1
|
Pedrani M, Barizzi J, Salfi G, Nepote A, Testi I, Merler S, Castelo-Branco L, Mestre RP, Turco F, Tortola L, Theurillat JP, Gillessen S, Vogl U. The Emerging Predictive and Prognostic Role of Aggressive-Variant-Associated Tumor Suppressor Genes Across Prostate Cancer Stages. Int J Mol Sci 2025; 26:318. [PMID: 39796175 PMCID: PMC11719667 DOI: 10.3390/ijms26010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in TP53, RB1, and/or PTEN (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising. Alterations in TP53, RB1, and PTEN, as well as the combined loss of AVPC-TSGs, may have significant implications for prognosis and treatment. These biomarkers might help predict responses to various therapies, including hormonal treatments, cytotoxic agents, radiotherapy, and targeted therapies. Understanding the impact of these molecular alterations in patients with PCa is crucial for personalized management. In this review, we provide a comprehensive overview of the emerging prognostic and predictive roles of AVPC-TSG alterations across PCa stages. Moreover, we discuss the implications of different methods used for detecting AVPC-TSG alterations and summarize factors influencing their prevalence. As our comprehension of the genomic landscape of PCa disease deepens, incorporating genomic profiling into clinical decision making will become increasingly important for improving patient outcomes.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jessica Barizzi
- Istituto Cantonale di Patologia, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Alessandro Nepote
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- AOU San Luigi Gonzaga, Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, 37126 Verona, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Luis Castelo-Branco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| |
Collapse
|
2
|
Sam Lee J, Kim M, Jin H, Kwak M, Cho E, Kim KS, Kim DE. DNA aptamer-conjugated lipid nanoparticle for targeted PTEN mRNA delivery to prostate cancer cells. Int J Pharm 2024; 662:124519. [PMID: 39067551 DOI: 10.1016/j.ijpharm.2024.124519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The use of messenger RNA (mRNA) as a cancer vaccine and gene therapy requires targeted vehicle delivery to the site of disease. Here, we designed a mRNA-encapsulating lipid nanoparticle (LNP) conjugated with anti-programmed death-ligand 1 (PD-L1) DNA aptamer that delivers mRNA encoding a tumor suppressor gene, namely phosphatase and tensin homolog (PTEN), to castration-resistant prostate cancer (CRPC) cells expressing PD-L1 on the cell surface. The DNA aptamer-conjugated LNP-based mRNA delivery system (Apt-LNP[PTEN mRNA]) mediated efficient mRNA delivery and transfection in CRPC cells than LNPs without targeting ligands. Cancer-targeted PTEN mRNA delivery using Apt-LNPs achieved significantly higher PTEN expression via aptamer-mediated endocytosis in target cancer cells compared with non-targeted LNP delivery, resulting in significant downregulation of AKT phosphorylation. This enhanced PI3K/AKT pathway regulation, and in turn reduced cell migration after two days along with a 70 % decrease in cell viability, leading to effective apoptotic cell death. In a CRPC xenograft model, Apt-LNP[PTEN mRNA] led to an approximate 60 % reduction in tumor growth, which was attributable to the effective PTEN restoration and PI3K/AKT signaling pathway regulation. PTEN expression was significantly enhanced in CRPC tumor tissues, which abolished cancer cell tumorigenicity. These findings demonstrated the potential of Apt-LNPs for targeted mRNA delivery to cancer cells, thus providing a promising tool for targeted mRNA delivery to a range of cancers and tissues using a conventional LNP systems.
Collapse
Affiliation(s)
- Jong Sam Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minhee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyesoo Jin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minseo Kwak
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Eunbin Cho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Keun-Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Graham MK, Wang R, Chikarmane R, Abel B, Vaghasia A, Gupta A, Zheng Q, Hicks J, Sysa-Shah P, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Zhang Y, Rubenstein M, Schuebel K, Simons BW, Bieberich CJ, Nelson WG, Lupold SE, DeWeese TL, De Marzo AM, Yegnasubramanian S. Convergent alterations in the tumor microenvironment of MYC-driven human and murine prostate cancer. Nat Commun 2024; 15:7414. [PMID: 39198404 PMCID: PMC11358296 DOI: 10.1038/s41467-024-51450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
How prostate cancer cells and their precursors mediate changes in the tumor microenvironment (TME) to drive prostate cancer progression is unclear, in part due to the inability to longitudinally study the disease evolution in human tissues. To overcome this limitation, we perform extensive single-cell RNA-sequencing (scRNA-seq) and molecular pathology of the comparative biology between human prostate cancer and key stages in the disease evolution of a genetically engineered mouse model (GEMM) of prostate cancer. Our studies of human tissues reveal that cancer cell-intrinsic activation of MYC signaling is a common denominator across the well-known molecular and pathological heterogeneity of human prostate cancer. Cell communication network and pathway analyses in GEMMs show that MYC oncogene-expressing neoplastic cells, directly and indirectly, reprogram the TME during carcinogenesis, leading to a convergence of cell state alterations in neighboring epithelial, immune, and fibroblast cell types that parallel key findings in human prostate cancer.
Collapse
Affiliation(s)
- Mindy K Graham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Rulin Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Roshan Chikarmane
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Bulouere Abel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Ajay Vaghasia
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Anuj Gupta
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Qizhi Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jessica Hicks
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Polina Sysa-Shah
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Xin Pan
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nicole Castagna
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jianyong Liu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jennifer Meyers
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Alyza Skaist
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yan Zhang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Michael Rubenstein
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, MD, USA
| | - Kornel Schuebel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Brian W Simons
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, MD, USA
| | - William G Nelson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Shawn E Lupold
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Theodore L DeWeese
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- inHealth Precision Medicine Program, Johns Hopkins Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Beatson EL, Risdon EN, Napoli GC, Price DK, Chau CH, Figg WD. Genomic Characterization of Preclinical Prostate Cancer Cell Line Models. Int J Mol Sci 2024; 25:6111. [PMID: 38892296 PMCID: PMC11172770 DOI: 10.3390/ijms25116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
As we move into the era of precision medicine, the growing relevance of genetic alterations to prostate cancer (PCa) development and treatment demonstrates the importance of characterizing preclinical models at the genomic level. Our study investigated the genomic characterization of eight PCa cell lines to understand which models are clinically relevant. We designed a custom AmpliSeq DNA gene panel that encompassed key molecular pathways targeting AR signaling, apoptosis, DNA damage repair, and PI3K/AKT/PTEN, in addition to tumor suppressor genes. We examined the relationship between cell line genomic alterations and therapeutic response. In addition, using DepMap's Celligner tool, we identified which preclinical models are most representative of specific prostate cancer patient populations on cBioPortal. These data will help investigators understand the genetic differences in preclinical models of PCa and determine which ones are relevant for use in their translational research.
Collapse
Affiliation(s)
| | | | | | | | | | - William D. Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (D.K.P.); (C.H.C.)
| |
Collapse
|
5
|
Bhattacharya S, Stillahn A, Smith K, Muders M, Datta K, Dutta S. Understanding the molecular regulators of neuroendocrine prostate cancer. Adv Cancer Res 2024; 161:403-429. [PMID: 39032955 DOI: 10.1016/bs.acr.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Worldwide, prostate cancer (PCa) remains a leading cause of death in men. Histologically, the majority of PCa cases are classified as adenocarcinomas, which are mainly composed of androgen receptor-positive luminal cells. PCa is initially driven by the androgen receptor axis, where androgen-mediated activation of the receptor is one of the primary culprits for disease progression. Therefore, in advanced stage PCa, patients are generally treated with androgen deprivation therapies alone or in combination with androgen receptor pathway inhibitors. However, after an initial decrease, the cancer recurs for majority patients. At this stage, cancer is known as castration-resistant prostate cancer (CRPC). Majority of CRPC tumors still depend on androgen receptor axis for its progression to metastasis. However, in around 20-30% of cases, CRPC progresses via an androgen receptor-independent pathway and is often presented as neuroendocrine cancer (NE). This NE phenotype is highly aggressive with poor overall survival as compared to CRPC adenocarcinoma. NE cancers are resistant to standard taxane chemotherapies, which are often used to treat metastatic disease. Pathologically and morphologically, NE cancers are highly diverse and often co-exist with adenocarcinoma. Due to the lack of proper biomarkers, it is often difficult to make an early diagnosis of this lethal disease. Moreover, increased tumor heterogeneity and admixtures of adeno and NE subtypes in the same tumor make early detection of NE tumors very difficult. With the advancement of our knowledge and sequencing technology, we are now able to better understand the molecular mediators of this transformation pathway. This current study will give an update on how various molecular regulators are involved in these lineage transformation processes and what challenges we are still facing to detect and treat this cancer.
Collapse
Affiliation(s)
- Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States; Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Avery Stillahn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | - Kaitlin Smith
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | | | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
6
|
O'Malley DE, Raspin K, Melton PE, Burdon KP, Dickinson JL, FitzGerald LM. Acquired copy number variation in prostate tumours: a review of common somatic copy number alterations, how they are formed and their clinical utility. Br J Cancer 2024; 130:347-357. [PMID: 37945750 PMCID: PMC10844642 DOI: 10.1038/s41416-023-02485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and unfortunately, disease will progress in up to a third of patients despite primary treatment. Currently, there is a significant lack of prognostic tests that accurately predict disease course; however, the acquisition of somatic chromosomal variation in the form of DNA copy number variants may help understand disease progression. Notably, studies have found that a higher burden of somatic copy number alterations (SCNA) correlates with more aggressive disease, recurrence after surgery and metastasis. Here we will review the literature surrounding SCNA formation, including the roles of key tumour suppressors and oncogenes (PTEN, BRCA2, NKX3.1, ERG and AR), and their potential to inform diagnostic and prognostic clinical testing to improve predictive value. Ultimately, SCNAs, or inherited germline alterations that predispose to SCNAs, could have significant clinical utility in diagnostic and prognostic tests, in addition to guiding therapeutic selection.
Collapse
Affiliation(s)
- Dannielle E O'Malley
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Phillip E Melton
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- School of Population and Global Health, The University of Western Australia, Crawley, WA, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
7
|
Naito Y, Kato M, Nagayama J, Sano Y, Matsuo K, Inoue S, Sano T, Ishida S, Matsukawa Y, Tsuzuki T, Akamatsu S. Recent insights on the clinical, pathological, and molecular features of intraductal carcinoma of the prostate. Int J Urol 2024; 31:7-16. [PMID: 37728330 DOI: 10.1111/iju.15299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Intraductal carcinoma of the prostate, a unique histopathologic entity that is often observed (especially in advanced prostate cancer), is characterized by the proliferation of malignant cells within normal acini or ducts surrounded by a basement membrane. Intraductal carcinoma of the prostate is almost invariably associated with an adjacent high-grade carcinoma and is occasionally observed as an isolated subtype. Intraductal carcinoma of the prostate has been demonstrated to be an independent poor prognostic factor for all stages of cancer, whether localized, de novo metastatic, or castration-resistant. It also has a characteristic genetic profile, including high genomic instability. Recognizing and differentiating it from other pathologies is therefore important in patient management, and morphological diagnostic criteria for intraductal carcinoma of the prostate have been established. This review summarizes and outlines the clinical and pathological features, differential diagnosis, molecular aspects, and management of intraductal carcinoma of the prostate, as described in previous studies. We also present a discussion and future perspectives regarding intraductal carcinoma of the prostate.
