1
|
Lauritzen I, Bini A, Bécot A, Gay A, Badot C, Pagnotta S, Chami M, Checler F. Presenilins as hub proteins controlling the endocytic and autophagic pathways and small extracellular vesicle secretion. J Extracell Vesicles 2025; 14:e70019. [PMID: 39815792 PMCID: PMC11735957 DOI: 10.1002/jev2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025] Open
Abstract
Emerging evidence indicates that autophagy is tightly connected to the endocytic pathway. Here, we questioned the role of presenilins (PSENs 1 and 2), previously shown to be involved in autophagy regulation, in the secretion of small endocytic-originating extracellular vesicles known as exosomes. Indeed, while wild-type cells responded to stimuli promoting both multivesicular endosome (MVE) formation and secretion of small extracellular vesicles (sEVs) enriched in canonical exosomal proteins, PSEN-deficient cells were almost unaffected to these stimuli. Moreover, in PSEN-deficient cells, the re-expression of either PSEN1 or the functional active PSEN1delta9 mutant led to a rescue of most sEV secretion, while the deletion of PSEN1 alone almost fully phenocopied total PSEN invalidation. We found that the lack of sEV secretion in PSEN-deficient cells was also due to overactivated autophagy promoting MVEs to degradation rather than to plasma membrane fusion. Hence, in these cells, the autophagic blocker bafilomycin A1 (BafA1) not only increased the intracellular levels of the MVE protein CD63, but also turned on sEV secretion by stimulating autophagy-dependent unconventional secretion. In that case, sEVs arised from amphisomes and were enriched in both canonical exosomal proteins and lysosomal-autophagy-associated cargo. Altogether, we here demonstrate that PSENs, and particularly PSEN1, act as hub proteins controlling the balance between endosomal/autophagic degradation and secretion. More generally, our findings strengthen the view of a strong interconnection between the endocytic and autophagic pathways and their complementary roles in sEV secretion.
Collapse
Affiliation(s)
- Inger Lauritzen
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Anaïs Bini
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Anaïs Bécot
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266Université de ParisParisFrance
| | - Anne‐Sophie Gay
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Céline Badot
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Sophie Pagnotta
- Microscopy center (CCMA)Valrose, Université Côte d'Azur (UniCA)NiceFrance
| | - Mounia Chami
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Frédéric Checler
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| |
Collapse
|
2
|
Xing X, Liu H, Zhang M, Li Y. Mapping the current trends and hotspots of extracellular vesicles in Alzheimer's disease: a bibliometric analysis. Front Aging Neurosci 2024; 16:1485750. [PMID: 39759397 PMCID: PMC11697149 DOI: 10.3389/fnagi.2024.1485750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Background Extracellular vesicles (EVs) have garnered significant attention in Alzheimer's disease (AD) research over the past decade, largely due to their potential in diagnostics and therapeutics. Although the investigation of EVs in AD is a relatively recent endeavor, a comprehensive bibliometric analysis of this rapidly growing field has yet to be conducted. Methods This study aims to elucidate and synthesize the relationship between EVs and AD, offering critical insights to guide future research and expand therapeutic possibilities. Over the past 10-15 years, substantial progress has been made in this domain. Through bibliometric techniques, this analysis assesses research performance by examining scientific publications and metrics, including productivity indicators, impact measurements, data mining, and visualization tools. Results A total of 602 publications were analyzed using various online platforms for bibliometric analysis. Notably, the number of publications began to increase rapidly in 2018, with China and the United States emerging as leaders in this research area. The National Institute on Aging produced the highest number of publications among institutions. The Journal of Molecular Sciences and the Journal of Biological Chemistry were the most prolific and most frequently cited journals, respectively. Among individual contributors, Dimitrios Kapogiannis was identified as the most productive author, while Edward J. Goetzl was the most co-cited. The most prevalent keywords included "neurodegenerative diseases," "exosomes," "blood biomarkers," "amyloid beta," "microglia," and "tau protein." Current research hotspots involve microRNA dysregulation, oxidative stress, carboxyl-terminal fragments, small EVs, and mesenchymal stem cell-derived EVs, indicating key areas for future research. Conclusion Research on microRNA dysregulation, oxidative stress, carboxyl-terminal fragments, small EVs, and mesenchymal stem cell-derived EVs represents a critical frontier in the study of Alzheimer's disease. The role of EV-mediated neuroinflammation in AD is a focal point of ongoing investigation and will likely shape future developments in the field.
Collapse
Affiliation(s)
- Xiaolian Xing
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Neurology, Taiyuan Central Hospital, Taiyuan, Shanxi, China
| | - Hongwei Liu
- Department of Neurology, Taiyuan Central Hospital, Taiyuan, Shanxi, China
| | - Minheng Zhang
- Department of Gerontology, The First People's Hospital of Jinzhong, Yuci, Shanxi, China
| | - Yang Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Gautier MK, Kelley CM, Lee SH, Mufson EJ, Ginsberg SD. Maternal choline supplementation rescues early endosome pathology in basal forebrain cholinergic neurons in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Neurobiol Aging 2024; 144:30-42. [PMID: 39265450 PMCID: PMC11490376 DOI: 10.1016/j.neurobiolaging.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Individuals with DS develop Alzheimer's disease (AD) neuropathology, including endosomal-lysosomal system abnormalities and degeneration of basal forebrain cholinergic neurons (BFCNs). We investigated whether maternal choline supplementation (MCS) affects early endosome pathology within BFCNs using the Ts65Dn mouse model of DS/AD. Ts65Dn and disomic (2N) offspring from dams administered MCS were analyzed for endosomal pathology at 3-4 months or 10-12 months. Morphometric analysis of early endosome phenotype was performed on individual BFCNs using Imaris. The effects of MCS on the endosomal interactome were interrogated by relative co-expression (RCE) analysis. MCS effectively reduced age- and genotype-associated increases in early endosome number in Ts65Dn and 2N offspring, and prevented increases in early endosome size in Ts65Dn offspring. RCE revealed a loss of interactome cooperativity among endosome genes in Ts65Dn offspring that was restored by MCS. These findings demonstrate MCS rescues early endosome pathology, a driver of septohippocampal circuit dysfunction. The genotype-independent benefits of MCS on endosomal phenotype indicate translational applicability as an early-life therapy for DS as well as other neurodevelopmental/neurodegenerative disorders involving endosomal pathology.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Pathobiology and Translational Medicine Program, New York University Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Christy M Kelley
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA; Institute for Future Health, Scottsdale, AZ, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Elliott J Mufson
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Nixon RA. Autophagy-lysosomal-associated neuronal death in neurodegenerative disease. Acta Neuropathol 2024; 148:42. [PMID: 39259382 PMCID: PMC11418399 DOI: 10.1007/s00401-024-02799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Autophagy, the major lysosomal pathway for degrading damaged or obsolete constituents, protects neurons by eliminating toxic organelles and peptides, restoring nutrient and energy homeostasis, and inhibiting apoptosis. These functions are especially vital in neurons, which are postmitotic and must survive for many decades while confronting mounting challenges of cell aging. Autophagy failure, especially related to the declining lysosomal ("phagy") functions, heightens the neuron's vulnerability to genetic and environmental factors underlying Alzheimer's disease (AD) and other late-age onset neurodegenerative diseases. Components of the global autophagy-lysosomal pathway and the closely integrated endolysosomal system are increasingly implicated as primary targets of these disorders. In AD, an imbalance between heightened autophagy induction and diminished lysosomal function in highly vulnerable pyramidal neuron populations yields an intracellular lysosomal build-up of undegraded substrates, including APP-βCTF, an inhibitor of lysosomal acidification, and membrane-damaging Aβ peptide. In the most compromised of these neurons, β-amyloid accumulates intraneuronally in plaque-like aggregates that become extracellular senile plaques when these neurons die, reflecting an "inside-out" origin of amyloid plaques seen in human AD brain and in mouse models of AD pathology. In this review, the author describes the importance of lysosomal-dependent neuronal cell death in AD associated with uniquely extreme autophagy pathology (PANTHOS) which is described as triggered by lysosomal membrane permeability during the earliest "intraneuronal" stage of AD. Effectors of other cell death cascades, notably calcium-activated calpains and protein kinases, contribute to lysosomal injury that induces leakage of cathepsins and activation of additional death cascades. Subsequent events in AD, such as microglial invasion and neuroinflammation, induce further cytotoxicity. In major neurodegenerative disease models, neuronal death and ensuing neuropathologies are substantially remediable by reversing underlying primary lysosomal deficits, thus implicating lysosomal failure and autophagy dysfunction as primary triggers of lysosomal-dependent cell death and AD pathogenesis and as promising therapeutic targets.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University, New York, NY, 10012, USA.
