1
|
Nemphos SM, Green HC, Prusak JE, Fell SL, Goff K, Varnado M, Didier K, Guy N, Moström MJ, Tatum C, Massey C, Barnes MB, Rowe LA, Allers C, Blair RV, Embers ME, Maness NJ, Marx PA, Grasperge B, Kaur A, De Paris K, Shaffer JG, Hensley-McBain T, Londono-Renteria B, Manuzak JA. Elevated Inflammation Associated with Markers of Neutrophil Function and Gastrointestinal Disruption in Pilot Study of Plasmodium fragile Co-Infection of ART-Treated SIVmac239+ Rhesus Macaques. Viruses 2024; 16:1036. [PMID: 39066199 PMCID: PMC11281461 DOI: 10.3390/v16071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) and malaria, caused by infection with Plasmodium spp., are endemic in similar geographical locations. As a result, there is high potential for HIV/Plasmodium co-infection, which increases the pathology of both diseases. However, the immunological mechanisms underlying the exacerbated disease pathology observed in co-infected individuals are poorly understood. Moreover, there is limited data available on the impact of Plasmodium co-infection on antiretroviral (ART)-treated HIV infection. Here, we used the rhesus macaque (RM) model to conduct a pilot study to establish a model of Plasmodium fragile co-infection during ART-treated simian immunodeficiency virus (SIV) infection, and to begin to characterize the immunopathogenic effect of co-infection in the context of ART. We observed that P. fragile co-infection resulted in parasitemia and anemia, as well as persistently detectable viral loads (VLs) and decreased absolute CD4+ T-cell counts despite daily ART treatment. Notably, P. fragile co-infection was associated with increased levels of inflammatory cytokines, including monocyte chemoattractant protein 1 (MCP-1). P. fragile co-infection was also associated with increased levels of neutrophil elastase, a plasma marker of neutrophil extracellular trap (NET) formation, but significant decreases in markers of neutrophil degranulation, potentially indicating a shift in the neutrophil functionality during co-infection. Finally, we characterized the levels of plasma markers of gastrointestinal (GI) barrier permeability and microbial translocation and observed significant correlations between indicators of GI dysfunction, clinical markers of SIV and Plasmodium infection, and neutrophil frequency and function. Taken together, these pilot data verify the utility of using the RM model to examine ART-treated SIV/P. fragile co-infection, and indicate that neutrophil-driven inflammation and GI dysfunction may underlie heightened SIV/P. fragile co-infection pathogenesis.
Collapse
Affiliation(s)
- Sydney M. Nemphos
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Hannah C. Green
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - James E. Prusak
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Sallie L. Fell
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kelly Goff
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Megan Varnado
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kaitlin Didier
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Natalie Guy
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Matilda J. Moström
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Coty Tatum
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Chad Massey
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mary B. Barnes
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Lori A. Rowe
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Carolina Allers
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Robert V. Blair
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Nicholas J. Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Preston A. Marx
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| | - Brooke Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27559, USA
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | | | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| | - Jennifer A. Manuzak
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
2
|
Abstract
Asplenia (the congenital or acquired absence of the spleen) and hyposplenism (defective spleen function) are common causes of morbidity and mortality. The spleen is a secondary lymphoid organ that is responsible for the regulation of immune responses and blood filtration. Hence, asplenia or hyposplenism increases susceptibility to severe and invasive infections, especially those sustained by encapsulated bacteria (namely, Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae type b). Asplenia is predominantly due to splenectomy for either traumatic events or oncohaematological conditions. Hyposplenism can be caused by several conditions, including haematological, infectious, autoimmune and gastrointestinal disorders. Anatomical disruption of the spleen and depletion of immune cells, especially IgM memory B cells, seem to be predominantly responsible for the clinical manifestations. Early recognition of hyposplenism and proper management of asplenia are warranted to prevent overwhelming post-splenectomy infections through vaccination and antibiotic prophylaxis. Although recommendations are available, the implementation of vaccination strategies, including more effective and immunogenic vaccines, is needed. Additionally, screening programmes for early detection of hyposplenism in high-risk patients and improvement of patient education are warranted.
