1
|
Schalbroeck R, van Hooijdonk CFM, Bos DPA, Booij J, Selten JP. Chronic social stressors and striatal dopamine functioning in humans: A systematic review of SPECT and PET studies. Mol Psychiatry 2024; 29:3841-3856. [PMID: 38760501 DOI: 10.1038/s41380-024-02581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
The dopamine hypothesis of schizophrenia posits that elevated striatal dopamine functioning underlies the development of psychotic symptoms. Chronic exposure to social stressors increases psychosis risk, possibly by upregulating striatal dopamine functioning. Here we systematically review single photon emission computed tomography (SPECT) and positron emission tomography (PET) studies that examined the relationship between chronic social stress exposure and in vivo striatal dopamine functioning in humans. We searched the scientific databases PubMed and PsycINFO from inception to August 2023. The quality of the included studies was evaluated with the ten-item Observational Study Quality Evaluation (PROSPERO: CRD42022308883). Twenty-eight studies were included, which measured different aspects of striatal dopamine functioning including dopamine synthesis capacity (DSC), vesicular monoamine transporter type 2 binding, dopamine release following a pharmacological or behavioral challenge, D2/3 receptor binding, and dopamine transporter binding. We observed preliminary evidence of an association between childhood trauma and increased striatal DSC and dopamine release. However, exposure to low socioeconomic status, stressful life events, or other social stressors was not consistently associated with altered striatal dopamine functioning. The quality of available studies was generally low. In conclusion, there is insufficient evidence that chronic social stressors upregulate striatal dopamine functioning in humans. We propose avenues for future research, in particular to improve the measurement of chronic social stressors and the methodological quality of study designs.
Collapse
Affiliation(s)
- Rik Schalbroeck
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands.
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Carmen F M van Hooijdonk
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Daniëlle P A Bos
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jean-Paul Selten
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Rivierduinen Institute for Mental Healthcare, Leiden, The Netherlands
| |
Collapse
|
2
|
Jangard S, Jayaram-Lindström N, Isacsson NH, Matheson GJ, Plavén-Sigray P, Franck J, Borg J, Farde L, Cervenka S. Striatal dopamine D2 receptor availability as a predictor of subsequent alcohol use in social drinkers. Addiction 2023; 118:1053-1061. [PMID: 36710462 DOI: 10.1111/add.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS Whereas striatal dopamine D2 receptor (D2R) availability has shown to be altered in individuals with alcohol use disorder (AUD) and in healthy individuals with a family history of AUD, the role of D2R in the development of AUD is unknown. In this positron emission tomography (PET) study, we measured whether D2R availability is associated with subsequent alcohol use and alcohol-related factors, at a follow-up 8 to 16 years post-PET scan, in social drinkers. DESIGN Longitudinal study investigating the association between PET data and later self-report measures in healthy individuals. SETTING Academic research imaging centre in Stockholm, Sweden. PARTICIPANTS There were 71 individuals (68 of whom had evaluable PET data, 5 females, 42.0 years mean age) from a series of previous PET studies. MEASUREMENTS One PET examination with the D2R antagonist radioligand [11 C]raclopride at baseline and self-report measures assessing alcohol use, drug use, impulsivity, reward sensitivity and family history of alcohol or substance use disorder at follow-up. FINDINGS We found no evidence for an association between D2R availability and later alcohol use (B = -0.019, B 95% CI = -0.043 to -0.006, P = 0.147) nor for the majority of the alcohol-related factors (B 95% CI = -0.034 to 0.004, P = 0.273-0.288). A negative association with a small effect size was found between D2R availability and later impulsivity (B = -0.017, B 95% CI = -0.034 to -0.001, P = 0.046). CONCLUSIONS Low striatal dopamine D2 receptor availability may not be a strong predictor in the development of alcohol use disorder.
