1
|
Wang X, Wang M, Zhi H, Li J, Guo D. REV-ERBα inhibitor rescues MPTP/MPP +-induced ferroptosis of dopaminergic neuron through regulating FASN/SCD1 signaling pathway. Heliyon 2024; 10:e40388. [PMID: 39654780 PMCID: PMC11625126 DOI: 10.1016/j.heliyon.2024.e40388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Circadian disruption is a risk factor for Parkinson's disease (PD). Ferroptosis, a cellular death process, assumes a pivotal role in the degeneration of dopaminergic neurons in PD. Despite its significance, the potential contribution of circadian clock proteins to PD through the modulation of ferroptosis remains elusive. Our investigation unveiled a reduction in the circadian clock protein REV-ERBα in both MPTP/MPP+ and ferroptosis models. REV-ERBα actively promotes ferroptosis by binding to the RORE cis-element and suppressing the transcription of Fasn and Scd1, two genes that inhibit ferroptosis. Notably, inhibiting REV-ERBα exhibited a discernible mitigating effect on ferroptosis and the ensuing dopaminergic neuron damage induced by MPTP/MPP+. Consequently, targeting REV-ERBα emerges as a promising strategy for inhibiting ferroptosis and presents a novel therapeutic avenue for PD.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Mingmei Wang
- College of Biological and Food Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Hui Zhi
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Jingwei Li
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Dongkai Guo
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| |
Collapse
|
2
|
Sola Fraca D, Sánchez Garrigós E, de Francisco Moure J, Marín Gonzalez B, Badiola Díez JJ, Acín Tresaco C. Sleep disturbance in clinical and preclinical scrapie-infected sheep measured by polysomnography. Vet Q 2024; 44:1-9. [PMID: 38698657 PMCID: PMC11073408 DOI: 10.1080/01652176.2024.2349674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
Neurodegenerative diseases are characterised by neuronal loss and abnormal deposition of pathological proteins in the nervous system. Among the most common neurodegenerative diseases are Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease and transmissible spongiform encephalopathies (TSEs). Sleep and circadian rhythm disturbances are one of the most common symptoms in patients with neurodegenerative diseases. Currently, one of the main objectives in the study of TSEs is to try to establish an early diagnosis, as clinical signs do not appear until the damage to the central nervous system is very advanced, which prevents any therapeutic approach. In this paper, we provide the first description of sleep disturbance caused by classical scrapie in clinical and preclinical sheep using polysomnography compared to healthy controls. Fifteen sheep classified into three groups, clinical, preclinical and negative control, were analysed. The results show a decrease in total sleep time as the disease progresses, with significant changes between control, clinical and pre-clinical animals. The results also show an increase in sleep fragmentation in clinical animals compared to preclinical and control animals. In addition, sheep with clinical scrapie show a total loss of Rapid Eye Movement sleep (REM) and alterations in Non Rapid Eyes Movement sleep (NREM) compared to control sheep, demonstrating more shallow sleep. Although further research is needed, these results suggest that prion diseases also produce sleep disturbances in animals and that polysomnography could be a diagnostic tool of interest in clinical and preclinical cases of prion diseases.
Collapse
Affiliation(s)
- Diego Sola Fraca
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, Spain
| | | | | | - Belén Marín Gonzalez
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, Spain
| | - Juan José Badiola Díez
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, Spain
| | - Cristina Acín Tresaco
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, Spain
| |
Collapse
|
3
|
Duret LC, Nagoshi E. The intertwined relationship between circadian dysfunction and Parkinson's disease. Trends Neurosci 2024:S0166-2236(24)00203-0. [PMID: 39578132 DOI: 10.1016/j.tins.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Neurodegenerative disorders represent a leading cause of disability among the elderly population, and Parkinson's disease (PD) is the second most prevalent. Emerging evidence suggests a frequent co-occurrence of circadian disruption and PD. However, the nature of this relationship remains unclear: is circadian disruption a cause, consequence, or a parallel feature of the disease that shares the same root cause? This review seeks to address this question by highlighting and discussing clinical evidence and findings from experiments using vertebrate and invertebrate animal models. While research on causality is still in its early stages, the available data suggest reciprocal interactions between PD progression and circadian disruption.
Collapse
Affiliation(s)
- Lou C Duret
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland.
| |
Collapse
|
4
|
Deng Q, Li Y, Sun Z, Gao X, Zhou J, Ma G, Qu WM, Li R. Sleep disturbance in rodent models and its sex-specific implications. Neurosci Biobehav Rev 2024; 164:105810. [PMID: 39009293 DOI: 10.1016/j.neubiorev.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Sleep disturbances, encompassing altered sleep physiology or disorders like insomnia and sleep apnea, profoundly impact physiological functions and elevate disease risk. Despite extensive research, the underlying mechanisms and sex-specific differences in sleep disorders remain elusive. While polysomnography serves as a cornerstone for human sleep studies, animal models provide invaluable insights into sleep mechanisms. However, the availability of animal models of sleep disorders is limited, with each model often representing a specific sleep issue or mechanism. Therefore, selecting appropriate animal models for sleep research is critical. Given the significant sex differences in sleep patterns and disorders, incorporating both male and female subjects in studies is essential for uncovering sex-specific mechanisms with clinical relevance. This review provides a comprehensive overview of various rodent models of sleep disturbance, including sleep deprivation, sleep fragmentation, and circadian rhythm dysfunction. We evaluate the advantages and disadvantages of each model and discuss sex differences in sleep and sleep disorders, along with potential mechanisms. We aim to advance our understanding of sleep disorders and facilitate sex-specific interventions.
Collapse
Affiliation(s)
- Qi Deng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiang Gao
- Shanxi Bethune Hospital, Shanxi, China
| | | | - Guangwei Ma
- Peking University Sixth Hospital, Beijing, China
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Duan X, Liu H, Hu X, Yu Q, Kuang G, Liu L, Zhang S, Wang X, Li J, Yu D, Huang J, Wang T, Lin Z, Xiong N. Insomnia in Parkinson's Disease: Causes, Consequences, and Therapeutic Approaches. Mol Neurobiol 2024:10.1007/s12035-024-04400-4. [PMID: 39103716 DOI: 10.1007/s12035-024-04400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sleep disorders represent prevalent non-motor symptoms in Parkinson's disease (PD), affecting over 90% of the PD population. Insomnia, characterized by difficulties in initiating and maintaining sleep, emerges as the most frequently reported sleep disorder in PD, with prevalence rates reported from 27 to 80% across studies. Insomnia not only significantly impacts the quality of life of PD patients but is also associated with cognitive impairment, motor disabilities, and emotional deterioration. This comprehensive review aims to delve into the mechanisms underlying insomnia in PD, including neurodegenerative changes, basal ganglia beta oscillations, and circadian rhythms, to gain insights into the neural pathways involved. Additionally, the review explores the risk factors and comorbidities associated with insomnia in PD, providing valuable insights into its management. Special attention is given to the challenges faced by healthcare providers in delivering care to PD patients and the impact of caregiving roles on patients' quality of life. Overall, this review provides a comprehensive understanding of insomnia in PD and highlights the importance of addressing this common sleep disorder in PD patients.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Duke Kunshan University, No. 8 Duke Avenue, Kunshan, 215316, Jiangsu, China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyu Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinwei Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Guiying Kuang
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Long Liu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Shurui Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Danfang Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Campbell KJ, Jiang P, Olker C, Lin X, Kim SY, Lee CJ, Song EJ, Turek FW, Vitaterna MH. The impacts of sex and the 5xFAD model of Alzheimer's disease on the sleep and spatial learning responses to feeding time. Front Neurol 2024; 15:1430989. [PMID: 39144714 PMCID: PMC11322461 DOI: 10.3389/fneur.2024.1430989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction The relationships between the feeding rhythm, sleep and cognition in Alzheimer's disease (AD) are incompletely understood, but meal time could provide an easy-to-implement method of curtailing disease-associated disruptions in sleep and cognition. Furthermore, known sex differences in AD incidence could relate to sex differences in circadian rhythm/sleep/cognition interactions. Methods The 5xFAD transgenic mouse model of AD and non-transgenic wild-type controls were studied. Both female and male mice were used. Food access was restricted each day to either the 12-h light phase (light-fed groups) or the 12-h dark phase (dark-fed groups). Sleep (electroencephalographic/electromyographic) recording and cognitive behavior measures were collected. Results The 5xFAD genotype reduces NREM and REM as well as the number of sleep spindles. In wild-type mice, light-fed groups had disrupted vigilance state amounts, characteristics, and rhythms relative to dark-fed groups. These feeding time differences were reduced in 5xFAD mice. Sex modulates these effects. 5xFAD mice display poorer spatial memory that, in female mice, is curtailed by dark phase feeding. Similarly, female 5xFAD mice have decreased anxiety-associated behavior. These emotional and cognitive measures are correlated with REM amount. Discussion Our study demonstrates that the timing of feeding can alter many aspects of wake, NREM and REM. Unexpectedly, 5xFAD mice are less sensitive to these feeding time effects. 5xFAD mice demonstrate deficits in cognition which are correlated with REM, suggesting that this circadian-timed aspect of sleep may link feeding time and cognition. Sex plays an important role in regulating the impact of feeding time on sleep and cognition in both wild-type and 5xFAD mice, with females showing a greater cognitive response to feeding time than males.