Collapse
Affiliation(s)
- Yushi Naito
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masashi Kato
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jun Nagayama
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuta Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuna Matsuo
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Inoue
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoyasu Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shohei Ishida
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Shusuke Akamatsu
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
8
|
Graham MK, Wang R, Chikarmane R, Wodu B, Vaghasia A, Gupta A, Zheng Q, Hicks J, Sysa-Shah P, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Zhang Y, Schuebel K, Simons BW, Bieberich CJ, Nelson WG, Lupold SE, DeWeese TL, De Marzo AM, Yegnasubramanian S. Convergent alterations in the tumor microenvironment of MYC-driven human and murine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.553268. [PMID: 37905029 PMCID: PMC10614732 DOI: 10.1101/2023.09.07.553268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The tissue microenvironment in prostate cancer is profoundly altered. While such alterations have been implicated in driving prostate cancer initiation and progression to aggressive disease, how prostate cancer cells and their precursors mediate those changes is unclear, in part due to the inability to longitudinally study the disease evolution in human tissues. To overcome this limitation, we performed extensive single-cell RNA-sequencing (scRNA-seq) and rigorous molecular pathology of the comparative biology between human prostate cancer and key time points in the disease evolution of a genetically engineered mouse model (GEMM) of prostate cancer. Our studies of human tissues, with validation in a large external data set, revealed that cancer cell-intrinsic activation of MYC signaling was the top up-regulated pathway in human cancers, representing a common denominator across the well-known molecular and pathological heterogeneity of human prostate cancer. Likewise, numerous non-malignant cell states in the tumor microenvironment (TME), including non-cancerous epithelial, immune, and fibroblast cell compartments, were conserved across individuals, raising the possibility that these cell types may be a sequelae of the convergent MYC activation in the cancer cells. To test this hypothesis, we employed a GEMM of prostate epithelial cell-specific MYC activation in two mouse strains. Cell communication network and pathway analyses suggested that MYC oncogene-expressing neoplastic cells, directly and indirectly, reprogrammed the TME during carcinogenesis, leading to the emergence of cascading cell state alterations in neighboring epithelial, immune, and fibroblast cell types that paralleled key findings in human prostate cancer. Importantly, among these changes, the progression from a precursor-enriched to invasive-cancer-enriched state was accompanied by a cell-intrinsic switch from pro-immunogenic to immunosuppressive transcriptional programs with coinciding enrichment of immunosuppressive myeloid and Treg cells in the immune microenvironment. These findings implicate activation of MYC signaling in reshaping convergent aspects of the TME of prostate cancer as a common denominator across the otherwise well-documented molecular heterogeneity of human prostate cancer.
Collapse
|
9
|
Feng T, Zhao R, Zhang H, Sun F, Hu J, Wang M, Qi M, Liu L, Gao L, Xiao Y, Zhen J, Chen W, Wang L, Han B. Reciprocal negative feedback regulation of ATF6α and PTEN promotes prostate cancer progression. Cell Mol Life Sci 2023; 80:292. [PMID: 37715829 PMCID: PMC11073217 DOI: 10.1007/s00018-023-04940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 09/18/2023]
Abstract
Phosphatase and tensin homolog (PTEN) loss tightly correlates with prostate cancer (PCa) progression and metastasis. Inactivation of PTEN leads to abnormal activation of PI3K/AKT pathway. However, results from clinical trials with AKT inhibitors in PCa have been largely disappointing. Identification of novel regulators of PTEN in PTEN-dysfunctional PCa is urgently needed. Here we demonstrated that the expression level of PTEN is inversely correlated with the signature score of unfolded protein response (UPR) in PCa. Importantly, PTEN suppresses the activity of ATF6α, via interacting to de-phosphorylate ATF6α and consequently inhibiting its nuclear translocation. Conversely, ATF6α promotes the ubiquitination and degradation of PTEN by inducing CHIP expression. Thus, ATF6α and PTEN forms a negative feedback loop during PCa progression. Combination of ATF6α inhibitor with AKT inhibitor suppresses tumor cell proliferation and xenograft growth. Importantly, this study highlighted ATF6α as a therapeutic vulnerability in PTEN dysfunctional PCa.
Collapse
Affiliation(s)
- Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Ru Zhao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Hanwen Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jing Hu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Meng Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Mei Qi
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ling Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yabo Xiao
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Junhui Zhen
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Lin Wang
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, NHC Key Laboratory of Biotechnology Drugs, Key Lab for Rare and Uncommon Diseases of Shandong Province, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China.
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Voulgari O, Goutas D, Pergaris A, Belogiannis K, Thymara E, Kavantzas N, Lazaris AC. Correlations of PTEN and ERG Immunoexpression in Prostate Carcinoma and Lesions Related to Its Natural History: Clinical Perspectives. Curr Issues Mol Biol 2023; 45:2767-2780. [PMID: 37185705 PMCID: PMC10136580 DOI: 10.3390/cimb45040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Purpose: The aim of our study was to observe the associations between the ETS-related gene (ERG) and the phosphatase and tensin homolog gene (PTEN) immunoexpression in prostate cancer and related lesions and highlight the clinical significance of these findings. Methods: We evaluated the immunohistochemical expression of ERG and PTEN in a series of 151 invasive prostate adenocarcinomas, including low-grade (Gleason grade pattern 3) and high-grade (Gleason grade patterns 4, 5) morphological patterns which corresponded to 45.5% and 54.4% of the cases, respectively. Additionally, we evaluated the immunoexpression of the two markers both in foci of high-grade prostatic intraepithelial neoplasia (HGPIN), as a precursor lesion of cancer, and in foci of intraductal carcinoma of the prostate (IDCP). Finally, to ensure the malignant nature of the prostate glands examined, we employed p63 and alpha-methylacyl-CoA racemase (AMACR) expression. Results: We found that PTEN loss was observed in 50.7%, and ERG positivity was detected in 41.8% of our cancerous samples. In HGPIN, PTEN loss appeared to be linked with a high-grade adjacent invasive carcinoma component which also displayed PTEN loss. As far as IDCP is concerned, ERG immunonegativity was correlated with adjacent high-grade invasive cancer, which was also ERG immunonegative. Conclusions: Our findings suggest that the clonal expansion of invasive cancer appears to be associated with distinct immunophenotypic cellular alterations of both early and late cancer-related histological lesions. Patients with PTEN loss in HGPIN in prostate biopsies should be closely monitored due to the increased likelihood of having an associated invasive high-grade carcinoma that may have not been sampled. Given the clinical significance that derives from PTEN expression in HGPIN lesions, we suggest the routine use of PTEN immunohistochemistry in prostate cancer biopsies in which HGPIN is the only finding.
Collapse
|
11
|
Wang YM, Zhao QW, Sun ZY, Lin HP, Xu X, Cao M, Fu YJ, Zhao XJ, Ma XM, Ye Q. Circular RNA hsa_circ_0003823 promotes the Tumor Progression, Metastasis and Apatinib Resistance of Esophageal Squamous Cell Carcinoma by miR-607/CRISP3 Axis. Int J Biol Sci 2022; 18:5787-5808. [PMID: 36263172 PMCID: PMC9576509 DOI: 10.7150/ijbs.76096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Circular RNAs (CircRNAs) have attracted a growing interest of research in cancer. The regulatory roles and mechanisms of circRNAs in progression, metastasis and drug resistance of esophageal squamous cell carcinoma (ESCC) needed to be clarified. Our previous study revealed the crucial role of Apatinib in ESCC therapy. However, the correlation between circRNAs and Apatinib resistance remained unclear. Methods: 3 pairs of tumor and paracancerous tissues of ESCC patients were used for RNA sequencing. Western blot analysis, RNA immunoprecipitation (RIP), dual-luciferase reporter assays, apoptosis and animal assays were conducted to confirm the roles and specific mechanisms of hsa_circ_0003823 as well as the effects of it on Apatinib sensitivity in ESCC. Results: Our results revealed that hsa_circ_0003823 was highly expressed in ESCC and associated with poor prognosis. Further results indicated that hsa_circ_0003823 promoted proliferation and metastasis ability of ESCC. In the section of mechanism experiments, hsa_circ_0003823 regulated CRISP3 by targeting microRNA-607 (miR-607) to promote progression of ESCC. Besides, we found that silencing hsa_circ_0003823 improved Apatinib sensitivity. hsa_circ_0003823 resulted in Apatinib resistance by miR-607/CRISP3 axis. Conclusions: In this study, we elucidated the function of hsa_circ_0003823 and its role in promoting tumor progression, metastasis and Apatinib resistance of ESCC through miR-607/CRISP3 axis.
Collapse
Affiliation(s)
- Yu-Ming Wang
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Qi-Wu Zhao
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, P.R. China
| | - Zhi-Yong Sun
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Hai-Ping Lin
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xin Xu
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Min Cao
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yu-Jie Fu
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xiao-Jing Zhao
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xiu-Mei Ma
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China.,✉ Corresponding authors: Qing Ye, Pujian road 160#, Shanghai, China (Tel: +8602168383707, ); Xiu-Mei Ma, Pujian road 160#, Shanghai, China ()
| | - Qing Ye
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China.,✉ Corresponding authors: Qing Ye, Pujian road 160#, Shanghai, China (Tel: +8602168383707, ); Xiu-Mei Ma, Pujian road 160#, Shanghai, China ()
| |
Collapse
|
12
|
Kim S, Li L, Zhang J, Jiang C, Lü J. Aqueous metabolome of tissue-specific conditional Pten-knockout mouse prostate cancer and TRAMP neuroendocrine carcinoma. Prostate 2022; 82:154-166. [PMID: 34662447 PMCID: PMC9298286 DOI: 10.1002/pros.24256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Metabolic reprograming is now a recognized hallmark of cancer. The prostate-specific phosphatase and tensin homolog deleted on chromosome 10 (Pten) gene-conditional knockout (KO) mouse carcinogenesis model is highly desirable for studying prostate cancer biology and prevention due to its close resemblance of primary molecular defects and histopathological features of human prostate cancer. We have recently published macromolecular profiling of this model by proteomics and transcriptomics, denoting a preeminence of inflammation and myeloid suppressive immune cell features. Here, we performed metabolomic analyses of Pten-KO prostate versus wild type (WT) counterpart for discernable changes in the aqueous metabolites and contrasted to those in the TRAMP neuroendocrine carcinoma (NECa). METHODS Three matched pairs of tissue-specific conditional Pten-KO mouse prostate and WT prostate of litter/cage-mates at 20-22 weeks of age and three pairs of TRAMP NECa versus WT (28-31 weeks) were profiled for their global aqueous metabolite changes, using hydrophilic interaction liquid chromatography-tandem mass spectrometry. RESULTS The Pten-KO prostate increased purine nucleotide pools, cystathionine, and both reduced and oxidized glutathione (GSH, GSSG), and gluconate/glucuronate species in addition to cholesteryl sulfate and polyamine precursor ornithine. On the contrary, Pten-KO prostate contained diminished pools of glycolytic intermediates and phosphorylcholine derivatives, select amino acids, and their metabolites. Bioinformatic integration revealed a significant shunting of glucose away from glycolysis-citrate cycle and glycerol-lipid genesis to pentose phosphate cycle for NADPH/GSH/GSSG redox and pentose moieties for purine and pyrimidine nucleotides, and glycosylation/glucuronidation. Implicit arginine catabolism to ornithine was consistent with immunosuppression in Pten-KO model. While also increased in cystathionine-GSH/GSSG, purine, and pyrimidine nucleotide pools and glucuronidation at the expense of glycolysis-citrate cycle, the TRAMP NECa increased abundance of many amino acids, methyl donor S-adenosyl-methionine, and intermediates for phospholipids without increasing cholesteryl sulfate or ornithine. CONCLUSIONS The aqueous metabolomic patterns in Pten-KO prostate and TRAMP NECa shared similarities in the greater pools of cystathionine, GSH/GSSG redox pair, and nucleotides and shunting away from glycolysis-citrate cycle in both models. Remarkable metabolic distinctions between them included metabolisms of many amino acids (protein synthesis; arginine-ornithine/immune suppression) and cholesteryl sulfate and methylation donor for epigenetic regulations.
