1
|
Sun Z, Zhao L, Peng X, Kang B. A comparative study on the toxic effects of lead pollution and nanoplastic-lead mixed pollution on red drum and their detoxification strategies. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136018. [PMID: 39366049 DOI: 10.1016/j.jhazmat.2024.136018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Nanoplastics and heavy metals pose various adverse effects on marine organisms. However, the combined toxicity of nanoplastics and lead pollution to marine fish is not fully understood. This study investigates the toxic effects and detoxification strategies of lead pollution (p07) compared to nanoplastic-lead mixed pollution (m07) in red drum during exposure and recovery phases. Under m07 pollution, the maximum lead content in muscle was 22.61 mg/kg, which was significantly higher than the 15.82 mg/kg observed under p07 pollution. This finding demonstrated that nanoplastics significantly enhance lead accumulation, leading to more severe toxic effects on red drum. Histological analyses revealed that lipid droplets in the liver and epithelial lifting in the gills were the primary lesion types. During the exposure periods, red drum primarily detoxified lead through cellular renewal and the removal of damaged proteins under p07 pollution. Conversely, under m07 pollution, detoxification relied on cellular senescence, apoptosis, endocytosis, and the removal of damaged proteins. In the recovery phases, red drum predominantly recovered through cell proliferation and antioxidant responses under p07 pollution. Under m07 pollution, the focus shifted to functional protein synthesis, apoptosis, endocytosis, and lipid metabolism. This study offers valuable insights into the monitoring and management of combined environmental pollution.
Collapse
Affiliation(s)
- Zhicheng Sun
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao 266003, Shandong, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, Shandong, China
| | - Xin Peng
- Marine Academy of Zhejiang Province, Hangzhou 315613, Zhejiang, China; Key Laboratory of Ocean Space Resource Management Technology, Hangzhou 310012, Zhejiang, China
| | - Bin Kang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao 266003, Shandong, China.
| |
Collapse
|
2
|
Vaivads M, Pilmane M. Distribution of Immunomodulation, Protection and Regeneration Factors in Cleft-Affected Bone and Cartilage. Diagnostics (Basel) 2024; 14:2217. [PMID: 39410621 PMCID: PMC11475217 DOI: 10.3390/diagnostics14192217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Craniofacial clefts can form a significant defect within bone and cartilage, which can negatively affect tissue homeostasis and the remodeling process. Multiple proteins can affect supportive tissue growth, while also regulating local immune response and tissue protection. Some of these factors, like galectin-10 (Gal-10), nuclear factor kappa-light-chain-enhancer of activated B cells protein 65 (NF-κB p65), heat shock protein 60 (HSP60) and 70 (HSP70) and cathelicidin (LL-37), have not been well studied in cleft-affected supportive tissue, while more known tissue regeneration regulators like type I collagen (Col-I) and bone morphogenetic proteins 2 and 4 (BMP-2/4) have not been assessed jointly with immunomodulation and protective proteins. Information about the presence and interaction of these proteins in cleft-affected supportive tissue could be helpful in developing biomaterials and improving cleft treatment. METHODS Two control groups and two cleft patient groups for bone tissue and cartilage, respectively, were organized with five patients in each group. Immunohistochemistry with the semiquantitative counting method was implemented to determine Gal-10-, NF-κB p65-, HSP60-, HSP70-, LL-37-, Col-I- and BMP-2/4-positive cells within the tissue. RESULTS Factor-positive cells were identified in each study group. Multiple statistically significant correlations were identified. CONCLUSIONS A significant increase in HSP70-positive chondrocytes in cleft patients could indicate that HSP70 might be reacting to stressors caused by the local tissue defect. A significant increase in Col-I-positive osteocytes in cleft patients might indicate increased bone remodeling and osteocyte activity due to the presence of a cleft. Correlations between factors indicate notable differences in molecular interactions within each group.
Collapse
Affiliation(s)
- Mārtiņš Vaivads
- Department of Morphology, Institute of Anatomy and Anthropology, Rīga Stradiņš University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia;
| | | |
Collapse
|
3
|
Xu L, Ning R, Du X, Zhang Y, Gu C, Wang B, Bian L, Sun Q, Sun Y, Ren J. Bone Morphogenetic Protein Signaling Agonist SB4 (BMPSB4) Inhibits Corticotroph Pituitary Neuroendocrine Tumors by Activation of Autophagy via a BMP4/SMADs-Dependent Pathway. ACS Pharmacol Transl Sci 2024; 7:1951-1970. [PMID: 39022361 PMCID: PMC11249644 DOI: 10.1021/acsptsci.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Corticotroph pituitary neuroendocrine tumors (PitNETs), associated with Cushing's disease (CD), have limited treatment options other than surgical resection. Bone morphogenetic protein 4 (BMP4), a potential therapeutic target, is decreased in patients with CD. Previous studies have identified BMPSB4 as a potent agonist of the BMP4 signaling pathway. Here, we investigated the effect of BMPSB4 on the corticotroph PitNET cell line AtT20/D16v-F2 and explored the underlying mechanisms and therapeutic potential. We verified the low expression patterns of BMP4 and downstream p-SMAD1/5/9 in CD samples at the transcriptional and protein levels. In addition, BMPSB4 activated SMAD1/5/9 in a time- and concentration-dependent manner, with concomitant inhibitory effects on AtT20/D16v-F2 cells. Further RNA sequencing, transmission electron microscopy (TEM), and transfection with the mRFP-EGFP-LC3 adenoviral vector revealed that BMPSB4 induced cellular autophagy, which was the basis for the inhibitory effect of BMPSB4. Moreover, we demonstrated that autophagy induced by BMPSB4 was achieved through the SMADs-dependent pathway. In vivo, BMPSB4 inhibited tumor growth and significantly reduced adrenocorticotrophin (ACTH) and corticosterone (CORT) secretion, thereby alleviating the CD phenotype. In conclusion, this study identified BMPSB4 as an effective therapeutic agent for CD. BMPSB4 activates autophagy through a SMADs-dependent pathway, which in turn promotes autophagy-mediated cell death. Our work further elucidates the mechanism of the BMP4 signaling pathway in CD and suggests broad prospects for the development and application of BMPSB4 in CD therapy.
Collapse
Affiliation(s)
- Longyu Xu
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Ruonan Ning
- Department
of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Xueqing Du
- Department
of Respiratory and Critical Care Medicine of Ruijin Hospital, Department
of Immunology and Microbiology, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yuxin Zhang
- Department
of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Changwei Gu
- Department
of Neurosurgery, Ruijin Hospital, Luwan
Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P. R. China
| | - Baofeng Wang
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Liuguan Bian
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Qingfang Sun
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
- Department
of Neurosurgery, Ruijin Hospital, Luwan
Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P. R. China
| | - Yuhao Sun
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Jie Ren
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| |
Collapse
|
4
|
Jarwal A, Dhall A, Arora A, Patiyal S, Srivastava A, Raghava GPS. A deep learning method for classification of HNSCC and HPV patients using single-cell transcriptomics. Front Mol Biosci 2024; 11:1395721. [PMID: 38872916 PMCID: PMC11169846 DOI: 10.3389/fmolb.2024.1395721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Background Head and Neck Squamous Cell Carcinoma (HNSCC) is the seventh most highly prevalent cancer type worldwide. Early detection of HNSCC is one of the important challenges in managing the treatment of the cancer patients. Existing techniques for detecting HNSCC are costly, expensive, and invasive in nature. Methods In this study, we aimed to address this issue by developing classification models using machine learning and deep learning techniques, focusing on single-cell transcriptomics to distinguish between HNSCC and normal samples. Furthermore, we built models to classify HNSCC samples into HPV-positive (HPV+) and HPV-negative (HPV-) categories. In this study, we have used GSE181919 dataset, we have extracted 20 primary cancer (HNSCC) samples, and 9 normal tissues samples. The primary cancer samples contained 13 HPV- and 7 HPV+ samples. The models developed in this study have been trained on 80% of the dataset and validated on the remaining 20%. To develop an efficient model, we performed feature selection using mRMR method to shortlist a small number of genes from a plethora of genes. We also performed Gene Ontology (GO) enrichment analysis on the 100 shortlisted genes. Results Artificial Neural Network based model trained on 100 genes outperformed the other classifiers with an AUROC of 0.91 for HNSCC classification for the validation set. The same algorithm achieved an AUROC of 0.83 for the classification of HPV+ and HPV- patients on the validation set. In GO enrichment analysis, it was found that most genes were involved in binding and catalytic activities. Conclusion A software package has been developed in Python which allows users to identify HNSCC in patients along with their HPV status. It is available at https://webs.iiitd.edu.in/raghava/hnscpred/.
Collapse
Affiliation(s)
| | | | | | | | | | - Gajendra P. S. Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Delhi, India
| |
Collapse
|
5
|
Elgun T, Yurttas AG, Cinar K, Ozcelik S, Gul A. Effect of aza-BODIPY-photodynamic therapy on the expression of carcinoma-associated genes and cell death mode. Photodiagnosis Photodyn Ther 2023; 44:103849. [PMID: 37863378 DOI: 10.1016/j.pdpdt.2023.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Breast cancer is the most common cancer affecting women worldwide.Photodynamic therapy(PDT) has now proven to be a promising form of cancer therapy due to its targeted and low cytotoxicity to healthy cells and tissues.PDT is a technique used to create cell death localized by light after application of a light-sensitive agent.Aza-BODIPY is a promising photosensitizer for use in PDT. Our results showed that aza-BODIPY-PDT induced apoptosis, probably through p53 and caspase3 in MCF-7 cells. Future studies should delineate the molecular mechanisms underlying aza-BODIPY-PDT-induced cell death for a better understanding of the signaling pathways modulated by the therapy so that this novel technology could be implemented in the clinic for treating breast cancer. AIM In this study,we aimed to determine the change in the expression levels of 88 carcinoma-associated genes induced by aza-BODIPY-PDT were analyzed so as to understand the specific pathways that are modulated by aza-BODIPY-PDT. MATERIAL METHOD In this study,the molecular basis of the anti-cancer activity of aza-BODIPY-PDT was investigated.Induction of apoptosis and necrosis in MCF-7 breast cancer cells after treatment with aza- BODIPY derivative with phthalonitrile substituents (aza-BODIPY) followed by light exposure was evaluated by Annexin V 7- Aminoactinomycin D (7-AAD) flow cytometry. RESULTS Aza-BODIPY-PDT induced cell death in MCF-7 cells treated with aza-BODIPY-PDT; flow cytometry revealed that 28 % of the cells died by apoptosis. Seven of the 88 carcinoma-associated genes that were assayed were differentially expressed -EGF, LEF1, WNT1, TCF7, and TGFBR2 were downregulated, and CASP3 and TP53 were upregulated - in cells subjected to aza-BODIPY-PDT.This made us think that the aza-BODIPY-PDT induced caspase 3 and p53-mediated apoptosis in MCF7 cells. CONCLUSION In our study,it was determined that the application of aza-BODIPY-PDT to MCF7 cells had a negative effect on cell connectivity and cell cycle.The fact that the same effect was not observed in control cells and MCF7 cells in the dark field of aza-BODIPY indicates that aza-BODIPY has a strong phodynamic anticancer effect.
