrophages in the absence of CD73, as observed by fluorescence-microscopy and Salmonella-DNA measurement by qPCR from the infected cells. CD73 down-regulation or CD73-inhibition of macrophages during Salmonella infection can enhance the production of pro-inflammatory cytokines and NO production, improving intracellular killing and host survivability. Extracellular adenosine synthesized by CD73 suppresses antibacterial responses of macrophages, which may weaken macrophage function and impair innate immune responses to Salmonella infection.
Collapse
Affiliation(s)
- Matthew G Costales
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| | - Mohammad Samiul Alam
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA.
| | - Christopher Cavanaugh
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| | - Kristina M Williams
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| |
Collapse
|
27
|
Hasan D, Blankman P, Nieman GF. Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury. Purinergic Signal 2017; 13:363-386. [PMID: 28547381 PMCID: PMC5563293 DOI: 10.1007/s11302-017-9564-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.
Collapse
Affiliation(s)
- Djo Hasan
- Department of Adult ICU, University Hospital Erasmus MC Rotterdam, 's-Gravendijkwal 230 3015 CE, Rotterdam, the Netherlands.
| | - Paul Blankman
- Department of Adult ICU, University Hospital Erasmus MC Rotterdam, 's-Gravendijkwal 230 3015 CE, Rotterdam, the Netherlands
| | - Gary F Nieman
- Department of Surgery, Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| |
Collapse
|
28
|
van Waarde A, Dierckx RAJO, Zhou X, Khanapur S, Tsukada H, Ishiwata K, Luurtsema G, de Vries EFJ, Elsinga PH. Potential Therapeutic Applications of Adenosine A 2A Receptor Ligands and Opportunities for A 2A Receptor Imaging. Med Res Rev 2017; 38:5-56. [PMID: 28128443 DOI: 10.1002/med.21432] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Adenosine A2A receptors (A2A Rs) are highly expressed in the human striatum, and at lower densities in the cerebral cortex, the hippocampus, and cells of the immune system. Antagonists of these receptors are potentially useful for the treatment of motor fluctuations, epilepsy, postischemic brain damage, or cognitive impairment, and for the control of an immune checkpoint during immunotherapy of cancer. A2A R agonists may suppress transplant rejection and graft-versus-host disease; be used to treat inflammatory disorders such as asthma, inflammatory bowel disease, and rheumatoid arthritis; be locally applied to promote wound healing and be employed in a strategy for transient opening of the blood-brain barrier (BBB) so that therapeutic drugs and monoclonal antibodies can enter the brain. Increasing A2A R signaling in adipose tissue is also a potential strategy to combat obesity. Several radioligands for positron emission tomography (PET) imaging of A2A Rs have been developed in recent years. This review article presents a critical overview of the potential therapeutic applications of A2A R ligands, the use of A2A R imaging in drug development, and opportunities and limitations of PET imaging in future research.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands.,Department of Nuclear Medicine, University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Xiaoyun Zhou
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Shivashankar Khanapur
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Kiichi Ishiwata
- Research Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, 7-115 Yatsuyamada, Koriyama, 963-8052, Japan.,Department of Biofunctional Imaging, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Gert Luurtsema
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Erik F J de Vries
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Philip H Elsinga
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
29
|
Sepúlveda C, Palomo I, Fuentes E. Role of adenosine A2b receptor overexpression in tumor progression. Life Sci 2016; 166:92-99. [DOI: 10.1016/j.lfs.2016.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023]
|
30
|
Cronstein BN, Sitkovsky M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 2016; 13:41-51. [PMID: 27829671 DOI: 10.1038/nrrheum.2016.178] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adenosine, a nucleoside derived primarily from the extracellular hydrolysis of adenine nucleotides, is a potent regulator of inflammation. Adenosine mediates its effects on inflammatory cells by engaging one or more cell-surface receptors. The expression and function of adenosine receptors on different cell types change during the course of rheumatic diseases, such as rheumatoid arthritis (RA). Targeting adenosine receptors directly for the treatment of rheumatic diseases is currently under study; however, indirect targeting of adenosine receptors by enhancing adenosine levels at inflamed sites accounts for most of the anti-inflammatory effects of methotrexate, the anchor drug for the treatment of RA. In this Review, we discuss the regulation of extracellular adenosine levels and the role of adenosine in regulating the inflammatory and immune responses in rheumatic diseases such as RA, psoriasis and other types of inflammatory arthritis. In addition, adenosine and its receptors are involved in promoting fibrous matrix production in the skin and other organs, and the role of adenosine in fibrosis and fibrosing diseases is also discussed.