| |
Collapse
|
5
|
Johansson L, Sandberg A, Nyström S, Hammarström P, Hallbeck M. Amyloid beta 1-40 and 1-42 fibril ratios and maturation level cause conformational differences with minimal impact on autophagy and cytotoxicity. J Neurochem 2024; 168:3308-3322. [PMID: 39133499 DOI: 10.1111/jnc.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
The amyloid β (Aβ) peptide has a central role in Alzheimer's disease (AD) pathology. The peptide length can vary between 37 and 49 amino acids, with Aβ1-42 being considered the most disease-related length. However, Aβ1-40 is also found in Aβ plaques and has shown to form intertwined fibrils with Aβ1-42. The peptides have previously also shown to form different fibril conformations, proposed to be related to disease phenotype. To conduct more representative in vitro experiments, it is vital to uncover the impact of different fibril conformations on neurons. Hence, we fibrillized different Aβ1-40:42 ratios in concentrations of 100:0, 90:10, 75:25, 50:50, 25:75, 10:90 and 0:100 for either 24 h (early fibrils) or 7 days (aged fibrils). These were then characterized based on fibril width, LCO-staining and antibody-staining. We further challenged differentiated neuronal-like SH-SY5Y human cells with the different fibrils and measured Aβ content, cytotoxicity and autophagy function at three different time-points: 3, 24, and 72 h. Our results revealed that both Aβ1-40:42 ratio and fibril maturation affect conformation of fibrils. We further show the impact of these conformation changes on the affinity to commonly used Aβ antibodies, primarily affecting Aβ1-40 rich aggregates. In addition, we demonstrate uptake of the aggregates by neuronally differentiated human cells, where aggregates with higher Aβ1-42 ratios generally caused higher cellular levels of Aβ. These differences in Aβ abundance did not cause changes in cytotoxicity nor in autophagy activation. Our results show the importance to consider conformational differences of Aβ fibrils, as this can have fundamental impact on Aβ antibody detection. Overall, these insights underline the need for further exploration of the impact of conformationally different fibrils and the need to reliably produce disease relevant Aβ aggregates.
Collapse
Affiliation(s)
- Lovisa Johansson
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Alexander Sandberg
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Sirisi S, Sánchez-Aced É, Belbin O, Lleó A. APP dyshomeostasis in the pathogenesis of Alzheimer's disease: implications for current drug targets. Alzheimers Res Ther 2024; 16:144. [PMID: 38951839 PMCID: PMC11218153 DOI: 10.1186/s13195-024-01504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
The Amyloid precursor protein (APP) is a transmembrane glycoprotein from which amyloid-β (Aβ) peptides are generated after proteolytic cleavage. Aβ peptides are the main constituent of amyloid plaques in Alzheimer's Disease (AD). The physiological functions of APP in the human adult brain are very diverse including intracellular signaling, synaptic and neuronal plasticity, and cell adhesion, among others. There is growing evidence that APP becomes dysfunctional in AD and that this dyshomeostasis may impact several APP functions beyond Aβ generation. The vast majority of current anti-amyloid approaches in AD have focused on reducing the synthesis of Aβ or increasing the clearance of brain Aβ aggregates following a paradigm in which Aβ plays a solo in APP dyshomeostasis. A wider view places APP at the center stage in which Aβ is an important, but not the only, factor involved in APP dyshomeostasis. Under this paradigm, APP dysfunction is universal in AD, but with some differences across different subtypes. Little is known about how to approach APP dysfunction therapeutically beyond anti-Aβ strategies. In this review, we will describe the role of APP dyshomeostasis in AD beyond Aβ and the potential therapeutic strategies targeting APP.
Collapse
Affiliation(s)
- Sònia Sirisi
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Érika Sánchez-Aced
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Olivia Belbin
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí 77, Barcelona, 08041, Spain.
| |
Collapse
|
7
|
Vigier M, Uriot M, Djelti-Delbarba F, Claudepierre T, El Hajj A, Yen FT, Oster T, Malaplate C. Increasing the Survival of a Neuronal Model of Alzheimer's Disease Using Docosahexaenoic Acid, Restoring Endolysosomal Functioning by Modifying the Interactions between the Membrane Proteins C99 and Rab5. Int J Mol Sci 2024; 25:6816. [PMID: 38999927 PMCID: PMC11240902 DOI: 10.3390/ijms25136816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 ω3) may be involved in various neuroprotective mechanisms that could prevent Alzheimer's disease (AD). Its influence has still been little explored regarding the dysfunction of the endolysosomal pathway, known as an early key event in the physiopathological continuum triggering AD. This dysfunction could result from the accumulation of degradation products of the precursor protein of AD, in particular the C99 fragment, capable of interacting with endosomal proteins and thus contributing to altering this pathway from the early stages of AD. This study aims to evaluate whether neuroprotection mediated by DHA can also preserve the endolysosomal function. AD-typical endolysosomal abnormalities were recorded in differentiated human SH-SY5Y neuroblastoma cells expressing the Swedish form of human amyloid precursor protein. This altered phenotype included endosome enlargement, the reduced secretion of exosomes, and a higher level of apoptosis, which confirmed the relevance of the cellular model chosen for studying the associated deleterious mechanisms. Second, neuroprotection mediated by DHA was associated with a reduced interaction of C99 with the Rab5 GTPase, lower endosome size, restored exosome production, and reduced neuronal apoptosis. Our data reveal that DHA may influence protein localization and interactions in the neuronal membrane environment, thereby correcting the dysfunction of endocytosis and vesicular trafficking associated with AD.
Collapse
Affiliation(s)
- Maxime Vigier
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Magalie Uriot
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Fathia Djelti-Delbarba
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Thomas Claudepierre
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Aseel El Hajj
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Frances T. Yen
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Thierry Oster
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Catherine Malaplate
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
- Department of Biochemistry, Molecular Biology and Nutrition, Nancy University Hospital, 54000 Nancy, France
| |
Collapse
|
8
|
Gallwitz L, Bleibaum F, Voss M, Schweizer M, Spengler K, Winter D, Zöphel F, Müller S, Lichtenthaler S, Damme M, Saftig P. Cellular depletion of major cathepsin proteases reveals their concerted activities for lysosomal proteolysis. Cell Mol Life Sci 2024; 81:227. [PMID: 38775843 PMCID: PMC11111660 DOI: 10.1007/s00018-024-05274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.
Collapse
Affiliation(s)
- Lisa Gallwitz
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Florian Bleibaum
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology (ZMNH), UKE, Falkenried 94, 20251, Hamburg, Germany
| | - Katharina Spengler
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Frederic Zöphel
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Stephan Müller
- German Center for Neurodegenerative Diseases (DZNE), München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Stefan Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
9
|
Bustos VH, Sunkari YK, Sinha A, Pulina M, Bispo A, Hopkins M, Lam A, Kriegsman SF, Mui E, Chang E, Jedlicki A, Rosenthal H, Flajolet M, Sinha SC. Rational Development of a Small-Molecule Activator of CK1γ2 That Decreases C99 and Beta-Amyloid Levels. ACS Chem Biol 2024; 19:37-47. [PMID: 38079390 DOI: 10.1021/acschembio.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the accumulation of β-amyloid (Aβ), C99, and Tau in vulnerable areas of the brain. Despite extensive research, current strategies to lower Aβ levels have shown limited efficacy in slowing the cognitive decline associated with AD. Recent findings suggest that C99 may also play a crucial role in the pathogenesis of AD. Our laboratory has discovered that CK1γ2 phosphorylates Presenilin 1 at the γ-secretase complex, leading to decreased C99 and Aβ levels. Thus, CK1γ2 activation appears as a promising therapeutic target to lower both C99 and Aβ levels. In this study, we demonstrate that CK1γ2 is inhibited by intramolecular autophosphorylation and describe a high-throughput screen designed to identify inhibitors of CK1γ2 autophosphorylation. We hypothesize that these inhibitors could lead to CK1γ2 activation and increased PS1-Ser367 phosphorylation, ultimately reducing C99 and Aβ levels. Using cultured cells, we investigated the impact of these compounds on C99 and Aβ concentrations and confirmed that CK1γ2 activation effectively reduced their levels. Our results provide proof of concept that CK1γ2 is an attractive therapeutic target for AD. Future studies should focus on the identification of specific compounds that can inhibit CK1γ2 autophosphorylation and evaluate their efficacy in preclinical models of AD. These studies will pave the way for the development of novel therapeutics for the treatment of AD.