Collapse
Affiliation(s)
- Katrina J. Campbell
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Peng Jiang
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Christopher Olker
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Xuanyi Lin
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Sarah Y. Kim
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Christopher J. Lee
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Eun Joo Song
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
7
|
Zhang W, Liu D, Yuan M, Zhu LQ. The mechanisms of mitochondrial abnormalities that contribute to sleep disorders and related neurodegenerative diseases. Ageing Res Rev 2024; 97:102307. [PMID: 38614368 DOI: 10.1016/j.arr.2024.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Sleep is a highly intricate biological phenomenon, and its disorders play a pivotal role in numerous diseases. However, the specific regulatory mechanisms remain elusive. In recent years, the role of mitochondria in sleep disorders has gained considerable attention. Sleep deprivation not only impairs mitochondrial morphology but also decreases the number of mitochondria and triggers mitochondrial dysfunction. Furthermore, mitochondrial dysfunction has been implicated in the onset and progression of various sleep disorder-related neurological diseases, especially neurodegenerative conditions. Therefore, a greater understanding of the impact of sleep disorders on mitochondrial dysfunction may reveal new therapeutic targets for neurodegenerative diseases. In this review, we comprehensively summarize the recent key findings on the mechanisms underlying mitochondrial dysfunction caused by sleep disorders and their role in initiating or exacerbating common neurodegenerative diseases. In addition, we provide fresh insights into the diagnosis and treatment of sleep disorder-related diseases.
Collapse
Affiliation(s)
- Wentao Zhang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Wu Q, Ren Q, Wang X, Bai H, Tian D, Gao G, Wang F, Yu P, Chang Y. Cellular iron depletion enhances behavioral rhythm by limiting brain Per1 expression in mice. CNS Neurosci Ther 2024; 30:e14592. [PMID: 38385622 PMCID: PMC10883092 DOI: 10.1111/cns.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/23/2024] Open
Abstract
AIMS Disturbances in the circadian rhythm are positively correlated with the processes of aging and related neurodegenerative diseases, which are also associated with brain iron accumulation. However, the role of brain iron in regulating the biological rhythm is poorly understood. In this study, we investigated the impact of brain iron levels on the spontaneous locomotor activity of mice with altered brain iron levels and further explored the potential mechanisms governing these effects in vitro. RESULTS Our results revealed that conditional knockout of ferroportin 1 (Fpn1) in cerebral microvascular endothelial cells led to brain iron deficiency, subsequently resulting in enhanced locomotor activity and increased expression of clock genes, including the circadian locomotor output cycles kaput protein (Clock) and brain and muscle ARNT-like 1 (Bmal1). Concomitantly, the levels of period circadian regulator 1 (PER1), which functions as a transcriptional repressor in regulating biological rhythm, were decreased. Conversely, the elevated brain iron levels in APP/PS1 mice inhibited autonomous rhythmic activity. Additionally, our findings demonstrate a significant decrease in serum melatonin levels in Fpn1cdh5 -CKO mice compared with the Fpn1flox/flox group. In contrast, APP/PS1 mice with brain iron deposition exhibited higher serum melatonin levels than the WT group. Furthermore, in the human glioma cell line, U251, we observed reduced PER1 expression upon iron limitation by deferoxamine (DFO; iron chelator) or endogenous overexpression of FPN1. When U251 cells were made iron-replete by supplementation with ferric ammonium citrate (FAC) or increased iron import through transferrin receptor 1 (TfR1) overexpression, PER1 protein levels were increased. Additionally, we obtained similar results to U251 cells in mouse cerebellar astrocytes (MA-c), where we collected cells at different time points to investigate the rhythmic expression of core clock genes and the impact of DFO or FAC treatment on PER1 protein levels. CONCLUSION These findings collectively suggest that altered iron levels influence the circadian rhythm by regulating PER1 expression and thereby modulating the molecular circadian clock. In conclusion, our study identifies the regulation of brain iron levels as a potential new target for treating age-related disruptions in the circadian rhythm.
