1
|
Mutations in DISC1 alter IP 3R and voltage-gated Ca 2+ channel functioning, implications for major mental illness. Neuronal Signal 2021; 5:NS20180122. [PMID: 34956649 PMCID: PMC8663806 DOI: 10.1042/ns20180122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) participates in a wide variety of
developmental processes of central neurons. It also serves critical roles that
underlie cognitive functioning in adult central neurons. Here we summarize
DISC1’s general properties and discuss its use as a model system for
understanding major mental illnesses (MMIs). We then discuss the cellular
actions of DISC1 that involve or regulate Ca2+ signaling in adult
central neurons. In particular, we focus on the tethering role DISC1 plays in
transporting RNA particles containing Ca2+ channel subunit RNAs,
including IP3R1, CACNA1C and CACNA2D1, and in transporting mitochondria into
dendritic and axonal processes. We also review DISC1’s role in modulating
IP3R1 activity within mitochondria-associated ER membrane (MAM).
Finally, we discuss DISC1-glycogen synthase kinase 3β (GSK3β)
signaling that regulates functional expression of voltage-gated Ca2+
channels (VGCCs) at central synapses. In each case, DISC1 regulates the movement
of molecules that impact Ca2+ signaling in neurons.
Collapse
|
2
|
Kano SI, Hodgkinson CA, Jones-Brando L, Eastwood S, Ishizuka K, Niwa M, Choi EY, Chang DJ, Chen Y, Velivela SD, Leister F, Wood J, Chowdari K, Ducci F, Caycedo DA, Heinz E, Newman ER, Cascella N, Mortensen PB, Zandi PP, Dickerson F, Nimgaonkar V, Goldman D, Harrison PJ, Yolken RH, Sawa A. Host-parasite interaction associated with major mental illness. Mol Psychiatry 2020; 25:194-205. [PMID: 30127472 PMCID: PMC6382596 DOI: 10.1038/s41380-018-0217-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/16/2018] [Accepted: 06/20/2018] [Indexed: 11/23/2022]
Abstract
Clinical studies frequently report that patients with major mental illness such as schizophrenia and bipolar disorder have co-morbid physical conditions, suggesting that systemic alterations affecting both brain and peripheral tissues might underlie the disorders. Numerous studies have reported elevated levels of anti-Toxoplasma gondii (T. gondii) antibodies in patients with major mental illnesses, but the underlying mechanism was unclear. Using multidisciplinary epidemiological, cell biological, and gene expression profiling approaches, we report here multiple lines of evidence suggesting that a major mental illness-related susceptibility factor, Disrupted in schizophrenia (DISC1), is involved in host immune responses against T. gondii infection. Specifically, our cell biology and gene expression studies have revealed that DISC1 Leu607Phe variation, which changes DISC1 interaction with activating transcription factor 4 (ATF4), modifies gene expression patterns upon T. gondii infection. Our epidemiological data have also shown that DISC1 607 Phe/Phe genotype was associated with higher T. gondii antibody levels in sera. Although further studies are required, our study provides mechanistic insight into one of the few well-replicated serological observations in major mental illness.
Collapse
Affiliation(s)
- Shin-Ichi Kano
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Lorraine Jones-Brando
- Stanley Division of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sharon Eastwood
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Koko Ishizuka
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Minae Niwa
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Eric Y Choi
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Daniel J Chang
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yian Chen
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Swetha D Velivela
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Flora Leister
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Joel Wood
- Departments of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kodavali Chowdari
- Departments of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Francesca Ducci
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Daniel A Caycedo
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Elizabeth Heinz
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Emily R Newman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Nicola Cascella
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Preben B Mortensen
- National Centre for Register-Based Research, University of Aarhus, Aarhus, 8000, Denmark
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, 21204, USA
| | - Vishwajit Nimgaonkar
- Departments of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Akira Sawa
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
3
|
Dahoun T, Nour MM, Adams RA, Trossbach S, Lee SH, Patel H, Curtis C, Korth C, Howes OD. Disrupted-in-schizophrenia 1 functional polymorphisms and D 2 /D 3 receptor availability: A [ 11 C]-(+)-PHNO imaging study. GENES BRAIN AND BEHAVIOR 2019; 18:e12596. [PMID: 31264367 DOI: 10.1111/gbb.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 11/28/2022]
Abstract
The disrupted-in-schizophrenia 1 (DISC1) protein has been implicated in a range of biological mechanisms underlying chronic mental disorders such as schizophrenia. Schizophrenia is associated with abnormal striatal dopamine signalling, and all antipsychotic drugs block striatal dopamine 2/3 receptors (D2/3 Rs). Importantly, the DISC1 protein directly interacts and forms a protein complex with the dopamine D2 receptor (D2 R) that inhibits agonist-induced D2 R internalisation. Moreover, animal studies have found large striatal increases in the proportion of D2 R receptors in a high affinity state (D2 high R) in DISC1 rodent models. Here, we investigated the relationship between the three most common polymorphisms altering the amino-acid sequence of the DISC1 protein (Ser704Cys (rs821616), Leu607Phe (rs6675281) and Arg264Gln (rs3738401)) and striatal D2/3 R availability in 41 healthy human volunteers, using [11 C]-(+)-PHNO positron emission tomography. We found no association between DISC1 polymorphisms and D2/3 R availability in the striatum and D2 R availability in the caudate and putamen. Therefore, despite a direct interaction between DISC1 and the D2 R, none of its main functional polymorphisms impact striatal D2/3 R binding potential, suggesting DISC1 variants act through other mechanisms.