Collapse
Affiliation(s)
- Sangyub Kim
- Department of PharmacologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Present address:
Sangyub Kim, Zentalis PharmaceuticalsSan DiegoCaliforniaUSA
| | - Li Li
- Department of Biomedical SciencesTexas Tech University Health Sciences CenterAmarilloTexasUSA
- Present address:
Li Li and Jinhui Zhang, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Jinhui Zhang
- Department of Biomedical SciencesTexas Tech University Health Sciences CenterAmarilloTexasUSA
- Present address:
Li Li and Jinhui Zhang, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Cheng Jiang
- Department of PharmacologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of Biomedical SciencesTexas Tech University Health Sciences CenterAmarilloTexasUSA
| | - Junxuan Lü
- Department of PharmacologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of Biomedical SciencesTexas Tech University Health Sciences CenterAmarilloTexasUSA
| |
Collapse
|
13
|
Chen YX, Tan LM, Gong JP, Huang MS, Yin JY, Zhang W, Zhou HH, Liu ZQ. Response prediction biomarkers and drug combinations of PARP inhibitors in prostate cancer. Acta Pharmacol Sin 2021; 42:1970-1980. [PMID: 33589795 PMCID: PMC8632930 DOI: 10.1038/s41401-020-00604-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/20/2020] [Indexed: 01/31/2023] Open
Abstract
PARP inhibitors are a group of inhibitors targeting poly(ADP-ribose) polymerases (PARP1 or PARP2) involved in DNA repair and transcriptional regulation, which may induce synthetic lethality in BRCAness tumors. Systematic analyzes of genomic sequencing in prostate cancer show that ~10%-19% of patients with primary prostate cancer have inactivated DNA repair genes, with a notably higher proportion of 23%-27% in patients with metastatic castration-resistant prostate cancer (mCRPC). These characteristic genomic alterations confer possible vulnerability to PARP inhibitors in patients with mCRPC who benefit only modestly from other therapies. However, only a small proportion of patients with mCRPC shows sensitivity to PARP inhibitors, and these sensitive patients cannot be fully identified by existing response prediction biomarkers. In this review, we provide an overview of the potential response prediction biomarkers and synergistic combinations studied in the preclinical and clinical stages, which may expand the population of patients with prostate cancer who may benefit from PARP inhibitors.
Collapse
Affiliation(s)
- Yi-Xin Chen
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Li-Ming Tan
- Department of Pharmacy, The Second People's Hospital of Huaihua City, Huaihua, 418000, China
| | - Jian-Ping Gong
- Department of Pharmacy, The Second People's Hospital of Huaihua City, Huaihua, 418000, China
| | - Ma-Sha Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China.
| |
Collapse
|
14
|
Hernández-Llodrà S, Segalés L, Juanpere N, Marta Lorenzo T, Salido M, Nonell L, David López T, Rodríguez-Vida A, Bellmunt J, Fumadó L, Cecchini L, Lloreta-Trull J. SPOP and CHD1 alterations in prostate cancer: Relationship with PTEN loss, tumor grade, perineural infiltration, and PSA recurrence. Prostate 2021; 81:1267-1277. [PMID: 34533858 DOI: 10.1002/pros.24218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/06/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND In the non-ETS fusion of prostate cancer (PCa) pathway, SPOP mutations emerge as a distinct oncogenic driver subclass. Both SPOP downregulation and mutation can lead to SPOP target stabilization promoting dysregulation of key regulatory pathways. CHD1 gene is commonly deleted in PCa. CHD1 loss significantly co-occurs with SPOP mutations, resulting in a PCa subclass with increased AR transcriptional activity and with a specific epigenetic pattern. METHODS In this study, SPOP alterations at mutational and protein levels and CHD1 copy number alterations have been analyzed and correlated with ERG and PTEN protein expression and with the clinical pathological features of the patients. RESULTS SPOP protein loss has been detected in 42.9% of the cases, and it has been strongly associated with PTEN protein loss (p < .001). CHD1 gene loss has been detected in 24.5% and SPOP mutations in 5.9% of the cases. Loss of CHD1 has been strongly associated with SPOP mutations (p = .003) and has shown a trend to be associated with ERG wt cancers (p = .08). The loss of SPOP protein (p = .01) and the combination of PTEN and SPOP protein loss (p = .002) were both statistically more common in grade group 5 cancers, with a prevalence of 60% and 37.5%, respectively. Furthermore, SPOP loss/PTEN loss and SPOP wt/PTEN loss phenotypes were strongly associated with extraprostatic perineural infiltration (p = .007). Strong CHD1 loss was associated with a shorter time to PSA recurrence in the univariate (p = .04), and showed a trend to be associated with the PSA recurrence risk in the multivariate analysis (p = .058). CONCLUSIONS The results of the present study suggest that the loss of SPOP protein expression, either alone or in combination with loss of PTEN and, on the other hand, a marked loss of the CHD1 gene are very promising prognostic biomarkers in PCa.
Collapse
Affiliation(s)
| | - Laura Segalés
- Departament of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Nuria Juanpere
- Departament of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | | | - Marta Salido
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Lara Nonell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Tech David López
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alejo Rodríguez-Vida
- Department of Medical Oncology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Joaquim Bellmunt
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Medical Oncology, Harvard Medical School, Hospital Beth Israel, Boston, Massachusetts, USA
| | - Lluís Fumadó
- Department of Urology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Lluís Cecchini
- Department of Urology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Josep Lloreta-Trull
- Departament of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| |
Collapse
|
15
|
Shao L, Wang J, Karatas O, Ittmann M. MEX3D is an oncogenic driver in prostate cancer. Prostate 2021; 81:1202-1213. [PMID: 34455614 PMCID: PMC8460603 DOI: 10.1002/pros.24216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/10/2021] [Accepted: 02/19/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common visceral malignancy and the second leading cause of cancer deaths in US men. The two most common genetic alterations in PCa are expression of the TMPRSS2/ERG (TE) fusion gene and loss of the PTEN tumor suppressor. These genetic alterations act cooperatively to transform prostatic epithelium but the exact mechanisms involved are unclear. METHODS Microarray expression analysis of immortalized prostate epithelial cells transformed by loss of PTEN and expression of the TE fusion revealed MEX3D as one of the most highly upregulated genes. MEX3D expression in prostate cancer was examined in patient samples and in silico. In vitro and in vivo studies to characterize the biological impact of MEX3D were carried out. Analysis of the TCGA PanCancer database revealed TCF3 as a major target of MEX3D. The induction of TCF3 by MEX3D was confirmed and the biological impact of TCF3 examined by in vitro studies. RESULTS MEX3D is expressed at increased levels in prostate cancer and is increased by decreased PTEN and/or expression of the TE fusion gene and drives soft agar colony formation, invasion and tumor formation in vivo. The known oncogenic transcription factor TCF3 is highly correlated with MEX3D in prostate cancer. MEX3D expression strongly induces TCF3, which promotes soft agar colony formation and invasion in vitro. CONCLUSIONS Loss of PTEN and expression of the TE fusion gene in prostate cancer strongly upregulates expression of MEX3D and its target TCF3 and promotes transformation associated phenotypes via this pathway.
Collapse
Affiliation(s)
- Longjiang Shao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas, USA
| | - Jianghua Wang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas, USA
| | - Omer Karatas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas, USA
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas, USA
| |
Collapse
|
16
|
Epstein RJ. The secret identities of TMPRSS2: Fertility factor, virus trafficker, inflammation moderator, prostate protector and tumor suppressor. Tumour Biol 2021; 43:159-176. [PMID: 34420994 DOI: 10.3233/tub-211502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The human TMPRSS2 gene is pathogenetically implicated in both coronaviral lung infection and prostate cancer, suggesting its potential as a drug target in both contexts. SARS-COV-2 spike polypeptides are primed by the host transmembrane TMPRSS2 protease, triggering virus fusion with epithelial cell membranes followed by an endocytotic internalisation process that bypasses normal endosomal activation of cathepsin-mediated innate immunity; viral co-opting of TMPRSS2 thus favors microbial survivability by attenuating host inflammatory responses. In contrast, most early hormone-dependent prostate cancers express TMPRSS2:ERG fusion genes arising from deletions that eliminate the TMPRSS2 coding region while juxtaposing its androgen-inducible promoter and the open reading frame of ERG, upregulating pro-inflammatory ERG while functionally disabling TMPRSS2. Moreover, inflammatory oxidative DNA damage selects for TMPRSS2:ERG-fused cancers, whereas patients treated with antiinflammatory drugs develop fewer of these fusion-dependent tumors. These findings imply that TMPRSS2 protects the prostate by enabling endosomal bypass of pathogens which could otherwise trigger inflammation-induced DNA damage that predisposes to TMPRSS2:ERG fusions. Hence, the high oncogenic selectability of TMPRSS2:ERG fusions may reflect a unique pro-inflammatory synergy between androgenic ERG gain-of-function and fusogenic TMPRSS2 loss-of-function, cautioning against the use of TMPRSS2-inhibitory drugs to prevent or treat early prostate cancer.
Collapse
Affiliation(s)
- Richard J Epstein
- New Hope Cancer Center, Beijing United Hospital, Jiangtai Xi Rd 9-11, Chaoyang, Beijing, China.,Garvan Institute of Medical Research, and UNSW Medical School, St Vincent's Hospital, Victoria St, Darlinghurst, Sydney, Australia
| |
Collapse
|
17
|
Strittmatter BG, Jerde TJ, Hollenhorst PC. Ras/ERK and PI3K/AKT signaling differentially regulate oncogenic ERG mediated transcription in prostate cells. PLoS Genet 2021; 17:e1009708. [PMID: 34314419 PMCID: PMC8345871 DOI: 10.1371/journal.pgen.1009708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/06/2021] [Accepted: 07/10/2021] [Indexed: 11/19/2022] Open
Abstract
The TMPRSS2/ERG gene rearrangement occurs in 50% of prostate tumors and results in expression of the transcription factor ERG, which is normally silent in prostate cells. ERG expression promotes prostate tumor formation and luminal epithelial cell fates when combined with PI3K/AKT pathway activation, however the mechanism of synergy is not known. In contrast to luminal fates, expression of ERG alone in immortalized normal prostate epithelial cells promotes cell migration and epithelial to mesenchymal transition (EMT). Migration requires ERG serine 96 phosphorylation via endogenous Ras/ERK signaling. We found that a phosphomimetic mutant, S96E ERG, drove tumor formation and clonogenic survival without activated AKT. S96 was only phosphorylated on nuclear ERG, and differential recruitment of ERK to a subset of ERG-bound chromatin associated with ERG-activated, but not ERG-repressed genes. S96E did not alter ERG genomic binding, but caused a loss of ERG-mediated repression, EZH2 binding and H3K27 methylation. In contrast, AKT activation altered the ERG cistrome and promoted expression of luminal cell fate genes. These data suggest that, depending on AKT status, ERG can promote either luminal or EMT transcription programs, but ERG can promote tumorigenesis independent of these cell fates and tumorigenesis requires only the transcriptional activation function. ERG is the most common oncogene in prostate cancer. The ERG protein can bind DNA and can activate some genes and repress others. Previous studies indicated that ERG cannot promote cancer by itself, but that ERG works together with mutations that activate the protein AKT. In this study we found that activation of AKT changes the genes that ERG regulates, leading to luminal epithelial differentiation, which is a hallmark of most prostate tumors. However, we also found that a mutant version of ERG that can activate, but cannot repress genes, can drive prostate tumorigenesis without activation of AKT, but this mutant ERG cannot promote luminal differentiation. Our findings suggest that ERG mediated tumorigenesis only requires ERG’s activation function and can occur independent of luminal cell differentiation.
Collapse
Affiliation(s)
- Brady G. Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Travis J. Jerde
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Peter C. Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
18
|
Imada EL, Sanchez DF, Dinalankara W, Vidotto T, Ebot EM, Tyekucheva S, Franco GR, Mucci LA, Loda M, Schaeffer EM, Lotan T, Marchionni L. Transcriptional landscape of PTEN loss in primary prostate cancer. BMC Cancer 2021; 21:856. [PMID: 34311724 PMCID: PMC8314517 DOI: 10.1186/s12885-021-08593-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND PTEN is the most frequently lost tumor suppressor in primary prostate cancer (PCa) and its loss is associated with aggressive disease. However, the transcriptional changes associated with PTEN loss in PCa have not been described in detail. In this study, we highlight the transcriptional changes associated with PTEN loss in PCa. METHODS Using a meta-analysis approach, we leveraged two large PCa cohorts with experimentally validated PTEN and ERG status by Immunohistochemistry (IHC), to derive a transcriptomic signature of PTEN loss, while also accounting for potential confounders due to ERG rearrangements. This signature was expanded to lncRNAs using the TCGA quantifications from the FC-R2 expression atlas. RESULTS The signatures indicate a strong activation of both innate and adaptive immune systems upon PTEN loss, as well as an expected activation of cell-cycle genes. Moreover, we made use of our recently developed FC-R2 expression atlas to expand this signature to include many non-coding RNAs recently annotated by the FANTOM consortium. Highlighting potential novel lncRNAs associated with PTEN loss and PCa progression. CONCLUSION We created a PCa specific signature of the transcriptional landscape of PTEN loss that comprises both the coding and an extensive non-coding counterpart, highlighting potential new players in PCa progression. We also show that contrary to what is observed in other cancers, PTEN loss in PCa leads to increased activation of the immune system. These findings can help the development of new biomarkers and help guide therapy choices.