Collapse
Affiliation(s)
- Bruce N Cronstein
- NYU-HHC Clinical and Translational Science Institute, NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, 312 MU, Boston, Massachusetts 02115, USA
| |
Collapse
|
31
|
Sukri A, Hanafiah A, Kosai NR, Mohamed Taher M, Mohamed Rose I. Surface Antigen Profiling of Helicobacter pylori-Infected and -Uninfected Gastric Cancer Cells Using Antibody Microarray. Helicobacter 2016; 21:417-27. [PMID: 26807555 DOI: 10.1111/hel.12295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Comprehensive immunophenotyping cluster of differentiation (CD) antigens in gastric adenocarcinoma, specifically between Helicobacter pylori-infected and -uninfected gastric cancer patients by using DotScan(™) antibody microarray has not been conducted. Current immunophenotyping techniques include flow cytometry and immunohistochemistry are limited to the use of few antibodies for parallel examination. We used DotScan(™) antibody microarray consisting 144 CD antibodies to determine the distribution of CD antigens in gastric adenocarcinoma cells and to elucidate the effect of H. pylori infection toward CD antigen expression in gastric cancer. METHODS Mixed leukocytes population derived from gastric adenocarcinoma patients were immunophenotyped using DotScan(™) antibody microarray. AGS cells were infected with H. pylori strains and cells were captured on DotScan(™) slides. RESULTS Cluster of differentiation antigens involved in perpetuating the tolerance of immune cells to tumor cells was upregulated in gastric adenocarcinoma cells compared to normal cells. CD279 which is essential in T cells apoptosis was found to be upregulated in normal cells. Remarkably, H. pylori-infected gastric cancer patients exhibited upregulated expression of CD27 that important in maintenance of T cells. Infection of cagA+ H. pylori with AGS cells increased CD antigens expression which involved in cancer stem cell while cagA- H. pylori polarized AGS cells to express immune-regulatory CD antigens. Increased CD antigens expression in AGS cells infected with cagA+ H. pylori were also detected in H. pylori-infected gastric cancer patients. CONCLUSION This study suggests the tolerance of immune system toward tumor cells in gastric cancer and distinct mechanisms of immune responses exploited by different H. pylori strains.
Collapse
Affiliation(s)
- Asif Sukri
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia.
| | - Nik Ritza Kosai
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mustafa Mohamed Taher
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Isa Mohamed Rose
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Liu Y, Zou H, Zhao P, Sun B, Wang J, Kong Q, Mu L, Zhao S, Wang G, Wang D, Zhang Y, Zhao J, Yin P, Liu L, Zhao X, Li H. Activation of the adenosine A2A receptor attenuates experimental autoimmune encephalomyelitis and is associated with increased intracellular calcium levels. Neuroscience 2016; 330:150-61. [DOI: 10.1016/j.neuroscience.2016.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 02/01/2023]
|
33
|
Bao R, Shui X, Hou J, Li J, Deng X, Zhu X, Yang T. Adenosine and the adenosine A2A receptor agonist, CGS21680, upregulate CD39 and CD73 expression through E2F-1 and CREB in regulatory T cells isolated from septic mice. Int J Mol Med 2016; 38:969-75. [PMID: 27430240 DOI: 10.3892/ijmm.2016.2679] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 06/10/2016] [Indexed: 11/06/2022] Open
Abstract
The number of regulatory T cells (Treg cells) and the expression of ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1; also known as CD39) and 5'-ectonucleotidase (NT5E; also known as CD73) on the Treg cell surface are increased during sepsis. In this study, to determine the factors leading to the high expression of CD39 and CD73, and the regulation of the CD39/CD73/adenosine pathway in Treg cells under septic conditions, we constructed a mouse model of sepsis and separated the Treg cells using a flow cytometer. The Treg cells isolated from the peritoneal lavage and splenocytes of the mice were treated with adenosine or the specific adenosine A2A receptor agonist, CGS21680, and were transfected with specific siRNA targeting E2F transcription factor 1 (E2F-1) or cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), which are predicted transcription regulatory factors of CD39 or CD73. The regulatory relationships among these factors were then determined by western blot analysis and dual-luciferase reporter assay. In addition, changes in adenosine metabolism were measured in the treated cells. The results revealed that adenosine and CGS21680 significantly upregulated CD39 and CD73 expression (P<0.01). E2F-1 and CREB induced CD39 and CD73 expression, and were upregulated by adenosine and CGS21680. Adenosine triphosphate (ATP) hydrolysis and adenosine generation were inhibited by the knockdown of E2F-1 or CREB, and were accelerated in the presence of CGS21680. Based on these results, it can be inferred that adenosine, the adenosine A2A receptor agonist, E2F-1 and CREB are the possible factors contributing to the high expression of CD39 and CD73 on the Treg cell surface during sepsis. Adenosine and its A2A receptor agonist served as the signal transducer factors of the CD39/CD73/adenosine pathway, accelerating adenosine generation. Our study may benefit further research on adenosine metabolism for the treatment of sepsis.