Collapse
Affiliation(s)
- Tarik Dahoun
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Matthew M Nour
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, UK.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, Russell Square House, London, UK.,Wellcome Centre for Human Neuroimaging (WCHN), University College London, London, UK
| | - Rick A Adams
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Division of Psychiatry, University College London, London, UK.,Institute of Cognitive Neuroscience, University College London, London, UK
| | - Svenja Trossbach
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sang H Lee
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.,Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Hamel Patel
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.,Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Charles Curtis
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Carsten Korth
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver D Howes
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, UK
| |
Collapse
|
4
|
Wang X, Kery R, Xiong Q. Synaptopathology in autism spectrum disorders: Complex effects of synaptic genes on neural circuits. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:398-415. [PMID: 28986278 DOI: 10.1016/j.pnpbp.2017.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Xinxing Wang
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rachel Kery
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
5
|
|
6
|
Mühle C, Kreczi J, Rhein C, Richter-Schmidinger T, Alexopoulos P, Doerfler A, Lenz B, Kornhuber J. Additive sex-specific influence of common non-synonymous DISC1 variants on amygdala, basal ganglia, and white cortical surface area in healthy young adults. Brain Struct Funct 2016; 222:881-894. [PMID: 27369464 DOI: 10.1007/s00429-016-1253-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 06/16/2016] [Indexed: 01/30/2023]
Abstract
The disrupted-in-schizophrenia-1 (DISC1) gene is known for its role in the development of mental disorders. It is also involved in neurodevelopment, cognition, and memory. To investigate the association between DISC1 variants and brain morphology, we analyzed the influence of the three common non-synonymous polymorphisms in DISC1 on specific brain structures in healthy young adults. The volumes of brain regions were determined in 145 subjects by magnetic resonance imaging and automated analysis using FreeSurfer. Genotyping was performed by high resolution melting of amplified products. In an additive genetic model, rs6675281 (Leu607Phe), rs3738401 (Arg264Gln), and rs821616 (Ser704Cys) significantly explained the volume variance of the amygdala (p = 0.007) and the pallidum (p = 0.004). A higher cumulative portion of minor alleles was associated with larger volumes of the amygdala (p = 0.005), the pallidum (p = 0.001), the caudate (p = 0.024), and the putamen (p = 0.007). Sex-stratified analysis revealed a strong genetic effect of rs6675281 on putamen and pallidum in females but not in males and an opposite influence of rs3738401 on the white cortical surface in females compared to males. The strongest single association was found for rs821616 and the amygdala volume in male subjects (p < 0.001). No effect was detected for the nucleus accumbens. We report-to our knowledge-for the first time a significant and sex-specific influence of common DISC1 variants on volumes of the basal ganglia, the amygdala and on the cortical surface area. Our results demonstrate that the additive model of all three polymorphisms outperforms their single analysis.
Collapse
Affiliation(s)
- Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Jakob Kreczi
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Panagiotis Alexopoulos
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.,Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar of the Technical University Munich, Munich, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
7
|
Variations in Disrupted-in-Schizophrenia 1 gene modulate long-term longitudinal differences in cortical thickness in patients with a first-episode of psychosis. Brain Imaging Behav 2015. [DOI: 10.1007/s11682-015-9433-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Takahashi T, Nakamura M, Nakamura Y, Aleksic B, Kido M, Sasabayashi D, Takayanagi Y, Furuichi A, Nishikawa Y, Noguchi K, Ozaki N, Suzuki M. The Disrupted-in-Schizophrenia-1 Ser704Cys polymorphism and brain neurodevelopmental markers in schizophrenia and healthy subjects. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:11-7. [PMID: 25092219 DOI: 10.1016/j.pnpbp.2014.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 11/29/2022]
Abstract
Increasing evidence has implicated the role of Disrupted-in-Schizophrenia-1 (DISC1), a potential susceptibility gene for schizophrenia, in early neurodevelopmental processes. However, the effect of its genotype variation on brain morphologic changes related to neurodevelopmental abnormalities in schizophrenia remains largely unknown. This magnetic resonance imaging study examined the association between DISC1 Ser704Cys polymorphism and a range of brain neurodevelopmental markers [cavum septi pellucidi (CSP), adhesio interthalamica (AI), olfactory sulcus depth, and sulcogyral pattern (Types I, II, III, and IV) in the orbitofrontal cortex (OFC)] in an all Japanese sample of 75 schizophrenia patients and 87 healthy controls. The Cys carriers had significantly larger CSP than the Ser homozygotes for both schizophrenia patients and healthy controls. The Cys carriers also exhibited a reduction in the Type I pattern of the right OFC in the healthy controls, but not in the schizophrenia patients. The DISC1 Ser704Cys polymorphism did not affect the AI and olfactory sulcus depth in either group. These results suggested a possible role of the DISC1 genotype in the early neurodevelopment of human brains, but failed to show its specific role in the neurodevelopmental pathology of schizophrenia.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
9
|
Liu B, Fan L, Cui Y, Zhang X, Hou B, Li Y, Qin W, Wang D, Yu C, Jiang T. DISC1 Ser704Cys impacts thalamic-prefrontal connectivity. Brain Struct Funct 2015; 220:91-100. [PMID: 24146131 PMCID: PMC4286634 DOI: 10.1007/s00429-013-0640-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/12/2013] [Indexed: 11/25/2022]
Abstract
The Disrupted-in-Schizophrenia 1 (DISC1) gene has been thought as a putative susceptibility gene for various psychiatric disorders, and DISC1 Ser704Cys is associated with variations of brain morphology and function. Moreover, our recent diffusion magnetic resonance imaging (dMRI) study reported that DISC1 Ser704Cys was associated with information transfer efficiency in the brain anatomical network. However, the effects of the DISC1 gene on functional brain connectivity and networks, especially for thalamic-prefrontal circuit, which are disrupted in various psychiatric disorders, are largely unknown. Using a functional connectivity density (FCD) mapping method based on functional magnetic resonance imaging data in a large sample of healthy Han Chinese subjects, we first investigated the association between DISC1 Ser704Cys and short- and long-range FCD hubs. Compared with Ser homozygotes, Cys-allele individuals had increased long-range FCD hubs in the bilateral thalami. The functional and anatomical connectivity of the thalamus to the prefrontal cortex was further analyzed. Significantly increased thalamic-prefrontal functional connectivity and decreased thalamic-prefrontal anatomical connectivity were found in DISC1 Cys-allele carriers. Our findings provide consistent evidence that the DISC1 Ser704Cys polymorphism influences the thalamic-prefrontal circuits in humans and may provide new insights into the neural mechanisms that link DISC1 and the risk for psychiatric disorders.
Collapse
Affiliation(s)
- Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xiaolong Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
| | - Bing Hou
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
| | - Yonghui Li
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052 China
| | - Dawei Wang
- Department of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052 China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052 China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| |
Collapse
|
10
|
Stacey D, Redlich R, Opel N, Grotegerd D, Arolt V, Kugel H, Heindel W, Baune BT, Dannlowski U. No evidence of DISC1-associated morphological changes in the hippocampus, anterior cingulate cortex, or striatum in major depressive disorder cases and healthy controls. J Affect Disord 2014; 166:103-7. [PMID: 25012417 DOI: 10.1016/j.jad.2014.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND DISC1 imaging genetics studies in healthy controls, schizophrenia, and bipolar disorder cases have revealed morphological changes in brain regions involved in the pathophysiology of psychiatric disease including the hippocampus, anterior cingulate cortex (ACC), and the striatum. However, many of these studies have yielded discordant findings so there is a need for replication. Furthermore, despite evidence from human genetic studies and animal models implicating DISC1 in major depressive disorder (MDD), a DISC1 imaging genetics study in MDD cases has yet to be published. Thus, using neuroimaging data from MDD cases and a large sample of healthy controls we aimed to identify morphological changes representing neurobiological mechanisms underlying the association between DISC1 and MDD. METHODS We utilized structural magnetic resonance imaging (sMRI) data from 512 healthy controls and 171 current MDD (SCID interview) cases, each with genotype data for non-synonymous DISC1 SNPs rs3738401, rs6675281, and rs821616. RESULTS Region of interest analyses failed to reveal DISC1-associated morphological changes in the hippocampus, ACC, or striatum in MDD patients and healthy controls. Whole brain exploratory analyses identified a nominally significant cluster mapping to the border of the precentral and postcentral gyri associated with rs821616 in healthy controls only (p(uncorrected)<0.001). LIMITATIONS We focused our analyses exclusively on three, but previously heavily studied, SNPs in DISC1. CONCLUSIONS Our findings suggest that morphological changes in the hippocampus, ACC, and/or striatum of MDD patients do not represent neurobiological mechanisms underlying the association between DISC1 and MDD. However, we urge replication in independent samples of MDD cases.