Collapse
Affiliation(s)
- Victor Hugo Bustos
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Anjana Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Maria Pulina
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Ashley Bispo
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Maya Hopkins
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Alison Lam
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Sydney F Kriegsman
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Emily Mui
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Emily Chang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Ana Jedlicki
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Hannah Rosenthal
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Subhash C Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
10
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Gautier MK, Kelley CM, Lee SH, Alldred MJ, McDaid J, Mufson EJ, Stutzmann GE, Ginsberg SD. Maternal choline supplementation protects against age-associated cholinergic and GABAergic basal forebrain neuron degeneration in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Neurobiol Dis 2023; 188:106332. [PMID: 37890559 PMCID: PMC10752300 DOI: 10.1016/j.nbd.2023.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Pathobiology and Translational Medicine Program, New York University Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Christy M Kelley
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA; Institute for Future Health, Scottsdale, AZ, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Elliott J Mufson
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Xie D, Song C, Qin T, Zhai Z, Cai J, Dai J, Sun T, Xu Y. Moschus ameliorates glutamate-induced cellular damage by regulating autophagy and apoptosis pathway. Sci Rep 2023; 13:18586. [PMID: 37903904 PMCID: PMC10616123 DOI: 10.1038/s41598-023-45878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, causes short-term memory and cognition declines. It is estimated that one in three elderly people die from AD or other dementias. Chinese herbal medicine as a potential drug for treating AD has gained growing interest from many researchers. Moschus, a rare and valuable traditional Chinese animal medicine, was originally documented in Shennong Ben Cao Jing and recognized for its properties of reviving consciousness/resuscitation. Additionally, Moschus has the efficacy of "regulation of menstruation with blood activation, relief of swelling and pain" and is used for treating unconsciousness, stroke, coma, and cerebrovascular diseases. However, it is uncertain whether Moschus has any protective effect on AD patients. We explored whether Moschus could protect glutamate (Glu)-induced PC12 cells from cellular injury and preliminarily explored their related action mechanisms. The chemical compounds of Moschus were analyzed and identified by GC-MS. The Glu-induced differentiated PC12 cell model was thought to be the common AD cellular model. The study aims to preliminarily investigate the intervention effect of Moschus on Glu-induced PC12 cell damage as well as their related action mechanisms. Cell viability, lactate dehydrogenase (LDH), mitochondrial reactive oxygen species, mitochondrial membrane potential (MMP), cell apoptosis, autophagic vacuoles, autolysosomes or autophagosomes, proteins related to apoptosis, and the proteins related to autophagy were examined and analyzed. Seventeen active compounds of the Moschus sample were identified based on GC-MS analysis. In comparison to the control group, Glu stimulation increased cell viability loss, LDH release, mitochondrial damage, loss of MMP, apoptosis rate, and the number of cells containing autophagic vacuoles, and autolysosomes or autophagosomes, while these results were decreased after the pretreatment with Moschus and 3-methyladenine (3-MA). Furthermore, Glu stimulation significantly increased cleaved caspase-3, Beclin1, and LC3II protein expression, and reduced B-cell lymphoma 2/BAX ratio and p62 protein expression, but these results were reversed after pretreatment of Moschus and 3-MA. Moschus has protective activity in Glu-induced PC12 cell injury, and the potential mechanism might involve the regulation of autophagy and apoptosis. Our study may promote research on Moschus in the field of neurodegenerative diseases, and Moschus may be considered as a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Caiyou Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jie Cai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingyi Dai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
13
|
Ferrer-Raventós P, Puertollano-Martín D, Querol-Vilaseca M, Sánchez-Aced É, Valle-Tamayo N, Cervantes-Gonzalez A, Nuñez-Llaves R, Pegueroles J, Dols-Icardo O, Iulita MF, Aldecoa I, Molina-Porcel L, Sánchez-Valle R, Fortea J, Belbin O, Sirisi S, Lleó A. Amyloid precursor protein 𝛽CTF accumulates in synapses in sporadic and genetic forms of Alzheimer's disease. Neuropathol Appl Neurobiol 2023; 49:e12879. [PMID: 36702749 DOI: 10.1111/nan.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/21/2022] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
AIMS Amyloid precursor protein (APP) 𝛽-C-terminal fragment (𝛽CTF) may have a neurotoxic role in Alzheimer's disease (AD). 𝛽CTF accumulates in the brains of patients with sporadic (SAD) and genetic forms of AD. Synapses degenerate early during the pathogenesis of AD. We studied whether the 𝛽CTF accumulates in synapses in SAD, autosomal dominant AD (ADAD) and Down syndrome (DS). METHODS We used array tomography to determine APP at synapses in human AD tissue. We measured 𝛽CTF, A𝛽40, A𝛽42 and phosphorylated tau181 (p-tau181) concentrations in brain homogenates and synaptosomes of frontal and temporal cortex of SAD, ADAD, DS and controls. RESULTS APP colocalised with pre- and post-synaptic markers in human AD brains. APP 𝛽CTF was enriched in AD synaptosomes. CONCLUSIONS We demonstrate that 𝛽CTF accumulates in synapses in SAD, ADAD and DS. This finding might suggest a role for 𝛽CTF in synapse degeneration. Therapies aimed at mitigating 𝛽CTF accumulation could be potentially beneficial in AD.
Collapse
Affiliation(s)
- Paula Ferrer-Raventós
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - David Puertollano-Martín
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Querol-Vilaseca
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Érika Sánchez-Aced
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Natalia Valle-Tamayo
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Cervantes-Gonzalez
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Raúl Nuñez-Llaves
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jordi Pegueroles
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Oriol Dols-Icardo
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Florencia Iulita
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Iban Aldecoa
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Department of Pathology, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Laura Molina-Porcel
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Juan Fortea
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Olivia Belbin
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sònia Sirisi
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
14
|
Takasugi N, Komai M, Kaneshiro N, Ikeda A, Kamikubo Y, Uehara T. The Pursuit of the "Inside" of the Amyloid Hypothesis-Is C99 a Promising Therapeutic Target for Alzheimer's Disease? Cells 2023; 12:454. [PMID: 36766796 PMCID: PMC9914381 DOI: 10.3390/cells12030454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Aducanumab, co-developed by Eisai (Japan) and Biogen (U.S.), has received Food and Drug Administration approval for treating Alzheimer's disease (AD). In addition, its successor antibody, lecanemab, has been approved. These antibodies target the aggregated form of the small peptide, amyloid-β (Aβ), which accumulates in the patient brain. The "amyloid hypothesis" based therapy that places the aggregation and toxicity of Aβ at the center of the etiology is about to be realized. However, the effects of immunotherapy are still limited, suggesting the need to reconsider this hypothesis. Aβ is produced from a type-I transmembrane protein, Aβ precursor protein (APP). One of the APP metabolites, the 99-amino acids C-terminal fragment (C99, also called βCTF), is a direct precursor of Aβ and accumulates in the AD patient's brain to demonstrate toxicity independent of Aβ. Conventional drug discovery strategies have focused on Aβ toxicity on the "outside" of the neuron, but C99 accumulation might explain the toxicity on the "inside" of the neuron, which was overlooked in the hypothesis. Furthermore, the common region of C99 and Aβ is a promising target for multifunctional AD drugs. This review aimed to outline the nature, metabolism, and impact of C99 on AD pathogenesis and discuss whether it could be a therapeutic target complementing the amyloid hypothesis.
Collapse
Affiliation(s)
- Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masato Komai
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Nanaka Kaneshiro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Center for RNA Biology and Medicine, University of California, Riverside, CA 92521, USA
| | - Atsuya Ikeda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
15
|
Privitera L, Hogg EL, Lopes M, Domingos LB, Gaestel M, Müller J, Wall MJ, Corrêa SAL. The MK2 cascade mediates transient alteration in mGluR-LTD and spatial learning in a murine model of Alzheimer's disease. Aging Cell 2022; 21:e13717. [PMID: 36135933 PMCID: PMC9577942 DOI: 10.1111/acel.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
A key aim of Alzheimer disease research is to develop efficient therapies to prevent and/or delay the irreversible progression of cognitive impairments. Early deficits in long-term potentiation (LTP) are associated with the accumulation of amyloid beta in rodent models of the disease; however, less is known about how mGluR-mediated long-term depression (mGluR-LTD) is affected. In this study, we have found that mGluR-LTD is enhanced in the APPswe /PS1dE9 mouse at 7 but returns to wild-type levels at 13 months of age. This transient over-activation of mGluR signalling is coupled with impaired LTP and shifts the dynamic range of synapses towards depression. These alterations in synaptic plasticity are associated with an inability to utilize cues in a spatial learning task. The transient dysregulation of plasticity can be prevented by genetic deletion of the MAP kinase-activated protein kinase 2 (MK2), a substrate of p38 MAPK, demonstrating that manipulating the mGluR-p38 MAPK-MK2 cascade at 7 months can prevent the shift in synapse dynamic range. Our work reveals the MK2 cascade as a potential pharmacological target to correct the over-activation of mGluR signalling.
Collapse
Affiliation(s)
- Lucia Privitera
- Bradford School of Pharmacy and Medical SciencesUniversity of BradfordBradfordUK,School of Medicine, Ninewells HospitalUniversity of DundeeDundeeUK,Barts and the London School of MedicineQueen Mary University of London Malta CampusVictoriaMalta
| | - Ellen L. Hogg
- Bradford School of Pharmacy and Medical SciencesUniversity of BradfordBradfordUK
| | - Marcia Lopes
- Bradford School of Pharmacy and Medical SciencesUniversity of BradfordBradfordUK
| | - Luana B. Domingos
- Bradford School of Pharmacy and Medical SciencesUniversity of BradfordBradfordUK
| | - Matthias Gaestel
- Institute of Cell BiochemistryHannover Medical UniversityHannoverGermany
| | - Jürgen Müller
- Bradford School of Pharmacy and Medical SciencesUniversity of BradfordBradfordUK
| | - Mark J. Wall
- School of Life SciencesUniversity of WarwickCoventryUK
| | - Sonia A. L. Corrêa
- Bradford School of Pharmacy and Medical SciencesUniversity of BradfordBradfordUK,Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
16
|
Cocaine Modulates the Neuronal Endosomal System and Extracellular Vesicles in a Sex-Dependent Manner. Neurochem Res 2022; 47:2263-2277. [PMID: 35501523 PMCID: PMC9352616 DOI: 10.1007/s11064-022-03612-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/08/2023]
Abstract
In multiple neurodevelopmental and neurodegenerative disorders, endosomal changes correlate with changes in exosomes. We examined this linkage in the brain of mice that received cocaine injections for two weeks starting at 2.5 months of age. Cocaine caused a decrease in the number of both neuronal early and late endosomes and exosomes in the brains of male but not female mice. The response to cocaine in ovariectomized females mirrored male, demonstrating that these sex-differences in response to cocaine are driven by hormonal differences. Moreover, cocaine increased the amount of α-synuclein per exosome in the brain of females but did not affect exosomal α-synuclein content in the brain of males, a sex-difference eliminated by ovariectomy. Enhanced packaging of α-synuclein into female brain exosomes with the potential for propagation of pathology throughout the brain suggests a mechanism for the different response of females to chronic cocaine exposure as compared to males.