Collapse
Affiliation(s)
- Eddie Luidy Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | - Wikum Dinalankara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thiago Vidotto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ericka M Ebot
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Svitlana Tyekucheva
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gloria Regina Franco
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lorelei Ann Mucci
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Tamara Lotan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
Meehan J, Gray M, Martínez-Pérez C, Kay C, McLaren D, Turnbull AK. Tissue- and Liquid-Based Biomarkers in Prostate Cancer Precision Medicine. J Pers Med 2021; 11:jpm11070664. [PMID: 34357131 PMCID: PMC8306523 DOI: 10.3390/jpm11070664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, prostate cancer (PC) is the second-most-frequently diagnosed male cancer and the fifth-most-common cause of all cancer-related deaths. Suspicion of PC in a patient is largely based upon clinical signs and the use of prostate-specific antigen (PSA) levels. Although PSA levels have been criticised for a lack of specificity, leading to PC over-diagnosis, it is still the most commonly used biomarker in PC management. Unfortunately, PC is extremely heterogeneous, and it can be difficult to stratify patients whose tumours are unlikely to progress from those that are aggressive and require treatment intensification. Although PC-specific biomarker research has previously focused on disease diagnosis, there is an unmet clinical need for novel prognostic, predictive and treatment response biomarkers that can be used to provide a precision medicine approach to PC management. In particular, the identification of biomarkers at the time of screening/diagnosis that can provide an indication of disease aggressiveness is perhaps the greatest current unmet clinical need in PC management. Largely through advances in genomic and proteomic techniques, exciting pre-clinical and clinical research is continuing to identify potential tissue, blood and urine-based PC-specific biomarkers that may in the future supplement or replace current standard practices. In this review, we describe how PC-specific biomarker research is progressing, including the evolution of PSA-based tests and those novel assays that have gained clinical approval. We also describe alternative diagnostic biomarkers to PSA, in addition to biomarkers that can predict PC aggressiveness and biomarkers that can predict response to certain therapies. We believe that novel biomarker research has the potential to make significant improvements to the clinical management of this disease in the near future.
Collapse
Affiliation(s)
- James Meehan
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Correspondence:
| | - Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK;
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Duncan McLaren
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh EH4 2XU, UK;
| | - Arran K. Turnbull
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
20
|
Li F, Yuan Q, Di W, Xia X, Liu Z, Mao N, Li L, Li C, He J, Li Y, Guo W, Zhang X, Zhu Y, Aji R, Wang S, Tong X, Ji H, Chi P, Carver B, Wang Y, Chen Y, Gao D. ERG orchestrates chromatin interactions to drive prostate cell fate reprogramming. J Clin Invest 2021; 130:5924-5941. [PMID: 32701507 DOI: 10.1172/jci137967] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Although cancer is commonly perceived as a disease of dedifferentiation, the hallmark of early-stage prostate cancer is paradoxically the loss of more plastic basal cells and the abnormal proliferation of more differentiated secretory luminal cells. However, the mechanism of prostate cancer proluminal differentiation is largely unknown. Through integrating analysis of the transcription factors (TFs) from 806 human prostate cancers, we found that ERG was highly correlated with prostate cancer luminal subtyping. ERG overexpression in luminal epithelial cells inhibited those cells' normal plasticity to transdifferentiate into a basal lineage, and ERG superseded PTEN loss, which favored basal differentiation. ERG KO disrupted prostate cell luminal differentiation, whereas AR KO had no such effects. Trp63 is a known master regulator of the prostate basal lineage. Through analysis of 3D chromatin architecture, we found that ERG bound and inhibited the enhancer activity and chromatin looping of a Trp63 distal enhancer, thereby silencing its gene expression. Specific deletion of the distal ERG binding site resulted in the loss of ERG-mediated inhibition of basal differentiation. Thus, ERG, in its fundamental role in lineage differentiation in prostate cancer initiation, orchestrated chromatin interactions and regulated prostate cell lineage toward a proluminal program.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuyue Yuan
- Center for Excellence in Mathematical Sciences (CEMS), National Center for Mathematics and Interdisciplinary Sciences (NCMIS), Key Laboratory of Management, Decision and Information Systems (MDIS)., Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, and.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wei Di
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Xia
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhuang Liu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ninghui Mao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lin Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunfeng Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan He
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunguang Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wangxin Guo
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yiqin Zhu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rebiguli Aji
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine and.,Department of Cell and Developmental Biology, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York, USA
| | - Brett Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yong Wang
- Center for Excellence in Mathematical Sciences (CEMS), National Center for Mathematics and Interdisciplinary Sciences (NCMIS), Key Laboratory of Management, Decision and Information Systems (MDIS)., Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, and.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine and.,Department of Cell and Developmental Biology, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York, USA
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Haffner MC, Zwart W, Roudier MP, True LD, Nelson WG, Epstein JI, De Marzo AM, Nelson PS, Yegnasubramanian S. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol 2021; 18:79-92. [PMID: 33328650 PMCID: PMC7969494 DOI: 10.1038/s41585-020-00400-w] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
From a clinical, morphological and molecular perspective, prostate cancer is a heterogeneous disease. Primary prostate cancers are often multifocal, having topographically and morphologically distinct tumour foci. Sequencing studies have revealed that individual tumour foci can arise as clonally distinct lesions with no shared driver gene alterations. This finding demonstrates that multiple genomically and phenotypically distinct primary prostate cancers can be present in an individual patient. Lethal metastatic prostate cancer seems to arise from a single clone in the primary tumour but can exhibit subclonal heterogeneity at the genomic, epigenetic and phenotypic levels. Collectively, this complex heterogeneous constellation of molecular alterations poses obstacles for the diagnosis and treatment of prostate cancer. However, advances in our understanding of intra-tumoural heterogeneity and the development of novel technologies will allow us to navigate these challenges, refine approaches for translational research and ultimately improve patient care.
Collapse
Affiliation(s)
- Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Pathology, University of Washington, Seattle, WA, USA,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Lawrence D. True
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - William G. Nelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan I. Epstein
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
22
|
Vlajnic T, Bubendorf L. Molecular pathology of prostate cancer: a practical approach. Pathology 2020; 53:36-43. [PMID: 33234230 DOI: 10.1016/j.pathol.2020.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
While localised prostate cancer can be cured by local treatment, 'high-risk' prostate cancer often progresses to castration resistant disease and remains incurable with a dismal prognosis. In recent years, technical advances and development of novel methodologies have largely contributed to a better understanding of underlying molecular mechanisms that promote tumour growth and progression. Consecutively, novel therapeutic strategies for treatment of prostate cancer have emerged during the last decade, calling for the identification of predictive biomarkers. The concept of personalised medicine is to tailor treatment according to the specific tumour profile of an individual patient. Moreover, acquired molecular changes during tumour evolution and in response to therapy selection pressure require adapted predictive marker testing at different time points during the disease. In this setting, the pathologist plays a critical role in patient management and treatment selection. In this review, we provide a comprehensive overview of the current knowledge of molecular aspects of prostate cancer and their potential utility in the context of different therapeutic approaches. Furthermore, we discuss methods for molecular marker testing in routine clinical practice, with a focus on castration resistant prostate cancer.
Collapse
Affiliation(s)
- Tatjana Vlajnic
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
23
|
Zong Y, Montironi R, Massari F, Jiang Z, Lopez-Beltran A, Wheeler TM, Scarpelli M, Santoni M, Cimadamore A, Cheng L. Intraductal Carcinoma of the Prostate: Pathogenesis and Molecular Perspectives. Eur Urol Focus 2020; 7:955-963. [PMID: 33132109 DOI: 10.1016/j.euf.2020.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 11/18/2022]
Abstract
Intraductal carcinoma of the prostate (IDC-P), a clinicopathological entity characterized by malignant prostatic epithelial cells growing within ducts and/or acini, has a distinct architectural pattern, cytological features, and biological behavior. Whereas most IDC-P tumors could be derived from adjacent high-grade invasive cancer via retrograde spreading of cancer cells along benign ducts and acini, a small subset of IDC-P may arise from the transformation and intraductal proliferation of precancerous cells induced by various oncogenic events. These isolated IDC-P tumors possess a distinct mutational profile and may function as a carcinoma in situ lesion with de novo intraductal outgrowth of malignant cells. Further molecular characterization of these two types of IDC-P and better understanding of the mechanisms underlying IDC-P formation and progression could be translated into valuable biomarkers for differential diagnosis and actionable targets for therapeutic interventions. PATIENT SUMMARY: Intraductal carcinoma of the prostate is an aggressive type of prostate cancer associated with high risk for local recurrence and distant metastasis. In this review, we discussed pathogenesis, biomarkers, differential diagnoses, and therapeutic strategies for this tumor.
Collapse
Affiliation(s)
- Yang Zong
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Francesco Massari
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zhong Jiang
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba University, Cordoba, Spain
| | - Thomas M Wheeler
- Department of Pathology and Laboratory Medicine, Baylor St. Luke's Medical Center, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
24
|
Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers. I. Molecular Biomarkers in Prostate Cancer. Am J Surg Pathol 2020; 44:e15-e29. [PMID: 32044806 DOI: 10.1097/pas.0000000000001450] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The combined clinical and molecular heterogeneity of prostate cancer necessitates the use of prognostic, predictive, and diagnostic biomarkers to assist the clinician with treatment selection. The pathologist plays a critical role in guiding molecular biomarker testing in prostate cancer and requires a thorough knowledge of the current testing options. In the setting of clinically localized prostate cancer, prognostic biomarkers such as Ki-67 labeling, PTEN loss or mRNA-based genomic signatures can be useful to help determine whether definitive therapy is required. In the setting of advanced disease, predictive biomarkers, such as the presence of DNA repair deficiency mediated by BRCA2 loss or mismatch repair gene defects, may suggest the utility of poly-ADP ribosylase inhibition or immune checkpoint blockade. Finally, androgen receptor-related biomarkers or diagnostic biomarkers indicating the presence of small cell neuroendocrine prostate cancer may help guide the use of androgen receptor signaling inhibitors and chemotherapy. In this review, we examine the current evidence for several prognostic, predictive and diagnostic tissue-based molecular biomarkers in prostate cancer management. For each assay, we summarize a recent survey of the International Society of Urology Pathology (ISUP) members on current testing practices and include recommendations for testing that emerged from the ISUP Working Group on Molecular Pathology of Prostate Cancer and the 2019 Consultation Conference on Molecular Pathology of Urogenital Cancers.
Collapse
|
25
|
The triphenyltin carboxylate derivative triphenylstannyl 2-(benzylcarbamoyl)benzoate impedes prostate cancer progression via modulation of Akt/FOXO3a signaling. Toxicol Appl Pharmacol 2020; 401:115091. [PMID: 32525019 DOI: 10.1016/j.taap.2020.115091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Prostate cancer (PCa) incidence is surging in United States and other parts of the world. Synthetic and natural compounds have been explored as potential modulators of PI3K/Akt signaling that is known to drive PCa growth. Here, we evaluated the efficacy of a series of triphenyltin (IV) carboxylate derivatives against PCa. From this library, triphenylstannyl 2-(benzylcarbamoyl)benzoate (Ch-319) resulted in reduced viability and induction of cell cycle arrest in PTEN-/- PC3M and PTEN+/- DU145 cells. In parallel, downregulation of PI3K p85/p110 subunits, dephosphorylation of Akt-1 and increase in FOXO3a expression were observed. In silico studies indicated binding interactions of Ch-319 within the ATP binding site of Akt-1 at Met281, Phe442 and Glu234 residues. Elevated po-pulation of apoptotic cells, activation of Bax and reduced Bcl2 expression indicated apoptosis by Ch-319. Pre-sensitization of PCa cells with Ch-319 augmented the effect of cabazitaxel, a commonly used taxane in patients with castration-resistant PCa. Next, in a prostate-specific PTENp-/- mice, Ch-319 showed reduced weights of genitourinary apparatus as compared to DMSO treated controls. Histological studies indicated absence of neoplastic foci in Ch-319 treated prostates. Consistently, dephosphorylation of Akt-1, reduced expression of PRAS40 and androgen receptor and increase in FOXO3a were observed in treated group. Notably, no overt organ toxicity was noted in Ch-319 treated animals. Our studies identify Akt/FOXO3a signaling as a target of triphenyltin (IV) carboxylate Ch-319 and provide a molecular basis of its growth inhibitory effect in PCa cells. We propose that Ch-319 has the potential to be developed as an anticancer agent against PCa.