Collapse
Affiliation(s)
- Rui Bao
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xianqi Shui
- Institution of Surgical Teaching and Research, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jiong Hou
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jinbao Li
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiaoming Deng
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiaoyan Zhu
- Department of Physiology, Second Military Medical University, Shanghai 200433, P.R. China
| | - Tao Yang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
34
|
Activation of the adenosine A2A receptor exacerbates experimental autoimmune neuritis in Lewis rats in association with enhanced humoral immunity. J Neuroimmunol 2016; 293:129-136. [DOI: 10.1016/j.jneuroim.2016.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/06/2016] [Accepted: 03/03/2016] [Indexed: 11/17/2022]
|
35
|
Ohta A. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment. Front Immunol 2016; 7:109. [PMID: 27066002 PMCID: PMC4809887 DOI: 10.3389/fimmu.2016.00109] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/14/2016] [Indexed: 01/12/2023] Open
Abstract
Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia-adenosine pathway for cancer immunotherapy.
Collapse
Affiliation(s)
- Akio Ohta
- Center for Drug Discovery, Northeastern University , Boston, MA , USA
| |
Collapse
|
36
|
Pedros C, Duguet F, Saoudi A, Chabod M. Disrupted regulatory T cell homeostasis in inflammatory bowel diseases. World J Gastroenterol 2016; 22:974-995. [PMID: 26811641 PMCID: PMC4716049 DOI: 10.3748/wjg.v22.i3.974] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/02/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
In the gut, where billions of non-self-antigens from the food and the microbiota are present, the immune response must be tightly regulated to ensure both host protection against pathogenic microorganisms and the absence of immune-related pathologies. It has been well documented that regulatory T cells (Tregs) play a pivotal role in this context. Indeed, Tregs are able to prevent excessive inflammation, which can lead to the rupture of intestinal homeostasis observed in inflammatory bowel diseases (IBDs). Both the worldwide incidence and prevalence of such diseases have increased throughout the latter part of the 20th century. Therefore, it is crucial to understand how Tregs suppress the colitogenic immune cells to establish new treatments for patients suffering from IBDs. In this review, we will first summarize the results obtained in animal model studies that highlight the importance of Tregs in maintaining intestinal homeostasis and describe the specific suppressive mechanisms involved. Next, our current knowledge about Tregs contribution to human IBDs will be reviewed, as well as the current therapeutic perspective on using Tregs for clinical IBD treatment and the challenges that remain to be resolved to ensure both the safety and effectiveness of these therapies in targeting this critical immune-regulatory cell population.
Collapse
|
37
|
Liang D, Zuo A, Shao H, Chen M, Kaplan HJ, Sun D. A2B adenosine receptor activation switches differentiation of bone marrow cells to a CD11c(+)Gr-1(+) dendritic cell subset that promotes the Th17 response. Immun Inflamm Dis 2015; 3:360-73. [PMID: 26734458 PMCID: PMC4693722 DOI: 10.1002/iid3.74] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/21/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023] Open
Abstract
Adenosine is one of the major molecules associated with inflammation. We have previously reported that an adenosine receptor (AR) agonist has an enhancing effect on Th17 autoimmune responses, even though it suppressed Th1 responses. To determine the mechanism involved, we have examined the effect of AR agonists on mouse bone marrow dendritic cell (BMDC) differentiation and function. We show that mouse bone marrow cells (BMCs) differentiated into CD11c(+)Gr-1(+) dentritic cells (DCs) when cultured in granulocyte macrophage colony-stimulating factor (GM-CSF)-containing medium containing an AR agonist. The non-selective AR agonist NECA and an A2BR-specific agonist had a similar effect, and the effect of NECA could be blocked by an A2BR-specific antagonist. Unlike CD11c(+)Gr-1(-) BMDCs, which have a greater stimulatory effect on Th1 T cells than Th17 cells, CD11c(+)Gr-1(+) BMDCs had a greater stimulatory effect on Th17 autoreactive T cells than on Th1 autoreactive T cells and this effect depended on γδ T cell activation.
Collapse
Affiliation(s)
- Dongchun Liang
- Department of Ophthalmology of the University of California Los AngelesDoheny Eye InstituteCalifornia90033USA
| | - Aijun Zuo
- Department of Ophthalmology of the University of California Los AngelesDoheny Eye InstituteCalifornia90033USA
| | - Hui Shao
- Department of Ophthalmology and Visual SciencesKentucky Lions Eye CenterUniversity of LouisvilleLouisvilleKentucky40202USA
| | - Mingjiazi Chen
- Department of Ophthalmology of the University of California Los AngelesDoheny Eye InstituteCalifornia90033USA
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual SciencesKentucky Lions Eye CenterUniversity of LouisvilleLouisvilleKentucky40202USA
| | - Deming Sun
- Department of Ophthalmology of the University of California Los AngelesDoheny Eye InstituteCalifornia90033USA
| |
Collapse
|
38
|
Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization. Biomolecules 2015; 5:775-92. [PMID: 25950510 PMCID: PMC4496696 DOI: 10.3390/biom5020775] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 12/17/2022] Open
Abstract
Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine's control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis). Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection.