Collapse
|
3
|
Milner DA, MacCormick IJC. Histological Identification of Sequestered Parasitized Red Cells. Methods Mol Biol 2022; 2470:779-791. [PMID: 35881389 DOI: 10.1007/978-1-0716-2189-9_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The performance of complete post-mortem examinations of children with severe malaria has helped to explain the cause of death in cerebral malaria as well as show the global phenomenon of sequestration in tissues throughout the body, beyond the brain and eye. The pathology of the brain and other organs has been well described and shows a systemic disease with the most catastrophic features found in the brain (i.e., fatal cerebral edema).This chapter describes the materials and methods needed to study the pathological features of tissues outside of the eye, including the brain and other organs. The bulk of these techniques are standard to pathology including gross examination, histology, special stains, and immunohistochemistry.
Collapse
Affiliation(s)
- Danny Arnold Milner
- American Society for Clinical Pathology, Chicago, IL, USA
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, MA, USA
| | | |
Collapse
|
4
|
Alteration of Blood Lactate Levels in Severe Falciparum Malaria: A Systematic Review and Meta-Analysis. BIOLOGY 2021; 10:biology10111085. [PMID: 34827078 PMCID: PMC8614809 DOI: 10.3390/biology10111085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary Alteration of blood lactate levels in patients with severe falciparum malaria is well recognized. However, data on blood lactate in literatures were based on a limited number of participants. The present systematic review aimed to collate the blood lactate levels recorded in the literature and used a metaanalysis approach to pool the evidence in a larger sample size than that used in the individual studies to determine the trend. Results from this study will provide the pooled evidence of blood lactate levels in patients with severe malaria for further studies that identifying patients with a high risk of developing severe malaria or death. Abstract Metabolic acidosis in severe malaria usually occurs in the form of lactic acidosis. The present study aimed to collate articles from the literature that have reported blood lactate levels in patients with severe malaria and tested the hypothesis that blood lactate levels are elevated in patients with malaria compared to those with uncomplicated malaria. Moreover, the difference in lactate levels between patients who died and those who survived was estimated using a meta-analytic approach. Potentially relevant studies were searched for in PubMed, Web of Science, and Scopus. The quality of the included studies was assessed using the Jadad scale and strengthening the reporting of observational studies in epidemiology (STROBE). The pooled mean blood lactate in patients with severe malaria, the pooled weighted mean difference (WMD) of blood lactate between patients with severe malaria and those with uncomplicated malaria, and the pooled WMD and 95% CI of blood lactate between patients who died from and those who survived severe malaria were estimated using the random-effects model. Heterogeneity among the outcomes of the included studies was assessed using Cochran’s Q and I2 statistics. A meta-regression analysis was performed to identify the source(s) of heterogeneity of outcomes among the included studies. A subgroup analysis was further performed to separately analyze the outcomes stratified by the probable source(s) of heterogeneity. Publication bias was assessed by the visual inspection of the funnel plot asymmetry. Of 793 studies retrieved from the searches, 30 studies were included in qualitative and quantitative syntheses. The pooled mean lactate in patients with severe malaria was 5.04 mM (95% CI: 4.44–5.64; I2: 99.9%; n = 30,202 cases from 30 studies). The mean lactate in patients with severe malaria (1568 cases) was higher than in those with uncomplicated malaria (1693 cases) (p = 0.003; MD: 2.46; 95% CI: 0.85–4.07; I2: 100%; nine studies). The mean lactate in patients with severe malaria who died (272 cases) was higher than in those with severe malaria who survived (1370 cases) (p < 0.001; MD: 2.74; 95% CI: 1.74–3.75; I2: 95.8%; six studies). In conclusion, the present study showed a high mean difference in blood lactate level between patients with severe malaria and patients with uncomplicated malaria. In addition, there was a high mean difference in blood lactate level between patients with severe malaria who died compared to those with severe malaria who survived. Further studies are needed to investigate the prognostic value of blood lactate levels to identify patients who are at high risk of developing severe malaria or dying.