Collapse
Affiliation(s)
- Qiong Wu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
- Hebei Key Laboratory of Chinese Medicine Research on Cardio‐Cerebrovascular Disease, College of Basic MedicineHebei University of Chinese MedicineShijiazhuangHebei ProvinceChina
| | - Qiuyang Ren
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Xin Wang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Huiyuan Bai
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Dandan Tian
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Fudi Wang
- School of Public HealthZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Yan‐Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| |
Collapse
|
9
|
Kanan MK, Sheehan PW, Haines JN, Gomez PG, Dhuler A, Nadarajah CJ, Wargel ZM, Freeberg BM, Nelvagal HR, Izumo M, Takahashi JS, Cooper JD, Davis AA, Musiek ES. Neuronal deletion of the circadian clock gene Bmal1 induces cell-autonomous dopaminergic neurodegeneration. JCI Insight 2024; 9:e162771. [PMID: 38032732 PMCID: PMC10906231 DOI: 10.1172/jci.insight.162771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Circadian rhythm dysfunction is a hallmark of Parkinson disease (PD), and diminished expression of the core clock gene Bmal1 has been described in patients with PD. BMAL1 is required for core circadian clock function but also serves nonrhythmic functions. Germline Bmal1 deletion can cause brain oxidative stress and synapse loss in mice, and it can exacerbate dopaminergic neurodegeneration in response to the toxin MPTP. Here we examined the effect of cell type-specific Bmal1 deletion on dopaminergic neuron viability in vivo. We observed that global, postnatal deletion of Bmal1 caused spontaneous loss of tyrosine hydroxylase+ (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc). This was not replicated by light-induced disruption of behavioral circadian rhythms and was not induced by astrocyte- or microglia-specific Bmal1 deletion. However, either pan-neuronal or TH neuron-specific Bmal1 deletion caused cell-autonomous loss of TH+ neurons in the SNpc. Bmal1 deletion did not change the percentage of TH neuron loss after α-synuclein fibril injection, though Bmal1-KO mice had fewer TH neurons at baseline. Transcriptomics analysis revealed dysregulation of pathways involved in oxidative phosphorylation and Parkinson disease. These findings demonstrate a cell-autonomous role for BMAL1 in regulating dopaminergic neuronal survival and may have important implications for neuroprotection in PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hemanth R. Nelvagal
- Departments of Pediatrics, Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Joseph S. Takahashi
- Department of Neuroscience and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonathan D. Cooper
- Departments of Pediatrics, Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Erik S. Musiek
- Department of Neurology and
- Center On Biological Rhythms and Sleep (COBRAS), Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Luo Y, Liu J, Chen D, Liu M, Yuan Y, Hu J, Wu J, Wang F, Liu C, Chen J, Mao C. How sleep quality affects activities of daily living in Parkinson's disease: the mediating role of disease severity and the moderating role of cognition. Front Aging Neurosci 2023; 15:1238588. [PMID: 37842121 PMCID: PMC10570447 DOI: 10.3389/fnagi.2023.1238588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Objective The aim of this study was to explore the influential mechanism of the relationship between sleep quality and activities of daily living (ADL) in patients with Parkinson's disease (PD), we hypothesized disease severity as a mediator and assumed the mediating process was regulated by cognition. Methods 194 individuals with PD (95 women and 99 men) were enrolled in study. The Pittsburgh Sleep Quality Index (PSQI) was used to assess sleep quality of PD patients. Patients' ADL, disease severity and cognition were measured by the Unified Parkinson's Disease Rating Scale-II (UPDRSII), Hoehn-Yahr (H-Y) Scale, and Mini-Mental State Examination (MMSE). We investigated the mediating role of disease severity and the moderating effect of cognition on the association between sleep quality and ADL in PD patients. Results The score of UPDRSII was positively correlated with the score of PSQI and H-Y stage, while the score of MMSE was negatively correlated with the score of H-Y stage and UPDRSII. Sleep quality predicts disease severity, and disease severity predicts ADL. Disease severity mediated the relationship between sleep quality and ADL, and the mediating effect was 0.179. Cognition alone did not affect ADL, but the interaction between disease severity and cognition was significantly affected ADL, confirming the moderating effect of cognition in PD patients. Conclusion Disease severity mediated the association between sleep quality and ADL, good cognition significantly reduced disease severity's mediating influence on the relationship between sleep quality and ADL. Our study indicated a close relationship between ADL and sleep and cognition in PD, and also provided new insights into the overall management of PD and a better quality of life of PD patients.
Collapse
Affiliation(s)
- Yajun Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junyi Liu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Dongqin Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Manhua Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Yuan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingzhe Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chunfeng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Juping Chen
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Chengjie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Rathor P, Ch R. Metabolic Basis of Circadian Dysfunction in Parkinson's Disease. BIOLOGY 2023; 12:1294. [PMID: 37887004 PMCID: PMC10604297 DOI: 10.3390/biology12101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The management of PD is a challenging aspect for general physicians and neurologists. It is characterized by the progressive loss of dopaminergic neurons. Impaired α-synuclein secretion and dopamine release may cause mitochondrial dysfunction and perturb energy metabolism, subsequently altering the activity and survival of dopaminergic neurons, thus perpetuating the neurodegenerative process in PD. While the etiology of PD remains multifactorial, emerging research indicates a crucial role of circadian dysfunction in its pathogenesis. Researchers have revealed that circadian dysfunction and sleep disorders are common among PD subjects and disruption of circadian rhythms can increase the risk of PD. Hence, understanding the findings of circadian biology from translational research in PD is important for reducing the risk of neurodegeneration and for improving the quality of life. In this review, we discuss the intricate relationship between circadian dysfunction in cellular metabolism and PD by summarizing the evidence from animal models and human studies. Understanding the metabolic basis of circadian dysfunction in PD may shed light on novel therapeutic approaches to restore circadian rhythm, preserve dopaminergic function, and ameliorate disease progression. Further investigation into the complex interplay between circadian rhythm and PD pathogenesis is essential for the development of targeted therapies and interventions to alleviate the burden of this debilitating neurodegenerative disorder.
Collapse
Affiliation(s)
- Priya Rathor
- Metabolomics Lab, CSIR—Central Institute of Medicinal & Aromatic Plants, Lucknow 226015, India;
- Academy of Council of Scientific and Industrial Research (ACSIR), Gaziabad 201002, India
| | - Ratnasekhar Ch
- Metabolomics Lab, CSIR—Central Institute of Medicinal & Aromatic Plants, Lucknow 226015, India;
- Academy of Council of Scientific and Industrial Research (ACSIR), Gaziabad 201002, India
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
12
|
Thangaleela S, Sivamaruthi BS, Kesika P, Mariappan S, Rashmi S, Choeisoongnern T, Sittiprapaporn P, Chaiyasut C. Neurological Insights into Sleep Disorders in Parkinson's Disease. Brain Sci 2023; 13:1202. [PMID: 37626558 PMCID: PMC10452387 DOI: 10.3390/brainsci13081202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a common multidimensional neurological disorder characterized by motor and non-motor features and is more prevalent in the elderly. Sleep disorders and cognitive disturbances are also significant characteristics of PD. Sleep is an important physiological process for normal human cognition and physical functioning. Sleep deprivation negatively impacts human physical, mental, and behavioral functions. Sleep disturbances include problems falling asleep, disturbances occurring during sleep, abnormal movements during sleep, insufficient sleep, and excessive sleep. The most recognizable and known sleep disorders, such as rapid-eye-movement behavior disorder (RBD), insomnia, excessive daytime sleepiness (EDS), restless legs syndrome (RLS), sleep-related breathing disorders (SRBDs), and circadian-rhythm-related sleep-wake disorders (CRSWDs), have been associated with PD. RBD and associated emotional disorders are common non-motor symptoms of PD. In individuals, sleep disorders and cognitive impairment are important prognostic factors for predicting progressing neurodegeneration and developing dementia conditions in PD. Studies have focused on RBD and its associated neurological changes and functional deficits in PD patients. Other risks, such as cognitive decline, anxiety, and depression, are related to RBD. Sleep-disorder diagnosis is challenging, especially in identifying the essential factors that disturb the sleep-wake cycle and the co-existence of other concomitant sleep issues, motor symptoms, and breathing disorders. Focusing on sleep patterns and their disturbances, including genetic and other neurochemical changes, helps us to better understand the central causes of sleep alterations and cognitive functions in PD patients. Relations between α-synuclein aggregation in the brain and gender differences in sleep disorders have been reported. The existing correlation between sleep disorders and levels of α-synuclein in the cerebrospinal fluid indicates the risk of progression of synucleinopathies. Multidirectional approaches are required to correlate sleep disorders and neuropsychiatric symptoms and diagnose sensitive biomarkers for neurodegeneration. The evaluation of sleep pattern disturbances and cognitive impairment may aid in the development of novel and effective treatments for PD.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Subramanian Rashmi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| |
Collapse
|
13
|
Gnoni V, Zoccolella S, Giugno A, Urso D, Tamburrino L, Filardi M, Logroscino G. Hypothalamus and amyotrophic lateral sclerosis: potential implications in sleep disorders. Front Aging Neurosci 2023; 15:1193483. [PMID: 37465321 PMCID: PMC10350538 DOI: 10.3389/fnagi.2023.1193483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects both motor and non-motor functions, including sleep regulation. Emerging evidence suggests that the hypothalamus, a brain region that plays a critical role in sleep-wake regulation, may be involved in the pathogenesis of ALS-related sleep disturbances. In this review, we have summarized results of studies on sleep disorders in ALS published between 2000 and 2023. Thereafter, we examined possible mechanisms by which hypothalamic dysfunctions may contribute to ALS-related sleep disturbances. Achieving a deeper understanding of the relationship between hypothalamic dysfunction and sleep disturbances in ALS can help improve the overall management of ALS and reduce the burden on patients and their families.