Collapse
|
26
|
Hashim D, Gonzalez-Feliciano AG, Ahearn TU, Pettersson A, Barber L, Pernar CH, Ebot EM, Isikbay M, Finn SP, Giovannucci EL, Lis RT, Loda M, Parmigiani G, Lotan T, Kantoff PW, Mucci LA, Graff RE. Family history of prostate cancer and the incidence of ERG- and phosphatase and tensin homolog-defined prostate cancer. Int J Cancer 2020; 146:2694-2702. [PMID: 31318977 DOI: 10.1002/ijc.32577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023]
Abstract
Family history is among the strongest known risk factors for prostate cancer (PCa). Emerging data suggest molecular subtypes of PCa, including two somatic genetic aberrations: fusions of androgen-regulated promoters with ERG and, separately, phosphatase and tensin homolog (PTEN) loss. We examined associations between family history and incidence of these subtypes in 44,126 men from the prospective Health Professionals Follow-up Study. ERG and PTEN status were assessed by immunohistochemistry. Multivariable competing risks models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for associations between self-reported family history of PCa and molecular subtypes of disease. Thirteen percent of men had a positive family history of PCa at baseline. During a median follow-up of 18.5 years, 5,511 PCa cases were diagnosed. Among them, 888 were assayed for ERG status (47% ERG-positive) and 715 were assayed for PTEN loss (14% PTEN null). Family history was more strongly associated with risk of ERG-negative (HR: 2.15; 95% CI: 1.71-2.70) than ERG-positive (HR: 1.49; 95% CI: 1.13-1.95) disease (pheterogeneity : 0.04). The strongest difference was among men with an affected father (HRERG-negative : 2.09; 95% CI: 1.64-2.66; HRERG-positive : 1.30; 95% CI: 0.96-1.76; pheterogeneity : 0.01). Family history of PCa was positively associated with both PTEN null (HR: 2.10; 95% CI: 1.26-3.49) and PTEN intact (HR: 1.72; 95% CI: 1.39-2.13) PCa (pheterogeneity : 0.47). Our results indicate that PCa family history may be positively associated with PCa in all ERG and PTEN subtypes, suggesting a role of genetic susceptibility in their development. It is possible that ERG-negative disease could be especially associated with positive family history.
Collapse
Affiliation(s)
- Dana Hashim
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | | | - Thomas U Ahearn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Andreas Pettersson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lauren Barber
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Claire H Pernar
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Masis Isikbay
- Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Stephen P Finn
- Department of Histopathology, St. James's Hospital and Trinity College Dublin Medical School, Dublin, Ireland
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rosina T Lis
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Massimo Loda
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Giovanni Parmigiani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Tamara Lotan
- Department of Pathology, Johns Hopkins Bayview Medical Center, Baltimore, MD
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rebecca E Graff
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
27
|
Zhang J, Kim S, Li L, Kemp CJ, Jiang C, Lü J. Proteomic and transcriptomic profiling of Pten gene-knockout mouse model of prostate cancer. Prostate 2020; 80:588-605. [PMID: 32162714 PMCID: PMC7187266 DOI: 10.1002/pros.23972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The prostate-specific phosphatase and tensin homolog deleted on chromosome 10 (Pten) gene-conditional knockout (KO) mouse carcinogenesis model is highly desirable for studies of prostate cancer biology and chemoprevention due to its close resemblance of primary molecular defect and many histopathological features of human prostate cancer including androgen response and disease progression from prostatic intraepithelial neoplasia to invasive adenocarcinoma. Here, we profiled the proteome and transcriptome of the Pten-KO mouse prostate tumors for global macromolecular expression alterations for signaling changes and biomarker signatures. METHODS For proteomics, four pairs of whole prostates from tissue-specific conditional knockout Pten-KO mice (12-15 weeks of age) and their respective wild-type littermates housed in the same cages were analyzed by 8-plex isobaric tags for relative and absolute quantitation iTRAQ. For microarray transcriptomic analysis, three additional matched pairs of prostate/tumor specimens from respective mice at 20 to 22 weeks of age were used. Real-time quantitative reverse transcription-polymerase chain reaction was used to verify the trends of protein and RNA expression changes. Gene Set Enrichment Analysis and Ingenuity Pathway Analysis were carried out for bioinformatic characterizations of pathways and networks. RESULTS At the macromolecular level, proteomic and transcriptomic analyses complement and cross-validate to reveal overexpression signatures including inflammation and immune alterations, in particular, neutrophil/myeloid lineage suppressor cell features, chromatin/histones, ion and nutrient transporters, and select glutathione peroxidases and transferases in Pten-KO prostate tumors. Suppressed expression patterns in the Pten-KO prostate tumors included glandular differentiation such as secretory proteins and androgen receptor targets, smooth muscle features, and endoplasmic reticulum stress proteins. Bioinformatic analyses identified immune and inflammation responses as the most profound macromolecular landscape changes, and the predicted key nodal activities through Akt, nuclear factor-kappaB, and P53 in the Pten-KO prostate tumor. Comparison with other genetically modified mouse prostate carcinogenesis models revealed notable molecular distinctions, especially the dominance of immune and inflammation features in the Pten-KO prostate tumors. CONCLUSIONS Our work identified prominent macromolecular signatures and key nodal molecules that help to illuminate the patho- and immunobiology of Pten-loss driven prostate cancer and can facilitate the choice of biomarkers for chemoprevention and interception studies in this clinically relevant mouse prostate cancer model.
Collapse
Affiliation(s)
- Jinhui Zhang
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Sangyub Kim
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Li Li
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Christopher J Kemp
- Human Biology Division and Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Cheng Jiang
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Junxuan Lü
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
28
|
Mao N, Gao D, Hu W, Gadal S, Hieronymus H, Wang S, Lee YS, Sullivan P, Zhang Z, Choi D, Rosen N, Sawyers CL, Gopalan A, Chen Y, Carver BS. Oncogenic ERG Represses PI3K Signaling through Downregulation of IRS2. Cancer Res 2020; 80:1428-1437. [PMID: 32015092 DOI: 10.1158/0008-5472.can-19-1394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 11/16/2022]
Abstract
Genomic rearrangements leading to the aberrant expression of ERG are the most common early events in prostate cancer and are significantly enriched for the concomitant loss of PTEN. Genetically engineered mouse models reveal that ERG overexpression alone is not sufficient to induce tumorigenesis, but combined loss of PTEN results in an aggressive invasive phenotype. Here, we show that oncogenic ERG repressed PI3K signaling through direct transcriptional suppression of IRS2, leading to reduced RTK levels and activity. In accordance with this finding, ERG-positive human prostate cancers had a repressed AKT gene signature and transcriptional downregulation of IRS2. Although overexpression of IRS2 activated PI3K signaling, promoting cell migration in a PI3K-dependent manner, this did not fully recapitulate the phenotype seen with loss of PTEN as PI3K signaling is not as robust as observed in the setting of loss of PTEN. Importantly, deletions of the PTEN locus, which promotes active PI3K signaling, were among the most significant copy-number alterations that co-occurred with ERG genomic rearrangements. This work provides insight on how initiating oncogenic events may directly influence the selection of secondary concomitant alterations to promote oncogenic signaling during tumor evolution. SIGNIFICANCE: This work provides insight on how initiating oncogenic events may directly influence the selection of secondary concomitant alterations to promote tumorigenesis.
Collapse
Affiliation(s)
- Ninghui Mao
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dong Gao
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wenhuo Hu
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sunyana Gadal
- Molecular Oncology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Haley Hieronymus
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shangqian Wang
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Young Sun Lee
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrick Sullivan
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zeda Zhang
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Danielle Choi
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neal Rosen
- Molecular Oncology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles L Sawyers
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu Chen
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brett S Carver
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.,Division of Urology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
29
|
Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2020; 16:302-317. [PMID: 30962568 DOI: 10.1038/s41585-019-0178-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The accurate identification and stratified treatment of clinically significant early-stage prostate cancer have been ongoing concerns since the outcomes of large international prostate cancer screening trials were reported. The controversy surrounding clinical and cost benefits of prostate cancer screening has highlighted the lack of strategies for discriminating high-risk disease (that requires early treatment) from low-risk disease (that could be managed using watchful waiting or active surveillance). Advances in molecular subtyping and multiomics nanotechnology-based prostate cancer risk delineation can enable refinement of prostate cancer molecular taxonomy into clinically meaningful and treatable subtypes. Furthermore, the presence of intertumoural and intratumoural heterogeneity in prostate cancer warrants the development of novel nanodiagnostic technologies to identify clinically significant prostate cancer in a rapid, cost-effective and accurate manner. Circulating and urinary next-generation prostate cancer biomarkers for disease molecular subtyping and the newest complementary nanodiagnostic platforms for enhanced biomarker detection are promising tools for precision prostate cancer management. However, challenges in merging both aspects and clinical translation still need to be overcome.
Collapse
|
30
|
Němejcová K, Dundr P, Jakša R, Bártů M, Stružinská I, Hojný J, Hájková N, Kodet O. Comprehensive Analysis of PTEN in Primary Cutaneous Melanoma. Folia Biol (Praha) 2020; 66:7-16. [PMID: 32512654 DOI: 10.14712/fb2020066010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Phosphatase and tensin homologue (PTEN) is a tumour suppressor gene implicated in tumorigenesis of melanoma, with distinct cytoplasmic and nuclear functions. Cytoplasmic PTEN negatively regulates the PI3K/AKT/mTOR signalling pathway, while nuclear PTEN works as a tumour suppressor. Clinical data suggest that the loss of PTEN function in melanoma is associated with aggressive tumour behaviour. We performed a comprehensive analysis of PTEN in 112 primary cutaneous melanomas including immunohistochemical (IHC), fluorescent in situ hybridization (FISH), next-generation sequencing (NGS), and epigenetic analysis. The goal of our study was to: (a) correlate PTEN expression with selected clinico-pathological variables, and assess its prognostic significance; (b) correlate molecular aberrations with PTEN expression to consider the utility of immunohistochemical analysis of PTEN protein expression for screening PTEN genetic alterations; (c) review the literature and evaluate the PTEN expression level in melanoma with respect to possible therapeutic targeting. Our results showed that PTEN molecular alterations were present in 4/20 (20 %) cases with a loss of expression, 3/11 (27 %) cases with clonal-like expression, and 1/81 (1 %) cases with positive PTEN expression. No PTEN promoter methylation was found in any of the cases. Even though the value of our observation is limited by the low number of cases fully evaluated by IHC (112 cases), FISH (19 cases) and NGS (30 cases), our data suggest that IHC is not an appropriate method for the screening of PTEN genetic alterations. Our survival analysis suggests that patients with positive cytoplasmic PTEN expression show better disease-free survival (P < 0.05).
Collapse
Affiliation(s)
- K Němejcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - P Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - R Jakša
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - M Bártů
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - I Stružinská
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - J Hojný
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - N Hájková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - O Kodet
- Department of Dermatology and Venereology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, Czech Republic
| |
Collapse
|
31
|
Hinton JP, Dvorak K, Roberts E, French WJ, Grubbs JC, Cress AE, Tiwari HA, Nagle RB. A Method to Reuse Archived H&E Stained Histology Slides for a Multiplex Protein Biomarker Analysis. Methods Protoc 2019; 2:mps2040086. [PMID: 31731599 PMCID: PMC6960855 DOI: 10.3390/mps2040086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Archived Hematoxylin and Eosin (H&E) stained pathology slides are routinely stored to index formalin-fixed paraffin-embedded (FFPE) sample tissue blocks. FFPE blocks are clinically annotated human tumor specimens that can be valuable in studies decades after the tissue is collected. If stored properly, they have the potential to yield a valuable number of serial sectioned slides for diagnostic or research purposes. However, some retrospective studies are limited in scope because the tissue samples have been depleted or not enough material is available in stored blocks for serial sections. The goal of these studies was to determine if archived H&E-stained slides can be directly reutilized by optimizing methods to de-stain and then re-stain the H&E stained slides to allow the detection of several biomarkers of interest using a conjugated antibody with chromogen multiplex immunohistochemistry procedure. This simple but innovative procedure, combined with image analysis techniques, demonstrates the ability to perform precise detection of relevant markers correlated to disease progression in initially identified tumor regions in tissue. This may add clinical value in retaining H&E slides for further use.