Collapse
Affiliation(s)
- David Stacey
- Discipline of Psychiatry, Level 4, Eleanor Harrald Building, Frome Road, School of Medicine, University of Adelaide, SA 5005, Australia.
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Germany
| | | | - Volker Arolt
- Department of Psychiatry, University of Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, Level 4, Eleanor Harrald Building, Frome Road, School of Medicine, University of Adelaide, SA 5005, Australia
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Germany; Department of Psychiatry, University of Marburg, Germany
| |
Collapse
|
11
|
Knickmeyer RC, Wang J, Zhu H, Geng X, Woolson S, Hamer RM, Konneker T, Lin W, Styner M, Gilmore JH. Common variants in psychiatric risk genes predict brain structure at birth. Cereb Cortex 2014; 24:1230-46. [PMID: 23283688 PMCID: PMC3977618 DOI: 10.1093/cercor/bhs401] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Studies in adolescents and adults have demonstrated that polymorphisms in putative psychiatric risk genes are associated with differences in brain structure, but cannot address when in development these relationships arise. To determine if common genetic variants in disrupted-in-schizophrenia-1 (DISC1; rs821616 and rs6675281), catechol-O-methyltransferase (COMT; rs4680), neuregulin 1 (NRG1; rs35753505 and rs6994992), apolipoprotein E (APOE; ε3ε4 vs. ε3ε3), estrogen receptor alpha (ESR1; rs9340799 and rs2234693), brain-derived neurotrophic factor (BDNF; rs6265), and glutamate decarboxylase 1 (GAD1; rs2270335) are associated with individual differences in brain tissue volumes in neonates, we applied both automated region-of-interest volumetry and tensor-based morphometry to a sample of 272 neonates who had received high-resolution magnetic resonance imaging scans. ESR1 (rs9340799) predicted intracranial volume. Local variation in gray matter (GM) volume was significantly associated with polymorphisms in DISC1 (rs821616), COMT, NRG1, APOE, ESR1 (rs9340799), and BDNF. No associations were identified for DISC1 (rs6675281), ESR1 (rs2234693), or GAD1. Of note, neonates homozygous for the DISC1 (rs821616) serine allele exhibited numerous large clusters of reduced GM in the frontal lobes, and neonates homozygous for the COMT valine allele exhibited reduced GM in the temporal cortex and hippocampus, mirroring findings in adults. The results highlight the importance of prenatal brain development in mediating psychiatric risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas Konneker
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | | | - Martin Styner
- Department of Psychiatry
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA and
| | | |
Collapse
|
12
|
Gamo NJ, Duque A, Paspalas CD, Kata A, Fine R, Boven L, Bryan C, Lo T, Anighoro K, Bermudez L, Peng K, Annor A, Raja A, Mansson E, Taylor SR, Patel K, Simen AA, Arnsten AFT. Role of disrupted in schizophrenia 1 (DISC1) in stress-induced prefrontal cognitive dysfunction. Transl Psychiatry 2013; 3:e328. [PMID: 24301646 PMCID: PMC4030323 DOI: 10.1038/tp.2013.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/05/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022] Open
Abstract
Recent genetic studies have linked mental illness to alterations in disrupted in schizophrenia 1 (DISC1), a multifunctional scaffolding protein that regulates cyclic adenosine monophosphate (cAMP) signaling via interactions with phosphodiesterase 4 (PDE4). High levels of cAMP during stress exposure impair function of the prefrontal cortex (PFC), a region gravely afflicted in mental illness. As stress can aggravate mental illness, genetic insults to DISC1 may worsen symptoms by increasing cAMP levels. The current study examined whether viral knockdown (KD) of the Disc1 gene in rat PFC increases susceptibility to stress-induced PFC dysfunction. Rats were trained in a spatial working memory task before receiving infusions of (a) an active viral construct that knocked down Disc1 in PFC (DISC1 KD group), (b) a 'scrambled' construct that had no effect on Disc1 (Scrambled group), or (c) an active construct that reduced DISC1 expression dorsal to PFC (Anatomical Control group). Data were compared with an unoperated Control group. Cognitive performance was assessed following mild restraint stress that had no effect on normal animals. DISC1 KD rats were impaired by 1 h restraint stress, whereas Scrambled, Control, and Anatomical Control groups were unaffected. Thus, knocking down Disc1 in PFC reduced the threshold for stress-induced cognitive dysfunction, possibly through disinhibited cAMP signaling at neuronal network synapses. These findings may explain why patients with DISC1 mutations may be especially vulnerable to the effects of stress.
Collapse
Affiliation(s)
- N J Gamo
- Department of Neurobiology, Yale University, New Haven, CT, USA,Department of Neurobiology, Yale University, 600 N. Wolfe Street, Baltimore, MD 21287, USA. E-mail:
| | - A Duque
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - C D Paspalas
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - A Kata
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - R Fine
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - L Boven
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - C Bryan
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - T Lo
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - K Anighoro
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - L Bermudez
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - K Peng
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - A Annor
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - A Raja
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - E Mansson
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - S R Taylor
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - K Patel
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - A A Simen
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - A F T Arnsten
- Department of Neurobiology, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
Bartholomeusz CF, Whittle SL, Montague A, Ansell B, McGorry PD, Velakoulis D, Pantelis C, Wood SJ. Sulcogyral patterns and morphological abnormalities of the orbitofrontal cortex in psychosis. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:168-77. [PMID: 23485592 DOI: 10.1016/j.pnpbp.2013.02.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/01/2013] [Accepted: 02/12/2013] [Indexed: 12/13/2022]
Abstract
Three types of OFC sulcogyral patterns have been identified in the general population. The distribution of these three types has been found altered in individuals at genetic risk of psychosis, first episode psychosis (FEP) and chronic schizophrenia. The aim of this study was to replicate and extend previous research by additionally investigating: intermediate and posterior orbital sulci, cortical thickness, and degree of gyrification/folding of the OFC, in a large sample of FEP patients and healthy controls. OFC pattern type was classified based on a method previously devised, using T1-weighted magnetic resonance images. Cortical thickness and local gyrification indices were calculated using FreeSurfer. Occurrence of Type I pattern was decreased and Type II pattern was increased in FEP patients for the right hemisphere. Interestingly, controls displayed an OFC pattern type distribution that was disparate to that previously reported. Significantly fewer intermediate orbital sulci were observed in the left hemisphere of patients. Grey matter thickness of orbitofrontal sulci was reduced bilaterally, and left hemisphere reductions were related to OFC pattern type in patients. There was no relationship between pattern type and degree of OFC gyrification. An interaction was found between the number of intermediate orbital sulci and OFC gyrification; however this group difference was specific to only the small subsample of people with three intermediate orbital sulci. Given that cortical folding is largely determined by birth, our findings suggest that Type II pattern may be a neurodevelopmental risk marker while Type I pattern may be somewhat protective. This finding, along with compromised orbitofrontal sulci thickness, may reflect early abnormalities in cortical development and point toward a possible endophenotypic risk marker of schizophrenia-spectrum disorders.