Collapse
|
17
|
Lee SE, Kwon D, Shin N, Kong D, Kim NG, Kim HY, Kim MJ, Choi SW, Kang KS. Accumulation of APP-CTF induces mitophagy dysfunction in the iNSCs model of Alzheimer's disease. Cell Death Dis 2022; 8:1. [PMID: 35013145 PMCID: PMC8748980 DOI: 10.1038/s41420-021-00796-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022]
Abstract
Mitochondrial dysfunction is associated with familial Alzheimer’s disease (fAD), and the accumulation of damaged mitochondria has been reported as an initial symptom that further contributes to disease progression. In the amyloidogenic pathway, the amyloid precursor protein (APP) is cleaved by β-secretase to generate a C-terminal fragment, which is then cleaved by γ-secretase to produce amyloid-beta (Aβ). The accumulation of Aβ and its detrimental effect on mitochondrial function are well known, yet the amyloid precursor protein-derived C-terminal fragments (APP-CTFs) contributing to this pathology have rarely been reported. We demonstrated the effects of APP-CTFs-related pathology using induced neural stem cells (iNSCs) from AD patient-derived fibroblasts. APP-CTFs accumulation was demonstrated to mainly occur within mitochondrial domains and to be both a cause and a consequence of mitochondrial dysfunction. APP-CTFs accumulation also resulted in mitophagy failure, as validated by increased LC3-II and p62 and inconsistent PTEN-induced kinase 1 (PINK1)/E3 ubiquitin ligase (Parkin) recruitment to mitochondria and failed fusion of mitochondria and lysosomes. The accumulation of APP-CTFs and the causality of impaired mitophagy function were also verified in AD patient-iNSCs. Furthermore, we confirmed this pathological loop in presenilin knockout iNSCs (PSEN KO-iNSCs) because APP-CTFs accumulation is due to γ-secretase blockage and similarly occurs in presenilin-deficient cells. In the present work, we report that the contribution of APP-CTFs accumulation is associated with mitochondrial dysfunction and mitophagy failure in AD patient-iNSCs as well as PSEN KO-iNSCs.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daekee Kwon
- Research Institute in Maru Therapeutics, Seoul, 05854, Republic of Korea
| | - Nari Shin
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dasom Kong
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nam Gyo Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Yeong Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Ji Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Deng Z, Dong Y, Zhou X, Lu JH, Yue Z. Pharmacological modulation of autophagy for Alzheimer’s disease therapy: Opportunities and obstacles. Acta Pharm Sin B 2021; 12:1688-1706. [PMID: 35847516 PMCID: PMC9279633 DOI: 10.1016/j.apsb.2021.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent and deleterious neurodegenerative disorder characterized by an irreversible and progressive impairment of cognitive abilities as well as the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. By far, the precise mechanisms of AD are not fully understood and no interventions are available to effectively slow down progression of the disease. Autophagy is a conserved degradation pathway that is crucial to maintain cellular homeostasis by targeting damaged organelles, pathogens, and disease-prone protein aggregates to lysosome for degradation. Emerging evidence suggests dysfunctional autophagy clearance pathway as a potential cellular mechanism underlying the pathogenesis of AD in affected neurons. Here we summarize the current evidence for autophagy dysfunction in the pathophysiology of AD and discuss the role of autophagy in the regulation of AD-related protein degradation and neuroinflammation in neurons and glial cells. Finally, we review the autophagy modulators reported in the treatment of AD models and discuss the obstacles and opportunities for potential clinical application of the novel autophagy activators for AD therapy.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Xiaoting Zhou
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
- Corresponding authors.
| | - Zhenyu Yue
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding authors.
| |
Collapse
|
19
|
Valverde A, Dunys J, Lorivel T, Debayle D, Gay AS, Caillava C, Chami M, Checler F. Dipeptidyl peptidase 4 contributes to Alzheimer's disease-like defects in a mouse model and is increased in sporadic Alzheimer's disease brains. J Biol Chem 2021; 297:100963. [PMID: 34265307 PMCID: PMC8334387 DOI: 10.1016/j.jbc.2021.100963] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
The amyloid cascade hypothesis, which proposes a prominent role for full-length amyloid β peptides in Alzheimer's disease, is currently being questioned. In addition to full-length amyloid β peptide, several N-terminally truncated fragments of amyloid β peptide could well contribute to Alzheimer's disease setting and/or progression. Among them, pyroGlu3-amyloid β peptide appears to be one of the main components of early anatomical lesions in Alzheimer's disease-affected brains. Little is known about the proteolytic activities that could account for the N-terminal truncations of full-length amyloid β, but they appear as the rate-limiting enzymes yielding the Glu3-amyloid β peptide sequence that undergoes subsequent cyclization by glutaminyl cyclase, thereby yielding pyroGlu3-amyloid β. Here, we investigated the contribution of dipeptidyl peptidase 4 in Glu3-amyloid β peptide formation and the functional influence of its genetic depletion or pharmacological blockade on spine maturation as well as on pyroGlu3-amyloid β peptide and amyloid β 42-positive plaques and amyloid β 42 load in the triple transgenic Alzheimer's disease mouse model. Furthermore, we examined whether reduction of dipeptidyl peptidase 4 could rescue learning and memory deficits displayed by these mice. Our data establish that dipeptidyl peptidase 4 reduction alleviates anatomical, biochemical, and behavioral Alzheimer's disease-related defects. Furthermore, we demonstrate that dipeptidyl peptidase 4 activity is increased early in sporadic Alzheimer's disease brains. Thus, our data demonstrate that dipeptidyl peptidase 4 participates in pyroGlu3-amyloid β peptide formation and that targeting this peptidase could be considered as an alternative strategy to interfere with Alzheimer's disease progression.
Collapse
Affiliation(s)
- Audrey Valverde
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Julie Dunys
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Thomas Lorivel
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Delphine Debayle
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Anne-Sophie Gay
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Céline Caillava
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Mounia Chami
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France.
| |
Collapse
|
20
|
Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J Biol Chem 2021; 296:100489. [PMID: 33662398 PMCID: PMC8027268 DOI: 10.1016/j.jbc.2021.100489] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic, biochemical, and anatomical grounds led to the proposal of the amyloid cascade hypothesis centered on the accumulation of amyloid beta peptides (Aβ) to explain Alzheimer's disease (AD) etiology. In this context, a bulk of efforts have aimed at developing therapeutic strategies seeking to reduce Aβ levels, either by blocking its production (γ- and β-secretase inhibitors) or by neutralizing it once formed (Aβ-directed immunotherapies). However, so far the vast majority of, if not all, clinical trials based on these strategies have failed, since they have not been able to restore cognitive function in AD patients, and even in many cases, they have worsened the clinical picture. We here propose that AD could be more complex than a simple Aβ-linked pathology and discuss the possibility that a way to reconcile undoubted genetic evidences linking processing of APP to AD and a consistent failure of Aβ-based clinical trials could be to envision the pathological contribution of the direct precursor of Aβ, the β-secretase-derived C-terminal fragment of APP, βCTF, also referred to as C99. In this review, we summarize scientific evidences pointing to C99 as an early contributor to AD and postulate that γ-secretase should be considered as not only an Aβ-generating protease, but also a beneficial C99-inactivating enzyme. In that sense, we discuss the limitations of molecules targeting γ-secretase and propose alternative strategies seeking to reduce C99 levels by other means and notably by enhancing its lysosomal degradation.