Collapse
Affiliation(s)
- Tugba Elgun
- Department of Medical Biology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Kamil Cinar
- Department of Physics, Faculty of Basic Sciences, Gebze Technical University, Istanbul, Turkey
| | - Sennur Ozcelik
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Gul
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
6
|
Hong JW, Yu Y, Wang LS, Li Z, Zhang R, Wang Q, Ding Z, Zhang JP, Zhang MR, Xu LC. BMP4 Regulates EMT to be Involved in non-Syndromic Cleft lip With or Without Palate. Cleft Palate Craniofac J 2023; 60:1462-1473. [PMID: 35702016 DOI: 10.1177/10556656221105762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE In the previous study, we identified bone morphogenetic protein 4 (BMP4) responsible for non-syndromic cleft lip with or without cleft palate (NSCL/P). We aimed to elucidate the effects and mechanisms of BMP4 on epithelial-mesenchymal transition (EMT) through Smad1 signaling pathway to be involved in NSCL/P. METHODS The human oral epidermoid carcinoma cells (KBs) were transfected with plasmids or small interfering RNA (siRNA) to build the models. The migration of the cells was evaluated by transwell assay. Western blotting and quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were used to detect the expressions of BMP4, E-cadherin, N-cadherin, EMT-related transcription factors snal1 and snal2, matrix metalloproteinase 2 (MMP2), MMP9, Smad1, and phosphorylated Smad1. RESULTS In the overexpression group, the migration number of cells was increased significantly. The protein expression of E-cadherin was decreased significantly, while the protein expression level of the N-cadherin was increased significantly. The protein and mRNA expressions of MMP2, MMP9, snal1, and snal2 were significantly higher. The expression level of Smad1 was not significantly changed, while the phosphorylation of Smad1 was significantly increased. In the BMP4-siRNA group, the migrating number cells was significantly decreased. The protein expression of E-cadherin was increased significantly, while the expression of N-cadherin was significantly decreased. The protein and mRNA expressions of MMP2, MMP9, snal1, and snal2 were significantly lower than that of the control group. The expressions of Smad1 and phosphorylation of Smad1 were not significantly changed. CONCLUSIONS BMP4 enhances cell migration and promotes cell EMT through Smad1 signaling pathway. Abnormal BMP4 mediates migration and EMT through other relevant signaling pathways resulting in NSCL/P. The study provides new insight into the mechanisms of NSCL/P associated with BMP4.n.
Collapse
Affiliation(s)
- Jia-Wei Hong
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Yue Yu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Lu-Shan Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Zheng Li
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Rui Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Qi Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Zhen Ding
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Jin-Peng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Mei-Rong Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Li-Chun Xu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| |
Collapse
|
7
|
Hino C, Xu Y, Xiao J, Baylink DJ, Reeves ME, Cao H. The potential role of the thymus in immunotherapies for acute myeloid leukemia. Front Immunol 2023; 14:1102517. [PMID: 36814919 PMCID: PMC9940763 DOI: 10.3389/fimmu.2023.1102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Understanding the factors which shape T-lymphocyte immunity is critical for the development and application of future immunotherapeutic strategies in treating hematological malignancies. The thymus, a specialized central lymphoid organ, plays important roles in generating a diverse T lymphocyte repertoire during the infantile and juvenile stages of humans. However, age-associated thymic involution and diseases or treatment associated injury result in a decline in its continuous role in the maintenance of T cell-mediated anti-tumor/virus immunity. Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that mainly affects older adults, and the disease's progression is known to consist of an impaired immune surveillance including a reduction in naïve T cell output, a restriction in T cell receptor repertoire, and an increase in frequencies of regulatory T cells. As one of the most successful immunotherapies thus far developed for malignancy, T-cell-based adoptive cell therapies could be essential for the development of a durable effective treatment to eliminate residue leukemic cells (blasts) and prevent AML relapse. Thus, a detailed cellular and molecular landscape of how the adult thymus functions within the context of the AML microenvironment will provide new insights into both the immune-related pathogenesis and the regeneration of a functional immune system against leukemia in AML patients. Herein, we review the available evidence supporting the potential correlation between thymic dysfunction and T-lymphocyte impairment with the ontogeny of AML (II-VI). We then discuss how the thymus could impact current and future therapeutic approaches in AML (VII). Finally, we review various strategies to rejuvenate thymic function to improve the precision and efficacy of cancer immunotherapy (VIII).
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| |
Collapse
|
8
|
Sharma T, Kapoor A, Mandal CC. Duality of bone morphogenetic proteins in cancer: A comprehensive analysis. J Cell Physiol 2022; 237:3127-3163. [DOI: 10.1002/jcp.30785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Anmol Kapoor
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Chandi C. Mandal
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| |
Collapse
|
9
|
Vignjević Petrinović S, Jauković A, Milošević M, Bugarski D, Budeč M. Targeting Stress Erythropoiesis Pathways in Cancer. Front Physiol 2022; 13:844042. [PMID: 35694408 PMCID: PMC9174937 DOI: 10.3389/fphys.2022.844042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer-related anemia (CRA) is a common multifactorial disorder that adversely affects the quality of life and overall prognosis in patients with cancer. Safety concerns associated with the most common CRA treatment options, including intravenous iron therapy and erythropoietic-stimulating agents, have often resulted in no or suboptimal anemia management for many cancer patients. Chronic anemia creates a vital need to restore normal erythropoietic output and therefore activates the mechanisms of stress erythropoiesis (SE). A growing body of evidence demonstrates that bone morphogenetic protein 4 (BMP4) signaling, along with glucocorticoids, erythropoietin, stem cell factor, growth differentiation factor 15 (GDF15) and hypoxia-inducible factors, plays a pivotal role in SE. Nevertheless, a chronic state of SE may lead to ineffective erythropoiesis, characterized by the expansion of erythroid progenitor pool, that largely fails to differentiate and give rise to mature red blood cells, further aggravating CRA. In this review, we summarize the current state of knowledge on the emerging roles for stress erythroid progenitors and activated SE pathways in tumor progression, highlighting the urgent need to suppress ineffective erythropoiesis in cancer patients and develop an optimal treatment strategy as well as a personalized approach to CRA management.
Collapse
Affiliation(s)
- Sanja Vignjević Petrinović
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Milošević
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirela Budeč
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Thermos G, Piperi E, Tosios KI, Nikitakis NG. Expression of BMP4 and FOXN1 in orthokeratinized odontogenic cyst compared to odontogenic keratocyst suggests an epidermal phenotype. Biotech Histochem 2022; 97:584-592. [PMID: 35527675 DOI: 10.1080/10520295.2022.2048073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Odontogenic keratocysts (OKC) and orthokeratinized odontogenic cysts (OOC) are odontogenic cysts that share histological and immunohistochemical similarity with epidermal appendages and cutaneous cystic lesions despite exhibiting contrasting biological behavior. In epidermal appendages, BMP4 induces expression of FOXN1, which participates in terminal differentiation of keratinocytes and control of proliferation. We compared BMP4 and FOXN1 expression in OOC and OKC to investigate their role in the epithelial differentiation of these cysts. BMP4 and FOXN1 expression was assessed using immunohistochemistry in 20 primary sporadic OKC and compared to 16 OOC. BMP4 epithelial expression was detected in 81.25% OOC compared to 35% in OKC, while its expression in connective tissue was observed in 65% OKC and 75% OOC. FOXN1 was detected in 75% OOC vs. 30% OKC. The "triple positive" phenotype, i.e., BMP4 epithelial and connective tissue positivity and FOXN1 epithelial positivity, was seen in 56.25% OOC compared to 10% OKC. The greater expression of BMP4 and FOXN1 in OOC suggests greater activation of this pathway in OOC, which suggests a role in its more mature epithelium; it also resembles an epidermal phenotype.
Collapse
Affiliation(s)
- Grigorios Thermos
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Piperi
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos I Tosios
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Qiao Q, Xu L, Li Q, Wang Y, Lu H, Zhao N, Pu Y, Wang L, Guo Y, Guo C. BMPR1α promotes osteolytic lesion of oral squamous cell carcinoma by SHH‐dependent osteoclastogenesis. Cancer Sci 2022; 113:1639-1651. [PMID: 35279920 PMCID: PMC9128187 DOI: 10.1111/cas.15330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive tumor that usually invades the maxilla or mandible. The extent and pattern of mandibular bone invasion caused by OSCC are the most important factors determining the treatment plan and patients' prognosis. Yet, the process of mandibular invasion is not fully understood. The following study explores the molecular mechanism that regulates the mandibular invasion of OSCC by focusing on bone morphogenetic protein receptor 1α (BMPR1α) and Sonic hedgehog (SHH) signals. We found that BMPR1α was positively correlated to bone defect of OSCC patients. Mechanistically, BMPR1α signaling regulated the differentiation and resorption activity of osteoclasts through the interaction of OSCC cells and osteoclast progenitors, and this process was mediated by SHH secreted by tumor cells. The inhibition of SHH protected bone from tumor‐induced osteolytic activity. These results provide a potential new treatment strategy for controlling OSCC from invading the jawbones.
Collapse
Affiliation(s)
- Qiao Qiao
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Le Xu
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University Shandong 250021 PR China
| | - Qingxiang Li
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Yifei Wang
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Han Lu
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
- Shanghai Stomotological Hospital Fudan University Shanghai 200001 PR China
| | - Ning Zhao
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Yinfei Pu
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
- The Second Outpatient Department Peking University School and Hospital of Stomatology, Beijing, 100081, PR China6 Department of Biomedical Engineering, College of Engineering, Peking University Beijing 100871 PR China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Yuxing Guo
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| |
Collapse
|
12
|
Sharma R, Gogoi G, Saikia S, Sharma A, Kalita DJ, Sarma A, Limaye AM, Gaur MK, Bhattacharyya J, Jaganathan BG. BMP4 enhances anoikis resistance and chemoresistance of breast cancer cells through canonical BMP signaling. J Cell Commun Signal 2021; 16:191-205. [PMID: 34608584 DOI: 10.1007/s12079-021-00649-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) regulate cell fate during development and mediate cancer progression. In this study, we investigated the role of BMP4 in proliferation, anoikis resistance, metastatic migration, and drug resistance of breast cancer cells. We utilized breast cancer cell lines and clinical samples representing different subtypes to understand the functional effect of BMP4 on breast cancer. The BMP pathway was inhibited with the small molecule inhibitor LDN193189 hydrochloride (LDN). BMP4 signaling enhanced the expression of stem cell genes CD44, ALDH1A3, anti-apoptotic gene BCL2 and promoted anoikis resistance in MDA-MB-231 breast cancer cells. BMP4 enhanced self-renewal and chemoresistance in MDA-MB-231 by upregulating Notch signaling while LDN treatment abrogated anoikis resistance and proliferation of anoikis resistant breast cancer cells in the osteogenic microenvironment. Conversely, BMP4 downregulated proliferation, colony-forming ability, and suppressed anoikis resistance in MCF7 and SkBR3 cells, while LDN treatment promoted tumor spheroid formation and growth. These findings indicate that BMP4 has a context-dependent role in breast cancer. Further, our data with MDA-MB-231 cells representing triple-negative breast cancer suggest that BMP inhibition might impair its metastatic spread and colonization.