Collapse
|
39
|
Liang D, Zuo A, Shao H, Chen M, Kaplan HJ, Sun D. Anti-inflammatory or proinflammatory effect of an adenosine receptor agonist on the Th17 autoimmune response is inflammatory environment-dependent. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:5498-505. [PMID: 25367119 PMCID: PMC4299924 DOI: 10.4049/jimmunol.1401959] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adenosine is a key endogenous signaling molecule that regulates a wide range of physiological functions, including immune system function and inflammation. Studies have shown that adenosine receptor (AR) agonists can be either anti-inflammatory or proinflammatory in immune responses and in inflammation, and the clarification of the mechanisms causing these opposing effects should provide a better guide for therapeutic intervention. Whereas previous studies mostly examined the effects of AR agonists on Th1-type immune responses, in this study, we compared their effect on Th17 and Th1 autoimmune responses in experimental autoimmune uveitis, a mouse model of human uveitis induced by immunization with the human interphotoreceptor retinoid-binding protein peptides 1-20. We showed that injection of mice with a nonselective AR agonist, 5'-N-ethylcarboxamidoadenosine (NECA), at an early stage after immunization had an inhibitory effect on both Th1 and Th17 responses, whereas injection of the same amount of NECA at a late stage inhibited the Th1 response but had an enhancing effect on the Th17 response. We also showed that the effects of NECA on Th1 and Th17 responses were completely dissociated, that the enhancing effect of NECA on Th17 responses was modulated by γδ T cells, and that the response of γδ T cells to NECA was determined by their activation status. We conclude that the inflammatory environment has a strong impact on converting the effect of AR agonist on the Th17 autoimmune response from anti-inflammatory to proinflammatory. Our observation should help in the designing of better AR-targeted therapies.
Collapse
MESH Headings
- Adenosine-5'-(N-ethylcarboxamide)/administration & dosage
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Autoantigens/immunology
- Autoimmune Diseases/chemically induced
- Autoimmune Diseases/immunology
- Autoimmune Diseases/therapy
- Cells, Cultured
- Eye Proteins/immunology
- Female
- Humans
- Immunomodulation/drug effects
- Immunomodulation/genetics
- Inflammation Mediators/administration & dosage
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Animal
- Peptide Fragments/immunology
- Purinergic P1 Receptor Agonists/administration & dosage
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Retinol-Binding Proteins/immunology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Uveitis/chemically induced
- Uveitis/immunology
- Uveitis/therapy
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA 90033; Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA 90033; and
| | - Aijun Zuo
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA 90033; Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA 90033; and
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Mingjiazi Chen
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA 90033; Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA 90033; and
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Deming Sun
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA 90033; Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA 90033; and
| |
Collapse
|
40
|
Liang D, Zuo A, Shao H, Chen M, Kaplan HJ, Sun D. Roles of the adenosine receptor and CD73 in the regulatory effect of γδ T cells. PLoS One 2014; 9:e108932. [PMID: 25268760 PMCID: PMC4182534 DOI: 10.1371/journal.pone.0108932] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/04/2014] [Indexed: 11/18/2022] Open
Abstract
The adenosine A2A receptor (A2AR), the main functional adenosine receptor on murine T cells, plays a unique role in the attenuation of inflammation and tissue damage in vivo. Here, we showed that, of the immune cell types tested, activated γδ T cells expressed the highest levels of A2AR mRNA and that A2AR ligation inhibited αβ T cell activation, but enhanced γδ T cell activation. We also showed that the inhibitory effect of an adenosine receptor agonist on autoreactive T cells was prevented by addition of a low percentage of activated γδ T cells. Furthermore, compared to resting cells, activated γδ T cells expressed significantly lower levels of CD73, an enzyme involved in the generation of extracellular adenosine. Exogenous AMP had a significant inhibitory effect on autoreactive T cell responses, but only in the presence of CD73+ γδ T cells, and this effect was abolished by a CD73 inhibitor. Our results show that expression of increased amounts of A2AR allows γδ T cells to bind adenosine and thereby attenuate its suppressive effect, while decreased expression of CD73 results in less generation of adenosine in the inflammatory site. Together, these events allow activated γδ T cells to acquire increased proinflammatory activity, leading to augmented autoimmune responses.