Collapse
Affiliation(s)
- Cali F Bartholomeusz
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, 161 Barry Street, Carlton South, Victoria 3053, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Duff BJ, Macritchie KAN, Moorhead TWJ, Lawrie SM, Blackwood DHR. Human brain imaging studies of DISC1 in schizophrenia, bipolar disorder and depression: a systematic review. Schizophr Res 2013; 147:1-13. [PMID: 23602339 DOI: 10.1016/j.schres.2013.03.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 03/08/2013] [Accepted: 03/15/2013] [Indexed: 02/06/2023]
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a well researched candidate gene for schizophrenia and affective disorders with a range of functions relating to neurodevelopment. Several human brain imaging studies investigating correlations between common and rare variants in DISC1 and brain structure and function have shown conflicting results. A meta-analysis of case/control data showed no association between schizophrenia and any common SNP in DISC1. Therefore it is timely to review the literature to plan the direction of future studies. Twenty-two human brain imaging studies have examined the influence of DISC1 variants in health, schizophrenia, bipolar disorder or depression. The most studied common SNPs are Ser704Cys (rs821616) and Leu607Phe (rs6675281). Some imaging-genomic studies report effects on frontal, temporal and hippocampal structural indices in health and illness and a volumetric longitudinal study supports a putative role for these common SNPs in neurodevelopment. Callosal agenesis is described in association with rare deletions at 1q42 which include DISC1 and rare sequence variants at DISC1 itself. DISC1 interactions with translin-associated factor X (TRAX) and neuregulin have been shown to influence several regional volumes. In the first study involving neonates, a role for Ser704Cys (rs821616) has been highlighted in prenatal brain development with large clusters of reduced grey matter reported in the frontal lobes. Functional MRI studies examining associations between Ser704Cys (rs821616) and Leu607Phe (rs6675281) with prefrontal and hippocampal activation have also given inconsistent results. Prefrontal function was reported to be associated with interaction between DISC1 and CITRON (CIT) in health. Preliminary magnetic resonance spectroscopy and diffusion tensor data support the influence of Ser704Cys (rs821616) status on grey and white matter integrity. The glutamate system remains uninvestigated. Associations between rare sequence variants and structural changes in brain regions including the corpus callosum and effects of gene-gene interactions on brain structure and function are promising areas for future study.
Collapse
Affiliation(s)
- Barbara J Duff
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom.
| | - Karine A N Macritchie
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| | - Thomas W J Moorhead
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| | - Stephen M Lawrie
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| | - Douglas H R Blackwood
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| |
Collapse
|
15
|
Levy Y. Developmental delay revisited. ACTA ACUST UNITED AC 2013; 17:180-4. [PMID: 23362037 DOI: 10.1002/ddrr.1112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 12/21/2022]
Abstract
This article presents current neurobiological concepts that highlight the critical role of chronological age in determining optimal development. The role of sensitive periods, experience expectancy, gene expression, and gene-age interactions is discussed. The debate between "splitters" and "lumpers" is presented in light of the review articles in this special issue. The conclusion from this study is that in a significant proportion of cases, earlier diagnoses are possible, avoiding the all-encompassing developmental delay/global developmental delay, and opening up possibilities of early interventions. It is further argued that research methodology might benefit from early diagnoses as well.
Collapse
Affiliation(s)
- Yonata Levy
- Psychology Department, Haddasah-Hebrew University Medical School, Jerusalem, Israel.
| |
Collapse
|
16
|
Trost S, Platz B, Usher J, Scherk H, Wobrock T, Ekawardhani S, Meyer J, Reith W, Falkai P, Gruber O. DISC1 (disrupted-in-schizophrenia 1) is associated with cortical grey matter volumes in the human brain: a voxel-based morphometry (VBM) study. J Psychiatr Res 2013; 47:188-96. [PMID: 23140672 DOI: 10.1016/j.jpsychires.2012.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/08/2012] [Accepted: 10/15/2012] [Indexed: 12/31/2022]
Abstract
DISC1 (Disrupted-In-Schizophrenia 1), one of the top candidate genes for schizophrenia, has been associated with a range of major mental illnesses over the last two decades. DISC1 is crucially involved in neurodevelopmental processes of the human brain. Several haplotypes and single nucleotide polymorphisms of DISC1 have been associated with changes of grey matter volumes in brain regions known to be altered in schizophrenia and other psychiatric disorders. The aim of the present study was to investigate the effects of two single nucleotide polymorphisms (SNPs) of DISC1 on grey matter volumes in human subjects using voxel-based morphometry (VBM). 114/113 participating subjects (psychiatric patients and healthy controls) were genotyped with respect to two at-risk SNPs of DISC1, rs6675281 and rs821616. All participants underwent structural magnetic resonance imaging (MRI). MRI data was statistically analyzed using voxel-based morphometry. We found significant alterations of grey matter volumes in prefrontal and temporal brain regions in association with rs6675281 and rs821616. These effects of DISC1 polymorphisms on brain morphology provide further support for an involvement of DISC1 in the neurobiology of major psychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- S Trost
- Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Department of Psychiatry and Psychotherapy, Georg August University, Goettingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Thomson PA, Malavasi ELV, Grünewald E, Soares DC, Borkowska M, Millar JK. DISC1 genetics, biology and psychiatric illness. FRONTIERS IN BIOLOGY 2013; 8:1-31. [PMID: 23550053 PMCID: PMC3580875 DOI: 10.1007/s11515-012-1254-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain.