Collapse
Affiliation(s)
- Renu Sharma
- Stem Cells and Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gayatri Gogoi
- Department of Pathology, Assam Medical College, Dibrugarh, Assam, India
| | - Snigdha Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Amit Sharma
- Stem Cells and Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Deep Jyoti Kalita
- Department of Surgical Oncology, Dr B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Anupam Sarma
- Department of Oncopathology, Dr B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Manish Kumar Gaur
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Jina Bhattacharyya
- Department of Hematology, Gauhati Medical College, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India. .,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
13
|
Stalin J, Imhof BA, Coquoz O, Jeitziner R, Hammel P, McKee TA, Jemelin S, Poittevin M, Pocard M, Matthes T, Kaci R, Delorenzi M, Rüegg C, Miljkovic-Licina M. Targeting OLFML3 in Colorectal Cancer Suppresses Tumor Growth and Angiogenesis, and Increases the Efficacy of Anti-PD1 Based Immunotherapy. Cancers (Basel) 2021; 13:cancers13184625. [PMID: 34572851 PMCID: PMC8464773 DOI: 10.3390/cancers13184625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
The role of the proangiogenic factor olfactomedin-like 3 (OLFML3) in cancer is unclear. To characterize OLFML3 expression in human cancer and its role during tumor development, we undertook tissue expression studies, gene expression analyses of patient tumor samples, in vivo studies in mouse cancer models, and in vitro coculture experiments. OLFML3 was expressed at high levels, mainly in blood vessels, in multiple human cancers. We focused on colorectal cancer (CRC), as elevated expression of OLFML3 mRNA correlated with shorter relapse-free survival, higher tumor grade, and angiogenic microsatellite stable consensus molecular subtype 4 (CMS4). Treatment of multiple in vivo tumor models with OLFML3-blocking antibodies and deletion of the Olfml3 gene from mice decreased lymphangiogenesis, pericyte coverage, and tumor growth. Antibody-mediated blockade of OLFML3 and deletion of host Olfml3 decreased the recruitment of tumor-promoting tumor-associated macrophages and increased infiltration of the tumor microenvironment by NKT cells. Importantly, targeting OLFML3 increased the antitumor efficacy of anti-PD-1 checkpoint inhibitor therapy. Taken together, the results demonstrate that OLFML3 is a promising candidate therapeutic target for CRC.
Collapse
Affiliation(s)
- Jimmy Stalin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (C.R.)
- Correspondence: ; Tel.: +41-26-300-8658
| | - Beat A. Imhof
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
- Medicity Research Laboratory, University of Turku, Tykistökatu 6A, 20520 Turku, Finland
| | - Oriana Coquoz
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (C.R.)
| | - Rachel Jeitziner
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland; (R.J.); (M.D.)
| | - Philippe Hammel
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
| | - Thomas A. McKee
- Division of Clinical Pathology, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland;
| | - Stephane Jemelin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
| | - Marine Poittevin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
| | - Marc Pocard
- CAP Paris-Tech, Université de Paris Diderot, INSERM U1275, 49 Boulevard de la Chapelle, CEDEX 10, F-75475 Paris, France; (M.P.); (R.K.)
- Department of Oncologic and Digestive Surgery, AP-HP, Hôpital Lariboisière, 2 Rue Ambroise Paré, CEDEX 10, F-75475 Paris, France
| | - Thomas Matthes
- Department of Oncology, Hematology Service, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland;
- Department of Diagnostics, Clinical Pathology Service, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Rachid Kaci
- CAP Paris-Tech, Université de Paris Diderot, INSERM U1275, 49 Boulevard de la Chapelle, CEDEX 10, F-75475 Paris, France; (M.P.); (R.K.)
- Department of Anatomopathology, AP-HP, Hôpital Lariboisière, 2 Rue Ambroise Paré, CEDEX 10, F-75475 Paris, France
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland; (R.J.); (M.D.)
- Department of Oncology, University Lausanne, CH-1011 Lausanne, Switzerland
| | - Curzio Rüegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (C.R.)
| | - Marijana Miljkovic-Licina
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
- Department of Oncology, Hematology Service, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland;
- Department of Diagnostics, Clinical Pathology Service, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| |
Collapse
|
14
|
Micati DJ, Radhakrishnan K, Young JC, Rajpert‐De Meyts E, Hime GR, Abud HE, Loveland KL. ‘Snail factors in testicular germ cell tumours and their regulation by the BMP4 signalling pathway’. Andrology 2020; 8:1456-1470. [DOI: 10.1111/andr.12823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Diana J. Micati
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Karthika Radhakrishnan
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Julia C. Young
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Ewa Rajpert‐De Meyts
- Department of Growth and Reproduction, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Gary R. Hime
- Department of Anatomy and Neuroscience University of Melbourne Melbourne Victoria Australia
| | - Helen E. Abud
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Stem Cells and Development Program Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Kate L. Loveland
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| |
Collapse
|
15
|
Eckhardt BL, Cao Y, Redfern AD, Chi LH, Burrows AD, Roslan S, Sloan EK, Parker BS, Loi S, Ueno NT, Lau PKH, Latham B, Anderson RL. Activation of Canonical BMP4-SMAD7 Signaling Suppresses Breast Cancer Metastasis. Cancer Res 2020; 80:1304-1315. [PMID: 31941699 DOI: 10.1158/0008-5472.can-19-0743] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 10/30/2019] [Accepted: 01/02/2020] [Indexed: 11/16/2022]
Abstract
Metastasis is the major cause of death in patients with cancer; with no therapeutic cure, treatments remain largely palliative. As such, new targets and therapeutic strategies are urgently required. Here, we show that bone morphogenetic protein-4 (BMP4) blocks metastasis in animal models of breast cancer and predicts improved survival in patients. In preclinical models of spontaneous metastasis, BMP4 acted as an autocrine mediator to modulate a range of known metastasis-regulating genes, including Smad7, via activation of canonical BMP-SMAD signaling. Restored BMP4 expression or therapeutically administered BMP4 protein, blocked metastasis and increased survival by sensitizing cancer cells to anoikis, thereby reducing the number of circulating tumor cells. Gene silencing of Bmp4 or its downstream mediator Smad7, reversed this phenotype. Administration of recombinant BMP4 markedly reduced spontaneous metastasis to lung and bone. Elevated levels of BMP4 and SMAD7 were prognostic for improved recurrence-free survival and overall survival in patients with breast cancer, indicating the importance of canonical BMP4 signaling in the suppression of metastasis and highlighting new avenues for therapy against metastatic disease. SIGNIFICANCE: Targeting the BMP4-SMAD7 signaling axis presents a novel therapeutic strategy to combat metastatic breast cancer, a disease that has had no reduction in patient mortality over 20 years. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/6/1304/F1.large.jpg.
Collapse
Affiliation(s)
- Bedrich L Eckhardt
- Morgan Welch Inflammatory Breast Cancer Research and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Yuan Cao
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew D Redfern
- School of Medicine, University of Western Australia, Perth, Australia
| | - Lap Hing Chi
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Allan D Burrows
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Suraya Roslan
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology Theme, Monash University, Parkville, Victoria, Australia
| | - Belinda S Parker
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Sherene Loi
- Research Division, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter K H Lau
- Department of Health Western Australia, Perth, Australia.,Cancer Medicine, Peter MacCallum Cancer Centre, Parkville, Australia
| | - Bruce Latham
- Department of Anatomical Pathology, Fiona Stanley Hospital, Perth, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia.,Research Division, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Mihajlović J, Diehl LAM, Hochhaus A, Clement JH. Inhibition of bone morphogenetic protein signaling reduces viability, growth and migratory potential of non-small cell lung carcinoma cells. J Cancer Res Clin Oncol 2019; 145:2675-2687. [PMID: 31531741 DOI: 10.1007/s00432-019-03026-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE BMP signaling has an oncogenic and tumor-suppressing activity in lung cancer that makes the prospective therapeutic utility of BMP signaling in lung cancer treatment complex. A more in-depth analysis of lung cancer subtypes is needed to identify BMP-related therapeutic targets. We sought to examine the influence of BMP signaling on the viability, growth and migration properties of the cell line LCLC-103H, which originates from a large cell lung carcinoma with giant cells and an extended aneuploidy. METHODS We used BMP-4 and LDN-214117 as agonist/antagonist system for the BMP receptor type I signaling. Using flow cytometry, wound healing assay, trans-well assay and spheroid culture, we examined the influence of BMP signaling on cell viability, growth and migration. Molecular mechanisms underlying observed changes in cell migration were investigated via gene expression analysis of epithelial-mesenchymal transition (EMT) markers. RESULTS BMP signaling inhibition resulted in LCLC-103H cell apoptosis and necrosis 72 h after LDN-214117 treatment. Cell growth and proliferation are markedly affected by BMP signaling inhibition. Chemotactic motility and migratory ability of LCLC-103H cells were clearly hampered by LDN-214117 treatment. Cell migration changes after BMP signaling inhibition were shown to be coupled with considerable down-regulation of transcription factors involved in EMT, especially Snail. CONCLUSIONS BMP signaling inhibition in LCLC-103H cells leads to reduced growth and proliferation, hindered migration and accelerated cell death. The findings contribute to the pool of evidence on BMP signaling in lung cancer with a possibility of introducing BMP signaling inhibition as a novel therapeutic approach for the disease.
Collapse
Affiliation(s)
- Jelena Mihajlović
- Klinik Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Laura A M Diehl
- Klinik Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Hochhaus
- Klinik Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Joachim H Clement
- Klinik Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
17
|
Choi S, Yu J, Park A, Dubon MJ, Do J, Kim Y, Nam D, Noh J, Park KS. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Sci Rep 2019; 9:11724. [PMID: 31409851 PMCID: PMC6692307 DOI: 10.1038/s41598-019-48190-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/26/2019] [Indexed: 01/07/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling and Notch signaling play important roles in tumorigenesis in various organs and tissues, including the breast. BMP-4 enhanced epithelial mesenchymal transition (EMT) and stem cell properties in both mammary epithelial cell line and breast carcinoma cell line. BMP-4 increased the expression of EMT biomarkers, such as fibronectin, laminin, N-cadherin, and Slug. BMP-4 also activated Notch signaling in these cells and increased the sphere forming efficiency of the non-transformed mammary epithelial cell line MCF-10A. In addition, BMP-4 upregulated the sphere forming efficiency, colony formation efficiency, and the expression of cancer stem cell markers, such as Nanog and CD44, in the breast carcinoma cell line MDA-MB-231. Inhibition of Notch signaling downregulated EMT and stem cell properties induced by BMP-4. Down-regulation of Smad4 using siRNA impaired the BMP-4-induced activation of Notch signaling, as well as the BMP-4-mediated EMT. These results suggest that EMT and stem cell properties are increased in mammary epithelial cells and breast cancer cells through the activation of Notch signaling in a Smad4-dependent manner in response to BMP-4.