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute, Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Aijun Zuo
- Doheny Eye Institute, Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Mingjiazi Chen
- Doheny Eye Institute, Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
41
|
Kurtz CC, Drygiannakis I, Naganuma M, Feldman S, Bekiaris V, Linden J, Ware CF, Ernst PB. Extracellular adenosine regulates colitis through effects on lymphoid and nonlymphoid cells. Am J Physiol Gastrointest Liver Physiol 2014; 307:G338-46. [PMID: 24875104 PMCID: PMC4121634 DOI: 10.1152/ajpgi.00404.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adenosine is a purine metabolite that can mediate anti-inflammatory responses in the digestive tract through the A(2A) adenosine receptor (A(2A)AR). We examined the role of this receptor in the control of inflammation in the adoptive transfer model of colitis. Infection of A(2A)AR(-/-) mice with Helicobacter hepaticus increased colonic inflammation scores compared with uninfected A(2A)AR controls. Comparison of T cell subsets in wild-type and A(2A)AR(-/-) mice revealed differences in markers associated with activated helper T (Th) cells and regulatory T (Treg) cells. Previous studies showed that expression of A(2A)AR on CD45RB(HI) and CD45RB(LO) Th cells is essential for the proper regulation of colonic inflammation. Adoptive transfer of CD45RB(HI) with CD45RB(LO) from wild-type mice into RAG1(-/-)/A(2A)AR(-/-) mice induced severe disease within 3 wk, although transfer of the same subsets into RAG1(-/-) mice does not induce colitis. This suggests that the presence of A(2A)AR on recipient cells is also important for controlling colitis. To investigate the role of A(2A)AR in myeloid cells, chimeric recipients were generated by injection of bone marrow from RAG1(-/-) or RAG1(-/-)/A(2A)AR(-/-) mice into irradiated RAG1(-/-) mice. After adoptive transfer, these recipients did not develop colitis, regardless of A(2A)AR expression by the donor. Together, our results suggest that the control of inflammation in vivo is dependent on A(2A)AR signaling through multiple cell types that collaborate in the regulation of colitis by responding to extracellular adenosine.
Collapse
Affiliation(s)
- Courtney C. Kurtz
- 1Digestive Health Center of Excellence, University of Virginia, Charlottesville, Virginia;
| | - Ioannis Drygiannakis
- 3Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, La Jolla, California; ,4Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, La Jolla, California;
| | - Makoto Naganuma
- 1Digestive Health Center of Excellence, University of Virginia, Charlottesville, Virginia;
| | - Sanford Feldman
- 2Center for Comparative Medicine, University of Virginia, Charlottesville, Virginia;
| | - Vasileios Bekiaris
- 5Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California; and
| | - Joel Linden
- 6La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Carl F. Ware
- 5Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California; and
| | - Peter B. Ernst
- 3Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, La Jolla, California; ,4Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, La Jolla, California;
| |
Collapse
|
42
|
Ohta A, Sitkovsky M. Extracellular adenosine-mediated modulation of regulatory T cells. Front Immunol 2014; 5:304. [PMID: 25071765 PMCID: PMC4091046 DOI: 10.3389/fimmu.2014.00304] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/15/2014] [Indexed: 12/20/2022] Open
Abstract
Extracellular adenosine-dependent suppression and redirection of pro-inflammatory activities are mediated by the signaling through adenosine receptors on the surface of most immune cells. The immunosuppression by endogenously-produced adenosine is pathophysiologically significant since inactivation of A2A/A2B adenosine receptor (A2AR/A2BR) and adenosine-producing ecto-enzymes CD39/CD73 results in the higher intensity of immune response and exaggeration of inflammatory damage. Regulatory T cells (Treg) can generate extracellular adenosine, which is implicated in the immunoregulatory activity of Tregs. Interestingly, adenosine has been shown to increase the numbers of Tregs and further promotes their immunoregulatory activity. A2AR-deficiency in Tregs reduces their immunosuppressive efficacy in vivo. Thus, adenosine is not only directly and instantly inhibiting to the immune response through interaction with A2AR/A2BR on the effector cells, but also adenosine signaling can recruit other immunoregulatory mechanisms, including Tregs. Such interaction between adenosine and Tregs suggests the presence of a positive feedback mechanism, which further promotes negative regulation of immune system through the establishment of immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Akio Ohta
- New England Inflammation and Tissue Protection Institute, Northeastern University , Boston, MA , USA
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University , Boston, MA , USA
| |
Collapse
|
43
|