Collapse
Affiliation(s)
- Simon Jangard
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nitya Jayaram-Lindström
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Nils Hentati Isacsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Granville James Matheson
- Department of Psychiatry, Columbia University, New York City, New York, USA
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York City, New York, USA
| | - Pontus Plavén-Sigray
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Johan Franck
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Jacqueline Borg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Lars Farde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Tkachenko A, Demidova L, Kirenskaya A, Storozheva Z, Samylkin D. Clinical transforming of personality disorders: comorbidity, severity or dynamical changes in the structure of individuality? Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Mitelman SA, Buchsbaum MS, Vyas NS, Christian BT, Merrill BM, Buchsbaum BR, Mitelman AM, Mukherjee J, Lehrer DS. Reading abilities and dopamine D 2/D 3 receptor availability: An inverted U-shaped association in subjects with schizophrenia. BRAIN AND LANGUAGE 2021; 223:105046. [PMID: 34763166 DOI: 10.1016/j.bandl.2021.105046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Reading impairments are prominent trait-like features of cognitive deficits in schizophrenia, predictive of overall cognitive functioning and presumably linked to dopaminergic abnormalities. To evaluate this, we used 18F-fallypride PET in 19 healthy and 21 antipsychotic-naïve schizophrenia subjects and correlated dopamine receptor binding potentials in relevant AFNI-derived regions and voxelwise with group performance on WRAT4 single-word reading subtest. Healthy subjects' scores were positively and linearly associated with D2/D3 receptor availability in the rectus, orbital and superior frontal gyri, fusiform and middle temporal gyri, as well as middle occipital gyrus and precuneus, all predominantly in the left hemisphere and previously implicated in reading, hence suggesting that higher dopamine receptor density is cognitively advantageous. This relationship was weakened in schizophrenia subjects and in contrast to healthy participants followed an inverted U-shaped curve both in the cortex and dorsal striatum, indicating restricted optimal range of dopamine D2/D3 receptor availability for cognitive performance in schizophrenia.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, Elmhurst, NY, USA.
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California San Diego, San Diego, USA; Department of Psychiatry and Human Behavior, University of California Irvine School of Medicine, Orange, CA, USA
| | - Nora S Vyas
- Kingston University London, Department of Psychology, Kingston upon Thames, Surrey, UK; Imperial College Healthcare NHS Trust, Charing Cross Hospital, Department of Nuclear Medicine, London, UK
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine School of Medicine, USA
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
5
|
Growth-inhibition of cell lines derived from B cell lymphomas through antagonism of serotonin receptor signaling. Sci Rep 2019; 9:4276. [PMID: 30862884 PMCID: PMC6414675 DOI: 10.1038/s41598-019-40825-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/25/2019] [Indexed: 11/21/2022] Open
Abstract
A majority of lymphomas are derived from B cells and novel treatments are required to treat refractory disease. Neurotransmitters such as serotonin and dopamine influence activation of B cells and the effects of a selective serotonin 1A receptor (5HT1A) antagonist on growth of a number of B cell-derived lymphoma cell lines were investigated. We confirmed the expression of 5HT1A in human lymphoma tissue and in several well-defined experimental cell lines. We discovered that the pharmacological inhibition of 5HT1A led to the reduced proliferation of B cell-derived lymphoma cell lines together with DNA damage, ROS-independent caspase activation and apoptosis in a large fraction of cells. Residual live cells were found ‘locked’ in a non-proliferative state in which a selective transcriptional and translational shutdown of genes important for cell proliferation and metabolism occurred (e.g., AKT, GSK-3β, cMYC and p53). Strikingly, inhibition of 5HT1A regulated mitochondrial activity through a rapid reduction of mitochondrial membrane potential and reducing dehydrogenase activity. Collectively, our data suggest 5HT1A antagonism as a novel adjuvant to established cancer treatment regimens to further inhibit lymphoma growth.