Collapse
Affiliation(s)
- James P. Hinton
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ 85724, USA;
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Katerina Dvorak
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Esteban Roberts
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Wendy J. French
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Jon C. Grubbs
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Anne E. Cress
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ 85724, USA;
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
- Correspondence: ; Tel.: +1-520-626-7553
| | - Hina A. Tiwari
- Department of Medical Imaging, College of Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Raymond B. Nagle
- Department of Pathology, College of Medicine, the University of Arizona, Tucson, AZ 85724, USA;
| |
Collapse
|
32
|
Hu J, Han B, Huang J. Morphologic Spectrum of Neuroendocrine Tumors of the Prostate: An Updated Review. Arch Pathol Lab Med 2019; 144:320-325. [PMID: 31644322 DOI: 10.5858/arpa.2019-0434-ra] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
CONTEXT.— The incidence of neuroendocrine tumors of the prostate increases after hormonal therapy. Neuroendocrine tumors possess a broad spectrum of morphologic features and pose challenges in the pathologic diagnosis and clinical management of patients. OBJECTIVE.— To present a brief updated summary of neuroendocrine tumors of the prostate with an overview of their histopathologic and immunohistochemical profiles and differential diagnoses. DATA SOURCES.— Literature review, personal experience in the daily practice of pathologic diagnosis, and laboratory research. CONCLUSIONS.— Our understanding of neuroendocrine tumors of the prostate classification and diagnosis continues to evolve. These advances benefit the risk stratification and management of prostate cancer.
Collapse
Affiliation(s)
- Jing Hu
- From the Department of Pathology, Shandong University QiLu Hospital, Jinan, China (Drs Hu and Han); the Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, Jinan, China (Dr Han); and the Department of Pathology, Duke University School of Medicine, Durham, North Carolina (Dr Huang)
| | - Bo Han
- From the Department of Pathology, Shandong University QiLu Hospital, Jinan, China (Drs Hu and Han); the Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, Jinan, China (Dr Han); and the Department of Pathology, Duke University School of Medicine, Durham, North Carolina (Dr Huang)
| | - Jiaoti Huang
- From the Department of Pathology, Shandong University QiLu Hospital, Jinan, China (Drs Hu and Han); the Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, Jinan, China (Dr Han); and the Department of Pathology, Duke University School of Medicine, Durham, North Carolina (Dr Huang)
| |
Collapse
|
33
|
Hamid AA, Gray KP, Huang Y, Bowden M, Pomerantz M, Loda M, Sweeney CJ. Loss of PTEN Expression Detected by Fluorescence Immunohistochemistry Predicts Lethal Prostate Cancer in Men Treated with Prostatectomy. Eur Urol Oncol 2019; 2:475-482. [DOI: 10.1016/j.euo.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/09/2018] [Indexed: 01/10/2023]
|
34
|
Shah RB, Shore KT, Yoon J, Mendrinos S, McKenney JK, Tian W. PTEN loss in prostatic adenocarcinoma correlates with specific adverse histologic features (intraductal carcinoma, cribriform Gleason pattern 4 and stromogenic carcinoma). Prostate 2019; 79:1267-1273. [PMID: 31111513 DOI: 10.1002/pros.23831] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The loss of PTEN tumor suppressor gene is one of the most common somatic genetic aberrations in prostate cancer (PCa) and is frequently associated with high-risk disease. Deletion or mutation of at least one PTEN allele has been reported to occur in 20% to 40% of localized PCa and up to 60% of metastases. The goal of this study was to determine if somatic alteration detected by PTEN immunohistochemical loss of expression is associated with specific histologic features. METHODS Two hundred sixty prostate core needle biopsies with PCa were assessed for PTEN loss using an analytically validated immunohistochemical assay. Blinded to PTEN status, each tumor was assessed for the Grade Group (GG) and the presence or absence of nine epithelial features. Presence of stromogenic PCa was also assessed and defined as grade 3 reactive tumor stroma as previously described: the presence of carcinoma associated stromal response with epithelial to stroma ratio of greater than 50% reactive stroma. RESULTS Eight-eight (34%) cases exhibited PTEN loss while 172 (66%) had intact PTEN. PTEN loss was significantly (P < 0.05) associated with increasing GG, poorly formed glands (74% of total cases with loss vs 49% of intact), and three well-validated unfavorable pathological features: intraductal carcinoma of the prostate (IDC-P) (69% of total cases with loss vs 12% of intact), cribriform Gleason pattern 4 (38% of total cases with loss vs 10% of intact) and stromogenic PCa (23% of total cases with loss vs 6% of intact). IDC-P had the highest relative risk (4.993, 95% confidence interval, 3.451-7.223, P < 0.001) for PTEN loss. At least one of these three unfavorable pathological features were present in 67% of PCa exhibiting PTEN loss, while only 11% of PCa exhibited PTEN loss when none of these three unfavorable pathological features were present. CONCLUSIONS PCa with PTEN loss demonstrates a strong correlation with known unfavorable histologic features, particularly IDC-P. This is the first study showing the association of PTEN loss with stromogenic PCa.
Collapse
Affiliation(s)
- Rajal B Shah
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Karen T Shore
- Weiss School of Natural Sciences, Rice University, Houston, Texas
| | - Jiyoon Yoon
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
| | - Savvas Mendrinos
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
| | - Jesse K McKenney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Wei Tian
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
| |
Collapse
|
35
|
Hernández-Llodrà S, Segalés L, Safont A, Juanpere N, Lorenzo M, Fumadó L, Rodríguez-Vida A, Cecchini L, Bellmunt J, Lloreta-Trull J. SPOP and FOXA1 mutations are associated with PSA recurrence in ERG wt tumors, and SPOP downregulation with ERG-rearranged prostate cancer. Prostate 2019; 79:1156-1165. [PMID: 31090082 DOI: 10.1002/pros.23830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND ERG fusion-related prostate cancer (PrCa) is the most prevalent oncogenic driver subclass. SPOP, FOXA1, and IDH1 mutations are other three main oncogenic driver subclasses in non-ETS-fusion PrCa. ERG protein levels seem to be increased in SPOP-mutated cases, and different studies reported that SPOP mutations and ERG fusions are mutually exclusive. The aim of this study has been to analyze the alterations in non-ETS-oncogenic drivers in PrCa. METHODS SPOP, FOXA1, and IDH mutations were investigated by polymerase chain reaction (PCR) and Sanger direct sequencing. ERG, SPOP, and TMPRSS2-ERG messenger RNA expression was assessed by quantitative real-time PCR from complementary DNA, and the presence of the fusion was also analyzed by nonquantitative PCR. The clinical pathological features were retrieved from the charts of the 111 patients included in the study (MARBiobanc, Barcelona, Spain). RESULTS Loss of SPOP expression (25.2%) was associated with ERG overexpression (P = 0.0036). SPOP mutations were found in 5.4% cases, all with wild-type (wt) ERG (P = 0.007). FOXA1 mutations were found in 8.2% cases, most of them ERG wt (P = 0.06). No IDH1 mutations were found. SPOP or FOXA1 mutations were found in 1.7% of ERG-rearranged, and 34.2% of non-ERG-rearranged cases (P < 0.0001). SPOP or FOXA1 alterations (mutations or expression loss) were significantly more common in GG5, while isolated ERG overexpression was more common in GG1 tumors (P = 0.042). SPOP-or FOXA1-mutated cases were associated with a shorter time to prostate-specific antigen (PSA) recurrence in the univariate (P = 0.0009), and with the PSA recurrence risk in the multivariate (P = 0.023) analysis. CONCLUSIONS In conclusion, SPOP and FOXA1 mutations may have prognostic value in ERG wt tumors. Interestingly, in absence of SPOP mutations, downregulation of this gene is a feature of many ERG-rearranged prostate tumors.
Collapse
Affiliation(s)
| | - Laura Segalés
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ainara Safont
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nuria Juanpere
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Marta Lorenzo
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Lluís Fumadó
- Department of Urology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Alejo Rodríguez-Vida
- Department of Oncology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Lluís Cecchini
- Department of Urology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Joaquim Bellmunt
- IMIM-Hospital del Mar Research Institute, Barcelona, Spain
- Harvard Medical School, Boston, Massachusetts
| | - Josep Lloreta-Trull
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| |
Collapse
|
36
|
Immunohistochemical expression of mismatch repair proteins (MSH2, MSH6, MLH1, and PMS2) in prostate cancer: correlation with grade groups (WHO 2016) and ERG and PTEN status. Virchows Arch 2019; 475:223-231. [DOI: 10.1007/s00428-019-02591-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/05/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
|
37
|
Wang X, Qi M, Zhang J, Sun X, Guo H, Pang Y, Zhang Q, Chen X, Zhang R, Liu Z, Liu L, Hao X, Han B. Differential response to neoadjuvant hormonal therapy in prostate cancer: Predictive morphological parameters and molecular markers. Prostate 2019; 79:709-719. [PMID: 30825345 DOI: 10.1002/pros.23777] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The predictive value of the histological parameters and molecular markers for neoadjuvant hormonal therapy (NHT) in prostate cancer (PCa) has not been well established. The aim of this study is to determine pathological variables that can predict differences in response to NHT in PCa. METHODS A total of 85 locally high risk PCa patients with matched preoperative needle biopsies and radical prostatectomy (RP) specimens were included. All patients were treated with NHT for at least 3 months. We quantified the response to NHT using a new proposed pathological grading system. The system classified tumors into five groups (grades 0-4) according to the severity of histological response. We then categorized the PCa patients into drug-sensitive (DS) group (Grades 2-4) and drug-resistant (DR) group (Grades 0-1). Two pathologists assessed each pretreated tumors for presence or absence of nine morphological features. The expression of androgen receptor (AR), ERG, and PTEN were evaluated by immunohistochemistry (IHC) as well. Statistical analysis was performed to identify significant associations between differentially histological response to NHT and morphological features as well as molecular aberrations. We evaluated different prediction models using receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) analysis. RESULTS 73% (n = 62/85) of tumors in our cohort belonged to DS group, whereas 27% (n = 23/85) of tumors were DR. Univariate logistic analysis suggested four pathological variables, cribriform growth pattern, macronucleoli, ductal adenocarcinoma differentiation, and PTEN loss in needle biopsies were significantly associated with DR effect, all with P-value < 0.05. Multivariate logistic regression analysis revealed that the three parameters as significant predictive factors for predicting DR effect. These were macronucleoli (RR = 4.008, P = 0.002), ductal adenocarcinoma differentiation (RR = 11.659, P = 0.009) and PTEN loss expression (RR = 7.275, P = 0.015). The AUC of three integrated indicators model was 0.781. CONCLUSIONS Our study suggested that the presence of tumor cribriform growth pattern, macronucleoli, ductal adenocarcinoma differentiation, and PTEN loss in needle biopsies are of value in predicting tumor response to NHT regimen. Multivariate logistic regression analysis revealed the performance of combined pathological indicators in predicting DR response was better than that of model based on individual factor alone.