Collapse
|
5
|
A meta-analysis on the prevalence and characteristics of severe malaria in patients with Plasmodium spp. and HIV co-infection. Sci Rep 2021; 11:16655. [PMID: 34404814 PMCID: PMC8371128 DOI: 10.1038/s41598-021-95591-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Co-infection with malaria and human immunodeficiency virus (HIV) increases the severity and mortality rates of both diseases. A better understanding of the effects of co-infections could help in the diagnosis, prompt treatment, prevention, and control of malarial parasites among HIV-infected patients. In this systematic review and meta-analysis, we estimated the prevalence and characteristics of severe malaria (SM) caused by co-infection with HIV. We included relevant studies that were conducted between the years 1991 and 2018 and reporting on SM. We pooled the prevalence of SM in patients with co-infection, pooled odds ratios of SM in patients with co-infection and Plasmodium mono-infection, and differences in laboratory parameters such as parasite density and leucocyte counts, between co-infected and Plasmodium mono-infected patients. The meta-analysis included 29 studies (1126 SM cases). The pooled prevalence of SM in co-infected patients using the data of 23 studies (SM = 795 cases, all co-infection cases = 2534 cases) was 43.0% (95% confidence interval [CI] 31.0–56.0%; I2, 98.0%). Overall, the odds of SM from 18 studies were pooled. The odds of SM were significantly higher in co-infected patients than in Plasmodium mono-infected patients (OR 2.41; 95% CI 1.43–4.08; I2 = 85%; P = 0.001) and also significantly higher in children (OR 9.69; 95% CI 5.14–18.3; I2, 0%; P < 0.0001; two studies) than in adults (OR 2.68; 95% CI 1.52–4.73; I2, 79.0%; P = 0.0007; 12 studies). Co-infected patients with SM had a higher parasite density than those with Plasmodium mono-infection when the data of seven studies were analysed (SMD, 1.25; 95% CI 0.14–2.36; I2, 98.0%; P = 0.03) and higher leukocyte counts when the data of four studies were analysed (MD, 1570 cells/µL; 95% CI 850–2300 cells/µL; I2, 21.0%; P < 0.0001). Thus, the prevalence of SM among patients co-infected with Plasmodium spp. and HIV is high. Because co-infections could lead to SM, patients with Plasmodium spp. and HIV co-infection should be identified and treated to reduce the prevalence of SM and the number of deaths.
Collapse
|
6
|
Moxon CA, Gibbins MP, McGuinness D, Milner DA, Marti M. New Insights into Malaria Pathogenesis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:315-343. [PMID: 31648610 DOI: 10.1146/annurev-pathmechdis-012419-032640] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malaria remains a major public health threat in tropical and subtropical regions across the world. Even though less than 1% of malaria infections are fatal, this leads to about 430,000 deaths per year, predominantly in young children in sub-Saharan Africa. Therefore, it is imperative to understand why a subset of infected individuals develop severe syndromes and some of them die and what differentiates these cases from the majority that recovers. Here, we discuss progress made during the past decade in our understanding of malaria pathogenesis, focusing on the major human parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Christopher A Moxon
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Matthew P Gibbins
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Dagmara McGuinness
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois 60603, USA.,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; , .,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
7
|
Ortega-Pajares A, Rogerson SJ. The Rough Guide to Monocytes in Malaria Infection. Front Immunol 2018; 9:2888. [PMID: 30581439 PMCID: PMC6292935 DOI: 10.3389/fimmu.2018.02888] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
While half of the world's population is at risk of malaria, the most vulnerable are still children under five, pregnant women and returning travelers. Anopheles mosquitoes transmit malaria parasites to the human host; but how Plasmodium interact with the innate immune system remains largely unexplored. The most recent advances prove that monocytes are a key component to control parasite burden and to protect host from disease. Monocytes' protective roles include phagocytosis, cytokine production and antigen presentation. However, monocytes can be involved in pathogenesis and drive inflammation and sequestration of infected red blood cells in organs such as the brain, placenta or lungs by secreting cytokines that upregulate expression of endothelial adhesion receptors. Plasmodium DNA, hemozoin or extracellular vesicles can impair the function of monocytes. With time, reinfections with Plasmodium change the relative proportion of monocyte subsets and their physical properties. These changes relate to clinical outcomes and might constitute informative biomarkers of immunity. More importantly, at the molecular level, transcriptional, metabolic or epigenetic changes can “prime” monocytes to alter their responses in future encounters with Plasmodium. This mechanism, known as trained immunity, challenges the traditional view of monocytes as a component of the immune system that lacks memory. Overall, this rough guide serves as an update reviewing the advances made during the past 5 years on understanding the role of monocytes in innate immunity to malaria.