Collapse
Affiliation(s)
- Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Aran Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Maria Jose Dubon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jungbeom Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Youngjae Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Donghyun Nam
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Jinok Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea. .,East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, Korea. .,College of Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
18
|
Abstract
Breast cancer is the most prevalent type of cancer amongst women worldwide. The mortality rate for patients with early-stage breast cancer has been decreasing, however, the 5-year survival rate for patients with metastatic disease remains poor, currently at 27%. Here, we have reviewed the current understanding of the role of bone morphogenetic protein (BMP) signaling in breast cancer progression, and have highlighted the discordant results that are reported in different studies. We propose that some of these contradictory outcomes may result from signaling through either the canonical or non-canonical pathways in different cell lines and tumors, or from different tumor-stromal interactions that occur in vivo.
Collapse
Affiliation(s)
- Lap Hing Chi
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Allan D Burrows
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Robin L Anderson
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
- c Department of Clinical Pathology, The University of Melbourne , Parkville , VIC , Australia
- d Sir Peter MacCallum Department of Oncology, The University of Melbourne , Parkville , Australia
| |
Collapse
|
19
|
Diagnostic value of combined IQGAP3/BMP4 and IQGAP3/FAM107A expression ratios in urinary cell-free DNA for discriminating bladder cancer from hematuria. Urol Oncol 2018; 37:86-96. [PMID: 30446454 DOI: 10.1016/j.urolonc.2018.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Urinary cell-free DNA (ucfDNA) has great potential as a "liquid biopsy" for use in diagnosis of urological cancers. In this study, we compared ucfDNA gene expression levels between patients with bladder cancer (BC) and those with hematuria, and determined whether they could be used as a noninvasive urine-based marker. METHODS The study cohort of 355 patients included a screening group (40 BC and 41 hematuria controls) and a validation cohort (149 BC and 125 hematuria controls). Expression levels ratios of 1 up-regulated gene (IQGAP3) to those of 7 down-regulated genes were examined in ucfDNA in the screening group to identify ratios that differed significantly between BC and hematuria patients. IQGAP3/BMP4 and IQGAP3/FAM107A ratios were selected and combined to develop a discriminant score (DS) index, which was tested in the validation cohort. Receiver operating characteristic curves and areas under the curve were calculated to evaluate the performance of the DS index. RESULTS IQGAP3/BMP4 and IQGAP3/FAM107A ratios in ucfDNA were both significantly higher in BC patients than in hematuria patients (both P < 0.001). The DS index had an area under the curve of 0.862, a sensitivity of 71.0%, a specificity of 88.6%, a positive predictive value of 90.3%, and a negative predictive value of 67.2%. CONCLUSIONS Both IQGAP3/BMP4 and IQGAP3/FAM107A ratios in ucfDNA were significantly higher in patients with BC than in those with hematuria. The DS index exhibits good diagnostic performance as a noninvasive biomarker.
Collapse
|
20
|
Wu RL, Sedlmeier G, Kyjacova L, Schmaus A, Philipp J, Thiele W, Garvalov BK, Sleeman JP. Hyaluronic acid-CD44 interactions promote BMP4/7-dependent Id1/3 expression in melanoma cells. Sci Rep 2018; 8:14913. [PMID: 30297743 PMCID: PMC6175841 DOI: 10.1038/s41598-018-33337-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
BMP4/7-dependent expression of inhibitor of differentiation/DNA binding (Id) proteins 1 and 3 has been implicated in tumor progression and poor prognosis of malignant melanoma patients. Hyaluronic acid (HA), a pericellular matrix component, supports BMP7 signalling in murine chondrocytes through its receptor CD44. However, its role in regulating BMP signalling in melanoma is not clear. In this study we found that depletion of endogenously-produced HA by hyaluronidase treatment or by inhibition of HA synthesis by 4-methylumbelliferone (4-MU) resulted in reduced BMP4/7-dependent Id1/3 protein expression in mouse melanoma B16-F10 and Ret cells. Conversely, exogenous HA treatment increased BMP4/7-dependent Id1/3 protein expression. Knockdown of CD44 reduced BMP4/7-dependent Id1/3 protein expression, and attenuated the ability of exogenous HA to stimulate Id1 and Id3 expression in response to BMP. Co-IP experiments demonstrated that CD44 can physically associate with the BMP type II receptor (BMPR) ACVR2B. Importantly, we found that coordinate expression of Id1 or Id3 with HA synthases HAS2, HAS3, and CD44 is associated with reduced overall survival of cutaneous melanoma patients. Our results suggest that HA-CD44 interactions with BMPR promote BMP4/7-dependent Id1/3 protein expression in melanoma, contributing to reduced survival in melanoma patients.
Collapse
Affiliation(s)
- Ruo-Lin Wu
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany.,Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Georg Sedlmeier
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Lenka Kyjacova
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany.,KIT Campus Nord, Institute for Toxicology and Genetics, 76344, Karlsruhe, Germany
| | - Julia Philipp
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Wilko Thiele
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany.,KIT Campus Nord, Institute for Toxicology and Genetics, 76344, Karlsruhe, Germany
| | - Boyan K Garvalov
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Jonathan P Sleeman
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany. .,KIT Campus Nord, Institute for Toxicology and Genetics, 76344, Karlsruhe, Germany.
| |
Collapse
|
21
|
Smane L, Pilmane M. Evaluation of the presence of MMP-2, TIMP-2, BMP2/4, and TGFβ3 in the facial tissue of children with cleft lip and palate. Acta Med Litu 2018; 25:86-94. [PMID: 30210242 PMCID: PMC6130923 DOI: 10.6001/actamedica.v25i2.3761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Cleft lip and palate (CLP) is the most common defect affecting the face. The treatment consists of surgical reconstruction of the anatomical structures of the cleft. Part of the surgical treatment is reconstruction of the alveolar bone by means of autogenic bone grafting (osteoplasty). This study aimed to evaluate the levels of expression of extracellular matrix remodeling factors in the facial tissue of children with a complete unilateral (CU) and a complete bilateral (CB) CLP to assess whether the wound healing process is adequate. Twenty-two CLP patients were enrolled in this study. Tissue samples were collected during alveolar osteoplasty for unilateral (n = 12) or bilateral (n = 10) cleft palate, (age range from 6 years 8 months to 12 years 2 months). Control material was obtained in the case of tooth extraction (age range from 6 years 9 months to 14 years 5 months). Immunohistochemistry was used to assess the levels of matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase-2 (TIMP-2), bone morphogenetic proteins 2 and 4 (BMP2/4), and transforming growth factor β3 (TGFβ3). Numbers of positively stained cells were graded semi-quantitatively. Data were analysed using the Kraskel-Wallis rank test and the Bonferroni correction. The total number of MMP2-positive cells was significantly lower in the CBCLP and in the control group than in the CUCLP (p < 0.001 after the Bonferroni correction). The total number of TIMP2-positive cells was significantly higher in the CUCLP than in the CBCLP and in the control group (p < 0.001; p < 0.003 after the Bonferroni correction). The overall number of BMP2/4, TGFβ3-positive cells was significantly higher in the CUCLP than in the CBCLP and in the control group (p < 0.001 after the Bonferroni correction). The decrease of the relative amount of statistically significant BMP2/4, TGFβ3, MMP-2, TIMP-2 containing bone cells in CBCLP patients identifies affected alveolar bone regeneration and remodeling process.
Collapse
Affiliation(s)
- Liene Smane
- Department of Pediatrics, Children's Clinical University Hospital, Riga, Latvia
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Department of Morphology, Riga Stradiņš University, Riga, Latvia
| |
Collapse
|
22
|
Shee K, Jiang A, Varn FS, Liu S, Traphagen NA, Owens P, Ma CX, Hoog J, Cheng C, Golub TR, Straussman R, Miller TW. Cytokine sensitivity screening highlights BMP4 pathway signaling as a therapeutic opportunity in ER + breast cancer. FASEB J 2018; 33:1644-1657. [PMID: 30161001 DOI: 10.1096/fj.201801241r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Despite the success of approved systemic therapies for estrogen receptor α (ER)-positive breast cancer, drug resistance remains common. We hypothesized that secreted factors from the human tumor microenvironment could modulate drug resistance. We previously screened a library of 297 recombinant-secreted microenvironmental proteins for the ability to confer resistance to the anti-estrogen fulvestrant in 2 ER+ breast cancer cell lines. Herein, we considered whether factors that enhanced drug sensitivity could be repurposed as therapeutics and provide leads for drug development. Screening data revealed bone morphogenic protein (BMP)4 as a factor that inhibited cell growth and synergized with approved anti-estrogens and cyclin-dependent kinase 4/6 inhibitors (CDK4/6i). BMP4-mediated growth inhibition was dependent on type I receptor activin receptor-like kinase (ALK)3-dependent phosphorylation (P) of mothers against decapentaplegic homolog (SMAD/P-SMAD)1 and 5, which could be reversed by BMP receptor inhibitors and ALK3 knockdown. The primary effect of BMP4 on cell fate was cell-cycle arrest, in which RNA sequencing, immunoblot analysis, and RNA interference revealed to be dependent on p21WAF1/Cip1 upregulation. BMP4 also enhanced sensitivity to approved inhibitors of mammalian target of rapamycin complex 1 and CDK4/6 via ALK3-mediated P-SMAD1/5 and p21 upregulation in anti-estrogen-resistant cells. Patients bearing primary ER+ breast tumors, exhibiting a transcriptomic signature of BMP4 signaling, had improved disease outcome following adjuvant treatment with anti-estrogen therapy, independently of age, tumor grade, and tumor stage. Furthermore, a transcriptomic signature of BMP4 signaling was predictive of an improved biologic response to the CDK4/6i palbociclib, in combination with an aromatase inhibitor in primary tumors. These findings highlight BMP4 and its downstream pathway activation as a therapeutic opportunity in ER+ breast cancer.-Shee, K., Jiang, A., Varn, F. S., Liu, S., Traphagen, N. A., Owens, P., Ma, C. X., Hoog, J., Cheng, C., Golub, T. R., Straussman, R., Miller, T. W. Cytokine sensitivity screening highlights BMP4 pathway signaling as a therapeutic opportunity in ER+ breast cancer.