Collapse
Affiliation(s)
- Valentina Gnoni
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, United Kingdom
| | - Stefano Zoccolella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Neurology Unit, San Paolo Hospital, Azienda Sanitaria Locale (ASL) Bari, Bari, Italy
| | - Alessia Giugno
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, United Kingdom
| | - Ludovica Tamburrino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
14
|
Chu C, Li T, Yu L, Li Y, Li M, Guo M, Zhao J, Zhai Q, Tian F, Chen W. A Low-Protein, High-Carbohydrate Diet Exerts a Neuroprotective Effect on Mice with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson's Disease by Regulating the Microbiota-Metabolite-Brain Axis and Fibroblast Growth Factor 21. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267589 DOI: 10.1021/acs.jafc.2c07606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Parkinson's disease (PD) is closely linked to lifestyle factors, particularly dietary patterns, which have attracted interest as potential disease-modifying factors. Eating a low-protein, high-carbohydrate (LPHC) diet is a promising dietary intervention against brain aging; however, its protective effect on PD remains elusive. Here, we found that an LPHC diet ameliorated 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced motor deficits, decreased dopaminergic neuronal death, and increased the levels of striatal dopamine, serotonin, and their metabolites in PD mice. Levels of fibroblast growth factor 21 (FGF-21), a member of the fibroblast growth factor family, were elevated in PD mice following LPHC treatment. Furthermore, the administration of FGF-21 exerted a protective effect on MPTP-induced PC12 cells, similar to the effect of an LPHC diet in MPTP-induced mice. Sequencing of the 16S rDNA from fecal microbiota revealed that an LPHC diet normalized the gut bacterial composition imbalance in PD mice, as evidenced by the increased abundance of the genera Bifidobacterium, Ileibacterium, Turicibacter, and Blautia and decreased abundance of Bilophila, Alistipes, and Bacteroides. PICRUSt-predicted fecal microbiome function revealed that an LPHC diet suppressed lipopolysaccharide biosynthesis and the citrate cycle (TCA cycle), biosynthesis of ubiquinone and other terpenoid-quinones, and oxidative phosphorylation pathways caused by MPTP, and enhanced the biosynthesis of amino acids, carbohydrate metabolism, and biosynthesis of other secondary metabolites. A nonmetabolomic analysis of the serum and feces showed that an LPHC diet significantly increased the levels of aromatic amino acids (AAAs), including tryptophan, tyrosine, and phenylalanine. In addition, an LPHC diet elevated the serum concentrations of bile acids (BAs), particularly tauroursodeoxycholic acid (TUDCA) and taurine. Collectively, our current findings point to the potential mechanism of administering an LPHC diet in attenuating movement impairments in MPTP-induced PD mice, with AAAs, microbial metabolites (TUDCA and taurine), and FGF-21 as key mediators along the gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Chuanqi Chu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tiantian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yiwen Li
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia 30602, United States
| | - Miaoyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
15
|
Mazzotta GM, Ceccato N, Conte C. Synucleinopathies Take Their Toll: Are TLRs a Way to Go? Cells 2023; 12:cells12091231. [PMID: 37174631 PMCID: PMC10177040 DOI: 10.3390/cells12091231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The misfolding and subsequent abnormal accumulation and aggregation of α-Synuclein (αSyn) as insoluble fibrils in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson's disease (PD) and several neurodegenerative disorders. A combination of environmental and genetic factors is linked to αSyn misfolding, among which neuroinflammation is recognized to play an important role. Indeed, a number of studies indicate that a Toll-like receptor (TLR)-mediated neuroinflammation might lead to a dopaminergic neural loss, suggesting that TLRs could participate in the pathogenesis of PD as promoters of immune/neuroinflammatory responses. Here we will summarize our current understanding on the mechanisms of αSyn aggregation and misfolding, focusing on the contribution of TLRs to the progression of α-synucleinopathies and speculating on their link with the non-motor disturbances associated with aging and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Nadia Ceccato
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06100 Perugia, Italy
| |
Collapse
|
16
|
Marano M, Rosati J, Magliozzi A, Casamassa A, Rappa A, Sergi G, Iannizzotto M, Yekutieli Z, Vescovi AL, Di Lazzaro V. Circadian profile, daytime activity, and the Parkinson's phenotype: A motion sensor pilot study with neurobiological underpinnings. Neurobiol Sleep Circadian Rhythms 2023; 14:100094. [PMID: 37025301 PMCID: PMC10070882 DOI: 10.1016/j.nbscr.2023.100094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023] Open
Abstract
Circadian rhythm impairment may play a role in Parkinson's disease (PD) pathophysiology. Recent literature associated circadian rhythm features to the risk of developing Parkinson and to its progression through stages. The association between the chronotype and the phenotype should be verified on a clinical and biological point of view. Herein we investigate the chronotype of a sample of 50 PD patients with the Morningness Eveningness Questionnaire and monitor their daily activity with a motion sensor embedded in a smartphone. Fibroblasts were collected from PD patients (n = 5) and from sex/age matched controls (n = 3) and tested for the circadian expression of clock genes (CLOCK, BMAL1, PER1, CRY1), and for cell morphology, proliferation, and death. Our results show an association between the chronotype and the PD phenotype. The most representative clinical chronotypes were "moderate morning" (56%), the "intermediate" (24%) and, in a minor part, the "definite morning" (16%). They differed for axial motor impairment, presence of motor fluctuations and quality of life (p < 0.05). Patients with visuospatial dysfunction and patients with a higher PIGD score had a blunted motor daily activity (p = 0.006 and p = 0.001, respectively), independently by the influence of age and other motor scores. Fibroblasts obtained by PD patients (n = 5) had an impaired BMAL1 cycle compared to controls (n = 3, p = 0.01). Moreover, a PD flat BMAL1 profile was associated with the lowest cell proliferation and the largest cell morphology. This study contributes to the growing literature on CR abnormalities in the pathophysiology of Parkinson's disease providing a link between the clinical and biological patient chronotype and the disease phenomenology.
Collapse
Affiliation(s)
- Massimo Marano
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
- Corresponding author. Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Fondazione Policlinico Universitario Campus Bio-Medico, Viale Alvaro del Portillo 200, 00128, Roma, Italy.