Collapse
|
6
|
DRD2 Genotype-Based Variants Modulates D2 Receptor Distribution in Ventral Striatum. Mol Neurobiol 2019; 56:6512-6520. [PMID: 30847741 DOI: 10.1007/s12035-019-1543-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Dopaminergic signaling within the striatum is crucial for motor planning and mental function. Neurons within the striatum contain two dopamine D2 receptor isoforms-D2 long and D2 short. The amount of expression for these receptor isoforms is affected by the genotype within two single nucleotide polymorphisms (SNPs), rs2283265 and rs1076560 (both are in high linkage disequilibrium; C > A), found in the DRD2 gene. However, it is unclear how these SNPs affect the distribution of D2 receptors in vivo within the nigrostriatal dopaminergic system. We aim to elucidate this with PET imaging in healthy young adults using [11C]-(+)-PHNO. Participants were genotyped for the DRD2 rs2283265 SNP and a total of 20 enrolled: 9 with CC, 6 with CA, and 5 with AA genotype. The main effect of genotype on [11C]-(+)-PHNO binding was tested and we found significant group effect within the ventral striatum. Specifically, CC and CA carriers had higher binding in this region compared to AA carriers. There were no observed differences between genotypes in other regions within the basal ganglia. Our preliminary results implicate that the polymorphism genotype affects the dopaminergic signaling by controlling either the quantity of D2 receptors, D2 affinity, or a combination thereof within the ventral striatum.
Collapse
|
7
|
Caravaggio F, Plavén-Sigray P, Matheson GJ, Plitman E, Chakravarty MM, Borg J, Graff-Guerrero A, Cervenka S. Trait impulsivity is not related to post-commissural putamen volumes: A replication study in healthy men. PLoS One 2018; 13:e0209584. [PMID: 30571791 PMCID: PMC6301704 DOI: 10.1371/journal.pone.0209584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/07/2018] [Indexed: 01/18/2023] Open
Abstract
High levels of trait impulsivity are considered a risk factor for substance abuse and drug addiction. We recently found that non-planning trait impulsivity was negatively correlated with post-commissural putamen volumes in men, but not women, using the Karolinska Scales of Personality (KSP). Here, we attempted to replicate this finding in an independent sample using an updated version of the KSP: the Swedish Universities Scales of Personality (SSP). Data from 88 healthy male participants (Mean Age: 28.16±3.34), who provided structural T1-weighted magnetic resonance images (MRIs) and self-reported SSP impulsivity scores, were analyzed. Striatal sub-region volumes were acquired using the Multiple Automatically Generated Templates (MAGeT-Brain) algorithm. Contrary to our previous findings trait impulsivity measured using SSP was not a significant predictor of post-commissural putamen volumes (β = .14, df = 84, p = .94). A replication Bayes Factors analysis strongly supported this null result. Consistent with our previous findings, secondary exploratory analyses found no relationship between ventral striatum volumes and SSP trait impulsivity (β = -.05, df = 84, p = .28). An exploratory analysis of the other striatal compartments showed that there were no significant associations with trait impulsivity. While we could not replicate our previous findings in the current sample, we believe this work will aide future studies aimed at establishing meaningful brain biomarkers for addiction vulnerability in healthy humans.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| | - Granville James Matheson
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - M. Mallar Chakravarty
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Jacqueline Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| |
Collapse
|
8
|
Griffioen G, Matheson GJ, Cervenka S, Farde L, Borg J. Serotonin 5-HT 1A receptor binding and self-transcendence in healthy control subjects-a replication study using Bayesian hypothesis testing. PeerJ 2018; 6:e5790. [PMID: 30479884 PMCID: PMC6241390 DOI: 10.7717/peerj.5790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Objective A putative relationship between markers for the serotonin system and the personality scale self-transcendence (ST) and its subscale spiritual acceptance (SA) has been demonstrated in a previous PET study of 5-HT1A receptor binding in healthy control subjects. The results could however not be replicated in a subsequent PET study at an independent centre. In this study, we performed a replication of our original study in a larger sample using Bayesian hypothesis testing to evaluate relative evidence both for and against this hypothesis. Methods Regional 5-HT1A receptor binding potential (BPND) was examined in 50 healthy male subjects using PET with the radioligand [11C]WAY100635. 5-HT1Aavailability was calculated using the simplified reference tissue model (SRTM) yielding regional BPND. ST and SA were measured using the Temperament and Character Inventory (TCI) questionnaire. Correlations between ST/SA scores and 5-HT1ABPND in frontal cortex, hippocampus and raphe nuclei were examined by calculation of default correlation Bayes factors (BFs) and replication BFs. Results There were no significant correlations between 5-HT1A receptor binding and ST/SA scores. Rather, five of six replication BFs provided moderate to strong evidence for no association between 5-HT1A availability and ST/SA, while the remaining BF provided only weak evidence. Conclusion We could not replicate our previous findings of an association between 5-HT1A availability and the personality trait ST/SA. Rather, the Bayesian analysis provided evidence for a lack of correlation. Further research should focus on whether other components of the serotonin system may be related to ST or SA. This study also illustrates how Bayesian hypothesis testing allows for greater flexibility and more informative conclusions than traditional p-values, suggesting that this approach may be advantageous for analysis of molecular imaging data.