Collapse
Affiliation(s)
- Kevin Shee
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Amanda Jiang
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Frederick S Varn
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Stephanie Liu
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Nicole A Traphagen
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Philip Owens
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA.,Department of Veterans Affairs, Research Medicine, Eastern Colorado Health Care System, Denver, Colorado, USA
| | - Cynthia X Ma
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeremy Hoog
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chao Cheng
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.,Department of Biomedical Data Sciences, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Todd R Golub
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Todd W Miller
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
23
|
Zabkiewicz C, Resaul J, Hargest R, Jiang WG, Ye L. Bone morphogenetic proteins, breast cancer, and bone metastases: striking the right balance. Endocr Relat Cancer 2017; 24:R349-R366. [PMID: 28733469 PMCID: PMC5574206 DOI: 10.1530/erc-17-0139] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) belong to the TGF-β super family, and are essential for the regulation of foetal development, tissue differentiation and homeostasis and a multitude of cellular functions. Naturally, this has led to the exploration of aberrance in this highly regulated system as a key factor in tumourigenesis. Originally identified for their role in osteogenesis and bone turnover, attention has been turned to the potential role of BMPs in tumour metastases to, and progression within, the bone niche. This is particularly pertinent to breast cancer, which commonly metastasises to bone, and in which studies have revealed aberrations of both BMP expression and signalling, which correlate clinically with breast cancer progression. Ultimately a BMP profile could provide new prognostic disease markers. As the evidence suggests a role for BMPs in regulating breast tumour cellular function, in particular interactions with tumour stroma and the bone metastatic microenvironment, there may be novel therapeutic potential in targeting BMP signalling in breast cancer. This review provides an update on the current knowledge of BMP abnormalities and their implication in the development and progression of breast cancer, particularly in the disease-specific bone metastasis.
Collapse
Affiliation(s)
- Catherine Zabkiewicz
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Jeyna Resaul
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Rachel Hargest
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Wen Guo Jiang
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Lin Ye
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
24
|
Lehtinen L, Vainio P, Wikman H, Huhtala H, Mueller V, Kallioniemi A, Pantel K, Kronqvist P, Kallioniemi O, Carpèn O, Iljin K. PLA2G7 associates with hormone receptor negativity in clinical breast cancer samples and regulates epithelial-mesenchymal transition in cultured breast cancer cells. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2017; 3:123-138. [PMID: 28451461 PMCID: PMC5402179 DOI: 10.1002/cjp2.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/10/2017] [Indexed: 12/12/2022]
Abstract
Breast cancer is the leading cause of cancer‐related deaths in women due to distinct cancer subtypes associated with early recurrence and aggressive metastatic progression. High lipoprotein‐associated phospholipase A2 (PLA2G7) expression has previously been associated with aggressive disease and metastasis in prostate cancer. Here, we explore the expression pattern and functional role of PLA2G7 in breast cancer. First, a bioinformatic analysis of genome‐wide gene expression data from 970 breast samples was carried out to evaluate the expression pattern of PLA2G7 mRNA in breast cancer. Second, the expression profile of PLA2G7 was studied in 1042 breast cancer samples including 89 matched lymph node metastasis samples using immunohistochemistry. Third, the effect of PLA2G7 silencing on genome‐wide gene expression profile was studied and validated in cultured breast cancer cells expressing PLA2G7 at high level. Last, the expression pattern of PLA2G7 mRNA was investigated in 24 nonmalignant tissue samples and 65 primary and 7 metastatic tumour samples derived from various organs using qRT‐PCR. The results from clinical breast cancer samples indicated that PLA2G7 is overexpressed in a subset of breast cancer samples compared to its expression in benign breast tissue samples and that high PLA2G7 expression associated with hormone receptor negativity as well as with poor prognosis in a subset of breast cancer samples. In vitro functional studies highlighted the putative role of PLA2G7 in the regulation of epithelial‐mesenchymal transition (EMT)‐related signalling pathways, vimentin and E‐cadherin protein expression as well as cell migration in cultured breast cancer cells. Furthermore, supporting the findings in breast and prostate cancer, high PLA2G7 mRNA expression was associated with metastatic cancer in four additional organs of origin. In conclusion, our results indicate that PLA2G7 is highly expressed in a subset of metastatic and aggressive breast cancers and in metastatic samples of various tissues of origin and promotes EMT and migration in cultured breast cancer cells.
Collapse
Affiliation(s)
- Laura Lehtinen
- Department of PathologyTurku University and Turku University HospitalTurkuFinland
| | - Paula Vainio
- Department of PathologyTurku University and Turku University HospitalTurkuFinland
| | - Harriet Wikman
- Institute of Tumour Biology, Centre of Experimental MedicineUniversity Medical Centre Hamburg-EppendorfGermany
| | - Heini Huhtala
- School of Health SciencesUniversity of TampereTampereFinland
| | - Volkmar Mueller
- Department of GynecologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
| | | | - Klaus Pantel
- Institute of Tumour Biology, Centre of Experimental MedicineUniversity Medical Centre Hamburg-EppendorfGermany
| | - Pauliina Kronqvist
- Department of PathologyTurku University and Turku University HospitalTurkuFinland
| | - Olli Kallioniemi
- FIMM, Institute for Molecular Medicine FinlandUniversity of HelsinkiFinland.,Present address: Department of Oncology-Pathology, Science for Life LaboratoryKarolinska InstitutetSolnaSweden
| | - Olli Carpèn
- Department of PathologyTurku University and Turku University HospitalTurkuFinland.,Present address: Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | | |
Collapse
|
25
|
Bellanger A, Donini CF, Vendrell JA, Lavaud J, Machuca-Gayet I, Ruel M, Vollaire J, Grisard E, Győrffy B, Bièche I, Peyruchaud O, Coll JL, Treilleux I, Maguer-Satta V, Josserand V, Cohen PA. The critical role of the ZNF217 oncogene in promoting breast cancer metastasis to the bone. J Pathol 2017; 242:73-89. [PMID: 28207159 DOI: 10.1002/path.4882] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/10/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022]
Abstract
Bone metastasis affects >70% of patients with advanced breast cancer. However, the molecular mechanisms underlying this process remain unclear. On the basis of analysis of clinical datasets, and in vitro and in vivo experiments, we report that the ZNF217 oncogene is a crucial mediator and indicator of bone metastasis. Patients with high ZNF217 mRNA expression levels in primary breast tumours had a higher risk of developing bone metastases. MDA-MB-231 breast cancer cells stably transfected with ZNF217 (MDA-MB-231-ZNF217) showed the dysregulated expression of a set of genes with bone-homing and metastasis characteristics, which overlapped with two previously described 'osteolytic bone metastasis' gene signatures, while also highlighting the bone morphogenetic protein (BMP) pathway. The latter was activated in MDA-MB-231-ZNF217 cells, and its silencing by inhibitors (Noggin and LDN-193189) was sufficient to rescue ZNF217-dependent cell migration, invasion or chemotaxis towards the bone environment. Finally, by using non-invasive multimodal in vivo imaging, we found that ZNF217 increases the metastatic growth rate in the bone and accelerates the development of severe osteolytic lesions. Altogether, the findings of this study highlight ZNF217 as an indicator of the emergence of breast cancer bone metastasis; future therapies targeting ZNF217 and/or the BMP signalling pathway may be beneficial by preventing the development of bone metastases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Aurélie Bellanger
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Caterina F Donini
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Unité Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Julie A Vendrell
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jonathan Lavaud
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - Irma Machuca-Gayet
- Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France.,INSERM, Unit 1033 (Faculté de Médecine Lyon Est), Lyon, France
| | - Maëva Ruel
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Julien Vollaire
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - Evelyne Grisard
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Ivan Bièche
- Unit of Pharmacogenetics, Department of Genetics, Institut Curie, Paris, France
| | - Olivier Peyruchaud
- Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France.,INSERM, Unit 1033 (Faculté de Médecine Lyon Est), Lyon, France
| | - Jean-Luc Coll
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | | | - Véronique Maguer-Satta
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Véronique Josserand
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - Pascale A Cohen
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
26
|
Ampuja M, Rantapero T, Rodriguez-Martinez A, Palmroth M, Alarmo EL, Nykter M, Kallioniemi A. Integrated RNA-seq and DNase-seq analyses identify phenotype-specific BMP4 signaling in breast cancer. BMC Genomics 2017; 18:68. [PMID: 28077088 PMCID: PMC5225521 DOI: 10.1186/s12864-016-3428-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Bone morphogenetic protein 4 (BMP4) plays an important role in cancer pathogenesis. In breast cancer, it reduces proliferation and increases migration in a cell line-dependent manner. To characterize the transcriptional mediators of these phenotypes, we performed RNA-seq and DNase-seq analyses after BMP4 treatment in MDA-MB-231 and T-47D breast cancer cells that respond to BMP4 with enhanced migration and decreased cell growth, respectively. Results The RNA-seq data revealed gene expression changes that were consistent with the in vitro phenotypes of the cell lines, particularly in MDA-MB-231, where migration-related processes were enriched. These results were confirmed when enrichment of BMP4-induced open chromatin regions was analyzed. Interestingly, the chromatin in transcription start sites of differentially expressed genes was already open in unstimulated cells, thus enabling rapid recruitment of transcription factors to the promoters as a response to stimulation. Further analysis and functional validation identified MBD2, CBFB, and HIF1A as downstream regulators of BMP4 signaling. Silencing of these transcription factors revealed that MBD2 was a consistent activator of target genes in both cell lines, CBFB an activator in cells with reduced proliferation phenotype, and HIF1A a repressor in cells with induced migration phenotype. Conclusions Integrating RNA-seq and DNase-seq data showed that the phenotypic responses to BMP4 in breast cancer cell lines are reflected in transcriptomic and chromatin levels. We identified and experimentally validated downstream regulators of BMP4 signaling that relate to the different in vitro phenotypes and thus demonstrate that the downstream BMP4 response is regulated in a cell type-specific manner. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3428-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Ampuja
- BioMediTech, University of Tampere, Tampere, Finland. .,Fimlab Laboratories, Tampere, Finland.
| | - T Rantapero
- BioMediTech, University of Tampere, Tampere, Finland
| | - A Rodriguez-Martinez
- BioMediTech, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - M Palmroth
- BioMediTech, University of Tampere, Tampere, Finland
| | - E L Alarmo
- BioMediTech, University of Tampere, Tampere, Finland
| | - M Nykter
- BioMediTech, University of Tampere, Tampere, Finland
| | - A Kallioniemi
- BioMediTech, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
27
|
Clément F, Xu X, Donini CF, Clément A, Omarjee S, Delay E, Treilleux I, Fervers B, Le Romancer M, Cohen PA, Maguer-Satta V. Long-term exposure to bisphenol A or benzo(a)pyrene alters the fate of human mammary epithelial stem cells in response to BMP2 and BMP4, by pre-activating BMP signaling. Cell Death Differ 2016; 24:155-166. [PMID: 27740625 PMCID: PMC5260492 DOI: 10.1038/cdd.2016.107] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) and BMP4 are key regulators of the fate and differentiation of human mammary epithelial stem cells (SCs), as well as of their niches, and are involved in breast cancer development. We established that MCF10A immature mammary epithelial cells reliably reproduce the BMP response that we previously identified in human primary epithelial SCs. In this model, we observed that BMP2 promotes luminal progenitor commitment and expansion, whereas BMP4 prevents lineage differentiation. Environmental pollutants are known to promote cancer development, possibly by providing cells with stem-like features and by modifying their niches. Bisphenols, in particular, were shown to increase the risk of developing breast cancer. Here, we demonstrate that chronic exposure to low doses of bisphenol A (BPA) or benzo(a)pyrene (B(a)P) alone has little effect on SCs properties of MCF10A cells. Conversely, we show that this exposure affects the response of immature epithelial cells to BMP2 and BMP4. Furthermore, the modifications triggered in MCF10A cells on exposure to pollutants appeared to be predominantly mediated by altering the expression and localization of type-1 receptors and by pre-activating BMP signaling, through the phosphorylation of small mothers against decapentaplegic 1/5/8 (SMAD1/5/8). By analyzing stem and progenitor properties, we reveal that BPA prevents the maintenance of SC features prompted by BMP4, whereas promoting cell differentiation towards a myoepithelial phenotype. Inversely, B(a)P prevents BMP2-mediated luminal progenitor commitment and expansion, leading to the retention of stem-like properties. Overall, our data indicate that BPA and B(a)P distinctly alter the fate and differentiation potential of mammary epithelial SCs by modulating BMP signaling.