Collapse
|
21
|
Gautier MK, Ginsberg SD. A method for quantification of vesicular compartments within cells using 3D reconstructed confocal z-stacks: Comparison of ImageJ and Imaris to count early endosomes within basal forebrain cholinergic neurons. J Neurosci Methods 2021; 350:109038. [PMID: 33338543 PMCID: PMC8026492 DOI: 10.1016/j.jneumeth.2020.109038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Phenotypic changes in vesicular compartments are an early pathological hallmark of many peripheral and central diseases. For example, accurate assessment of early endosome pathology is crucial to the study of Down syndrome (DS) and Alzheimer's disease (AD), as well as other neurological disorders with endosomal-lysosomal pathology. NEW METHOD We describe a method for quantification of immunolabeled early endosomes within transmitter-identified basal forebrain cholinergic neurons (BFCNs) using 3-dimensional (3D) reconstructed confocal z-stacks employing Imaris software. RESULTS Quantification of 3D reconstructed z-stacks was performed using two different image analysis programs: ImageJ and Imaris. We found ImageJ consistently overcounted the number of early endosomes present within individual BFCNs. Difficulty separating densely packed early endosomes within defined BFCNs was observed in ImageJ compared to Imaris. COMPARISON WITH EXISTING METHODS Previous methods quantifying endosomal-lysosomal pathology relied on confocal microscopy images taken in a single plane of focus. Since early endosomes are distributed throughout the soma and neuronal processes of BFCNs, critical insight into the abnormal early endosome phenotype may be lost as a result of analyzing only a single image of the perikaryon. Rather than relying on a representative sampling, this protocol enables precise, direct quantification of all immunolabeled vesicles within a defined cell of interest. CONCLUSIONS Imaris is an ideal program for accurately counting punctate vesicles in the context of dual label confocal microscopy. Superior image resolution and detailed algorithms offered by Imaris make precise and rigorous quantification of individual early endosomes dispersed throughout a BFCN in 3D space readily achievable.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Program of Pathobiology and Translational Medicine, Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Vaillant-Beuchot L, Mary A, Pardossi-Piquard R, Bourgeois A, Lauritzen I, Eysert F, Kinoshita PF, Cazareth J, Badot C, Fragaki K, Bussiere R, Martin C, Mary R, Bauer C, Pagnotta S, Paquis-Flucklinger V, Buée-Scherrer V, Buée L, Lacas-Gervais S, Checler F, Chami M. Accumulation of amyloid precursor protein C-terminal fragments triggers mitochondrial structure, function, and mitophagy defects in Alzheimer's disease models and human brains. Acta Neuropathol 2021; 141:39-65. [PMID: 33079262 PMCID: PMC7785558 DOI: 10.1007/s00401-020-02234-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Several lines of recent evidence indicate that the amyloid precursor protein-derived C-terminal fragments (APP-CTFs) could correspond to an etiological trigger of Alzheimer's disease (AD) pathology. Altered mitochondrial homeostasis is considered an early event in AD development. However, the specific contribution of APP-CTFs to mitochondrial structure, function, and mitophagy defects remains to be established. Here, we demonstrate in neuroblastoma SH-SY5Y cells expressing either APP Swedish mutations, or the β-secretase-derived APP-CTF fragment (C99) combined with β- and γ-secretase inhibition, that APP-CTFs accumulation independently of Aβ triggers excessive mitochondrial morphology alteration (i.e., size alteration and cristae disorganization) associated with enhanced mitochondrial reactive oxygen species production. APP-CTFs accumulation also elicit basal mitophagy failure illustrated by enhanced conversion of LC3, accumulation of LC3-I and/or LC3-II, non-degradation of SQSTM1/p62, inconsistent Parkin and PINK1 recruitment to mitochondria, enhanced levels of membrane and matrix mitochondrial proteins, and deficient fusion of mitochondria with lysosomes. We confirm the contribution of APP-CTFs accumulation to morphological mitochondria alteration and impaired basal mitophagy in vivo in young 3xTgAD transgenic mice treated with γ-secretase inhibitor as well as in adeno-associated-virus-C99 injected mice. Comparison of aged 2xTgAD and 3xTgAD mice indicates that, besides APP-CTFs, an additional contribution of Aβ to late-stage mitophagy activation occurs. Importantly, we report on mitochondrial accumulation of APP-CTFs in human post-mortem sporadic AD brains correlating with mitophagy failure molecular signature. Since defective mitochondria homeostasis plays a pivotal role in AD pathogenesis, targeting mitochondrial dysfunctions and/or mitophagy by counteracting early APP-CTFs accumulation may represent relevant therapeutic interventions in AD.
Collapse
Affiliation(s)
- Loan Vaillant-Beuchot
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Arnaud Mary
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Raphaëlle Pardossi-Piquard
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Alexandre Bourgeois
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Inger Lauritzen
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Fanny Eysert
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Paula Fernanda Kinoshita
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Julie Cazareth
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Céline Badot
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | | | - Renaud Bussiere
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
- Department of Medicine, Burlington Danes Building, Hammersmith Hospital Campus, Imperial College London, UK Dementia Research Institute, Du Cane Road, London, W12 0NN, UK
| | - Cécile Martin
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Rosanna Mary
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Charlotte Bauer
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Sophie Pagnotta
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée (CCMA), Parc Valrose, 06108, Nice, France
| | | | - Valérie Buée-Scherrer
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Place de Verdun, 59045, Lille, France
- Inserm UMR-S 1172, Laboratory of Excellence DistALZ, 'Alzheimer and Tauopathies', Bâtiment Biserte, rue Polonovski, 59045, Lille Cedex, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Place de Verdun, 59045, Lille, France
- Inserm UMR-S 1172, Laboratory of Excellence DistALZ, 'Alzheimer and Tauopathies', Bâtiment Biserte, rue Polonovski, 59045, Lille Cedex, France
| | - Sandra Lacas-Gervais
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée (CCMA), Parc Valrose, 06108, Nice, France
| | - Frédéric Checler
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Mounia Chami
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France.
| |
Collapse
|
23
|
Wang Y, Wu Q, Anand BG, Karthivashan G, Phukan G, Yang J, Thinakaran G, Westaway D, Kar S. Significance of cytosolic cathepsin D in Alzheimer's disease pathology: Protective cellular effects of PLGA nanoparticles against β-amyloid-toxicity. Neuropathol Appl Neurobiol 2020; 46:686-706. [PMID: 32716575 DOI: 10.1111/nan.12647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Evidence suggests that amyloid β (Aβ) peptides play an important role in the degeneration of neurons during the development of Alzheimer's disease (AD), the prevalent cause of dementia affecting the elderly. The endosomal-lysosomal system, which acts as a major site for Aβ metabolism, has been shown to exhibit abnormalities in vulnerable neurons of the AD brain, reflected by enhanced levels/expression of lysosomal enzymes including cathepsin D (CatD). At present, the implication of CatD in selective neuronal vulnerability in AD pathology remains unclear. METHODS We evaluated the role of CatD in the degeneration of neurons in Aβ-treated cultures, transgenic AD mouse model (that is 5xFAD) and post mortem AD brain samples. RESULTS Our results showed that Aβ1-42 -induced toxicity in cortical cultured neurons is associated with impaired lysosomal integrity, enhanced levels of carbonylated proteins and tau phosphorylation. The cellular and cytosolic levels/activity of CatD are also elevated in cultured neurons following exposure to Aβ peptide. Additionally, we observed that CatD cellular and subcellular levels/activity are increased in the affected cortex, but not in the unaffected cerebellum, of 5xFAD mice and post mortem AD brains. Interestingly, treatment of cultured neurons with nanoparticles PLGA, which targets lysosomal system, attenuated Aβ toxicity by reducing the levels of carbonylated proteins, tau phosphorylation and the level/distribution/activity of CatD. CONCLUSION Our study reveals that increased cytosolic level/activity of CatD play an important role in determining neuronal vulnerability in AD. Additionally, native PLGA can protect neurons against Aβ toxicity by restoring lysosomal membrane integrity, thus signifying its implication in attenuating AD.
Collapse
Affiliation(s)
- Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Q Wu
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - B G Anand
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - G Karthivashan
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - G Phukan
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - J Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - G Thinakaran
- Department of Molecular Medicine, and Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - D Westaway
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Pérez-González R, Kim Y, Miller C, Pacheco-Quinto J, Eckman EA, Levy E. Extracellular vesicles: where the amyloid precursor protein carboxyl-terminal fragments accumulate and amyloid-β oligomerizes. FASEB J 2020; 34:12922-12931. [PMID: 32772431 PMCID: PMC7496786 DOI: 10.1096/fj.202000823r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
Pleiotropic roles are proposed for brain extracellular vesicles (EVs) in the development of Alzheimer's disease (AD). Our previous studies have suggested a beneficial role for EVs in AD, where the endosomal system in vulnerable neurons is compromised, contributing to the removal of accumulated material from neurons. However, the involvement of EVs in propagating AD amyloidosis throughout the brain has been considered because the amyloid‐β precursor protein (APP), APP metabolites, and key APP cleaving enzymes were identified in association with EVs. Here, we undertook to determine whether the secretase machinery is actively processing APP in EVs isolated from the brains of wild‐type and APP overexpressing Tg2576 mice. We found that full‐length APP is cleaved in EVs incubated in the absence of cells. The resulting metabolites, both α‐ and β‐APP carboxyl‐terminal fragments and APP intracellular domain accumulate in EVs over time and amyloid‐β dimerizes. Thus, EVs contribute to the removal from neurons and transport of APP‐derived neurotoxic peptides. While this is potentially a venue for propagation of the pathology throughout the brain, it may contribute to efficient removal of neurotoxic peptides from the brain.