| | - Jessica Rosati
- Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro Magliozzi
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Alessia Casamassa
- Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessia Rappa
- Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Gabriele Sergi
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
| | - Miriam Iannizzotto
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
| | | | | | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
| |
Collapse
|
17
|
Wang CY, Qiu ZJ, Zhang P, Tang XQ. Differentiated Embryo-Chondrocyte Expressed Gene1 and Parkinson's Disease: New Insights and Therapeutic Perspectives. Curr Neuropharmacol 2023; 21:2251-2265. [PMID: 37132111 PMCID: PMC10556388 DOI: 10.2174/1570159x21666230502123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 10/09/2022] [Indexed: 05/04/2023] Open
Abstract
Differentiated embryo-chondrocyte expressed gene1 (DEC1), an important transcription factor with a basic helix-loop-helix domain, is ubiquitously expressed in both human embryonic and adult tissues. DEC1 is involved in neural differentiation and neural maturation in the central nervous system (CNS). Recent studies suggest that DEC1 protects against Parkinson's disease (PD) by regulating apoptosis, oxidative stress, lipid metabolism, immune system, and glucose metabolism disorders. In this review, we summarize the recent progress on the role of DEC1 in the pathogenesis of PD and provide new insights into the prevention and treatment of PD and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zheng-Jie Qiu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Qing Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
18
|
Li N, Gao X, Zheng L, Huang Q, Zeng F, Chen H, Farag MA, Zhao C. Advances in fucoxanthin chemistry and management of neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154352. [PMID: 35917771 DOI: 10.1016/j.phymed.2022.154352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Neurodegenerative diseases are chronic, currently incurable, diseases of the elderly, which are characterized by protein misfolding and neuronal damage. Fucoxanthin, derived from marine brown algae, presents a promising candidate for the development of effective therapeutic strategies. HYPOTHESIS AND PURPOSE The relationship between neurodegenerative disease management and fucoxanthin has not yet been clarified. This study focuses on the fundamental mechanisms and targets of fucoxanthin in Alzheimer's and Parkinson's disease management, showing that communication between the brain and the gut contributes to neurodegenerative diseases and early diagnosis of ophthalmic diseases. This paper also presents, new insights for future therapeutic directions based on the integrated application of artificial intelligence. CONCLUSION Fucoxanthin primarily binds to amyloid fibrils with spreading properties such as Aβ, tau, and α-synuclein to reduce their accumulation levels, alleviate inflammatory factors, and restore mitochondrial membranes to prevent oxidative stress via Nrf2 and Akt signaling pathways, involving reduction of specific secretases. In addition, fucoxanthin may serve as a preventive diagnosis for neurodegenerative diseases through ophthalmic disorders. It can modulate gut microbes and has potential for the alleviation and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxiang Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lingjun Zheng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qihui Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongbin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
19
|
Liu X, Yu H, Wang Y, Li S, Cheng C, Al-Nusaif M, Le W. Altered Motor Performance, Sleep EEG, and Parkinson's Disease Pathology Induced by Chronic Sleep Deprivation in Lrrk2 G2019S Mice. Neurosci Bull 2022; 38:1170-1182. [PMID: 35612787 PMCID: PMC9554065 DOI: 10.1007/s12264-022-00881-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/10/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson's disease (PD) is a multifaceted disease in which environmental variables combined with genetic predisposition cause dopaminergic (DAergic) neuron loss in the substantia nigra pars compacta. The mutation of leucine-rich repeat kinase 2 (Lrrk2) is the most common autosomal dominant mutation in PD, and it has also been reported in sporadic cases. A growing body of research suggests that circadian rhythm disruption, particularly sleep-wake abnormality, is common during the early phase of PD. Our present study aimed to evaluate the impact of sleep deprivation (SD) on motor ability, sleep performance, and PD pathologies in Lrrk2G2019S transgenic mice. After two months of SD, Lrrk2G2019S mice at 12 months of age showed an exacerbated PD-like phenotype with motor deficits, a reduced striatal DA level, degenerated DAergic neurons, and altered sleep structure and biological rhythm accompanied by the decreased protein expression level of circadian locomotor output cycles kaput Lrrk2 gene in the brain. All these changes persisted and were even more evident in 18-month-old mice after 6 months of follow-up. Moreover, a significant increase in α-synuclein aggregation was found in SD-treated transgenic mice at 18 months of age. Taken together, our findings indicate that sleep abnormalities, as a risk factor, may contribute to the pathogenesis and progression of PD. Early detection of sleep disorders and improvement of sleep quality may help to delay disease progression and provide long-term clinical benefits.
Collapse
Affiliation(s)
- Xinyao Liu
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Hang Yu
- Institute of Neurology, Sichuan Academy of Sciences-Sichuan Provincial Hospital of UESTC Medical School, Chengdu, 610031, China
| | - Yuanyuan Wang
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Cheng Cheng
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Murad Al-Nusaif
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Academy of Sciences-Sichuan Provincial Hospital of UESTC Medical School, Chengdu, 610031, China.
| |
Collapse
|
20
|
Mauri S, Favaro M, Bernardo G, Mazzotta GM, Ziviani E. Mitochondrial autophagy in the sleeping brain. Front Cell Dev Biol 2022; 10:956394. [PMID: 36092697 PMCID: PMC9449320 DOI: 10.3389/fcell.2022.956394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
A significant percentage of the mitochondrial mass is replaced on a daily basis via mechanisms of mitochondrial quality control. Through mitophagy (a selective type of autophagy that promotes mitochondrial proteostasis) cells keep a healthy pool of mitochondria, and prevent oxidative stress and inflammation. Furthermore, mitophagy helps adapting to the metabolic demand of the cells, which changes on a daily basis.Core components of the mitophagy process are PINK1 and Parkin, which mutations are linked to Parkinson’s Disease. The crucial role of PINK1/Parkin pathway during stress-induced mitophagy has been extensively studied in vitro in different cell types. However, recent advances in the field allowed discovering that mitophagy seems to be only slightly affected in PINK1 KO mice and flies, putting into question the physiological relevance of this pathway in vivo in the whole organism. Indeed, several cell-specific PINK1/Parkin-independent mitophagy pathways have been recently discovered, which appear to be activated under physiological conditions such as those that promote mitochondrial proteome remodeling during differentiation or in response to specific physiological stimuli.In this Mini Review we want to summarize the recent advances in the field, and add another level of complexity by focusing attention on a potentially important aspect of mitophagy regulation: the implication of the circadian clock. Recent works showed that the circadian clock controls many aspects of mitochondrial physiology, including mitochondrial morphology and dynamic, respiratory activity, and ATP synthesis. Furthermore, one of the essential functions of sleep, which is controlled by the clock, is the clearance of toxic metabolic compounds from the brain, including ROS, via mechanisms of proteostasis. Very little is known about a potential role of the clock in the quality control mechanisms that maintain the mitochondrial repertoire healthy during sleep/wake cycles. More importantly, it remains completely unexplored whether (dys)function of mitochondrial proteostasis feedbacks to the circadian clockwork.
Collapse
Affiliation(s)
| | | | | | | | - Elena Ziviani
- *Correspondence: Gabriella M. Mazzotta, Elena Ziviani,
| |
Collapse
|
21
|
Yi Q, Yu-Peng C, Jiang-Ting L, Jing-Yi L, Qi-Xiong Q, Dan-Lei W, Jing-Wei Z, Zhi-Juan M, Yong-Jie X, Zhe M, Zheng X. Worse Sleep Quality Aggravates the Motor and Non-Motor Symptoms in Parkinson's Disease. Front Aging Neurosci 2022; 14:887094. [PMID: 35754956 PMCID: PMC9226540 DOI: 10.3389/fnagi.2022.887094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Backgrounds Sleep disorders are the most common and disabling symptoms in patients with Parkinson's disease (PD). Understanding the associations between sleep characteristics and motor and non-motor symptoms (NMSs) in PD can provide evidence to guide therapeutic interventions and nursing strategies. We aimed to investigate the association between sleep characteristics and motor function and NMSs in PD using multiple approaches. Methods A total of 328 participants were included, and all participants underwent Pittsburgh Sleep Quality Index (PSQI) evaluation and clinical assessments of PD symptoms. We conducted Spearman's correlation to evaluate the associations between sleep and PD symptoms, nonlinear regression to assess the relationships between sleep habits and PD, and mediated analyses to test the effects of NMSs on global PSQI and PD severity, quality of life, and motor symptoms. Results Poor sleep was associated with more severe PD symptoms. In addition, the reflection point for bedtime was around 21:52, associated with motor symptoms, and insufficient and excessive total time spent in bed and nocturnal sleep duration were correlated with higher NMS burdens. The optimal points were 8–9.2 and 6.2–6.9 h, respectively. It was also discovered that NMSs played the mediating roles in global sleep with the quality of life, PD stages, and motor symptoms to a varying range of 6.8–95.4%. Conclusions Sleep disorders have a significant effect on the burden of PD symptoms. The current findings provide new insights into the monitoring and management of sleep and PD and need to be further explored in the future studies.