Collapse
Affiliation(s)
- Flora Clément
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Tumor Escape Signaling, Centre Léon Bérard, Lyon, France
| | - Xinyi Xu
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Tumor Escape Signaling, Centre Léon Bérard, Lyon, France
| | - Caterina F Donini
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Cancer and Environnement, Centre Léon Bérard, Lyon, France
| | - Alice Clément
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Tumor Escape Signaling, Centre Léon Bérard, Lyon, France
| | - Soleilmane Omarjee
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Cancer Cell Plasticity, Centre Léon Bérard, Lyon, France
| | - Emmanuel Delay
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Tumor Escape Signaling, Centre Léon Bérard, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Isabelle Treilleux
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Cancer Cell Plasticity, Centre Léon Bérard, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Béatrice Fervers
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Cancer and Environnement, Centre Léon Bérard, Lyon, France
| | - Muriel Le Romancer
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Cancer Cell Plasticity, Centre Léon Bérard, Lyon, France
| | - Pascale A Cohen
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Cancer and Environnement, Centre Léon Bérard, Lyon, France
| | - Véronique Maguer-Satta
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Tumor Escape Signaling, Centre Léon Bérard, Lyon, France.,CNRS GDR 3697 Micronit, Tours, France
| |
Collapse
|
28
|
Chen L, Yi X, Goswami S, Ahn YH, Roybal JD, Yang Y, Diao L, Peng D, Peng D, Fradette JJ, Wang J, Byers LA, Kurie JM, Ullrich SE, Qin FXF, Gibbons DL. Growth and metastasis of lung adenocarcinoma is potentiated by BMP4-mediated immunosuppression. Oncoimmunology 2016; 5:e1234570. [PMID: 27999749 DOI: 10.1080/2162402x.2016.1234570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/04/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer cells modulate the recruitment and function of inflammatory cells to create an immunosuppressive microenvironment that favors tumor growth and metastasis. However, the tumor-derived regulatory programs that promote intratumoral immunosuppression remain poorly defined. Here, we show in a KrasLA1/+p53R172HΔg/+-based mouse model that bone morphogenetic protein-4 (BMP4) augments the expression of the T cell co-inhibitory receptor ligand PD-L1 in the mesenchymal subset of lung cancer cells, leading to profound CD8+ T cell-mediated immunosuppression, producing tumor growth and metastasis. We previously reported in this model that BMP4 functions as a pro-tumorigenic factor regulated by miR-200 via GATA4/6. Thus, BMP4-mediated immunosuppression is part of a larger miR-200-directed gene expression program in tumors that promotes tumor progression, which could have important implications for cancer treatment.
Collapse
Affiliation(s)
- Limo Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Xiaohui Yi
- Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Sangeeta Goswami
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Young-Ho Ahn
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular Medicine and Tissue Injury Defense Research Center, Ewha Womans University School of Medicine, Yangcheon-gu, Seoul, Korea
| | - Jonathon D Roybal
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Yongbin Yang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai, China
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Di Peng
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, China
| | - David Peng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Stephen E Ullrich
- Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - F Xiao-Feng Qin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, China
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Takebe Y, Tsujigiwa H, Katase N, Siar CH, Takabatake K, Fujii M, Tamamura R, Nakano K, Nagatsuka H. Parenchyma-stromal interactions induce fibrosis by secreting CCN2 and promote osteoclastogenesis by stimulating RANKL and CD68 through activated TGF-β/BMP4 in ameloblastoma. J Oral Pathol Med 2016; 46:67-75. [PMID: 27327904 DOI: 10.1111/jop.12467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tumor parenchyma-stromal interactions affect the properties of tumors and their dynamics. Our group previously showed that secreted frizzled related protein (sFRP)-2 impairs bone formation and promotes bone invasion in ameloblastoma. However, the effects of the secreted growth factors CCN2, TGF-β, and BMP4 on stromal tissues in ameloblastoma remain unclear. MATERIALS AND RESULTS Thirty-five paraffin-embedded ameloblastoma cases, ameloblastoma-derived cell lines (AM-1), and primary cultures of ameloblastoma stromal fibroblasts (ASF) were used. Immunohistochemistry, MTT assay, Western blotting, and RT-PCR were performed on these samples. Parenchyma-stromal CCN2 overexpression correlated significantly with fibrous-type stroma, but not with myxoid-type stroma, suggesting a role of CCN2 in fibrosis (P < 0.05). Recombinant CCN2 induction of enhanced ASF proliferation in AM-1 medium supports this view. Conversely, BMP4 and TGF-β were expressed in myxoid-type fibroblasts, but little expression was found in parenchyma. RANKL-positive and CD68-positive stromal cell populations were significantly greater in myxoid-type tumor areas than in fibrous-type tumor areas, while a higher Ki-67 labeling index was recorded in ameloblastoma with fibrous-type stroma. These data suggest that stromal properties influence bone resorption-related activities and growth rates, respectively. CONCLUSIONS These results suggest that the effects of secreted growth factors are governed by ameloblastoma parenchyma-stromal interactions. CCN2 promotes fibrogenesis independent of TGF-β signaling. Absence of CCN2 expression is associated with a phenotypic switch to a myxoid-type microenvironment that is conducive for TGF-β/BMP4 signaling to promote osteoclastogenesis.
Collapse
Affiliation(s)
- Yuichiro Takebe
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Naoki Katase
- Department of Molecular and Developmental Biology, Kawasaki Medical School, Okayama, Japan
| | - Chong Huat Siar
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masae Fujii
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryo Tamamura
- Department of Histology, Nihon University School of Dentistry, Matsudo, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
30
|
Ampuja M, Alarmo E, Owens P, Havunen R, Gorska A, Moses H, Kallioniemi A. The impact of bone morphogenetic protein 4 (BMP4) on breast cancer metastasis in a mouse xenograft model. Cancer Lett 2016; 375:238-244. [DOI: 10.1016/j.canlet.2016.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
|
31
|
BMP4 Signaling Is Able to Induce an Epithelial-Mesenchymal Transition-Like Phenotype in Barrett's Esophagus and Esophageal Adenocarcinoma through Induction of SNAIL2. PLoS One 2016; 11:e0155754. [PMID: 27191723 PMCID: PMC4871520 DOI: 10.1371/journal.pone.0155754] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 05/04/2016] [Indexed: 01/11/2023] Open
Abstract
Background Bone morphogenetic protein 4 (BMP4) signaling is involved in the development of Barrett’s esophagus (BE), a precursor of esophageal adenocarcinoma (EAC). In various cancers, BMP4 has been found to induce epithelial-mesenchymal transition (EMT) but its function in the development of EAC is currently unclear. Aim To investigate the expression of BMP4 and several members of the BMP4 pathway in EAC. Additionally, to determine the effect of BMP4 signaling in a human Barrett’s esophagus (BAR-T) and adenocarcinoma (OE33) cell line. Methods Expression of BMP4, its downstream target ID2 and members of the BMP4 pathway were determined by Q-RT-PCR, immunohistochemistry and Western blot analysis using biopsy samples from EAC patients. BAR-T and OE33 cells were incubated with BMP4 or the BMP4 antagonist, Noggin, and cell viability and migration assays were performed. In addition, expression of factors associated with EMT (SNAIL2, CDH1, CDH2 and Vimentin) was evaluated by Q-RT-PCR and Western blot analysis. Results Compared to squamous epithelium (SQ), BMP4 expression was significantly upregulated in EAC and BE. In addition, the expression of ID2 was significantly upregulated in EAC and BE compared to SQ. Western blot analysis confirmed our results, showing an upregulated expression of BMP4 and ID2 in both BE and EAC. In addition, more phosphorylation of SMAD1/5/8 was observed. BMP4 incubation inhibited cell viability, but induced cell migration in both BAR-T and OE33 cells. Upon BMP4 incubation, SNAIL2 expression was significantly upregulated in BAR-T and OE33 cells while CDH1 expression was significantly downregulated. These results were confirmed by Western blot analysis. Conclusion Our results indicate active BMP4 signaling in BE and EAC and suggest that this results in an invasive phenotype by inducing an EMT-like response through upregulation of SNAIL2 and subsequent downregulation of CDH1.
Collapse
|
32
|
Smad6 determines BMP-regulated invasive behaviour of breast cancer cells in a zebrafish xenograft model. Sci Rep 2016; 6:24968. [PMID: 27113436 PMCID: PMC4844967 DOI: 10.1038/srep24968] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/04/2016] [Indexed: 12/28/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family is known to play critical roles in cancer progression. While the dual role of TGF-β is well described, the function of bone morphogenetic proteins (BMPs) is unclear. In this study, we established the involvement of Smad6, a BMP-specific inhibitory Smad, in breast cancer cell invasion. We show that stable overexpression of Smad6 in breast cancer MCF10A M2 cells inhibits BMP signalling, thereby mitigating BMP6-induced suppression of mesenchymal marker expression. Using a zebrafish xenograft model, we demonstrate that overexpression of Smad6 potentiates invasion of MCF10A M2 cells and enhances the aggressiveness of breast cancer MDA-MB-231 cells in vivo, whereas a reversed phenotype is observed after Smad6 knockdown. Interestingly, BMP6 pre-treatment of MDA-MB-231 cells induced cluster formation at the invasive site in the zebrafish. BMP6 also stimulated cluster formation of MDA-MB-231 cells co-cultured on Human Microvascular Endothelial Cells (HMEC)-1 in vitro. Electron microscopy illustrated an induction of cell-cell contact by BMP6. The clinical relevance of our findings is highlighted by a correlation of high Smad6 expression with poor distant metastasis free survival in ER-negative cancer patients. Collectively, our data strongly indicates the involvement of Smad6 and BMP signalling in breast cancer cell invasion in vivo.