Collapse
Affiliation(s)
- Amaya Ortega-Pajares
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Phyo AP, Win KK, Thu AM, Swe LL, Htike H, Beau C, Sriprawat K, Winterberg M, Proux S, Imwong M, Ashley EA, Nosten F. Poor response to artesunate treatment in two patients with severe malaria on the Thai-Myanmar border. Malar J 2018; 17:30. [PMID: 29334942 PMCID: PMC5769511 DOI: 10.1186/s12936-018-2182-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/10/2018] [Indexed: 11/22/2022] Open
Abstract
Background Malaria has declined dramatically along the Thai–Myanmar border in recent years due to malaria control and elimination programmes. However, at the same time, artemisinin resistance has spread, raising concerns about the efficacy of parenteral artesunate for the treatment of severe malaria. Case presentation In November 2015 and April 2017, two patients were treated for severe malaria with parenteral artesunate. Quinine was added within 24 h due to an initial poor response to treatment. The first patient died within 24 h of starting treatment and the second did not clear his peripheral parasitaemia until 11 days later. Genotyping revealed artemisinin resistance Kelch-13 markers. Conclusions Reliable efficacy of artesunate for the treatment of severe malaria may no longer be assured in areas where artemisinin resistance has emerged. Empirical addition of parenteral quinine to artesunate for treatment is recommended as a precautionary measure. Electronic supplementary material The online version of this article (10.1186/s12936-018-2182-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, PO Box 46, Mae Sot, Tak, 63110, Thailand. .,Myanmar Oxford Clinical Research Unit, Yangon, Myanmar.
| | - Kyaw Kyaw Win
- Mae Tao Clinic, 702, Moo 1, Tha Sai Luad, Mae Sot, Tak, 63110, Thailand
| | - Aung Myint Thu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, PO Box 46, Mae Sot, Tak, 63110, Thailand
| | - Lei Lei Swe
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, PO Box 46, Mae Sot, Tak, 63110, Thailand
| | - Htike Htike
- Mae Tao Clinic, 702, Moo 1, Tha Sai Luad, Mae Sot, Tak, 63110, Thailand
| | - Candy Beau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, PO Box 46, Mae Sot, Tak, 63110, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, PO Box 46, Mae Sot, Tak, 63110, Thailand
| | - Markus Winterberg
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, PO Box 46, Mae Sot, Tak, 63110, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, PO Box 46, Mae Sot, Tak, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Zhang HW, Li SJ, Hu T, Yu YM, Yang CY, Zhou RM, Liu Y, Tang J, Wang JJ, Wang XY, Sun YX, Feng ZC, Xu BL. Prolonged parasite clearance in a Chinese splenectomized patient with falciparum malaria imported from Nigeria. Infect Dis Poverty 2017; 6:44. [PMID: 28372588 PMCID: PMC5379605 DOI: 10.1186/s40249-017-0259-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/15/2017] [Indexed: 11/23/2022] Open
Abstract