Collapse
Affiliation(s)
- Pippa A Thomson
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
18
|
Hikida T, Gamo NJ, Sawa A. DISC1 as a therapeutic target for mental illnesses. Expert Opin Ther Targets 2012; 16:1151-60. [PMID: 23130881 DOI: 10.1517/14728222.2012.719879] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Many genetic studies have indicated that DISC1 is not merely "disrupted-in-schizophrenia," but is more generally implicated in various brain dysfunctions associated with aberrant neurodevelopment and intracellular signaling pathways. Thus, the DISC1 gene is mildly associated with a variety of brain disorders, including schizophrenia, mood disorders, and autism. This novel concept fits with the results from biological studies of DISC1, which include cell and animal models. AREAS COVERED We review the molecular structure and functions of DISC1, particularly those in conjunction with its important interactors. Functions of these interacting proteins are also introduced under the concept of the "DISC1 interactome." Finally, we discuss how the DISC1 interactome can provide potential therapeutic targets for mental illnesses. EXPERT OPINION Modulation of DISC1 stability and post-transcriptional modifications may be key targets to address DISC1-related pathology. In addition, modulation of DISC1 interactors and the mechanisms of their interactions with DISC1 may also provide drug targets. Disc1 rodent models can subsequently be used as templates for in vivo validations of compounds designed for DISC1 and its interacting proteins. Furthermore, these rodents will serve as genetic models for schizophrenia and related conditions, especially in conjunction with their pathologies during the neurodevelopmental trajectory.
Collapse
Affiliation(s)
- Takatoshi Hikida
- Kyoto University School of Medicine, Medical Innovation Center, Kyoto, Japan.
| | | | | |
Collapse
|
19
|
Raznahan A, Lenroot R, Thurm A, Gozzi M, Hanley A, Spence SJ, Swedo SE, Giedd JN. Mapping cortical anatomy in preschool aged children with autism using surface-based morphometry. NEUROIMAGE-CLINICAL 2012; 2:111-9. [PMID: 24179764 PMCID: PMC3777762 DOI: 10.1016/j.nicl.2012.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/10/2012] [Accepted: 10/18/2012] [Indexed: 12/30/2022]
Abstract
The challenges of gathering in-vivo measures of brain anatomy from young children have limited the number of independent studies examining neuroanatomical differences between children with autism and typically developing controls (TDCs) during early life, and almost all studies in this critical developmental window focus on global or lobar measures of brain volume. Using a novel cohort of young males with Autistic Disorder and TDCs aged 2 to 5 years, we (i) tested for group differences in traditional measures of global anatomy (total brain, total white, total gray and total cortical volume), and (ii) employed surface-based methods for cortical morphometry to directly measure the two biologically distinct sub-components of cortical volume (CV) at high spatial resolution—cortical thickness (CT) and surface area (SA). While measures of global brain anatomy did not show statistically significant group differences, children with autism showed focal, and CT-specific anatomical disruptions compared to TDCs, consisting of relative cortical thickening in regions with central roles in behavioral regulation, and the processing of language, biological movement and social information. Our findings demonstrate the focal nature of brain involvement in early autism, and provide more spatially and morphometrically specific anatomical phenotypes for subsequent translational study.
Collapse
|
20
|
Hedrick A, Lee Y, Wallace GL, Greenstein D, Clasen L, Giedd JN, Raznahan A. Autism risk gene MET variation and cortical thickness in typically developing children and adolescents. Autism Res 2012; 5:434-9. [PMID: 23097380 DOI: 10.1002/aur.1256] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 09/05/2012] [Indexed: 12/15/2022]
Abstract
MET receptor tyrosine kinase (MET) has been proposed as a candidate risk gene for autism spectrum disorder (ASD) based on associations between MET polymorphisms and ASD diagnosis, as well as evidence from animal studies that MET protein may regulate early development of cortical regions implicated in the neurobiology of ASD. The relevance of differences in MET signaling for human cortical development remains unexamined, however. We sought to address this issue by relating genotype at a functional single nucleotide polymorphism within the MET promoter (rs1858830, G→C) to in vivo measures of cortical thickness (CT) development derived from 222 healthy children and adolescents with 514 longitudinally acquired structural magnetic resonance imaging brain scans between ages 9 and 22 years. We identified a statistically significant, developmentally fixed, and stepwise CT reduction with increasing C allele dose in superior and middle temporal gyri, ventral precentral and postcentral gyri, and anterior cingulate bilaterally, and in the right frontopolar cortex. We were also able to demonstrate that mean CT within these cortical regions showed a statistically significant reduction with increasing scores on a continuous measure of autistic traits (the Social Responsiveness Scale). The cortical regions highlighted by our analyses are not only established areas of MET expression during prenatal life but are also key components of the "social brain" that have frequently shown structural and functional abnormalities in autism. Our results suggest that genetic differences in the MET gene may influence the development of cortical systems implicated in the neurobiology of ASD.
Collapse
Affiliation(s)
- Alexis Hedrick
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20814, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Kähler AK, Rimol LM, Brown AA, Djurovic S, Hartberg CB, Melle I, Dale AM, Andreassen OA, Agartz I. Effect of DISC1 SNPs on brain structure in healthy controls and patients with a history of psychosis. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:722-30. [PMID: 22815203 DOI: 10.1002/ajmg.b.32076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 06/11/2012] [Indexed: 11/08/2022]
Abstract
Disrupted-in-Schizophrenia-1 (DISC1) has been suggested as a susceptibility locus for a broad spectrum of psychiatric disorders. Risk variants have been associated with brain structural changes, which overlap alterations reported in schizophrenia and bipolar disorder patients. We used genome-wide genotyping data for a Norwegian sample of healthy controls (n = 171) and patients with a history of psychosis (n = 184), to investigate 61 SNPs in the DISC1 region for putative association with structural magnetic resonance imaging (sMRI) measures (hippocampal volume; mean cortical thickness; and total surface area, as well as cortical thickness and area divided into four lobar measures). SNP rs821589 was associated with mean temporal and total brain cortical thickness in controls (P(adjusted) = 0.009 and 0.02, respectively), but not in patients. SNPs rs11122319 and rs1417584 were associated with mean temporal cortical thickness in patients (P(adjusted) = 0.04 and 0.03, respectively), but not in controls, and both SNPs have previously been highly associated with DISC1 gene expression. There were significant genotype × case-control interactions. There was no significant association between SNPs and cortical area or hippocampal volume in controls, or with any of the structural measures in cases, after correction for multiple comparisons. In conclusion, DISC1 SNPs might impact brain structural variation, possibly differently in psychosis patients versus controls, but independent replication will be needed to confirm our findings.
Collapse
Affiliation(s)
- Anna K Kähler
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Addington AM, Rapoport JL. Annual research review: impact of advances in genetics in understanding developmental psychopathology. J Child Psychol Psychiatry 2012; 53:510-8. [PMID: 22067053 DOI: 10.1111/j.1469-7610.2011.02478.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It was hoped that diagnostic guidelines for, and treatment of, child psychiatric disorders in DSM-5 would be informed by the wealth of clinical genetic research related to neurodevelopmental disorders. In spite of remarkable advances in genetic technology, this has not been the case. Candidate gene, genome-wide association, and rare copy number variant (CNV) studies have been carried out for attention-deficit/hyperactivity disorder (ADHD), Autism, Tourette's Syndrome, and schizophrenia, with intriguing results, but environmental factors, incomplete penetrance, pleiotropy, and genetic heterogeneity, underlying any given phenotype have limited clinical translation. One promising approach may be the use of developmental brain imaging measures as more relevant phenotypes. This is particularly important, as subtle abnormalities in timing and expression of gene pathways underlying brain development may well link these disorders and be the ultimate target of treatments.