Collapse
|
33
|
Alarmo EL, Havunen R, Häyrynen S, Penkki S, Ketolainen J, Nykter M, Kallioniemi A. Bone morphogenetic protein 4 regulates microRNA expression in breast cancer cell lines in diverse fashion. Genes Chromosomes Cancer 2015; 55:227-36. [PMID: 26684238 DOI: 10.1002/gcc.22324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 01/15/2023] Open
Abstract
Bone morphogenetic protein 4 (BMP4) is a remarkably powerful inhibitor of breast cancer cell proliferation, but it is also able to induce breast cancer cell migration in certain cellular contexts. Previous data demonstrate that BMP4 controls the transcription of a variety of protein-coding genes, but not much is known about microRNAs (miRNA) regulated by BMP4. To address this question, miRNA expression profiles following BMP4 treatment were determined in one mammary epithelial and seven breast cancer cell lines using microarrays. While the analysis revealed an extensive variation in differentially expressed miRNA across cell lines, four miRNAs (miR-16-5p, miR-106b-5p, miR-23a-3p, and miR-23b-3p) were commonly induced in a subset of breast cancer cells upon BMP4 treatment. Inhibition of their expression demonstrated an increase in BT-474 cell number, indicating that they possess tumor suppressive properties. However, with the exception of miR-106b-5p, these effects were independent of BMP4 treatment. Scratch assay with miR-16-5p and miR-106b-5p inhibitors on BMP4-treated MDA-MB-231 cells resulted in enhanced cell migration, suggesting that these miRNAs are engaged in BMP4-induced motility. Taken together, we have for the first time characterized the BMP4-induced miRNA expression profiles in breast cancer cell lines, showing that induced miRNAs contribute to the fine-tuning of proliferation and migration phenotypes.
Collapse
Affiliation(s)
- Emma-Leena Alarmo
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Riikka Havunen
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Sergei Häyrynen
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Sanna Penkki
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Johanna Ketolainen
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Matti Nykter
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Anne Kallioniemi
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
34
|
Torrecillas-Martínez L, Galindo-Moreno P, Ávila-Ortiz G, Ortega-Oller I, Monje A, Hernández-Cortés P, Aguilar D, O'Valle F. Significance of the Immunohistochemical Expression of Bone Morphogenetic Protein-4 in Bone Maturation after Maxillary Sinus Grafting in Humans. Clin Implant Dent Relat Res 2015; 18:717-24. [PMID: 25965275 DOI: 10.1111/cid.12354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β (TGFβ) protein superfamily and are known to be involved in bone and cartilage formation. Within this family, BMP-4 is one of the most studied members. It has been shown to induce osteogenic differentiation of osteoblasts and osteoprogenitor cells in vitro, but the intimate processes in which this protein promotes and regulates osseous repair still remains unclear. PURPOSE To assess whether the native cellular immunohistochemical expression of BMP-4 correlates with the maturation of bone samples obtained at 6 months after maxillary sinus augmentation. MATERIALS AND METHODS Histopathological and histomorphometrical analyses were performed in all the samples, which were obtained from a total of 58 patients. Immunohistochemical expression of BMP-4 was analyzed in 30 core biopsies obtained from maxillary sinuses grafted with a combination of anorganic bovine bone and autogenous cortical bone [1:1] (AB-group), and 18 biopsies from maxillary sinuses grafted solely with a cortico-cancellous particulate allograft (M-group), all of them after a 6-month healing period. Also, 10 biopsies of native pristine bone were obtained and used as control group (C-group). RESULTS Mild to moderate immunohistochemical expression of native granular BMP-4 was present in 56.8% (31.0% AB-group, 22.4% M-group, and 3.4% C-group) (p = 0.000, chi-square) of the specimens analyzed. BMP-4 expression was primarily located in the cytoplasm of osteoblasts, osteoclasts, and epithelial cells of the schneiderian membrane. Whereas significant differences were observed in the proportion of mineralized tissue and cellularity between sinuses grafted with anorganic bovine bone, allograft, or nongrafted sinuses, there were no statistically significant differences in the cellular expression of BMP-4 among groups. CONCLUSION Our findings suggest that the native expression of BMP-4 appears to be associated with normal bone homeostasis and reparation in grafted and nongrafted maxillary sites.
Collapse
Affiliation(s)
- Laura Torrecillas-Martínez
- Oral Surgery and Implant Dentistry Department, School of Dentistry, University of Granada, Granada, Spain
| | - Pablo Galindo-Moreno
- Oral Surgery and Implant Dentistry Department, School of Dentistry, University of Granada, Granada, Spain
| | - Gustavo Ávila-Ortiz
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Inmaculada Ortega-Oller
- Oral Surgery and Implant Dentistry Department, School of Dentistry, University of Granada, Granada, Spain
| | - Alberto Monje
- Department of Periodontics and Oral Medicine School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Pedro Hernández-Cortés
- Orthopedic Surgery Department, San Cecilio University Hospital of Granada, Granada, Spain
| | - David Aguilar
- Department of Pathology and Biopathology and Regenerative Medicine Institute (IBIMER), School of Medicine, University of Granada, Granada, Spain
| | - Francisco O'Valle
- Department of Pathology and Biopathology and Regenerative Medicine Institute (IBIMER), School of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
35
|
Owens P, Pickup MW, Novitskiy SV, Giltnane JM, Gorska AE, Hopkins CR, Hong CC, Moses HL. Inhibition of BMP signaling suppresses metastasis in mammary cancer. Oncogene 2015; 34:2437-49. [PMID: 24998846 PMCID: PMC4689138 DOI: 10.1038/onc.2014.189] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/12/2022]
Abstract
Bone morphogenetic proteins (BMPs) are secreted cytokines/growth factors that have differing roles in cancer. BMPs are overexpressed in human breast cancers, but loss of BMP signaling in mammary carcinomas can accelerate metastasis. We show that human breast cancers display active BMP signaling, which is rarely downregulated or homozygously deleted. We hypothesized that systemic inhibition of BMP signaling in both the tumor and the surrounding microenvironment could prevent tumor progression and metastasis. To test this hypothesis, we used DMH1, a BMP antagonist, in MMTV.PyVmT expressing mice. Treatment with DMH1 reduced lung metastasis and the tumors were less proliferative and more apoptotic. In the surrounding tumor microenvironment, treatment with DMH1 altered fibroblasts, lymphatic vessels and macrophages to be less tumor promoting. These results indicate that inhibition of BMP signaling may successfully target both the tumor and the surrounding microenvironment to reduce tumor burden and metastasis.
Collapse
Affiliation(s)
- P Owens
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M W Pickup
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - S V Novitskiy
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J M Giltnane
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - A E Gorska
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - C R Hopkins
- 1] Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN, USA [2] Department of Chemistry, Vanderbilt University College of Arts and Science, Nashville, TN, USA
| | - C C Hong
- 1] Research Medicine, Veterans Affairs TVHS, Nashville, TN, USA [2] Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - H L Moses
- 1] Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA [2] Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
36
|
Extracellular regulated protein kinases play a key role via bone morphogenetic protein 4 in high phosphate-induced endothelial cell apoptosis. Life Sci 2015; 131:37-43. [PMID: 25896660 DOI: 10.1016/j.lfs.2015.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/18/2015] [Accepted: 03/20/2015] [Indexed: 11/21/2022]
Abstract
AIMS Hyperphosphatemia is an independent risk factor of cardiovascular events in the patients with chronic kidney disease. High phosphate can induce endothelial cell apoptosis, but the exact mechanism is not clear. This study fills this knowledge gap. MATERIALS AND METHODS Microarray analysis was used to identify differentially expressed gene profiles in human umbilical vein endothelial cells (HUVECs) in high phosphate (3.0mM) and normal phosphate (1.0mM) medium. Microarray informatics analysis was used to explore key pathways and genes. High phosphate-induced apoptosis is marked by annexin V-FITC/PI staining and cleavage of caspase-3. Immunoblotting and quantitative real-time PCR were performed to identify the microarray analysis. KEY FINDINGS Our microarray informatics analysis reveals that the mitogen-activated protein kinase (MAPK) plays a key role. As suggested by gene coexpression network analysis, bone morphogenetic protein 4 (BMP4) gene is a potential key regulatory gene in high phosphate environment. Both the expressions of BMP4 protein and mRNA are decreased. Extracellular regulated protein kinases (ERKs) are activated, while the inhibition of ERK by U0126 increases the expression of BMP4. Both recombinant BMP4 protein pretreatment and U0126 pretreatment reduce the apoptosis of endothelial cells in simulated hyperphosphatemia. However, BMP4 protein pretreatment had no effect on the activation of ERK MAPK pathway. SIGNIFICANCE Our results indicate that the inhibition of ERK MAPK pathway protects endothelial cells from apoptosis by upregulating bone morphogenetic protein 4 in endothelial cells exposed to hyperphosphatemia. Our study provides potential molecular targets for developing new strategies to reduce the endothelial cell apoptosis induced by high phosphate.
Collapse
|
37
|
Al-Bahrani R, Nagamori S, Leng R, Petryk A, Sergi C. Differential Expression of Sonic Hedgehog Protein in Human Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Pathol Oncol Res 2015; 21:901-8. [PMID: 25740074 DOI: 10.1007/s12253-015-9918-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 02/18/2015] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA) are the two most common primary liver malignancies in adult patients. The molecular mechanisms underlying the pathogenesis of HCC and CCA are still poorly understood. Sonic hedgehog (SHH) signaling plays an essential role during mammalian development, i.e., promoting organ growth, tissue differentiation, and cell polarity. The upregulation of SHH has been observed during carcinogenesis, including colorectal carcinoma. Our aim was to investigate the expression pattern of SHH in HCC and CCA. We investigated 40 malignant tumors of the liver, including 21 HCC and 19 of intrahepatic CCA cases by immunohistochemistry (IHC) using a polyclonal antibody against SHH and Avidin-Biotin Complex method. We also investigated the co-localization of SHH and Bone morphogenetic protein 4 (BMP4) in CCA using indirect double IHC. Moreover, we examined whether SHH is expressed in two HCC cell lines HepG2 and HuH-7 and three CCA cell lines OZ, HuCCT1 and HuH28. We found that SHH was expressed in 15 out of 21 cases (71.4 %) of HCC and 100 % of CCA cases by immunohistochemistry. SHH expression showed a positive trend in liver tumors (HCC, CCA) with high grade (G2-G3). SHH localized to the epithelial cells, while BMP4 was expressed in the stromal cells in CCA by double IHC. However, both HCC and CCA cell lines showed SHH expression by Western blot analysis. In conclusion, SHH seems to be an interesting marker of de-differentiation in liver tumors and the simultaneous epithelial-mesenchymal expression may be an intriguing prompt to investigate cross-talks between SHH and BMP4.