Background The spleen plays a pivotal role in the rapid clearance of parasitized red blood cells in patients with falciparum malaria after artemisinin treatment. Prolonged parasite clearance can be found in patients who have had a splenectomy, or those with hemoglobin abnormalities and/or reduced immunity, which are all distinguishable from artemisinin resistance. This paper reports on a case of prolonged parasite clearance in a Chinese splenectomized patient with falciparum malaria imported from Nigeria. Case presentation A 35-year-old Chinese male suffered 2 days of febrile illness after returning to Zhumadian city of Henan province from Nigeria on October 1, 2014. The main symptoms were febrile, including the highest axillary temperature of 40 °C, headache, and chills. A peripheral blood smear showed parasitemia (53 913 asexual parasites/μl) of Plasmodium falciparum. The patient had not used any chemoprophylaxis against malaria in Nigeria when he worked there as a construction worker between 2009 and 2014. The patient had three episodes of malaria in Nigeria and had a splenectomy due to a traffic accident 8 years ago from the time he was admitted to hospital. The patient was orally administrated a total of 320 mg/2.56 g dihydroartemisinin-piperaquine for 2 days and intravenously administrated a total of 3 000 mg artesunate for 18 days. The axillary temperature of the patient ranged between 37.0 and 37.7 °C from Day 0 to Day 3, and blood microscopy revealed falciparum malaria parasitemia (26 674 asexual parasites/μl) on Day 3. The patient was afebrile on Day 4, falciparum malaria parasitemia was continuously present and then gradually decreased on the next days, and was negative on Day 21. The patient was cured and left hospital on Day 24 after no plasmodium falciparum was found in the blood on Day 21 to Day 23. No mutation was found in the K13 propeller gene when compared with the PF3D7_1343700 K13 propeller gene reference sequence. Conclusions This is the first reported case in China of prolonged parasite clearance in a splenectomized patient with imported falciparum malaria. Artemisinin resistance should be distinguished when prolonged parasite clearance is found in a malaria patient who has had splenectomy. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0259-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong-Wei Zhang
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, People's Republic of China.
| | - San-Jin Li
- Department of Infectious Diseases, the 6th People's Hospital of Zhengzhou, Zhengzhou, 450016, People's Republic of China
| | - Tao Hu
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Yong-Min Yu
- Department of Infectious Diseases, the 6th People's Hospital of Zhengzhou, Zhengzhou, 450016, People's Republic of China
| | - Cheng-Yun Yang
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, People's Republic of China
| | - Rui-Min Zhou
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, People's Republic of China
| | - Ying Liu
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, People's Republic of China
| | - Jing Tang
- Department of Infectious Diseases, the 6th People's Hospital of Zhengzhou, Zhengzhou, 450016, People's Republic of China
| | - Jing-Jing Wang
- Department of Infectious Diseases, the 6th People's Hospital of Zhengzhou, Zhengzhou, 450016, People's Republic of China
| | - Xiu-Yun Wang
- Department of Infectious Diseases, the 6th People's Hospital of Zhengzhou, Zhengzhou, 450016, People's Republic of China
| | - Yong-Xiang Sun
- Department of Infectious Diseases, the 6th People's Hospital of Zhengzhou, Zhengzhou, 450016, People's Republic of China
| | - Zhan-Chun Feng
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Bian-Li Xu
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, People's Republic of China.