Collapse
Affiliation(s)
- Xueli Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, Jinan, China
- Department of Pathology, Binzhou City Central Hospital, Binzhou, China
| | - Mei Qi
- Department of Pathology, Shandong University QiLu Hospital, Jinan, China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiubin Sun
- Department of Statistics, Shandong University, School of Public Health, Jinan, China
| | - Hongwei Guo
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Yu Pang
- Department of Pathology, Taian City Central Hospital, Taian, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University, Binzhou, China
| | - Xinyi Chen
- Department of Pathology, Qingdao Central Hospital of Qingdao University Medical College, Qingdao, China
| | - Ruifeng Zhang
- Department of Pathology, Traditional Chinese Medical Hospital of Xintai, Taian, China
| | - Zhiyan Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, Jinan, China
- Department of Pathology, Shandong University QiLu Hospital, Jinan, China
| | - Long Liu
- Department of Pathology, Shandong University QiLu Hospital, Jinan, China
| | - Xiaomeng Hao
- Department of Pathology, Shandong University QiLu Hospital, Jinan, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, Jinan, China
- Department of Pathology, Shandong University QiLu Hospital, Jinan, China
| |
Collapse
|
38
|
Segalés L, Juanpere N, Lorenzo M, Albero-González R, Fumadó L, Cecchini L, Bellmunt J, Lloreta-Trull J, Hernández-Llodrà S. Strong cytoplasmic ETV1 expression has a negative impact on prostate cancer outcome. Virchows Arch 2019; 475:457-466. [DOI: 10.1007/s00428-019-02573-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 04/04/2019] [Indexed: 01/28/2023]
|
39
|
Hernández G, Ramírez JL, Pedroza-Torres A, Herrera LA, Jiménez-Ríos MA. The Secret Life of Translation Initiation in Prostate Cancer. Front Genet 2019; 10:14. [PMID: 30761182 PMCID: PMC6363655 DOI: 10.3389/fgene.2019.00014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most prevalent cancer in men worldwide. Despite the advances understanding the molecular processes driving the onset and progression of this disease, as well as the continued implementation of screening programs, PCa still remains a significant cause of morbidity and mortality, in particular in low-income countries. It is only recently that defects of the translation process, i.e., the synthesis of proteins by the ribosome using a messenger (m)RNA as a template, have begun to gain attention as an important cause of cancer development in different human tissues, including prostate. In particular, the initiation step of translation has been established to play a key role in tumorigenesis. In this review, we discuss the state-of-the-art of three key aspects of protein synthesis in PCa, namely, misexpression of translation initiation factors, dysregulation of the major signaling cascades regulating translation, and the therapeutic strategies based on pharmacological compounds targeting translation as a novel alternative to those based on hormones controlling the androgen receptor pathway.
Collapse
Affiliation(s)
- Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer, Mexico City, Mexico
| | - Jorge L. Ramírez
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer, Mexico City, Mexico
| | - Abraham Pedroza-Torres
- Cátedra-CONACyT Program, Hereditary Cancer Clinic, National Institute of Cancer, Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, The National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
40
|
Al Bashir S, Alzoubi A, Alfaqih MA, Kheirallah K, Smairat A, Haddad H, Al-Dwairy A, Fawwaz BAB, Alzoubi M, Trpkov K. PTEN Loss in a Prostate Cancer Cohort From Jordan. Appl Immunohistochem Mol Morphol 2019; 28:389-394. [PMID: 30614821 DOI: 10.1097/pai.0000000000000732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Deletion of phosphatase and tensin homolog (PTEN) in prostate cancer has been associated with early biochemical recurrence, increased metastatic potential, and androgen independence. We evaluated the status of PTEN loss in a cohort of prostate cancer patients from Jordan. We investigated 71 patients with prostate cancer and 52 control subjects with benign prostatic hyperplasia (BPH). PTEN status was assessed by immunohistochemistry. PTEN mutations on exons 1, 2, 5, and 8 were also evaluated by polymerase chain reaction single-stranded conformation polymorphism (PCR-SSCP). We found PTEN loss in 42 of 71 (59.2%) evaluated prostate cancer cases by immunohistochemistry. In contrast, 51 of 52 BPH (98.1%) cases had an intact PTEN. In a subset of 24 prostate cancer cases evaluated by PCR-SSCP, we found PTEN mutations in 15 (62.5%) cases, whereas 22 (91.7%) of BPH controls lacked PTEN mutations. Exon 5 was the most frequently mutated exon (37.5%). Although the loss of PTEN was not significantly correlated with the Gleason Score (GS) or the World Health Organization (WHO)-International Society of Urological Pathology (ISUP) Grade Group (GG), we found higher frequency of PTEN loss (64%) in patients with GS≥4+3/GG≥3, compared with patients with GS≤3+4/GG≤2 (47.6%). In this first study to address the question of PTEN loss in a predominantly Arab population, we documented the frequency of PTEN loss in prostate cancer patients from Jordan, which was found to be higher than in comparable cohorts from East Asia, and was at the higher end of the range of reported frequency of PTEN loss in respective cohorts from North America and Western Europe. Although there was more frequent PTEN loss in cancers with higher GS/GG, this was not statistically significant.
Collapse
Affiliation(s)
| | | | | | - Khalid Kheirallah
- Public Health and Community Medicine, Faculty of Medicine, Jordan University of Science and Technology
| | | | | | | | | | - Mazhar Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
41
|
Bramhecha YM, Rouzbeh S, Guérard KP, Scarlata E, Brimo F, Chevalier S, Hamel L, Aprikian AG, Lapointe J. The combination of PTEN deletion and 16p13.3 gain in prostate cancer provides additional prognostic information in patients treated with radical prostatectomy. Mod Pathol 2019; 32:128-138. [PMID: 30140035 DOI: 10.1038/s41379-018-0107-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/16/2018] [Accepted: 06/16/2018] [Indexed: 12/17/2022]
Abstract
Prostate cancer is a clinically heterogeneous disease and accurately risk-stratifying patients is a key clinical challenge. We hypothesized that the concurrent identification of the DNA copy number alterations 10q23.3 (PTEN) deletion and 16p13.3 (PDPK1) gain, related to the PI3K/AKT survival pathway, would improve prognostication. We assessed PTEN deletion status using fluorescence in situ hybridization (FISH) and evaluated its clinical significance in combination with the 16p13.3 gain in a set of 332 primary radical prostatectomy cases on a tissue microarray with clinical follow-up. The PTEN deletion was detected in 34% (97/287) of the evaluable tumors and was significantly associated with high Gleason grade group (P < 0.0001) and advanced pathological tumor stage (pT-stage, P < 0.001). The PTEN deletion emerged as a significant predictor of biochemical recurrence independent of the standard clinicopathologic parameters (hazard ratio: 3.00, 95% confidence interval: 1.81-4.98; P < 0.0001) and further stratified patients with low and intermediate risk of biochemical recurrence [Gleason grade group 1-2 (≤3 + 4), Gleason grade group 2 (3 + 4), pT2, prostate-specific antigen ≤ 10, low and intermediate CAPRA-S score; log-rank P ≤ 0.007]. A PTEN deletion also increased the risk of distant metastasis (log-rank, P = 0.001), further supporting its role in prostate cancer progression. Combining both 16p13.3 gain and PTEN deletion improved biochemical recurrence risk stratification and provided prognostic information beyond the established CAPRA-S score (co-alteration: hazard ratio: 4.70, 95% confidence interval: 2.12-10.42; P < 0.0001). Our study demonstrates the potential clinical utility of PTEN genomic deletion in low-intermediate risk patients and highlights the enhanced prognostication achieved when assessed in combination with another genomic biomarker related to the PI3K/AKT pathway, thereby supporting their promising usefulness in clinical management of prostate cancer.
Collapse
Affiliation(s)
- Yogesh M Bramhecha
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Shaghayegh Rouzbeh
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Karl-Philippe Guérard
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Eleonora Scarlata
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Simone Chevalier
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Lucie Hamel
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Armen G Aprikian
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jacques Lapointe
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada. .,Division of Experimental Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
42
|
Islam MA, Xu Y, Tao W, Ubellacker JM, Lim M, Aum D, Lee GY, Zhou K, Zope H, Yu M, Cao W, Oswald JT, Dinarvand M, Mahmoudi M, Langer R, Kantoff PW, Farokhzad OC, Zetter BR, Shi J. Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nat Biomed Eng 2018; 2:850-864. [PMID: 31015614 PMCID: PMC6486184 DOI: 10.1038/s41551-018-0284-0] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/30/2018] [Indexed: 01/06/2023]
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a well-characterized tumour-suppressor gene that is lost or mutated in about half of metastatic castration-resistant prostate cancers and in many other human cancers. The restoration of functional PTEN as a treatment for prostate cancer has, however, proven difficult. Here, we show that PTEN messenger RNA (mRNA) can be reintroduced into PTEN-null prostate cancer cells in vitro and in vivo via its encapsulation in polymer-lipid hybrid nanoparticles coated with a polyethylene glycol shell. The nanoparticles are stable in serum, elicit low toxicity and enable high PTEN mRNA transfection in prostate cancer cells. Moreover, significant inhibition of tumour growth is achieved when delivered systemically in multiple mouse models of prostate cancer. We also show that the restoration of PTEN function in PTEN-null prostate cancer cells inhibits the phosphatidylinositol 3-kinase (PI3K)-AKT pathway and enhances apoptosis. Our findings provide proof-of-principle evidence of the restoration of mRNA-based tumour suppression in vivo.
Collapse
Affiliation(s)
- Mohammad Ariful Islam
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Oncology Division, Immunomic Therapeutics, Inc., Rockville, MD, USA
| | - Yingjie Xu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessalyn M Ubellacker
- Hematology Division, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Michael Lim
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Nanotechnology Engineering Program, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel Aum
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gha Young Lee
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kun Zhou
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harshal Zope
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mikyung Yu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wuji Cao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Nanotechnology Engineering Program, University of Waterloo, Waterloo, Ontario, Canada
| | - James Trevor Oswald
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Nanotechnology Engineering Program, University of Waterloo, Waterloo, Ontario, Canada
| | - Meshkat Dinarvand
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Bruce R Zetter
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Association of ERG/PTEN status with biochemical recurrence after radical prostatectomy for clinically localized prostate cancer. Med Oncol 2018; 35:152. [PMID: 30291535 DOI: 10.1007/s12032-018-1212-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
We have previously demonstrated a significant correlative relationship between PTEN deletion and ERG rearrangement, both in the development of clinically localized prostate cancers and metastases. Herein, we evaluate the cooperative role of ERG and PTEN in oncological outcomes after radical prostatectomy for clinically localized prostate cancer. We evaluated ERG and PTEN status using three previously described cohorts. The first cohort included 235 clinically localized prostate cancer cases represented on tissue microarrays (TMA), evaluated using previously validated FISH assays for ERG and PTEN. The second cohort included 167 cases of clinically localized prostate cancer on TMAs evaluated for PTEN by FISH, and for PTEN and ERG by dual IHC. The third cohort comprised 59 clinically localized prostate cancer cases assessed by array comparative genomic hybridization (aCGH). Kaplan-Meir plots and long rank tests were used to assess the association of ERG and PTEN status with biochemical recurrence after radical prostatectomy for clinically localized prostate cancer. Of the 317 cases eligible for analyses with evaluable ERG and PTEN status, 88 (27.8%) patients developed biochemical recurrence over a median follow-up of 5.7 years. Overall, 45% (142/317) of cases demonstrated ERG rearrangement and 20% (62/317) of cases demonstrated PTEN loss. Hemizygous and homozygous deletion of PTEN was seen in 10% (18/175) and 3% (5/175) of ERG-negative cases, respectively. In contrast, hemizygous and homozygous deletion of PTEN was seen in 11% (15/142) and 17% (24/123) of ERG-positive cases, respectively. PTEN loss (heterozygous or homozygous) was significantly associated with shorter time to biochemical recurrence compared to no PTEN loss (p < 0.001). However, ERG rearrangement versus no rearrangement was not associated with time to PSA recurrence (p = 0.15). Patients who exhibited ERG rearrangement and loss of PTEN had no significant difference in time to recurrence compared to patients with wild-type ERG and loss of PTEN (p = 0.30). Our findings confirm a mutual cooperative role of ERG and PTEN in the pathogenesis of prostate cancer, particularly for homozygous PTEN deletion. ERG did not stratify outcome either alone or in combination with PTEN in this cohort.
Collapse
|
44
|
Ong CW, Maxwell P, Alvi MA, McQuaid S, Waugh D, Mills I, Salto‐Tellez M. A gene signature associated with PTEN activation defines good prognosis intermediate risk prostate cancer cases. J Pathol Clin Res 2018; 4:103-113. [PMID: 29665325 PMCID: PMC5903700 DOI: 10.1002/cjp2.94] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/05/2017] [Accepted: 01/13/2018] [Indexed: 12/17/2022]
Abstract
Accurate identification of intermediate risk (Gleason 3 + 4 = 7) prostate cancer patients with low risk of disease progression is an unmet challenge in treatment decision making. Here we describe a gene signature that could guide clinicians in the selection of patients with intermediate stage clinically localized prostate cancer for active surveillance. We examined six major drivers of aggressive disease - PTEN, MYC, RB1, TP53, AURKA, AR - by immunohistochemistry in a focused (N = 69) cohort predominantly consisting of intermediate risk prostate cancer. Fuzzy clustering and unsupervised hierarchical clustering were utilized to determine the correlation of gene expression and methylation values with immunohistochemical expression. From the immunohistochemistry observation, we found that intermediate risk prostate cancer cases could be classified as 'complex' (differential expression of more than one driver) or 'simple' (differential expression of only one). Focussing on the 'simple' cases, expression and methylation profiling generated signatures which correlated tightly only with differential PTEN expression and not with any of the other drivers assessed by immunohistochemistry. From this, we derived a geneset of 35 genes linked to high PTEN expression. Subsequently we determined its prognostic significance in intermediate-risk cases extracted from three publicly available clinical datasets (Total N = 215). Hence, this study shows that, by using immunohistochemistry as an upfront stratifier of intermediate risk prostate cancers, it is possible to identify through differential gene expression profiling a geneset with prognostic power across multiple cohorts. This strategy has not been used previously and the signature has the potential to impact on treatment decisions in patients for whom decision making is currently empirical at best.