Ochoa-Cortes F, Liñán-Rico A, Jacobson KA, Christofi FL. Potential for developing purinergic drugs for gastrointestinal diseases. Inflamm Bowel Dis 2014; 20:1259-87. [PMID: 24859298 PMCID: PMC4340257 DOI: 10.1097/mib.0000000000000047] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatments for inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), functional dyspepsia, or motility disorders are not adequate, and purinergic drugs offer exciting new possibilities. Gastrointestinal symptoms that could be targeted for therapy include visceral pain, inflammatory pain, dysmotility, constipation, and diarrhea. The focus of this review is on the potential for developing purinergic drugs for clinical trials to treat gastrointestinal symptoms. Purinergic receptors are divided into adenosine P1 (A(1), A(2A), A(2B), A(3)), ionotropic ATP-gated P2X ion channel (P2X(1-7)), or metabotropic P2Y(1,2,4,6,11-14) receptors. There is good experimental evidence for targeting A(2A), A(2B), A(3), P2X(7), and P2X(3) receptors or increasing endogenous adenosine levels to treat IBD, inflammatory pain, IBS/visceral pain, inflammatory diarrhea, and motility disorders. Purine genes are also potential biomarkers of disease. Advances in medicinal chemistry have an accelerated pace toward clinical trials: Methotrexate and sulfasalazine, used to treat IBD, act by stimulating CD73-dependent adenosine production. ATP protects against NSAID-induced enteropathy and has pain-relieving properties in humans. A P2X(7)R antagonist AZD9056 is in clinical trials for Crohn's disease. A(3) adenosine receptor drugs target inflammatory diseases (e.g., CF101, CF102). Dipyridamole, a nucleoside uptake inhibitor, is in trials for endotoxemia. Drugs for pain in clinical trials include P2X(3)/P2X(2/3) (AF-219) and P2X(7) (GSK1482160) antagonists and A(1) (GW493838) or A(2A) (BVT.115959) agonists. Iberogast is a phytopharmacon targeting purine mechanisms with efficacy in IBS and functional dyspepsia. Purinergic drugs have excellent safety/efficacy profile for prospective clinical trials in IBD, IBS, functional dyspepsia, and inflammatory diarrhea. Genetic polymorphisms and caffeine consumption may affect susceptibility to treatment. Further studies in animals can clarify mechanisms and test new generation drugs. Finally, there is still a huge gap in our knowledge of human pathophysiology of purinergic signaling.
Collapse
Affiliation(s)
- Fernando Ochoa-Cortes
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, Columbus, Ohio
| | - Andromeda Liñán-Rico
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, Columbus, Ohio
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry & Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health
| | - Fievos L. Christofi
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, Columbus, Ohio
| |
Collapse
|
44
|
Spooner R, DeGuzman J, Lee K, Yilmaz Ö. Danger signal adenosine via adenosine 2a receptor stimulates growth of Porphyromonas gingivalis in primary gingival epithelial cells. Mol Oral Microbiol 2014; 29:67-78. [PMID: 24517244 PMCID: PMC3960722 DOI: 10.1111/omi.12045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2013] [Indexed: 12/20/2022]
Abstract
Extracellular signaling during inflammation and chronic diseases involves molecules referred to as 'Danger Signals' (DS), including the small molecule adenosine. We demonstrate that primary gingival epithelial cells (GEC) express a family of G-protein coupled receptors known as adenosine receptors, including the high-affinity receptors A1 and A2a and low-affinity receptors A2b and A3. Treatment of Porphyromonas gingivalis-infected GEC with the A2a receptor-specific agonist CGS-21680 resulted in elevated intracellular bacterial replication as determined by fluorescence microscopy and antibiotic protection assay. Additionally, A2a receptor antagonism and knockdown via RNA interference significantly reduced metabolically active intracellular P. gingivalis. Furthermore, analysis of anti-inflammatory mediator cyclic AMP (cAMP) following A2a receptor selective agonist CGS-21680 stimulation induced significantly higher levels of cAMP during P. gingivalis infection, indicating that adenosine signaling may attenuate inflammatory processes associated with bacterial infection. This study reveals that the GEC express functional A2a receptor and P. gingivalis may use the A2a receptor coupled DS adenosine signaling as a means to establish successful persistence in the oral mucosa, possibly via downregulation of the pro-inflammatory response.
Collapse
Affiliation(s)
- Ralee Spooner
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA
| | - Jefferson DeGuzman
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA
| | - KyuLim Lee
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA
| | - Özlem Yilmaz
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
45
|
Ecto-5'-nucleotidase (CD73) regulates host inflammatory responses and exacerbates murine salmonellosis. Sci Rep 2014; 4:4486. [PMID: 24670982 PMCID: PMC3967249 DOI: 10.1038/srep04486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/10/2014] [Indexed: 01/13/2023] Open
Abstract
Food-borne Salmonella spp., are a major cause of hospitalization and death. Adenosine, an important immune regulator of inflammation, limits tissue damage during infection. CD39 (nucleoside triphosphate dephosphorylase) combined with ecto-5′-nucleotidase (CD73) metabolizes ATP to adenosine. We studied the expressions of CD39 and CD73 in tissues, and T helper cells in mice after Salmonella infection and evaluated the role of CD73 in regulating immune responses and bacterial clearance in wild-type and CD73-deficient (CD73−/−) mice. Both CD39 and CD73 transcript levels declined in the infected wild-type mice. Compared to wild-type mice, tissues from infected CD73−/− mice had significantly higher expression of pro-inflammatory cytokines and reduced anti-inflammatory responses. CD73−/− mice were more resistant to infection and had a greater inflammatory responses and a significantly lower bacterial load in the liver compared to wild-type mice. Thus, CD73 expression attenuates inflammation during murine Salmonellosis and impairs immunity, leading to increased bacterial colonization and prolonged infection.