| |
Collapse
|
10
|
Abstract
Following anti-malarial drug treatment asexual malaria parasite killing and clearance appear to be first order processes. Damaged malaria parasites in circulating erythrocytes are removed from the circulation mainly by the spleen. Splenic clearance functions increase markedly in acute malaria. Either the entire infected erythrocytes are removed because of their reduced deformability or increased antibody binding or, for the artemisinins which act on young ring stage parasites, splenic pitting of drug-damaged parasites is an important mechanism of clearance. The once-infected erythrocytes returned to the circulation have shortened survival. This contributes to post-artesunate haemolysis that may follow recovery in non-immune hyperparasitaemic patients. As the parasites mature Plasmodium vivax-infected erythrocytes become more deformable, whereas Plasmodium falciparum-infected erythrocytes become less deformable, but they escape splenic filtration by sequestering in venules and capillaries. Sequestered parasites are killed in situ by anti-malarial drugs and then disintegrate to be cleared by phagocytic leukocytes. After treatment with artemisinin derivatives some asexual parasites become temporarily dormant within their infected erythrocytes, and these may regrow after anti-malarial drug concentrations decline. Artemisinin resistance in P. falciparum reflects reduced ring stage susceptibility and manifests as slow parasite clearance. This is best assessed from the slope of the log-linear phase of parasitaemia reduction and is commonly measured as a parasite clearance half-life. Pharmacokinetic-pharmacodynamic modelling of anti-malarial drug effects on parasite clearance has proved useful in predicting therapeutic responses and in dose-optimization.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| |
Collapse
|
11
|
Kajubi R, Huang L, Were M, Kiconco S, Li F, Marzan F, Gingrich D, Nyunt MM, Ssebuliba J, Mwebaza N, Aweeka FT, Parikh S. Parasite Clearance and Artemether Pharmacokinetics Parameters Over the Course of Artemether-Lumefantrine Treatment for Malaria in Human Immunodeficiency Virus (HIV)-Infected and HIV-Uninfected Ugandan Children. Open Forum Infect Dis 2016; 3:ofw217. [PMID: 28018925 PMCID: PMC5170492 DOI: 10.1093/ofid/ofw217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/11/2016] [Indexed: 11/13/2022] Open
Abstract
Background. Artemisinins are primarily responsible for initial parasite clearance. Antimalarial pharmacokinetics (PK), human immunodeficiency virus (HIV) infection, and antiretroviral therapy have been shown to impact treatment outcomes, although their impact on early parasite clearance in children has not been well characterized. Methods. Parasite clearance parameters were generated from twice-daily blood smears in HIV-infected and HIV-uninfected Ugandan children treated with artemether-lumefantrine (AL). Artemether and dihydroartemisinin (DHA) area-under-the-curve from 0–8 hours (AUC0-8hr) after the 1st AL dose was compared with AUC0-8hr after the last (6th) dose in a concurrently enrolled cohort. The association between post-1st dose artemisinin AUC0-8hr and parasite clearance was assessed. Results. Parasite clearance was longer in HIV-infected versus HIV-uninfected children (median, 3.5 vs 2.8 hours; P = .003). Artemether AUC0-8hr was 3- to 4-fold lower after the 6th dose versus the 1st dose of AL in HIV-infected children on nevirapine- or lopinavir/ritionavir-based regimens and in HIV-uninfected children (P ≤ .002, 1st vs 6th-dose comparisons). Children on efavirenz exhibited combined post-1st dose artemether/DHA exposure that was significantly lower than those on lopinavir/ritonavir and HIV-uninfected children. Multiple regression analysis supported that the effect of artemether/DHA exposure on parasite clearance was significantly moderated by HIV status. Conclusions. Parasite clearance rates remain rapid in Uganda and were not found to associate with PK exposure. However, significant decreases in artemisinin PK with repeated dosing in nearly all children, coupled with small, but significant increase in parasite clearance half-life in those with HIV, may have important implications for AL efficacy, particularly because reports of artemisinin resistance are increasing.
Collapse
Affiliation(s)
- Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Liusheng Huang
- University of California-San Francisco, San Francisco General Hospital
| | - Moses Were
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Sylvia Kiconco
- University of California-San Francisco, San Francisco General Hospital
| | - Fangyong Li
- Yale University School of Public Health and Medicine , New Haven, Connecticut
| | - Florence Marzan
- University of California-San Francisco, San Francisco General Hospital
| | - David Gingrich
- University of California-San Francisco, San Francisco General Hospital
| | - Myaing M Nyunt
- Institute for Global Health, University of Maryland Baltimore School of Medicine
| | | | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
| | | | - Sunil Parikh
- Yale University School of Public Health and Medicine , New Haven, Connecticut
| |
Collapse
|