Collapse
Affiliation(s)
- Rocío Pérez-González
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Yohan Kim
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Chelsea Miller
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Javier Pacheco-Quinto
- Biomedical Research Institute of New Jersey, Cedar Knolls, and Atlantic Health Systems, Morristown, NJ, USA
| | - Elizabeth A Eckman
- Biomedical Research Institute of New Jersey, Cedar Knolls, and Atlantic Health Systems, Morristown, NJ, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University School of Medicine, New York, NY, USA.,Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
25
|
Bécot A, Volgers C, van Niel G. Transmissible Endosomal Intoxication: A Balance between Exosomes and Lysosomes at the Basis of Intercellular Amyloid Propagation. Biomedicines 2020; 8:biomedicines8080272. [PMID: 32759666 PMCID: PMC7459801 DOI: 10.3390/biomedicines8080272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
In Alzheimer′s disease (AD), endolysosomal dysfunctions are amongst the earliest cellular features to appear. Each organelle of the endolysosomal system, from the multivesicular body (MVB) to the lysosome, contributes to the homeostasis of amyloid precursor protein (APP) cleavage products including β-amyloid (Aβ) peptides. Hence, this review will attempt to disentangle how changes in the endolysosomal system cumulate to the generation of toxic amyloid species and hamper their degradation. We highlight that the formation of MVBs and the generation of amyloid species are closely linked and describe how the molecular machineries acting at MVBs determine the generation and sorting of APP cleavage products towards their degradation or release in association with exosomes. In particular, we will focus on AD-related distortions of the endolysomal system that divert it from its degradative function to favour the release of exosomes and associated amyloid species. We propose here that such an imbalance transposed at the brain scale poses a novel concept of transmissible endosomal intoxication (TEI). This TEI would initiate a self-perpetuating transmission of endosomal dysfunction between cells that would support the propagation of amyloid species in neurodegenerative diseases.
Collapse
|
26
|
Pera M, Montesinos J, Larrea D, Agrawal RR, Velasco KR, Stavrovskaya IG, Yun TD, Area-Gomez E. MAM and C99, key players in the pathogenesis of Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:235-278. [PMID: 32739006 DOI: 10.1016/bs.irn.2020.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inter-organelle communication is a rapidly-expanding field that has transformed our understanding of cell biology and pathology. Organelle-organelle contact sites can generate transient functional domains that act as enzymatic hubs involved in the regulation of cellular metabolism and intracellular signaling. One of these hubs is located in areas of the endoplasmic reticulum (ER) connected to mitochondria, called mitochondria-associated ER membranes (MAM). These MAM are transient lipid rafts intimately involved in cholesterol and phospholipid metabolism, calcium homeostasis, and mitochondrial function and dynamics. In addition, γ-secretase-mediated proteolysis of the amyloid precursor protein 99-aa C-terminal fragment (C99) to form amyloid β also occurs at the MAM. Our most recent data indicates that in Alzheimer's disease, increases in uncleaved C99 levels at the MAM provoke the upregulation of MAM-resident functions, resulting in the loss of lipid homeostasis, and mitochondrial dysfunction. Here, we discuss the relevance of these findings in the field, and the contribution of C99 and MAM dysfunction to Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
- Marta Pera
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States; Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallés, Barcelona, Spain.
| | - Jorge Montesinos
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Delfina Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Kevin R Velasco
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Irina G Stavrovskaya
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Taekyung D Yun
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States; Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
27
|
Bécot A, Pardossi-Piquard R, Bourgeois A, Duplan E, Xiao Q, Diwan A, Lee JM, Lauritzen I, Checler F. The Transcription Factor EB Reduces the Intraneuronal Accumulation of the Beta-Secretase-Derived APP Fragment C99 in Cellular and Mouse Alzheimer’s Disease Models. Cells 2020; 9:cells9051204. [PMID: 32408680 PMCID: PMC7291113 DOI: 10.3390/cells9051204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 01/20/2023] Open
Abstract
Brains that are affected by Alzheimer’s disease (AD) are characterized by the overload of extracellular amyloid β (Aβ) peptides, but recent data from cellular and animal models propose that Aβ deposition is preceded by intraneuronal accumulation of the direct precursor of Aβ, C99. These studies indicate that C99 accumulation firstly occurs within endosomal and lysosomal compartments and that it contributes to early-stage AD-related endosomal-lysosomal-autophagic defects. Our previous work also suggests that C99 accumulation itself could be a consequence of defective lysosomal-autophagic degradation. Thus, in the present study, we analyzed the influence of the overexpression of the transcription factor EB (TFEB), a master regulator of autophagy and lysosome biogenesis, on C99 accumulation occurring in both AD cellular models and in the triple-transgenic mouse model (3xTgAD). In the in vivo experiments, TFEB overexpression was induced via adeno-associated viruses (AAVs), which were injected either into the cerebral ventricles of newborn mice or administrated at later stages (3 months of age) by stereotaxic injection into the subiculum. In both cells and the 3xTgAD mouse model, exogenous TFEB strongly reduced C99 load and concomitantly increased the levels of many lysosomal and autophagic proteins, including cathepsins, key proteases involved in C99 degradation. Our data indicate that TFEB activation is a relevant strategy to prevent the accumulation of this early neurotoxic catabolite.
Collapse
Affiliation(s)
- Anaïs Bécot
- IPMC UMR 7275 CNRS/UCA, Laboratory of Excellence DistALZ, 660 route des Lucioles, 06650 Valbonne, France; (A.B.); (R.P.-P.); (A.B.); (E.D.); (I.L.)
| | - Raphaëlle Pardossi-Piquard
- IPMC UMR 7275 CNRS/UCA, Laboratory of Excellence DistALZ, 660 route des Lucioles, 06650 Valbonne, France; (A.B.); (R.P.-P.); (A.B.); (E.D.); (I.L.)
| | - Alexandre Bourgeois
- IPMC UMR 7275 CNRS/UCA, Laboratory of Excellence DistALZ, 660 route des Lucioles, 06650 Valbonne, France; (A.B.); (R.P.-P.); (A.B.); (E.D.); (I.L.)
| | - Eric Duplan
- IPMC UMR 7275 CNRS/UCA, Laboratory of Excellence DistALZ, 660 route des Lucioles, 06650 Valbonne, France; (A.B.); (R.P.-P.); (A.B.); (E.D.); (I.L.)
| | - Qingli Xiao
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; (Q.X.); (J.-M.L.)
| | - Abhinav Diwan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- John Cochran Veterans Affairs Medical Center, St. Louis, MO 63106, USA
| | - Jin-Moo Lee
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; (Q.X.); (J.-M.L.)
| | - Inger Lauritzen
- IPMC UMR 7275 CNRS/UCA, Laboratory of Excellence DistALZ, 660 route des Lucioles, 06650 Valbonne, France; (A.B.); (R.P.-P.); (A.B.); (E.D.); (I.L.)
| | - Frédéric Checler
- IPMC UMR 7275 CNRS/UCA, Laboratory of Excellence DistALZ, 660 route des Lucioles, 06650 Valbonne, France; (A.B.); (R.P.-P.); (A.B.); (E.D.); (I.L.)
- Correspondence: ; Tel.: +33-493-953-460
| |
Collapse
|
28
|
Cheng F, Fransson LÅ, Mani K. Proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the C-terminal fragment of β-cleaved APP in autophagosomes of dividing neuronal cells. Glycobiology 2020; 30:539-549. [PMID: 32039447 PMCID: PMC7372925 DOI: 10.1093/glycob/cwaa011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/12/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Proinflammatory cytokines stimulate expression of β-secretase, which increases processing of amyloid precursor protein (APP), ultimately leading to the deposition of amyloid beta (Aβ). The N-terminal domain of β-cleaved APP supports Cu/NO-dependent release of heparan sulfate (HS) from the glypican-1 (Gpc-1) proteoglycan. HS is an inhibitor of β-secretase, thereby constituting a regulatory, negative feedback loop. Here, we have investigated the effect of the proinflammatory cytokines TNF-α, IL-1β and IL-6 on the interplay between APP processing and release of HS from Gpc-1 in neuronal cells. We have used deconvolution immunofluorescence microscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and a panel of monoclonal/polyclonal antibodies recognizing the released HS, the N-terminus of Aβ, Aβ, the C-terminus of APP and the autophagosome marker LC3 as well as the chemical lysosome marker LysoTrackerRed (LTR). We repeatedly found that N2a neuroblastoma cells and human neural stem cells grown in the presence of the cytokines developed large cytoplasmic clusters, which stained positive for HS, the N-terminus of Aβ, Aβ, the C-terminus of APP, LC3 and LTR, indicating accumulation of HS and APP/APP degradation products in enlarged autophagosomes/lysosomes. The SDS-PAGE of immunoisolates obtained from TNF-α-treated N2a cells by using anti-C-terminus of APP revealed the presence of SDS-stable complexes between HS and the C-terminal fragment of β-cleaved APP (βCTF) migrating in the range 10-18 kDa. Clustered accumulation of βCTF disappeared when HS release was prevented and slightly enhanced when HS release was increased. Hence, when proinflammatory cytokines induce increased processing of APP, inhibition of β-secretase by HS is insufficient, which may lead to the impaired autophagosomal degradation.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, 221 00 Lund, Sweden
| | - Lars-Åke Fransson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, 221 00 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, 221 00 Lund, Sweden
- To whom correspondence should be addressed: Tel: +46-46-222-4044; e-mail:
| |
Collapse
|
29
|
|
30
|
Lauritzen I, Bécot A, Bourgeois A, Pardossi-Piquard R, Biferi MG, Barkats M, Checler F. Targeting γ-secretase triggers the selective enrichment of oligomeric APP-CTFs in brain extracellular vesicles from Alzheimer cell and mouse models. Transl Neurodegener 2019; 8:35. [PMID: 31827783 PMCID: PMC6894230 DOI: 10.1186/s40035-019-0176-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We recently demonstrated an endolysosomal accumulation of the β-secretase-derived APP C-terminal fragment (CTF) C99 in brains of Alzheimer disease (AD) mouse models. Moreover, we showed that the treatment with the γ-secretase inhibitor (D6) led to further increased endolysosomal APP-CTF levels, but also revealed extracellular APP-CTF-associated immunostaining. We here hypothesized that this latter staining could reflect extracellular vesicle (EV)-associated APP-CTFs and aimed to characterize these γ-secretase inhibitor-induced APP-CTFs. METHODS EVs were purified from cell media or mouse brains from vehicle- or D6-treated C99 or APPswedish expressing cells/mice and analyzed for APP-CTFs by immunoblot. Combined pharmacological, immunological and genetic approaches (presenilin invalidation and C99 dimerization mutants (GXXXG)) were used to characterize vesicle-containing APP-CTFs. Subcellular APP-CTF localization was determined by immunocytochemistry. RESULTS Purified EVs from both AD cell or mouse models were enriched in APP-CTFs as compared to EVs from control cells/brains. Surprisingly, EVs from D6-treated cells not only displayed increased C99 and C99-derived C83 levels but also higher molecular weight (HMW) APP-CTF-immunoreactivities that were hardly detectable in whole cell extracts. Accordingly, the intracellular levels of HMW APP-CTFs were amplified by the exosomal inhibitor GW4869. By combined pharmacological, immunological and genetic approaches, we established that these HMW APP-CTFs correspond to oligomeric APP-CTFs composed of C99 and/or C83. Immunocytochemical analysis showed that monomers were localized mainly to the trans-Golgi network, whereas oligomers were confined to endosomes and lysosomes, thus providing an anatomical support for the selective recovery of HMW APP-CTFs in EVs. The D6-induced APP-CTF oligomerization and subcellular mislocalization was indeed due to γ-secretase blockade, since it similarly occurred in presenilin-deficient fibroblasts. Further, our data proposed that besides favoring APP-CTF oligomerization by preventing C99 proteolysis, γ-secretase inhibiton also led to a defective SorLA-mediated retrograde transport of HMW APP-CTFs from endosomal compartments to the TGN. CONCLUSIONS This is the first study to demonstrate the presence of oligomeric APP-CTFs in AD mouse models, the levels of which are selectively enriched in endolysosomal compartments including exosomes and amplified by γ-secretase inhibition. Future studies should evaluate the putative contribution of these exosome-associated APP-CTFs in AD onset, progression and spreading.