Collapse
Affiliation(s)
- Chee W Ong
- Movember FASTMAN Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University BelfastNorthern Ireland, UK
| | - Pamela Maxwell
- Movember FASTMAN Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University BelfastNorthern Ireland, UK
| | - Muhammad A Alvi
- Movember FASTMAN Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University BelfastNorthern Ireland, UK
| | - Stephen McQuaid
- Movember FASTMAN Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University BelfastNorthern Ireland, UK
| | - David Waugh
- Movember FASTMAN Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University BelfastNorthern Ireland, UK
| | - Ian Mills
- Movember FASTMAN Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University BelfastNorthern Ireland, UK
| | - Manuel Salto‐Tellez
- Movember FASTMAN Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University BelfastNorthern Ireland, UK
| |
Collapse
|
45
|
PTEN Expression in Mucinous Prostatic Adenocarcinoma, Prostatic Adenocarcinoma With Mucinous Features, and Adjacent Conventional Prostatic Adenocarcinoma: A Multi-institutional Study of 92 Cases. Appl Immunohistochem Mol Morphol 2018; 26:225-230. [DOI: 10.1097/pai.0000000000000417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Perdomo HAG, Zapata-Copete JA, Sanchez A. Molecular alterations associated with prostate cancer. Cent European J Urol 2018; 71:168-176. [PMID: 30038806 PMCID: PMC6051361 DOI: 10.5173/ceju.2018.1583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 03/16/2018] [Indexed: 01/07/2023] Open
Abstract
Introduction The amount of information and knowledge about pathways and genetic alterations regarding prostate cancer, including the tools available for its study has been recently increasing. Additionally, a variety of molecular signaling pathways control cell proliferation, however, this incompletely understood process is disturbed in cancer cells. Materials and methods A literature review was made using the MEDLINE, Embase and LILACS databases searching for the following keywords: prostate neoplasms, prostate cancer, molecular medicine, genomics, pathways, and cell cycle. Results Different biological mechanisms have been associated with the development of prostate cancer, such as alterations in tumor suppressor genes, oncogenes (TP53, RB1, among others) and CDKIs; DNA methylation; chromosomal alterations and rearrangements; changes in PTEN and PI3K / mTOR; global defects in apoptosis; alterations in the androgen receptor (AR); and epigenetic mechanisms. Conclusions Good clinical practice and a practical approach have to be based on basic knowledge, thus, in this article, the main genetic alterations, mutations and pathways involved in prostate cancer development were reviewed.
Collapse
Affiliation(s)
| | | | - Adalberto Sanchez
- School of Basic Sciences, Department of Physiological Sciences at Universidad del Valle, Cali, Colombia
| |
Collapse
|
47
|
Feng S, Shao L, Castro P, Coleman I, Nelson PS, Smith PD, Davies BR, Ittmann M. Combination treatment of prostate cancer with FGF receptor and AKT kinase inhibitors. Oncotarget 2018; 8:6179-6192. [PMID: 28008155 PMCID: PMC5351622 DOI: 10.18632/oncotarget.14049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/13/2016] [Indexed: 12/25/2022] Open
Abstract
Activation of the PI3K/AKT pathway occurs in the vast majority of advanced prostate cancers (PCas). Activation of fibroblast growth factor receptor (FGFR) signaling occurs in a wide variety of malignancies, including PCa. RNA-Seq of castration resistant PCa revealed expression of multiple FGFR signaling components compatible with FGFR signaling in all cases, with multiple FGF ligands expressed in 90% of cases. Immunohistochemistry confirmed FGFR signaling in the majority of xenografts and advanced PCas. AZD5363, an AKT kinase inhibitor and AZD4547, a FGFR kinase inhibitor are under active clinical development. We therefore sought to determine if these two drugs have additive effects in PCa models. The effect of both agents, singly and in combination was evaluated in a variety of PCa cell lines in vitro and in vivo. All cell lines tested responded to both drugs with decreased invasion, soft agar colony formation and growth in vivo, with additive effects seen with combination treatment. Activation of the FGFR, AKT, ERK and STAT3 pathways was examined in treated cells. AZD5363 inhibited AKT signaling and increased FGFR1 signaling, which partially compensated for decreased AKT kinase activity. While AZD4547 could effectively block the ERK pathway, combination treatment was needed to completely block STAT3 activation. Thus combination treatment with AKT and FGFR kinase inhibitors have additive effects on malignant phenotypes in vitro and in vivo by inhibiting multiple signaling pathways and mitigating the compensatory upregulation of FGFR signaling induced by AKT kinase inhibition. Our studies suggest that co-targeting these pathways may be efficacious in advanced PCa.
Collapse
Affiliation(s)
- Shu Feng
- Department of Pathology and Immunology, Baylor College of Medicine and Michael E. DeBakey Department of Veterans Affairs Medical Center Baylor College of Medicine, Houston, 77030, TX, USA
| | - Longjiang Shao
- Department of Pathology and Immunology, Baylor College of Medicine and Michael E. DeBakey Department of Veterans Affairs Medical Center Baylor College of Medicine, Houston, 77030, TX, USA
| | - Patricia Castro
- Department of Pathology and Immunology, Baylor College of Medicine and Michael E. DeBakey Department of Veterans Affairs Medical Center Baylor College of Medicine, Houston, 77030, TX, USA
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Paul D Smith
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Barry R Davies
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine and Michael E. DeBakey Department of Veterans Affairs Medical Center Baylor College of Medicine, Houston, 77030, TX, USA
| |
Collapse
|
48
|
Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, Lotan TL. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 2018; 15:222-234. [PMID: 29460925 DOI: 10.1038/nrurol.2018.9] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genomic aberrations of the PTEN tumour suppressor gene are among the most common in prostate cancer. Inactivation of PTEN by deletion or mutation is identified in ∼20% of primary prostate tumour samples at radical prostatectomy and in as many as 50% of castration-resistant tumours. Loss of phosphatase and tensin homologue (PTEN) function leads to activation of the PI3K-AKT (phosphoinositide 3-kinase-RAC-alpha serine/threonine-protein kinase) pathway and is strongly associated with adverse oncological outcomes, making PTEN a potentially useful genomic marker to distinguish indolent from aggressive disease in patients with clinically localized tumours. At the other end of the disease spectrum, therapeutic compounds targeting nodes in the PI3K-AKT-mTOR (mechanistic target of rapamycin) signalling pathway are being tested in clinical trials for patients with metastatic castration-resistant prostate cancer. Knowledge of PTEN status might be helpful to identify patients who are more likely to benefit from these therapies. To enable the use of PTEN status as a prognostic and predictive biomarker, analytically validated assays have been developed for reliable and reproducible detection of PTEN loss in tumour tissue and in blood liquid biopsies. The use of clinical-grade assays in tumour tissue has shown a robust correlation between loss of PTEN and its protein as well as a strong association between PTEN loss and adverse pathological features and oncological outcomes. In advanced disease, assessing PTEN status in liquid biopsies shows promise in predicting response to targeted therapy. Finally, studies have shown that PTEN might have additional functions that are independent of the PI3K-AKT pathway, including those affecting tumour growth through modulation of the immune response and tumour microenvironment.
Collapse
Affiliation(s)
- Tamara Jamaspishvili
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David M Berman
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ashley E Ross
- Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy A Squire
- Department of Pathology and Legal Medicine, University of Sao Paulo, Campus Universitario Monte Alegre, Ribeirão Preto, Brazil
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
49
|
Shao L, Wang J, Karatas OF, Feng S, Zhang Y, Creighton CJ, Ittmann M. Fibroblast growth factor receptor signaling plays a key role in transformation induced by the TMPRSS2/ERG fusion gene and decreased PTEN. Oncotarget 2018; 9:14456-14471. [PMID: 29581856 PMCID: PMC5865682 DOI: 10.18632/oncotarget.24470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/03/2018] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the most common visceral malignancy and the second leading cause of cancer deaths in US men. Correlative studies in human prostate cancers reveal a frequent association of the TMPRSS2/ERG (TE) fusion gene with loss of PTEN and studies in mouse models reveal that ERG expression and PTEN loss synergistically promote prostate cancer progression. To determine the mechanism by which ERG overexpression and PTEN loss leads to transformation, we overexpressed the TE fusion gene and knocked down PTEN in an immortalized but non-transformed prostate epithelial cell line. We show that ERG overexpression in combination with PTEN loss can transform these immortalized but non-tumorigenic cells, while either alteration alone was not sufficient to fully transform these cells. Expression microarray analysis revealed extensive changes in gene expression in cells expressing the TE fusion with loss of PTEN. Among these gene expression changes was increased expression of multiple FGF ligands and receptors. We show that activation of fibroblast growth factor receptor signaling plays a key role in transformation induced by TE fusion gene expression in association with PTEN loss. In addition, in vitro and in silico analysis reveals PTEN loss is associated with widespread increases in FGF ligands and receptors in prostate cancer. Inhibitors of FGF receptor signaling are currently entering the clinic and our results suggests that FGF receptor signaling is a therapeutic target in cancers with TE fusion gene expression and PTEN loss.
Collapse
Affiliation(s)
- Longjiang Shao
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Jianghua Wang
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Omer Faruk Karatas
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Shu Feng
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Yiqun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael Ittmann
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| |
Collapse
|
50
|
Chen M, Zhang J, Sampieri K, Clohessy JG, Mendez L, Gonzalez-Billalabeitia E, Liu XS, Lee YR, Fung J, Katon JM, Menon AV, Webster KA, Ng C, Palumbieri MD, Diolombi MS, Breitkopf SB, Teruya-Feldstein J, Signoretti S, Bronson RT, Asara JM, Castillo-Martin M, Cordon-Cardo C, Pandolfi PP. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat Genet 2018; 50:206-218. [PMID: 29335545 DOI: 10.1038/s41588-017-0027-2] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/01/2017] [Indexed: 12/15/2022]
Abstract
Lipids, either endogenously synthesized or exogenous, have been linked to human cancer. Here we found that PML is frequently co-deleted with PTEN in metastatic human prostate cancer (CaP). We demonstrated that conditional inactivation of Pml in the mouse prostate morphs indolent Pten-null tumors into lethal metastatic disease. We identified MAPK reactivation, subsequent hyperactivation of an aberrant SREBP prometastatic lipogenic program, and a distinctive lipidomic profile as key characteristic features of metastatic Pml and Pten double-null CaP. Furthermore, targeting SREBP in vivo by fatostatin blocked both tumor growth and distant metastasis. Importantly, a high-fat diet (HFD) induced lipid accumulation in prostate tumors and was sufficient to drive metastasis in a nonmetastatic Pten-null mouse model of CaP, and an SREBP signature was highly enriched in metastatic human CaP. Thus, our findings uncover a prometastatic lipogenic program and lend direct genetic and experimental support to the notion that a Western HFD can promote metastasis.
Collapse
Affiliation(s)
- Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jiangwen Zhang
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Katia Sampieri
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,GSK Vaccines, Antigen Identification and Molecular Biology, Siena, Italy
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lourdes Mendez
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Enrique Gonzalez-Billalabeitia
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xue-Song Liu
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yu-Ru Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jacqueline Fung
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jesse M Katon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Archita Venugopal Menon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kaitlyn A Webster
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christopher Ng
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria Dilia Palumbieri
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Moussa S Diolombi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Susanne B Breitkopf
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Julie Teruya-Feldstein
- Department of Pathology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Roderick T Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mireia Castillo-Martin
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pathology, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|