Collapse
Affiliation(s)
- Qu Yi
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Yu-Peng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Jiang-Ting
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Jing-Yi
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Qi-Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wang Dan-Lei
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Jing-Wei
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mao Zhi-Juan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Yong-Jie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhe
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Zheng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Zhou H, Zhang J, Shi H, Li P, Sui X, Wang Y, Wang L. Downregulation of CDK5 signaling in the dorsal striatum alters striatal microcircuits implicating the association of pathologies with circadian behavior in mice. Mol Brain 2022; 15:53. [PMID: 35701839 PMCID: PMC9195255 DOI: 10.1186/s13041-022-00939-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Dysfunction of striatal dopaminergic circuits has been implicated in motor impairment and Parkinson’s disease (PD)-related circadian perturbations that may represent an early prodromal marker of PD. Cyclin-dependent kinase 5 (CDK5) negatively regulates dopamine signaling in the striatum, suggesting a critical role of CDK5 in circadian and sleep disorders. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to produce mice with a dorsal striatum (DS)-specific knockdown (KD) of the Cdk5 gene (referred to as DS-CDK5-KD mice) and investigate its role in vivo. DS-CDK5-KD mice exhibited deficits in locomotor activity and disturbances in activity/rest behavior. Additionally, Golgi staining of neurons in the DS revealed that CDK5 deletion reduced dendrite length and the number of functional synapses, which was confirmed by significant downregulation of MAP2, PSD-95, and synapsin I. Correlated with this, DS-CDK5-KD mice displayed reduced phosphorylation of Tau at Thr181. Furthermore, whole-cell patch-clamp recordings of green fluorescent protein-tagged neurons in the striatum of DS-CDK5-KD mice revealed a decreased frequency of spontaneous inhibitory postsynaptic currents and altered excitatory/inhibitory synaptic balance. Notably, anterograde labeling showed that CDK5 KD in the DS disrupted long-range projections to the secondary motor cortex, dorsal and ventral thalamic nuclei, and basolateral amygdala, which are involved in the regulation of motor and circadian rhythms in the brain. These findings support a critical role of CDK5 in the DS in maintaining the striatal neural circuitry underlying motor functions and activity/rest associated with circadian rhythms that are perturbed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hu Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jingxin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Huaxiang Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pengfei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Liyun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
23
|
Kou L, Chi X, Sun Y, Han C, Wan F, Hu J, Yin S, Wu J, Li Y, Zhou Q, Zou W, Xiong N, Huang J, Xia Y, Wang T. The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson's disease via the microglial NLRP3 inflammasome. J Neuroinflammation 2022; 19:133. [PMID: 35668454 PMCID: PMC9169406 DOI: 10.1186/s12974-022-02494-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circadian disturbance is a common nonmotor complaint in Parkinson's disease (PD). The molecular basis underlying circadian rhythm in PD is poorly understood. Neuroinflammation has been identified as a key contributor to PD pathology. In this study, we explored the potential link between the core clock molecule Rev-erbα and the microglia-mediated NLR family pyrin domain-containing 3 (NLRP3) inflammasome in PD pathogenesis. METHODS We first examined the diurnal Rev-erbα rhythms and diurnal changes in microglia-mediated inflammatory cytokines expression in the SN of MPTP-induced PD mice. Further, we used BV2 cell to investigate the impacts of Rev-erbα on NLRP3 inflammasome and microglial polarization induced by 1-methyl-4-phenylpyridinium (MPP+) and αsyn pre-formed fibril. The role of Rev-erbα in regulating microglial activation via NF-κB and NLRP3 inflammasome pathway was then explored. Effects of SR9009 against NLRP3 inflammasome activation, microgliosis and nigrostriatal dopaminergic degeneration in the SN and striatum of MPTP-induced PD mice were studied in detail. RESULTS BV2 cell-based experiments revealed the role of Rev-erbα in regulating microglial activation and polarization through the NF-κB and NLRP3 inflammasome pathways. Circadian oscillation of the core clock gene Rev-erbα in the substantia nigra (SN) disappeared in MPTP-induced PD mice, as well as diurnal changes in microglial morphology. The expression of inflammatory cytokines in SN of the MPTP-induced mice were significantly elevated. Furthermore, dopaminergic neurons loss in the nigrostriatal system were partially reversed by SR9009, a selective Rev-erbα agonist. In addition, SR9009 effectively reduced the MPTP-induced glial activation, microglial polarization and NLRP3 inflammasome activation in the nigrostriatal system. CONCLUSIONS These observations suggest that the circadian clock protein Rev-erbα plays an essential role in attenuating neuroinflammation in PD pathology, and provides a potential therapeutic target for PD treatment.
Collapse
Affiliation(s)
- Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Han
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yunna Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
24
|
Prakash P, Pradhan AK, Sheeba V. Hsp40 overexpression in pacemaker neurons delays circadian dysfunction in a Drosophila model of Huntington's disease. Dis Model Mech 2022; 15:275556. [PMID: 35645202 PMCID: PMC9254228 DOI: 10.1242/dmm.049447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Circadian disturbances are early features of neurodegenerative diseases, including Huntington's disease (HD). Emerging evidence suggests that circadian decline feeds into neurodegenerative symptoms, exacerbating them. Therefore, we asked whether known neurotoxic modifiers can suppress circadian dysfunction. We performed a screen of neurotoxicity-modifier genes to suppress circadian behavioural arrhythmicity in a Drosophila circadian HD model. The molecular chaperones Hsp40 and HSP70 emerged as significant suppressors in the circadian context, with Hsp40 being the more potent mitigator. Upon Hsp40 overexpression in the Drosophila circadian ventrolateral neurons (LNv), the behavioural rescue was associated with neuronal rescue of loss of circadian proteins from small LNv soma. Specifically, there was a restoration of the molecular clock protein Period and its oscillations in young flies and a long-lasting rescue of the output neuropeptide Pigment dispersing factor. Significantly, there was a reduction in the expanded Huntingtin inclusion load, concomitant with the appearance of a spot-like Huntingtin form. Thus, we provide evidence implicating the neuroprotective chaperone Hsp40 in circadian rehabilitation. The involvement of molecular chaperones in circadian maintenance has broader therapeutic implications for neurodegenerative diseases. This article has an associated First Person interview with the first author of the paper. Summary: This study shows, for the first time, a neuroprotective role of chaperone Hsp40 in suppressing circadian dysfunction associated with Huntington's disease in a Drosophila model.
Collapse
Affiliation(s)
- Pavitra Prakash
- Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Arpit Kumar Pradhan
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Vasu Sheeba
- Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.,Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
25
|
Lee SB, Yang HO. Sinapic Acid Ameliorates REV-ERB α Modulated Mitochondrial Fission against MPTP-Induced Parkinson's Disease Model. Biomol Ther (Seoul) 2022; 30:409-417. [PMID: 35611585 PMCID: PMC9424337 DOI: 10.4062/biomolther.2022.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 11/15/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide, and accumulating evidence indicates that mitochondrial dysfunction is associated with progressive deterioration in PD patients. Previous studies have shown that sinapic acid has a neuroprotective effect, but its mechanisms of action remain unclear. The neuroprotective effect of sinapic acid was assayed in a PD mouse model generated by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as well as in SH-SY5Y cells. Target protein expression was detected by western blotting. Sinapic acid treatment attenuated the behavioral defects and loss of dopaminergic neurons in the PD models. Sinapic acid also improved mitochondrial function in the PD models. MPTP treatment increased the abundance of mitochondrial fission proteins such as dynamin-related protein 1 (Drp1) and phospho-Drp1 Ser616. In addition, MPTP decreased the expression of the REV-ERB α protein. These changes were attenuated by sinapic acid treatment. We used the pharmacological REV-ERB α inhibitor SR8278 to confirmation of protective effect of sinapic acid. Treatment of SR8278 with sinapic acid reversed the protein expression of phospho-Drp1 Ser616 and REV-ERB α on MPTP-treated mice. Our findings demonstrated that sinapic acid protects against MPTP-induced PD and these effects might be related to the inhibiting abnormal mitochondrial fission through REV-ERB α.