Collapse
Affiliation(s)
- Inger Lauritzen
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| | - Anaïs Bécot
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| | - Alexandre Bourgeois
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| | - Raphaëlle Pardossi-Piquard
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| | | | | | - Fréderic Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| |
Collapse
|
31
|
Cao M, Li H, Zhao J, Cui J, Hu G. Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer's disease. Neurobiol Aging 2019; 81:116-126. [PMID: 31280115 PMCID: PMC6732230 DOI: 10.1016/j.neurobiolaging.2019.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is an age- and gender-associated brain disorder. Long noncoding RNAs (lncRNAs) have emerged as key regulators of brain development, homeostasis, and pathologies. Here, we used gene array data sets and bioinformatics analysis to identify differentially expressed age- and gender-associated lncRNAs in human AD brains. We found that the expressions of 16 age-associated and 13 gender-associated lncRNAs were dysregulated in AD brains. Notably, the expressions of age-associated lncRNAs-SNHG19 and LINC00672-were significantly correlated with Braak stage of AD, positively and negatively, respectively, whereas the expressions of gender-associated lncRNAs-RNF144A-AS1, LY86-AS1, and LINC00639-were negatively correlated with Braak stage of AD. Functional analysis suggests that the pathways involved in neurodegenerative diseases, synaptic vesicle cycle, and endocytosis were overly represented within age- and gender-associated lncRNA-correlating genes. The identification of age- and gender-associated lncRNAs and their differential expressions in the human AD brain provide potential targets for further experimental validation and mechanistic investigation, which could, in turn, pave the way for developing age- and gender-specific prevention and adjunctive therapeutic options for patients with AD.
Collapse
Affiliation(s)
- Mei Cao
- Core Laboratory, School of Medicine, Sichuan Provincial People's Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Huaqing Li
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China.
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
32
|
Lauritzen I, Pardossi-Piquard R, Bourgeois A, Bécot A, Checler F. Does Intraneuronal Accumulation of Carboxyl-terminal Fragments of the Amyloid Precursor Protein Trigger Early Neurotoxicity in Alzheimer’s Disease? Curr Alzheimer Res 2019; 16:453-457. [DOI: 10.2174/1567205016666190325092841] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/18/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
Abstract
Background:
Alzheimer’s disease (AD) is associated with extracellular accumulation and
aggregation of amyloid β (Aβ) peptides ultimately seeding in senile plaques. Recent data show that their
direct precursor C99 (βCTF) also accumulates in AD-affected brain as well as in AD-like mouse models.
C99 is consistently detected much earlier than Aβ, suggesting that this metabolite could be an early
contributor to AD pathology. C99 accumulates principally within endolysosomal and autophagic structures
and its accumulation was described as both a consequence and one of the causes of endolysosomalautophagic
pathology, the occurrence of which has been documented as an early defect in AD. C99 was
also accompanied by C99-derived C83 (αCTF) accumulation occurring within the same intracellular
organelles. Both these CTFs were found to dimerize leading to the generation of higher molecular
weight CTFs, which were immunohistochemically characterized in situ by means of aggregate-specific
antibodies.
Discussion:
Here, we discuss studies demonstrating a direct link between the accumulation of C99 and
C99-derived APP-CTFs and early neurotoxicity. We discuss the role of C99 in endosomal-lysosomalautophagic
dysfunction, neuroinflammation, early brain network alterations and synaptic dysfunction as
well as in memory-related behavioral alterations, in triple transgenic mice as well as in newly developed
AD animal models.
Conclusion:
This review summarizes current evidence suggesting a potential role of the β -secretasederived
APP C-terminal fragment C99 in Alzheimer’s disease etiology
Collapse
Affiliation(s)
- I. Lauritzen
- IPMC, UMR7275 CNRS/UNS, Laboratory of Excellence DistALZ, 660 route des Lucioles, 0660 Valbonne, France
| | - R. Pardossi-Piquard
- IPMC, UMR7275 CNRS/UNS, Laboratory of Excellence DistALZ, 660 route des Lucioles, 0660 Valbonne, France
| | - A. Bourgeois
- IPMC, UMR7275 CNRS/UNS, Laboratory of Excellence DistALZ, 660 route des Lucioles, 0660 Valbonne, France
| | - A. Bécot
- IPMC, UMR7275 CNRS/UNS, Laboratory of Excellence DistALZ, 660 route des Lucioles, 0660 Valbonne, France
| | - F. Checler
- IPMC, UMR7275 CNRS/UNS, Laboratory of Excellence DistALZ, 660 route des Lucioles, 0660 Valbonne, France
| |
Collapse
|
33
|
Lysosomal Dysfunction in Down Syndrome Is APP-Dependent and Mediated by APP-βCTF (C99). J Neurosci 2019; 39:5255-5268. [PMID: 31043483 DOI: 10.1523/jneurosci.0578-19.2019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
Lysosomal failure underlies pathogenesis of numerous congenital neurodegenerative disorders and is an early and progressive feature of Alzheimer's disease (AD) pathogenesis. Here, we report that lysosomal dysfunction in Down ayndrome (trisomy 21), a neurodevelopmental disorder and form of early onset AD, requires the extra gene copy of amyloid precursor protein (APP) and is specifically mediated by the β cleaved carboxy terminal fragment of APP (APP-βCTF, C99). In primary fibroblasts from individuals with DS, lysosomal degradation of autophagic and endocytic substrates is selectively impaired, causing them to accumulate in enlarged autolysosomes/lysosomes. Direct measurements of lysosomal pH uncovered a significant elevation (0.6 units) as a basis for slowed LC3 turnover and the inactivation of cathepsin D and other lysosomal hydrolases known to be unstable or less active when lysosomal pH is persistently elevated. Normalizing lysosome pH by delivering acidic nanoparticles to lysosomes ameliorated lysosomal deficits, whereas RNA sequencing analysis excluded a transcriptional contribution to hydrolase declines. Cortical neurons cultured from the Ts2 mouse model of DS exhibited lysosomal deficits similar to those in DS cells. Lowering APP expression with siRNA or BACE1 inhibition reversed cathepsin deficits in both fibroblasts and neurons. Deleting one Bace1 allele from adult Ts2 mice had similar rescue effects in vivo The modest elevation of endogenous APP-βCTF needed to disrupt lysosomal function in DS is relevant to sporadic AD where APP-βCTF, but not APP, is also elevated. Our results extend evidence that impaired lysosomal acidification drives progressive lysosomal failure in multiple forms of AD.SIGNIFICANCE STATEMENT Down syndrome (trisomy 21) (DS) is a neurodevelopmental disorder invariably leading to early-onset Alzheimer's disease (AD). We showed in cells from DS individuals and neurons of DS models that one extra copy of a normal amyloid precursor protein (APP) gene impairs lysosomal acidification, thereby depressing lysosomal hydrolytic activities and turnover of autophagic and endocytic substrates, processes vital to neuronal survival. These deficits, which were reversible by correcting lysosomal pH, are mediated by elevated levels of endogenous β-cleaved carboxy-terminal fragment of APP (APP-βCTF). Notably, similar endosomal-lysosomal pathobiology emerges early in sporadic AD, where neuronal APP-βCTF is also elevated, underscoring its importance as a therapeutic target and underscoring the functional and pathogenic interrelationships between the endosomal-lysosomal pathway and genes causing AD.