Collapse
Affiliation(s)
- Gina Griffioen
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Capio Psykiatri Stockholm, Stockholm, Sweden
| | - Granville J Matheson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Lars Farde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Personalised Healthcare and Biomarkers, AstraZeneca PET Science Centre, Karolinska Institutet, Sweden
| | - Jacqueline Borg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
9
|
Wiers CE, Towb PC, Hodgkinson CA, Shen PH, Freeman C, Miller G, Lindgren E, Shokri-Kojori E, Demiral ŞB, Kim S, Tomasi D, Sun H, Wang GJ, Goldman D, Volkow ND. Association of genetic ancestry with striatal dopamine D2/D3 receptor availability. Mol Psychiatry 2018; 23:1711-1716. [PMID: 29112197 PMCID: PMC5938168 DOI: 10.1038/mp.2017.208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/20/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
Abstract
Despite ethnic differences in allele frequencies of variants in dopaminergic genes associated with dopamine D2/D3 receptor availability (D2R), no study to date has investigated the relationship between genetic ancestry and striatal D2R. Here, we show that ancestry-informative markers significantly predict dorsal striatal D2R in 117 healthy ethnically diverse residents of the New York metropolitan area using Positron Emission Tomography (PET) with [11C]raclopride (P<0.0001), while correcting for age, sex, BMI, education, smoking status, and estimated socioeconomic status (ZIP codes). Effects of ethnicity on D2R were not driven by variation in dopaminergic candidate genes. Instead, candidate gene associations with striatal D2R were diminished when correcting for ancestry. These findings imply that future studies investigating D2 receptor genes should covary for genetic ancestry or study homogeneous populations. Moreover, ancestry studies on human neurobiology should control for socioeconomic differences between ethnic groups.
Collapse
Affiliation(s)
- Corinde E. Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, Maryland
| | - Par C. Towb
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, Maryland
| | - Colin A. Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20852, Maryland
| | - Pei-Hong Shen
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20852, Maryland
| | - Clara Freeman
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, Maryland
| | - Gregg Miller
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, Maryland
| | - Elsa Lindgren
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, Maryland
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, Maryland
| | - Şükrü Barış Demiral
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, Maryland
| | - Sunny Kim
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, Maryland
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, Maryland
| | - Hui Sun
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20852, Maryland
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, Maryland
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20852, Maryland
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, Maryland,National Institute on Drug Abuse, National Institutes of Health, Bethesda 20892, Maryland
| |
Collapse
|
10
|
Farde L, Plavén-Sigray P, Borg J, Cervenka S. Brain neuroreceptor density and personality traits: towards dimensional biomarkers for psychiatric disorders. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170156. [PMID: 29483342 PMCID: PMC5832682 DOI: 10.1098/rstb.2017.0156] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
Positron emission tomography has, for 30 years, been used in numerous case-control studies searching for hypothesized differences in the density of neuroreceptor or transporter proteins in psychiatric disorders such as schizophrenia and depression. In most cases, the results have not been conclusive. One reason could be the sizeable interindividual variability in biochemical markers, which in twin studies have shown to emanate from both environmental and genetic factors, leading to low statistical power for the detection of group effects. On the other hand, the same interindividual variability has served as an opportunity for correlative studies on the biological underpinning of behaviour. Using this approach, a series of studies has linked markers for the dopamine and serotonin system to personality traits associated with psychiatric conditions. Based on increasing evidence for the view that many psychopathological states represent extremes of a continuum rather than distinct categories, this research strategy may lead to new biological insights about the vulnerability to and pathophysiology of major psychiatric disorders.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'.