Collapse
Affiliation(s)
- Anjené M Addington
- Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
23
|
Wei Q, Diao F, Kang Z, Gan Z, Han Z, Zheng L, Li L, Guo X, Shan B, Liu C, Zhao J, Zhang J. The effect of DISC1 on regional gray matter density of schizophrenia in Han Chinese population. Neurosci Lett 2012; 517:21-4. [PMID: 22516458 DOI: 10.1016/j.neulet.2012.03.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 12/23/2022]
Abstract
Schizophrenia is thought to arise in part from abnormal gray matter (GM), which are partly shared by the relatives of the probands. DISC1 is one of the most promising susceptibility genes of schizophrenia and a SNP rs821597 (A) in the gene was associated with schizophrenia in Han Chinese population. In this study, 61 healthy controls and 72 with schizophrenic patients were genotyped at rs821597, and underwent T1-weighted MRI for the density of GM. The results showed that the risk allele (A) carriers had higher GM density in regional left parahippocampal gyrus and right orbitofrontal cortex in schizophrenic patients, but had reduced GM density of these brain regions in healthy controls. The DISC1 variant rs821597 may confer risk for schizophrenia by its effects on the regional GM in left parahippocampal gyrus and right orbitofrontal cortex with other risk factors for schizophrenia.
Collapse
Affiliation(s)
- Qinling Wei
- Psychiatry Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Whalley HC, Sussmann JE, Johnstone M, Romaniuk L, Redpath H, Chakirova G, Mukherjee P, Hall J, Johnstone EC, Lawrie SM, McIntosh AM. Effects of a mis-sense DISC1 variant on brain activation in two cohorts at high risk of bipolar disorder or schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:343-53. [PMID: 22337479 DOI: 10.1002/ajmg.b.32035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/24/2012] [Indexed: 12/11/2022]
Abstract
Bipolar disorder and schizophrenia share a number of clinical features and genetic risk variants of small effect, suggesting overlapping pathogenic mechanisms. The effect of single genetic risk variants on brain function is likely to differ in people at high familial risk versus controls as these individuals have a higher overall genetic loading and are therefore closer to crossing a threshold of disease liability. Therefore, whilst the effects of genetic risk variants on brain function may be similar across individuals at risk of both disorders, they are hypothesized to differ compared to that seen in control subjects. We sought to examine the effects of the DISC1 Leu(607) Phe polymorphism on brain activation in young healthy individuals at familial risk of bipolar disorder (n = 84), in a group of controls (n = 78), and in a group at familial risk of schizophrenia (n = 47), performing a language task. We assessed whether genotype effects on brain activation differed according to risk status. There was a significant genotype × group interaction in a cluster centered on the left pre/postcentral gyrus, extending to the inferior frontal gyrus. The origin of this genotype × group effect originated from a significant effect of the presumed risk variant (Phe) on brain activation in the control group, which was absent in both high-risk groups. Differential effects of this polymorphism in controls compared to the two familial groups suggests a commonality of effect across individuals at high-risk of the disorders, which is likely to be dependant upon existing genetic background.
Collapse
Affiliation(s)
- Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Malavasi ELV, Ogawa F, Porteous DJ, Millar JK. DISC1 variants 37W and 607F disrupt its nuclear targeting and regulatory role in ATF4-mediated transcription. Hum Mol Genet 2012; 21:2779-92. [PMID: 22422769 PMCID: PMC3363331 DOI: 10.1093/hmg/dds106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1), a strong genetic candidate for psychiatric illness, encodes a multicompartmentalized molecular scaffold that regulates interacting proteins with key roles in neurodevelopment and plasticity. Missense DISC1 variants are associated with the risk of mental illness and with brain abnormalities in healthy carriers, but the underlying mechanisms are unclear. We examined the effect of rare and common DISC1 amino acid substitutions on subcellular targeting. We report that both the rare putatively causal variant 37W and the common variant 607F independently disrupt DISC1 nuclear targeting in a dominant-negative fashion, predicting that DISC1 nuclear expression is impaired in 37W and 607F carriers. In the nucleus, DISC1 interacts with the transcription factor Activating Transcription Factor 4 (ATF4), which is involved in the regulation of cellular stress responses, emotional behaviour and memory consolidation. At basal cAMP levels, wild-type DISC1 inhibits the transcriptional activity of ATF4, an effect that is weakened by both 37W and 607F independently, most likely as a consequence of their defective nuclear targeting. The common variant 607F additionally reduces DISC1/ATF4 interaction, which likely contributes to its weakened inhibitory effect. We also demonstrate that DISC1 modulates transcriptional responses to endoplasmic reticulum stress, and that this modulatory effect is ablated by 37W and 607F. By showing that DISC1 amino acid substitutions associated with psychiatric illness affect its regulatory function in ATF4-mediated transcription, our study highlights a potential mechanism by which these variants may impact on transcriptional events mediating cognition, emotional reactivity and stress responses, all processes of direct relevance to psychiatric illness.
Collapse
Affiliation(s)
- Elise L V Malavasi
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
26
|
Vyas NS, Shamsi SA, Malhotra AK, Aitchison KJ, Kumari V. Can genetics inform the management of cognitive deficits in schizophrenia? J Psychopharmacol 2012; 26:334-48. [PMID: 22328662 DOI: 10.1177/0269881111434623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is no doubt that schizophrenia has a significant genetic component and a number of candidate genes have been identified for this debilitating disorder. Of note, several of these are implicated in cognition. Cognitive deficits constitute core symptoms of schizophrenia, and while current antipsychotic treatment strategies aim to help psychosis-related symptomatology, the cognitive symptom domain is largely inadequately treated. A number of other pharmacological approaches (e.g. using drugs that target specific neurotransmitter systems) have also been attempted for the amelioration of cognitive deficits in this population; however, these too have had limited success so far. Psychological interventions appear promising, though there has been speculation regarding whether or not these produce long-term functional improvements. Pharmacogenetic studies of the cognitive effects of currently available antipsychotics, although in relatively early stages, suggest that the treatment of cognitive deficits in schizophrenia may be advanced by focusing on genetic variants associated with specific cognitive dysfunctions in the general population and using this to match the most relevant pharmacological and/or psychological interventions with the genetic and cognitive profiles of the target population. Such a strategy would encourage bottom-up advances in drug development and provide a platform for individualised treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Nora S Vyas
- King's College London, Institute of Psychiatry, MRC SGDP Centre, London, UK.