Collapse
|
34
|
Bi C, Bi S, Li B. Processing of Mutant β-Amyloid Precursor Protein and the Clinicopathological Features of Familial Alzheimer's Disease. Aging Dis 2019; 10:383-403. [PMID: 31011484 PMCID: PMC6457050 DOI: 10.14336/ad.2018.0425] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disease involving many pathological mechanisms. Nonetheless, single pathogenic mutations in amyloid precursor protein (APP) or presenilin 1 or 2 can cause AD with almost all of the clinical and neuropathological features, and therefore, we believe an important mechanism of pathogenesis in AD could be revealed from examining pathogenic APP missense mutations. A comprehensive review of the literature, including clinical, neuropathological, cellular and animal model data, was conducted through PubMed and the databases of Alzforum mutations, HGMD, UniProt, and AD&FTDMDB. Pearson correlation analysis combining the clinical and neuropathological data and aspects of mutant APP processing in cellular models was performed. We find that an increase in Aβ42 has a significant positive correlation with the appearance of neurofibrillary tangles (NFTs) and tends to cause an earlier age of AD onset, while an increase in Aβ40 significantly increases the age at death. The increase in the α-carboxyl terminal fragment (CTF) has a significantly negative correlation with the age of AD onset, and β-CTF has a similar effect without statistical significance. Animal models show that intracellular Aβ is critical for memory defects. Based on these results and the fact that amyloid plaque burden correlates much less well with cognitive impairment than do NFT counts, we propose a "snowball hypothesis": the accumulation of intraneuronal NFTs caused by extracellular Aβ42 and the increase in intraneuronal APP proteolytic products (CTFs and Aβs) could cause cellular organelle stress that leads to neurodegeneration in AD, which then resembles the formation of abnormal protein "snowballs" both inside and outside of neurons.
Collapse
Affiliation(s)
- Christopher Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Stephanie Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Bin Li
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC 20057, USA
| |
Collapse
|
35
|
Zhang F, Wei J, Li X, Ma C, Gao Y. Early Candidate Urine Biomarkers for Detecting Alzheimer’s Disease Before Amyloid-β Plaque Deposition in an APP (swe)/PSEN1dE9 Transgenic Mouse Model. J Alzheimers Dis 2018; 66:613-637. [DOI: 10.3233/jad-180412] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fanshuang Zhang
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wei
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| | - Xundou Li
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Neuroscience Center; Joint Laboratory of Anesthesia and Pain, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| |
Collapse
|
36
|
Kaur G, Gauthier SA, Perez-Gonzalez R, Pawlik M, Singh AB, Cosby B, Mohan PS, Smiley JF, Levy E. Cystatin C prevents neuronal loss and behavioral deficits via the endosomal pathway in a mouse model of down syndrome. Neurobiol Dis 2018; 120:165-173. [PMID: 30176349 DOI: 10.1016/j.nbd.2018.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/14/2018] [Accepted: 08/30/2018] [Indexed: 01/18/2023] Open
Abstract
Cystatin C (CysC) plays diverse protective roles under conditions of neuronal challenge. We investigated whether CysC protects from trisomy-induced pathologies in a mouse model of Down syndrome (DS), the most common cause of developmental cognitive and behavioral impairments in humans. We have previously shown that the segmental trisomy mouse model, Ts[Rb(12.1716)]2Cje (Ts2) has DS-like neuronal and behavioral deficiencies. The current study reveals that transgene-mediated low levels of human CysC overexpression has a preventive effect on numerous neuropathologies in the brains of Ts2 mice, including reducing early and late endosome enlargement in cortical neurons and decreasing loss of basal forebrain cholinergic neurons (BFCNs). Consistent with these cellular benefits, behavioral dysfunctions were also prevented, including deficits in nesting behavior and spatial memory. We determined that the CysC-induced neuroprotective mechanism involves activation of the phosphotidylinositol kinase (PI3K)/AKT pathway. Activating this pathway leads to enhanced clearance of accumulated endosomal substrates, protecting cells from DS-mediated dysfunctions in the endosomal system and, for BFCNs, from neurodegeneration. Our findings suggest that modulation of the PI3/AKT pathway offers novel therapeutic interventions for patients with DS.
Collapse
Affiliation(s)
| | | | | | - Monika Pawlik
- Nathan S. Kline Institute, Orangeburg, NY, USA 10962
| | | | | | | | - John F Smiley
- Nathan S. Kline Institute, Orangeburg, NY, USA 10962; Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA 10016
| | - Efrat Levy
- Nathan S. Kline Institute, Orangeburg, NY, USA 10962; Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA 10016; Department of Biochemistry and Molecular Pharmacology, NYU Langone School of Medicine, New York, NY, USA 10016; Neuroscience Institute, NYU Langone School of Medicine, New York, NY, USA 10016.
| |
Collapse
|
37
|
Grand Moursel L, van Roon-Mom WMC, Kiełbasa SM, Mei H, Buermans HPJ, van der Graaf LM, Hettne KM, de Meijer EJ, van Duinen SG, Laros JFJ, van Buchem MA, 't Hoen PAC, van der Maarel SM, van der Weerd L. Brain Transcriptomic Analysis of Hereditary Cerebral Hemorrhage With Amyloidosis-Dutch Type. Front Aging Neurosci 2018; 10:102. [PMID: 29706885 PMCID: PMC5908973 DOI: 10.3389/fnagi.2018.00102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/26/2018] [Indexed: 11/23/2022] Open
Abstract
Hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) is an early onset hereditary form of cerebral amyloid angiopathy (CAA) caused by a point mutation resulting in an amino acid change (NP_000475.1:p.Glu693Gln) in the amyloid precursor protein (APP). Post-mortem frontal and occipital cortical brain tissue from nine patients and nine age-related controls was used for RNA sequencing to identify biological pathways affected in HCHWA-D. Although previous studies indicated that pathology is more severe in the occipital lobe in HCHWA-D compared to the frontal lobe, the current study showed similar changes in gene expression in frontal and occipital cortex and the two brain regions were pooled for further analysis. Significantly altered pathways were analyzed using gene set enrichment analysis (GSEA) on 2036 significantly differentially expressed genes. Main pathways over-represented by down-regulated genes were related to cellular aerobic respiration (including ATP synthesis and carbon metabolism) indicating a mitochondrial dysfunction. Principal up-regulated pathways were extracellular matrix (ECM)–receptor interaction and ECM proteoglycans in relation with an increase in the transforming growth factor beta (TGFβ) signaling pathway. Comparison with the publicly available dataset from pre-symptomatic APP-E693Q transgenic mice identified overlap for the ECM–receptor interaction pathway, indicating that ECM modification is an early disease specific pathomechanism.
Collapse
Affiliation(s)
- Laure Grand Moursel
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Szymon M Kiełbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, Netherlands
| | - Hailiang Mei
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, Netherlands
| | - Henk P J Buermans
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Linda M van der Graaf
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Kristina M Hettne
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Emile J de Meijer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen F J Laros
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.,Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Louise van der Weerd
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
38
|
Biundo F, Del Prete D, Zhang H, Arancio O, D'Adamio L. A role for tau in learning, memory and synaptic plasticity. Sci Rep 2018; 8:3184. [PMID: 29453339 PMCID: PMC5816660 DOI: 10.1038/s41598-018-21596-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/05/2018] [Indexed: 02/02/2023] Open
Abstract
Tau plays a pivotal role in the pathogenesis of neurodegenerative disorders: mutations in the gene encoding for tau (MAPT) are linked to Fronto-temporal Dementia (FTD) and hyper-phosphorylated aggregates of tau forming neurofibrillary tangles (NFTs) that constitute a pathological hallmark of Alzheimer disease (AD) and FTD. Accordingly, tau is a favored therapeutic target for the treatment of these diseases. Given the criticality of tau to dementia's pathogenesis and therapy, it is important to understand the physiological function of tau in the central nervous system. Analysis of Mapt knock out (Mapt-/-) mice has yielded inconsistent results. Some studies have shown that tau deletion does not alter memory while others have described synaptic plasticity and memory alterations in Mapt-/- mice. To help clarifying these contrasting results, we analyzed a distinct Mapt-/- model on a B6129PF3/J genetic background. We found that tau deletion leads to aging-dependent short-term memory deficits, hyperactivity and synaptic plasticity defects. In contrast, Mapt+/- mice only showed a mild short memory deficit in the novel object recognition task. Thus, while tau is important for normal neuronal functions underlying learning and memory, partial reduction of tau expression may have fractional deleterious effects.
Collapse
Affiliation(s)
- Fabrizio Biundo
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Dolores Del Prete
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Hong Zhang
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 168 St., New York, NY, 10032, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 168 St., New York, NY, 10032, USA
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Rutgers, The State University of New Jersey, 185 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|