Collapse
Affiliation(s)
- Sang-Bin Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea.,School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Ok Yang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
26
|
Qi Z, Wang S, Li J, Wen Y, Cui R, Zhang K, Liu Y, Yang X, Zhang L, Xu B, Liu W, Xu Z, Deng Y. Protective role of mRNA demethylase FTO on axon guidance molecules of nigro-striatal projection system in manganese-induced parkinsonism. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128099. [PMID: 34954437 DOI: 10.1016/j.jhazmat.2021.128099] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
One of the major environmental factors that induce PD is Manganese (Mn). Cellular and molecular mechanism of parkinsonism caused by Mn has not been explored clearly. The results of in vivo and in vitro experiments showed that Mn exposure caused abnormal projection of dopaminergic neurons and decreased mRNA expression and protein levels of FTO. This is due to Mn-induced the upregulation of Foxo3a. Using the cell model of overexpression of FTO, we found that FTO could antagonize Mn-induced the down-regulation of axon guidance molecule ephrin-B2 through RNA-seq, MeRIP-qPCR, and RT-qPCR experiments. Through RIP-seq and actinomycin D experiments, it was found that FTO can up-regulate the mRNA m6A level of ephrin-B2, which can be recognized by YTHDF2 and degraded. Finally, it is proved that Mn induces dopaminergic neurons projection injury and motor dysfunction through Foxo3a/FTO/m6A/ephrin-B2/YTHDF2 signal pathway.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Yi Wen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Rong Cui
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Ke Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.
| | - Yanan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China; Department of Preventive Health, Zhuhai People's Hospital, Zhuhai, Guangdong, China.
| | - Xinxin Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China; School of Public Health, Xuzhou Medical University, Xuzhou 221004, China.
| | - Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
27
|
Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. Sleep and circadian rhythms in Parkinson's disease and preclinical models. Mol Neurodegener 2022; 17:2. [PMID: 35000606 PMCID: PMC8744293 DOI: 10.1186/s13024-021-00504-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
The use of animals as models of human physiology is, and has been for many years, an indispensable tool for understanding the mechanisms of human disease. In Parkinson's disease, various mouse models form the cornerstone of these investigations. Early models were developed to reflect the traditional histological features and motor symptoms of Parkinson's disease. However, it is important that models accurately encompass important facets of the disease to allow for comprehensive mechanistic understanding and translational significance. Circadian rhythm and sleep issues are tightly correlated to Parkinson's disease, and often arise prior to the presentation of typical motor deficits. It is essential that models used to understand Parkinson's disease reflect these dysfunctions in circadian rhythms and sleep, both to facilitate investigations into mechanistic interplay between sleep and disease, and to assist in the development of circadian rhythm-facing therapeutic treatments. This review describes the extent to which various genetically- and neurotoxically-induced murine models of Parkinson's reflect the sleep and circadian abnormalities of Parkinson's disease observed in the clinic.
Collapse
Affiliation(s)
- Jeremy Hunt
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Elizabeth J. Coulson
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | | | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Aleksandar Videnovic
- Movement Disorders Unit and Division of Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
28
|
Wang S, Wang S, Wang C, Feng D, Feng X. Exposure to melamine cyanuric acid in adult mice induced thyroid dysfunction and circadian rhythm disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112992. [PMID: 34808512 DOI: 10.1016/j.ecoenv.2021.112992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
MCA is a halogen-free flame retardant. It can cause damage to other tissues such as the kidneys and liver. However, the effects on the circadian rhythm and thyroid in adult mice have not been studied. In this article, adult male mice received MCA at concentrations of 0, 10, 20, 30 mg/kg. The results showed that the time spending on wheel-running and rest bouts changed in different period after MCA exposure. MCA disrupted the T3 and T4 hormone homeostasis and decreased the expression of thyroid hormone synthesis genes. The histological morphology of the thyroid gland was damaged. It was suggested that MCA exposure caused circadian rhythm disorder and thyroid dysfunction.
Collapse
Affiliation(s)
- Sijie Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Songdi Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Chenxi Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Daofu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China.
| | - Xizeng Feng
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
29
|
Gu C, Chen Y, Chen Y, Liu CF, Zhu Z, Wang M. Role of G Protein-Coupled Receptors in Microglial Activation: Implication in Parkinson's Disease. Front Aging Neurosci 2021; 13:768156. [PMID: 34867296 PMCID: PMC8635063 DOI: 10.3389/fnagi.2021.768156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/23/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is one of the prevalent neurodegenerative diseases associated with preferential loss of dopaminergic (DA) neurons in the substantia nigra compacta (SNc) and accumulation of α-synuclein in DA neurons. Even though the precise pathogenesis of PD is not clear, a large number of studies have shown that microglia-mediated neuroinflammation plays a vital role in the process of PD development. G protein-coupled receptors (GPCRs) are widely expressed in microglia and several of them act as regulators of microglial activation upon corresponding ligands stimulations. Upon α-synuclein insults, microglia would become excessively activated through some innate immune receptors. Presently, as lack of ideal drugs for treating PD, certain GPCR which is highly expressed in microglia of PD brain and mediates neuroinflammation effectively could be a prospective source for PD therapeutic intervention. Here, six kinds of GPCRs and two types of innate immune receptors were introduced, containing adenosine receptors, purinergic receptors, metabotropic glutamate receptors, adrenergic receptors, cannabinoid receptors, and melatonin receptors and their roles in neuroinflammation; we highlighted the relationship between these six GPCRs and microglial activation in PD. Based on the existing findings, we tried to expound the implication of microglial GPCRs-regulated neuroinflammation to the pathophysiology of PD and their potential to become a new expectation for clinical therapeutics.
Collapse
Affiliation(s)
- Chao Gu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yajing Chen
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yan Chen
- Department of Child and Adolescent Healthcare, Children’s Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zengyan Zhu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Mei Wang
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Abstract
Endogenous biological clocks, orchestrated by the suprachiasmatic nucleus, time the circadian rhythms that synchronize physiological and behavioural functions in humans. The circadian system influences most physiological processes, including sleep, alertness and cognitive performance. Disruption of circadian homeostasis has deleterious effects on human health. Neurodegenerative disorders involve a wide range of symptoms, many of which exhibit diurnal variations in frequency and intensity. These disorders also disrupt circadian homeostasis, which in turn has negative effects on symptoms and quality of life. Emerging evidence points to a bidirectional relationship between circadian homeostasis and neurodegeneration, suggesting that circadian function might have an important role in the progression of neurodegenerative disorders. Therefore, the circadian system has become an attractive target for research and clinical care innovations. Studying circadian disruption in neurodegenerative disorders could expand our understanding of the pathophysiology of neurodegeneration and facilitate the development of novel, circadian-based interventions for these disabling disorders. In this Review, we discuss the alterations to the circadian system that occur in movement (Parkinson disease and Huntington disease) and cognitive (Alzheimer disease and frontotemporal dementia) neurodegenerative disorders and provide directions for future investigations in this field.
Collapse
|
31
|
Regional and temporal miRNAs expression profile in a transgenic mouse model of tauopathy: implication for its pathogenesis. Mol Psychiatry 2021; 26:7020-7028. [PMID: 31988432 DOI: 10.1038/s41380-020-0655-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/10/2019] [Accepted: 01/16/2020] [Indexed: 11/08/2022]
Abstract
Studies have shown that the expression level of different microRNAs (miRNAs) is altered in neurodegenerative disorders including tauopathies, a group of diseases pathologically defined by accumulation of tau protein in neurons and glia cells. However, despite this evidence we still do not know whether miRNA changes precede their onset, thus potentially contributing to the pathogenesis, or are downstream events secondary to tau pathology. In the current paper, we assessed the miRNA expression profile at different age time points and brain regions in a relevant mouse model of human tauopathy, the hTau mice, in relationship with the development of behavioral deficits and tau neuropathology. Compared with age-matched control, four specific miRNAs (miR-132-3p, miIR-146a-5p, miR-22-3p, and miR-455-5p) were found significantly upregulated in 12-month-old hTau mice. Interestingly, three of them (miR-132-3p, miR-146a-5p, and miR-22-3p) were already increased in 6-month-old mice, an age before the development of tau pathologic phenotype. Investigation of their predicted targets highlighted pathways relevant to neuronal survival and synaptic function. Collectively, our findings support the new hypothesis that in tauopathies the change in the expression level of specific miRNAs is an early event and plays a functional role in the pathogenesis of the diseases by impacting several mechanisms involved in the development of the associated neuropathology.