| | | | | | | | | |
Collapse
|
27
|
Raznahan A, Lee Y, Vaituzis C, Tran L, Mackie S, Tiemeier H, Clasen L, Lalonde F, Greenstein D, Pierson R, Giedd JN. Allelic variation within the putative autism spectrum disorder risk gene homeobox A1 and cerebellar maturation in typically developing children and adolescents. Autism Res 2012; 5:93-100. [PMID: 22359339 DOI: 10.1002/aur.238] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 11/02/2011] [Indexed: 12/13/2022]
Abstract
Homeobox A1 (HOXA1) has been proposed as a candidate gene for autism spectrum disorder (ASD) as it regulates embryological patterning of hind-brain structures implicated in autism neurobiology. In line with this notion, a nonsynonymous single nucleotide polymorphism within a highly conserved domain of HOXA1--A218G (rs10951154)--has been linked to both ASD risk, and cross-sectional differences in superior posterior lobar cerebellar anatomy in late adulthood. Despite evidence for early onset and developmentally dynamic cerebellar involvement in ASD, little is known of the relationship between A218G genotype and maturation of the cerebellum over early development. We addressed this issue using 296 longitudinally acquired structural magnetic resonance imaging brain scans from 116 healthy individuals between 5 and 23 years of age. Mixed models were used to compare the relationship between age and semi-automated measures of cerebellar volume in A-homozygotes (AA) and carriers of the G allele (Gcar). Total cerebellar volume increased between ages of 5 and 23 years in both groups. However, this was accelerated in the Gcar relative to the AA group (Genotype-by-age interaction term, P = 0.03), and driven by genotype-dependent differences in the rate of bilateral superior posterior lobar volume change with age (P = 0.002). Resultantly, although superior posterior lobar volume did not differ significantly between genotype groups at age 5 (P = 0.9), by age 23 it was 12% greater in Gcar than AA (P = 0.002). Our results suggest that common genetic variation within this putative ASD risk gene has the capacity to modify the development of cerebellar systems implicated in ASD neurobiology.
Collapse
Affiliation(s)
- Armin Raznahan
- Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Singh KK, De Rienzo G, Drane L, Mao Y, Flood Z, Madison J, Ferreira M, Bergen S, King C, Sklar P, Sive H, Tsai LH. Common DISC1 polymorphisms disrupt Wnt/GSK3β signaling and brain development. Neuron 2012; 72:545-58. [PMID: 22099458 DOI: 10.1016/j.neuron.2011.09.030] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2011] [Indexed: 12/31/2022]
Abstract
Disrupted in Schizophrenia-1 (DISC1) is a candidate gene for psychiatric disorders and has many roles during brain development. Common DISC1 polymorphisms (variants) are associated with neuropsychiatric phenotypes including altered cognition, brain structure, and function; however, it is unknown how this occurs. Here, we demonstrate using mouse, zebrafish, and human model systems that DISC1 variants are loss of function in Wnt/GSK3β signaling and disrupt brain development. The DISC1 variants A83V, R264Q, and L607F, but not S704C, do not activate Wnt signaling compared with wild-type DISC1 resulting in decreased neural progenitor proliferation. In zebrafish, R264Q and L607F could not rescue DISC1 knockdown-mediated aberrant brain development. Furthermore, human lymphoblast cell lines endogenously expressing R264Q displayed impaired Wnt signaling. Interestingly, S704C inhibited the migration of neurons in the developing neocortex. Our data demonstrate DISC1 variants impair Wnt signaling and brain development and elucidate a possible mechanism for their role in neuropsychiatric phenotypes.
Collapse
Affiliation(s)
- Karun K Singh
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chakravarty MM, Felsky D, Tampakeras M, Lerch JP, Mulsant BH, Kennedy JL, Voineskos AN. DISC1 and Striatal Volume: A Potential Risk Phenotype For mental Illness. Front Psychiatry 2012; 3:57. [PMID: 22723785 PMCID: PMC3378182 DOI: 10.3389/fpsyt.2012.00057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/24/2012] [Indexed: 12/26/2022] Open
Abstract
Disrupted-in-schizophrenia 1 was originally discovered in a large Scottish family with abnormally high rates of severe mental illness, including schizophrenia, bipolar disorder, and depression. An accumulating body of evidence from genetic, postmortem, and animal data supports a role for DISC1 in different forms of mental illness. DISC1 may play an important role in determining structure and function of several brain regions. One brain region of particular importance for several mental disorders is the striatum, and DISC1 mutant mice have demonstrated an increase in dopamine (D2) receptors in this structure. However, association between DISC1 functional polymorphisms and striatal structure have not been examined in humans. We, therefore hypothesized that there would be a relationship between human striatal volume and DISC1 genotype, specifically in the Leu607Phe (rs6675281) and Ser704Cys (rs821618) single nucleotide polymorphisms. We tested our hypothesis by automatically identifying the striatum in 54 healthy volunteers recruited for this study. We also performed an exploratory analysis of cortical thickness, cortical surface area, and structure volume. Our results demonstrate that Phe allele carriers have larger striatal volume bilaterally (left striatum: p = 0.017; right striatum: p = 0.016). From the exploratory analyses we found that the Phe carriers also had larger left hemisphere volumes (p = 0.0074) and right occipital lobe surface area (p = 0.014) compared to LeuLeu homozygotes. However, these exploratory findings do not survive a conservative correction for multiple comparisons. Our findings demonstrate that a functional DISC1 variant influences striatal volumes. Taken together with animal data that this gene influences D2 receptor levels in striatum, a key risk pathway for mental illnesses such as schizophrenia and bipolar disorder may be conferred via DISC1's effects on the striatum.
Collapse
Affiliation(s)
- M Mallar Chakravarty
- Kimel Family Translational Imaging Genetics Research Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Ameis SH, Szatmari P. Imaging-genetics in autism spectrum disorder: advances, translational impact, and future directions. Front Psychiatry 2012; 3:46. [PMID: 22615702 PMCID: PMC3351673 DOI: 10.3389/fpsyt.2012.00046] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/23/2012] [Indexed: 12/29/2022] Open
Abstract
Autism Spectrum Disorder (ASD) refers to a group of heterogeneous neurodevelopmental disorders that are unified by impairments in reciprocal social communication and a pattern of inflexible behaviors. Recent genetic advances have resolved some of the complexity of the genetic architecture underlying ASD by identifying several genetic variants that contribute to the disorder. Different etiological pathways associated with ASD may converge through effects on common molecular mechanisms, such as synaptogenesis, neuronal motility, and axonal guidance. Recently, with more sophisticated techniques, neuroimaging, and neuropathological studies have provided some consistency of evidence that altered structure, activity, and connectivity within complex neural networks is present in ASD, compared to typically developing children. The imaging-genetics approach promises to help bridge the gap between genetic variation, resultant biological effects on the brain, and production of complex neuropsychiatric symptoms. Here, we review recent findings from the developing field of imaging-genetics applied to ASD. Studies to date have indicated that relevant risk genes are associated with alterations in circuits that mediate socio-emotional, visuo-spatial, and language processing. Longitudinal studies ideally focused on early development, in conjunction with investigation for gene-gene, and gene-environment interactions may move the promise of imaging-genetics in ASD closer to the clinical domain.