Collapse
Affiliation(s)
- Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
- Precision Medicine and Genomics, AstraZeneca, PET Science Centre, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Jacqueline Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| |
Collapse
|
11
|
Abstract
The dopamine (DA) system is considered to be centrally involved in the pathophysiology of several major psychiatric disorders. Using positron emission tomography (PET), aberrations in dopamine D2/D3-receptors (D2-R) levels and uptake of the DA precursor FDOPA have been shown for schizophrenia, substance abuse and depression. Radioligands for the dopamine D1-receptor (D1-R) have been available for more than three decades, however this receptor subtype has received much less attention in psychiatry research. Here, studies investigating D1-R in psychiatric patients in comparison to healthy control subjects are summarized. Although small sample sizes, medication effects and heterogeneous methods of quantification limit the conclusions that can be drawn, the data is suggestive of higher levels of cortical D1-R in drug naïve patients with psychosis, and lower D1-R in patients with affective disorders. Data sharing and reanalysis using harmonized methodology are important next steps towards clarifying the role of D1-R in these disorders.
Collapse
Affiliation(s)
- Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
12
|
Eisenstein SA, Bogdan R, Love-Gregory L, Corral-Frías NS, Koller JM, Black KJ, Moerlein SM, Perlmutter JS, Barch DM, Hershey T. Prediction of striatal D2 receptor binding by DRD2/ANKK1 TaqIA allele status. Synapse 2016; 70:418-31. [PMID: 27241797 DOI: 10.1002/syn.21916] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/04/2023]
Abstract
In humans, the A1 (T) allele of the dopamine (DA) D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) TaqIA (rs1800497) single nucleotide polymorphism has been associated with reduced striatal DA D2/D3 receptor (D2/D3R) availability. However, radioligands used to estimate D2/D3R are displaceable by endogenous DA and are nonselective for D2R, leaving the relationship between TaqIA genotype and D2R specific binding uncertain. Using the positron emission tomography (PET) radioligand, (N-[(11) C]methyl)benperidol ([(11) C]NMB), which is highly selective for D2R over D3R and is not displaceable by endogenous DA, the current study examined whether DRD2/ANKK1 TaqIA genotype predicts D2R specific binding in two independent samples. Sample 1 (n = 39) was composed of obese and nonobese adults; sample 2 (n = 18) was composed of healthy controls, unmedicated individuals with schizophrenia, and siblings of individuals with schizophrenia. Across both samples, A1 allele carriers (A1+) had 5 to 12% less striatal D2R specific binding relative to individuals homozygous for the A2 allele (A1-), regardless of body mass index or diagnostic group. This reduction is comparable to previous PET studies of D2/D3R availability (10-14%). The pooled effect size for the difference in total striatal D2R binding between A1+ and A1- was large (0.84). In summary, in line with studies using displaceable D2/D3R radioligands, our results indicate that DRD2/ANKK1 TaqIA allele status predicts striatal D2R specific binding as measured by D2R-selective [(11) C]NMB. These findings support the hypothesis that DRD2/ANKK1 TaqIA allele status may modify D2R, perhaps conferring risk for certain disease states.
Collapse
Affiliation(s)
- Sarah A Eisenstein
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130
| | - Latisha Love-Gregory
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110
| | - Nadia S Corral-Frías
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Jonathan M Koller
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Kevin J Black
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110
| | - Stephen M Moerlein
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Biochemistry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Joel S Perlmutter
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110.,Programs in Physical Therapy and Occupational Therapy, Washington University in St. Louis, St. Louis, MO, 63110
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
| |
Collapse
|