Collapse
|
46
|
Shieh CH, Heinrich A, Serchov T, van Calker D, Biber K. P2X7-dependent, but differentially regulated release of IL-6, CCL2, and TNF-α in cultured mouse microglia. Glia 2014; 62:592-607. [PMID: 24470356 DOI: 10.1002/glia.22628] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 01/04/2023]
Abstract
ATP is an important regulator of microglia and its effects on microglial cytokine release are currently discussed as important contributors in a variety of brain diseases. We here analyzed the effects of ATP on the production of six inflammatory mediators (IL-6, IL-10, CCL2, IFN-γ, TNF-α, and IL-12p70) in cultured mouse primary microglia. Stimulation of P2X7 receptor by ATP (1 mM) or BzATP (500 µM) evoked the mRNA expression and release of proinflammatory cytokines IL-6, TNF-α, and the chemokine CCL2 in WT cells but not in P2X7(-/-) cells. The effects of ATP and BzATP were inhibited by the nonselective P2 receptor antagonists PPADs and suramin. Various selective P2X7 receptor antagonists blocked the P2X7-dependent release of IL-6 and CCL2, but, surprisingly, had no effect on BzATP-induced release of TNF-α in microglia. Calcium measurements confirmed that P2X7 is the main purine receptor activated by BzATP in microglia and showed that all P2X7 antagonists were functional. It is also presented that pannexin-1 hemichannel function and potential P2X4/P2X7 heterodimers are not involved in P2X7-dependent release of IL-6, CCL2, and TNF-α in microglia. How P2X7-specific antagonists only affect P2X7-dependent IL-6 and CCL2 release, but not TNF-α release is at the moment unclear, but indicates that the P2X7-dependent release of cytokines in microglia is differentially regulated.
Collapse
Affiliation(s)
- Chu-Hsin Shieh
- Department of Psychiatry and Psychotherapy, University Hospital of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
47
|
Bimczok D, Smythies LE, Waites KB, Grams JM, Stahl RD, Mannon PJ, Peter S, Wilcox CM, Harris PR, Das S, Ernst PB, Smith PD. Helicobacter pylori infection inhibits phagocyte clearance of apoptotic gastric epithelial cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:6626-34. [PMID: 23686492 DOI: 10.4049/jimmunol.1203330] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increased apoptotic death of gastric epithelial cells is a hallmark of Helicobacter pylori infection, and altered epithelial cell turnover is an important contributor to gastric carcinogenesis. To address the fate of apoptotic gastric epithelial cells and their role in H. pylori mucosal disease, we investigated phagocyte clearance of apoptotic gastric epithelial cells in H. pylori infection. Human gastric mononuclear phagocytes were analyzed for their ability to take up apoptotic epithelial cells (AECs) in vivo using immunofluorescence analysis. We then used primary human gastric epithelial cells induced to undergo apoptosis by exposure to live H. pylori to study apoptotic cell uptake by autologous monocyte-derived macrophages. We show that HLA-DR(+) mononuclear phagocytes in human gastric mucosa contain cytokeratin-positive and TUNEL-positive AEC material, indicating that gastric phagocytes are involved in AEC clearance. We further show that H. pylori both increased apoptosis in primary gastric epithelial cells and decreased phagocytosis of the AECs by autologous monocyte-derived macrophages. Reduced macrophage clearance of apoptotic cells was mediated in part by H. pylori-induced macrophage TNF-α, which was expressed at higher levels in H. pylori-infected, compared with uninfected, gastric mucosa. Importantly, we show that H. pylori-infected gastric mucosa contained significantly higher numbers of AECs and higher levels of nonphagocytosed TUNEL-positive apoptotic material, consistent with a defect in apoptotic cell clearance. Thus, as shown in other autoimmune and chronic inflammatory diseases, insufficient phagocyte clearance may contribute to the chronic and self-perpetuating inflammation in human H. pylori infection.