Collapse
Affiliation(s)
- Stephanie H Ameis
- Department of Psychiatry, The Hospital for Sick Children, University of Toronto Toronto, ON, Canada
| | | |
Collapse
|
31
|
Brandon NJ, Sawa A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12:707-22. [PMID: 22095064 DOI: 10.1038/nrn3120] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in our understanding of the underlying genetic architecture of psychiatric disorders has blown away the diagnostic boundaries that are defined by currently used diagnostic manuals. The disrupted in schizophrenia 1 (DISC1) gene was originally discovered at the breakpoint of an inherited chromosomal translocation, which segregates with major mental illnesses. In addition, many biological studies have indicated a role for DISC1 in early neurodevelopment and synaptic regulation. Given that DISC1 is thought to drive a range of endophenotypes that underlie major mental conditions, elucidating the biology of DISC1 may enable the construction of new diagnostic categories for mental illnesses with a more meaningful biological foundation.
Collapse
|
32
|
|
33
|
Kleinman JE, Law AJ, Lipska BK, Hyde TM, Ellis JK, Harrison PJ, Weinberger DR. Genetic neuropathology of schizophrenia: new approaches to an old question and new uses for postmortem human brains. Biol Psychiatry 2011; 69:140-5. [PMID: 21183009 PMCID: PMC4351748 DOI: 10.1016/j.biopsych.2010.10.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/06/2010] [Accepted: 10/14/2010] [Indexed: 12/13/2022]
Abstract
Human postmortem brain studies are critical for elucidating the pathophysiology and etiology of schizophrenia and other major mental illnesses. The traditional approach compares patients and control subjects but is potentially confounded by a number of artifacts, including medication, substance misuse, and other secondary effects of illness. Genetic advances now make possible a novel approach that focuses on how allelic variation in risk-associated genes affects expression and function of transcripts and proteins. These questions can be addressed in normal brain, overcoming to some extent the confounding effects of studying brains from subjects with schizophrenia; equally, extension of the studies to include cases also has advantages. Conceptually, the approach may be seen as the neuropathologic counterpart of genetic neuroimaging, representing a potentially powerful intermediate phenotype. For several schizophrenia susceptibility genes, the data show that risk-associated polymorphisms do affect gene expression or the function of the encoded protein; in some instances, expression of downstream or interacting partners of the gene are also altered. A further striking finding is that the implicated transcripts often appear to be enriched in, or specific to, human brain. Some also show enhanced expression in fetal brain. These considerations give unique importance to postmortem human brain tissue in elucidating the genetic mechanisms underlying schizophrenia and probably other neurodevelopmental disorders as well. Studies of this kind can provide clues as to the biological mechanisms of genetic association, especially when carried out in conjunction with experimental studies. Moreover, the data, interpreted judiciously, can strengthen the plausibility of the association itself.
Collapse
Affiliation(s)
- Joel E Kleinman
- Section on Neuropathology, Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Johnstone M, Thomson PA, Hall J, McIntosh AM, Lawrie SM, Porteous DJ. DISC1 in schizophrenia: genetic mouse models and human genomic imaging. Schizophr Bull 2011; 37:14-20. [PMID: 21149852 PMCID: PMC3004186 DOI: 10.1093/schbul/sbq135] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Schizophrenia and related disorders have a major genetic component. Several large-scale studies have uncovered a number of possible candidate genes, but these have yet to be consistently replicated and their underlying biological function remains elusive. One exception is 'Disrupted in schizophrenia 1' (DISC1), a gene locus originally identified in a large Scottish family, showing a heavy burden of major mental illnesses associated with a balanced t(1;11)(q42.1;q14.3) chromosome translocation. Substantial genetic and biological research on DISC1 has been reported in the intervening 10 years: DISC1 is now recognized as a genetic risk factor for a spectrum of psychiatric disorders and DISC1 impacts on many aspects of central nervous system (CNS) function, including neurodevelopment, neurosignaling, and synaptic functioning. Evidence has emerged from genetic studies showing a relationship between DISC1 and quantitative traits, including working memory, cognitive aging, gray matter volume in the prefrontal cortex, and abnormalities in hippocampal structures and function. DISC1 interacts with numerous proteins also involved in neuronal migration, neurite outgrowth, cytoskeletal modulation, and signal transduction, some of which have been reported as independent genetic susceptibility factors for psychiatric morbidity. Here, we focus on the growing literature relating genetic variation in the DISC1 pathway to functional and structural studies of the brain in humans and in the mouse.
Collapse
Affiliation(s)
- Mandy Johnstone
- Department of Psychiatry, The Royal Edinburgh Hospital, Morningside Terrace, Edinburgh EH10 5HF, UK
- Medical Genetics Section, Institute of Genetics and Molecular Medicine, University of Edinburgh Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Pippa A. Thomson
- Medical Genetics Section, Institute of Genetics and Molecular Medicine, University of Edinburgh Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Jeremy Hall
- Department of Psychiatry, The Royal Edinburgh Hospital, Morningside Terrace, Edinburgh EH10 5HF, UK
- Medical Genetics Section, Institute of Genetics and Molecular Medicine, University of Edinburgh Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Andrew M. McIntosh
- Department of Psychiatry, The Royal Edinburgh Hospital, Morningside Terrace, Edinburgh EH10 5HF, UK
- Medical Genetics Section, Institute of Genetics and Molecular Medicine, University of Edinburgh Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Stephen M. Lawrie
- Department of Psychiatry, The Royal Edinburgh Hospital, Morningside Terrace, Edinburgh EH10 5HF, UK
| | - David J. Porteous
- Medical Genetics Section, Institute of Genetics and Molecular Medicine, University of Edinburgh Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
35
|
Anatomic magnetic resonance imaging of the developing child and adolescent brain and effects of genetic variation. Neuropsychol Rev 2010; 20:349-61. [PMID: 21069466 DOI: 10.1007/s11065-010-9151-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 10/13/2010] [Indexed: 12/20/2022]
Abstract
Magnetic resonance imaging studies have begun to map effects of genetic variation on trajectories of brain development. Longitudinal studies of children and adolescents demonstrate a general pattern of childhood peaks of gray matter followed by adolescent declines, functional and structural increases in connectivity and integrative processing, and a changing balance between limbic/subcortical and frontal lobe functions, which extends well into young adulthood. Twin studies have demonstrated that genetic factors are responsible for a significant amount of variation in pediatric brain morphometry. Longitudinal studies have shown specific genetic polymorphisms affect rates of cortical changes associated with maturation. Although over-interpretation and premature application of neuroimaging findings for diagnostic purposes remains a risk, converging data from multiple imaging modalities is beginning to elucidate the influences of genetic factors on brain development and implications of maturational changes for cognition, emotion, and behavior.
Collapse
|