Collapse
Affiliation(s)
- Redha Al-Bahrani
- Department of Laboratory Medicine and Pathology, University of Alberta, 8440-112 Street, Edmonton, T6G 2B7, AB, Canada
| | | | | | | | | |
Collapse
|
38
|
Wikman H, Westphal L, Schmid F, Pollari S, Kropidlowski J, Sielaff-Frimpong B, Glatzel M, Matschke J, Westphal M, Iljin K, Huhtala H, Terracciano L, Kallioniemi A, Sauter G, Müller V, Witzel I, Lamszus K, Kemming D, Pantel K. Loss of CADM1 expression is associated with poor prognosis and brain metastasis in breast cancer patients. Oncotarget 2015; 5:3076-87. [PMID: 24833255 PMCID: PMC4102793 DOI: 10.18632/oncotarget.1832] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Breast cancer brain metastases (BCBM) are detected with increasing incidence. In order to detect potential genes involved in BCBM, we first screened for genes down-regulated by methylation in cell lines with site-specific metastatic ability. The expression of five genes, CADM1, SPARC, RECK, TNFAIP3 and CXCL14, which were also found down-regulated in gene expression profiling analyses of BCBM tissue samples, was verified by qRT-PCR in a larger patient cohort. CADM1 was chosen for further down-stream analyses. A higher incidence of CADM1 methylation, correlating with lower expression levels, was found in BCBM as compared to primary BC. Loss of CADM1 protein expression was detected most commonly among BCBM samples as well as among primary tumors with subsequent brain relapse. The prognostic role of CADM1 expression was finally verified in four large independent breast cancer cohorts (n=2136). Loss of CADM1 protein expression was associated with disease stage, lymph node status, and tumor size in primary BC. Furthermore, all analyses revealed a significant association between loss of CADM1 and shorter survival. In multivariate analyses, survival was significantly shorter among patients with CADM1-negative tumors. Loss of CADM1 expression is an independent prognostic factor especially associated with the development of brain metastases in breast cancer patients.
Collapse
Affiliation(s)
- Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chapellier M, Bachelard-Cascales E, Schmidt X, Clément F, Treilleux I, Delay E, Jammot A, Ménétrier-Caux C, Pochon G, Besançon R, Voeltzel T, Caron de Fromentel C, Caux C, Blay JY, Iggo R, Maguer-Satta V. Disequilibrium of BMP2 levels in the breast stem cell niche launches epithelial transformation by overamplifying BMPR1B cell response. Stem Cell Reports 2015; 4:239-54. [PMID: 25601208 PMCID: PMC4325271 DOI: 10.1016/j.stemcr.2014.12.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 01/22/2023] Open
Abstract
Understanding the mechanisms of cancer initiation will help to prevent and manage the disease. At present, the role of the breast microenvironment in transformation remains unknown. As BMP2 and BMP4 are important regulators of stem cells and their niches in many tissues, we investigated their function in early phases of breast cancer. BMP2 production by tumor microenvironment appeared to be specifically upregulated in luminal tumors. Chronic exposure of immature human mammary epithelial cells to high BMP2 levels initiated transformation toward a luminal tumor-like phenotype, mediated by the receptor BMPR1B. Under physiological conditions, BMP2 controlled the maintenance and differentiation of early luminal progenitors, while BMP4 acted on stem cells/myoepithelial progenitors. Our data also suggest that microenvironment-induced overexpression of BMP2 may result from carcinogenic exposure. We reveal a role for BMP2 and the breast microenvironment in the initiation of stem cell transformation, thus providing insight into the etiology of luminal breast cancer. High BMP2 levels are provided by endothelial and stroma cells in luminal tumors Chronic exposure to high BMP2 levels initiate mammary epithelial transformation Luminal tumors likely arise from an amplified BMP2/BMPR1B-mediated normal response Radiation and bisphenols perturbed BMP2 production by the mammary niche stroma
Collapse
Affiliation(s)
- Marion Chapellier
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France
| | | | - Xenia Schmidt
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France
| | - Flora Clément
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France
| | - Isabelle Treilleux
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France; Centre Léon Bérard, 69000 Lyon, France
| | - Emmanuel Delay
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France; Centre Léon Bérard, 69000 Lyon, France
| | - Alexandre Jammot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France
| | - Christine Ménétrier-Caux
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France; Centre Léon Bérard, 69000 Lyon, France
| | - Gaëtan Pochon
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France
| | - Roger Besançon
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France
| | - Thibault Voeltzel
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France
| | - Claude Caron de Fromentel
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France
| | - Christophe Caux
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France; Centre Léon Bérard, 69000 Lyon, France
| | - Jean-Yves Blay
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France; Centre Léon Bérard, 69000 Lyon, France
| | - Richard Iggo
- Inserm U916, Institut Bergonié, University of Bordeaux, 33076 Bordeaux, France
| | - Véronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000 Lyon, France; Department of Immunity, Virus, and Microenvironment, 69000 Lyon, France; Université de Lyon 1, ISPB, 69000 Lyon, France.
| |
Collapse
|
40
|
Vignjević S, Budeč M, Marković D, Dikić D, Mitrović O, Mojsilović S, Durić SV, Koko V, Cokić BB, Cokić V, Jovčić G. Chronic psychological stress activates BMP4-dependent extramedullary erythropoiesis. J Cell Mol Med 2013; 18:91-103. [PMID: 24283209 PMCID: PMC3916121 DOI: 10.1111/jcmm.12167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/16/2013] [Indexed: 01/14/2023] Open
Abstract
Psychological stress affects different physiological processes including haematopoiesis. However, erythropoietic effects of chronic psychological stress remain largely unknown. The adult spleen contains a distinct microenvironment favourable for rapid expansion of erythroid progenitors in response to stressful stimuli, and emerging evidence suggests that inappropriate activation of stress erythropoiesis may predispose to leukaemic transformation. We used a mouse model to study the influence of chronic psychological stress on erythropoiesis in the spleen and to investigate potential mediators of observed effects. Adult mice were subjected to 2 hrs daily restraint stress for 7 or 14 consecutive days. Our results showed that chronic exposure to restraint stress decreased the concentration of haemoglobin in the blood, elevated circulating levels of erythropoietin and corticosterone, and resulted in markedly increased number of erythroid progenitors and precursors in the spleen. Western blot analysis revealed significantly decreased expression of both erythropoietin receptor and glucocorticoid receptor in the spleen of restrained mice. Furthermore, chronic stress enhanced the expression of stem cell factor receptor in the red pulp. Moreover, chronically stressed animals exhibited significantly increased expression of bone morphogenetic protein 4 (BMP4) in the red pulp as well as substantially enhanced mRNA expression levels of its receptors in the spleen. These findings demonstrate for the first time that chronic psychological stress activates BMP4-dependent extramedullary erythropoiesis and leads to the prolonged activation of stress erythropoiesis pathways. Prolonged activation of these pathways along with an excessive production of immature erythroid cells may predispose chronically stressed subjects to a higher risk of leukaemic transformation.
Collapse
Affiliation(s)
- Sanja Vignjević
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ampuja M, Jokimäki R, Juuti-Uusitalo K, Rodriguez-Martinez A, Alarmo EL, Kallioniemi A. BMP4 inhibits the proliferation of breast cancer cells and induces an MMP-dependent migratory phenotype in MDA-MB-231 cells in 3D environment. BMC Cancer 2013; 13:429. [PMID: 24053318 PMCID: PMC3848934 DOI: 10.1186/1471-2407-13-429] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022] Open
Abstract
Background Bone morphogenetic protein 4 (BMP4) belongs to the transforming growth factor β (TGF-β) family of proteins. BMPs regulate cell proliferation, differentiation and motility, and have also been reported to be involved in cancer pathogenesis. We have previously shown that BMP4 reduces breast cancer cell proliferation through G1 cell cycle arrest and simultaneously induces migration in a subset of these cell lines. Here we examined the effects of BMP4 in a more physiological environment, in a 3D culture system. Methods We used two different 3D culture systems; Matrigel, a basement membrane extract from mouse sarcoma cells, and a synthetic polyethylene glycol (PEG) gel. AlamarBlue reagent was used for cell proliferation measurements and immunofluorescence was used to determine cell polarity. Expression of cell cycle regulators was examined by Western blot and matrix metalloproteinase (MMP) expression by qRT-PCR. Results The MCF-10A normal breast epithelial cells formed round acini with correct apicobasal localization of α6 integrin in Matrigel whereas irregular structures were seen in PEG gel. The two 3D matrices also supported dissimilar morphology for the breast cancer cells. In PEG gel, BMP4 inhibited the growth of MCF-10A and the three breast cancer cell lines examined, thus closely resembling the 2D culture conditions, but in Matrigel, no growth inhibition was observed in MDA-MB-231 and MDA-MB-361 cells. Furthermore, BMP4 induced the expression of the cell cycle inhibitor p21 both in 2D and 3D culture, thereby partly explaining the growth arrest. Interestingly, MDA-MB-231 cells formed large branching, stellate structures in response to BMP4 treatment in Matrigel, suggestive of increased cell migration or invasion. This effect was reversed by Batimastat, a broad-spectrum MMP inhibitor, and subsequent analyses showed BMP4 to induce the expression of MMP3 and MMP14, that are thus likely to be responsible for the stellate phenotype. Conclusions Taken together, our results show that Matrigel provides a more physiological environment for breast epithelial cells than PEG gel. Moreover, BMP4 partly recapitulates in 3D culture the growth suppressive abilities previously seen in 2D culture and induces an MMP-dependent migratory phenotype in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Minna Ampuja
- Institute of Biomedical Technology, University of Tampere and BioMediTech, Tampere, Finland.
| | | | | | | | | | | |
Collapse
|
42
|
Lai D, Yang X. BMP4 is a novel transcriptional target and mediator of mammary cell migration downstream of the Hippo pathway component TAZ. Cell Signal 2013; 25:1720-8. [PMID: 23673366 DOI: 10.1016/j.cellsig.2013.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/06/2013] [Indexed: 01/06/2023]
Abstract
Since the metastatic progression of cancers is often fatal with limited treatment options, understanding the mechanism of metastasis is imperative for designing novel and targeted therapies. TAZ has been identified as a novel oncogene in both breast and lung cancers and is inhibited by the Hippo signaling pathway. In this study we provide convincing evidence that overexpression of TAZ in a mammary epithelial cell line, MCF10A, leads to enhanced cell migration - a fundamental characteristic of the metastatic progression of cancers. In addition, we identified the secreted growth factor BMP4 as a mediator of TAZ-induced cell migration. TAZ induces BMP4 transcription through the TEAD family of transcription factors, which mediate BMP4 promoter activation through binding to TEAD response element 1 (TRE1). Importantly, BMP4 activation by TAZ also enhances signaling downstream of TAZ, in particular, promoting Smad1/5 intracellular signaling. Functionally, short hairpin RNA-mediated knockdown of BMP4 rescued TAZ-induced cell migration. Our findings have identified a novel TAZ/TEAD/BMP4 signaling axis responsible for cell migration, with future implications in the development of targeted therapeutics for metastatic breast cancers.
Collapse
Affiliation(s)
- Dulcie Lai
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | | |
Collapse
|