Collapse
Affiliation(s)
- Diane Bimczok
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chhabra P, Linden J, Lobo P, Okusa MD, Brayman KL. The immunosuppressive role of adenosine A2A receptors in ischemia reperfusion injury and islet transplantation. Curr Diabetes Rev 2012; 8:419-33. [PMID: 22934547 PMCID: PMC4209001 DOI: 10.2174/157339912803529878] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 02/08/2023]
Abstract
Activation of adenosine A2A receptors (A2AR) reduces inflammation by generally inhibiting the activation of pro-inflammatory cells, decreasing endothelial adhesion molecule expression and reducing the release of proinflammatory cytokine mediators. Numerous preclinical studies using selective A2AR agonists, antagonists, A2AR knockout as well as chimeric mice have suggested the therapeutic potential of A2AR agonists for the treatment of ischemia reperfusion injury (IRI) and autoimmune diseases. This review summarizes the immunosuppressive actions of A2AR agonists in murine IRI models of liver, kidney, heart, lung and CNS, and gives details on the cellular effects of A2AR activation in neutrophils, macrophages, dendritic cells, natural killer cells, NKT cells, T effector cells and CD4+CD25+FoxP3+ T regulatory cells. This is discussed in the context of cytokine mediators involved in inflammatory cascades. Whilst the role of adenosine receptor agonists in various models of autoimmune disease has been well-documented, very little information is available regarding the role of A2AR activation in type 1 diabetes mellitus (T1DM). An overview of the pathogenesis of T1DM as well as early islet graft rejection in the immediate peri-transplantation period offers insight regarding the use of A2AR agonists as a beneficial intervention in clinical islet transplantation, promoting islet graft survival, minimizing early islet loss and reducing the number of islets required for successful transplantation, thereby increasing the availability of this procedure to a greater number of recipients. In summary, the use of A2AR agonists as a clinical intervention in IRI and as an adjunct to clinical immunesuppressive regimen in islet transplantation is highlighted.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, University of Virginia School of Medicine, P.O. Box 800709, Charlottesville, VA 22908-0709, USA.
| | | | | | | | | |
Collapse
|
49
|
Bach BC, Leal DBR, Jaques JADS, Souza VDCG, Ruchel JB, Schlemmer KB, Zanette RA, Hecktheuer PA, de Lima Pereira P, Casali EA, Alves SH, Santurio JM. E-ADA activity in lymphocytes of an experimental model of pythiosis treated with immunotherapy. Cell Biochem Funct 2012; 31:476-81. [PMID: 23086808 DOI: 10.1002/cbf.2921] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/04/2012] [Accepted: 09/24/2012] [Indexed: 12/20/2022]
Abstract
Pythiosis is a life-threatening disease caused by the oomycete Pythium insidiosum. Some authors have suggested the involvement of a Th2-like immune response in the infected host, which leads to extensive tissue damage. The switch from a Th2 to a Th1 response pattern is one hypothesis to explain the curative properties of immunotherapy. Taking into account the importance of immunotherapy for pythiosis treatment and the contribution of adenine nucleotides in the immunoregulation of the host, we evaluated the ecto-adenosine deaminase (E-ADA; EC 3·5.4·4) activity in lymphocytes from rabbits inoculated with P. insidiosum. Rabbits were inoculated with 1 milliliter of zoospores subcutaneously injected into the lateral thorax; after developing lesions, the rabbits received eight doses of immunotherapy. E-ADA activity was measured in lymphocytes and the adenine nucleotides and adenosine levels were quantitatively determined in serum. Rabbits with characteristic lesions of pythiosis showed a decreased E-ADA activity (82·36%), a decreased adenosine triphosphate concentration (54·04%) and a higher adenosine concentration (2·51 fold), when compared with controls, after 28 days of inoculation. However, after the immunotherapy, the rabbits showed an increase in the E-ADA activity when compared with control (78·62%), contributing for the change in the immune response. Our results reinforce the hypothesis that the change from a Th2 to a Th1 immune response with the participation of the purinergic system could be responsible for the curative properties of immunotherapy.
Collapse
Affiliation(s)
- Barbara Charlotte Bach
- Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Campus Universitário, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mantell S, Jones R, Trevethick M. Design and application of locally delivered agonists of the adenosine A(2A) receptor. Expert Rev Clin Pharmacol 2012; 3:55-72. [PMID: 22111533 DOI: 10.1586/ecp.09.57] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The broad spectrum anti-inflammatory actions of adenosine A(2A) receptor agonists are well described. The wide distribution of this receptor, however, suggests that the therapeutic potential of these agents is likely to reside in topical treatments to avoid systemic side effects associated with oral administration. Adenosine A(2A) receptor agonists have been assessed as topical agents: GW328267X (GSK; allergic rhinitis and asthma), UK-432097 (Pfizer; chronic obstructive pulmonary disease [COPD]) and Sonedenoson (MRE0094, King Pharmaceuticals; wound healing). All trials failed to achieve effects against the desired clinical end points. This broad-based review will discuss general principles of chemical design of topically applied agents and potential therapeutic topical applications of current adenosine A(2A) receptor agonists. Potential factors contributing to the lack of efficacy in the above clinical trials will be discussed together with design principles, which may influence efficacy in disease states. Our analysis suggests that adenosine A(2A) receptor agonists have a wide therapeutic potential as topical agents in a wide variety of diseases, such as neutrophil-dependent lung diseases (acute lung injury, exacerbations in asthma and COPD), allergic rhinitis, glaucoma and wound repair. Factors that will influence topical activity include formulation, tissue retention, compound potency, receptor kinetics and pharmacokinetics.
Collapse
Affiliation(s)
- Simon Mantell
- PC 675, Pfizer Global R&D, Sandwich, Kent, CT13 9NJ, UK.
| | | | | |
Collapse
|