Collapse
|
32
|
Therapeutic potential of bright light therapy for the non-motor symptoms in Parkinson's disease. Chin Med J (Engl) 2021; 135:243-244. [PMID: 35032160 PMCID: PMC8769080 DOI: 10.1097/cm9.0000000000001732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Wang XL, Li L. Circadian Clock Regulates Inflammation and the Development of Neurodegeneration. Front Cell Infect Microbiol 2021; 11:696554. [PMID: 34595127 PMCID: PMC8476957 DOI: 10.3389/fcimb.2021.696554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
The circadian clock regulates numerous key physiological processes and maintains cellular, tissue, and systemic homeostasis. Disruption of circadian clock machinery influences key activities involved in immune response and brain function. Moreover, Immune activation has been closely linked to neurodegeneration. Here, we review the molecular clock machinery and the diurnal variation of immune activity. We summarize the circadian control of immunity in both central and peripheral immune cells, as well as the circadian regulation of brain cells that are implicated in neurodegeneration. We explore the important role of systemic inflammation on neurodegeneration. The circadian clock modulates cellular metabolism, which could be a mechanism underlying circadian control. We also discuss the circadian interventions implicated in inflammation and neurodegeneration. Targeting circadian clocks could be a potential strategy for the prevention and treatment of inflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianjian Li
- Department of Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
34
|
Tang X, Yu L, Yang J, Guo W, Liu Y, Xu Y, Wang X. Association of sleep disturbance and freezing of gait in Parkinson disease: prevention/delay implications. J Clin Sleep Med 2021; 17:779-789. [PMID: 33231167 DOI: 10.5664/jcsm.9022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
STUDY OBJECTIVES Freezing of gait (FOG) severely impairs life quality of Parkinson disease (PD) patients. The relationship between sleep disturbance and FOG in PD remains unclear, so in this study, we aimed to investigate that relationship. METHODS First, we assessed clinical characteristics of freezers and nonfreezers among PD patients. Next, we assessed clinical characteristics of PD patients with different PDSS1 scores (score on first item of Parkinson's Disease Sleep Scale). Finally, we prospectively followed a cohort of nonfreezers from a baseline clinical visit and to a maximum of 18 months and performed a Cox regression analysis to further investigate the relationship between PDSS1 score and FOG in PD. RESULTS A total of 163 participants with PD were included in the baseline analysis. The freezers had significantly worse sleep compared with the nonfreezers. The proportion of freezers in the patients with low PDSS1 score (PDSS1 < 6) was significantly higher than that in the patients with high PDSS1 score (PDSS1 ≥ 6). A total of 52 nonfreezers were prospectively followed. During a maximum 18-month follow-up, FOG incidence (73%) in the PDSS1 < 6 group was significantly higher than that (24%) in the PDSS1 ≥ 6 group (P = .008). Low PDSS1 score (hazard ratio = 4.23, 95% CI 1.64-10.92, P = .003) and high levodopa equivalent daily dose (hazard ratio = 4.18, 95% CI 1.62-10.75, P = .003) were significantly associated with an increased hazard of FOG. CONCLUSIONS Our study indicated that low PDSS1 score may be a risk indicator for the development of FOG and provided important insights into potential targets for the prevention/delay of FOG in PD.
Collapse
Affiliation(s)
- Xiaohui Tang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijia Yu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois.,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Wenjing Guo
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaling Xu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xijin Wang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Liu Y, Niu L, Liu X, Cheng C, Le W. Recent Progress in Non-motor Features of Parkinson's Disease with a Focus on Circadian Rhythm Dysregulation. Neurosci Bull 2021; 37:1010-1024. [PMID: 34128188 DOI: 10.1007/s12264-021-00711-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, which manifests with both motor and non-motor symptoms. Circadian rhythm dysregulation, as one of the most challenging non-motor features of PD, usually appears long before obvious motor symptoms. Moreover, the dysregulated circadian rhythm has recently been reported to play pivotal roles in PD pathogenesis, and it has emerged as a hot topic in PD research. In this review, we briefly introduce the circadian rhythm and circadian rhythm-related genes, and then summarize recent research progress on the altered circadian rhythm in PD, ranging from clinical features to the possible causes of PD-related circadian disorders. We believe that future comprehensive studies on the topic may not only help us to explore the mechanisms of PD, but also shed light on the better management of PD.
Collapse
Affiliation(s)
- Yufei Liu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Long Niu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Xinyao Liu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Cheng Cheng
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Academy of Medical Science-Sichuan Provincial Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
36
|
Na + leak-current channel (NALCN) at the junction of motor and neuropsychiatric symptoms in Parkinson's disease. J Neural Transm (Vienna) 2021; 128:749-762. [PMID: 33961117 DOI: 10.1007/s00702-021-02348-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is a debilitating movement disorder often accompanied by neuropsychiatric symptoms that stem from the loss of dopaminergic function in the basal ganglia and altered neurotransmission more generally. Akinesia, postural instability, tremors and frozen gait constitute the major motor disturbances, whereas neuropsychiatric symptoms include altered circadian rhythms, disordered sleep, depression, psychosis and cognitive impairment. Evidence is emerging that the motor and neuropsychiatric symptoms may share etiologic factors. Calcium/ion channels (CACNA1C, NALCN), synaptic proteins (SYNJ1) and neuronal RNA-binding proteins (RBFOX1) are among the risk genes that are common to PD and various psychiatric disorders. The Na+ leak-current channel (NALCN) is the focus of this review because it has been implicated in dystonia, regulation of movement, cognitive impairment, sleep and circadian rhythms. It regulates the resting membrane potential in neurons, mediates pace-making activity, participates in synaptic vesicle recycling and is functionally co-localized to the endoplasmic reticulum (ER)-several of the major processes adversely affected in PD. Here, we summarize the literature on mechanisms and pathways that connect the motor and neuropsychiatric symptoms of PD with a focus on recurring relationships to the NALCN. It is hoped that the various connections outlined here will stimulate further discussion, suggest additional areas for exploration and ultimately inspire novel treatment strategies.
Collapse
|
37
|
Xing C, Zhou Y, Xu H, Ding M, Zhang Y, Zhang M, Hu M, Huang X, Song L. Sleep disturbance induces depressive behaviors and neuroinflammation by altering the circadian oscillations of clock genes in rats. Neurosci Res 2021; 171:124-132. [PMID: 33785408 DOI: 10.1016/j.neures.2021.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 01/03/2023]
Abstract
Sleep loss leads to a spectrum of mood disorders such as anxiety disorders, bipolar disorder and depression in many individuals. However, the underlying mechanisms are largely unknown. In this study, sleep-disturbed animals were tested for anxiety and depressive behaviors. We then studied the effects of SD on hypothalamic-pituitary-adrenal (HPA) axis function by measuring serum and CSF levels of corticosterone (CORT), and at the end of the experiment, brains were collected to measure the circadian oscillations of clock genes expression in the hypothalamus, glial cell activation and inflammatory cytokine alterations. Our results indicated that SD for 3 days resulted in anxiety- and depressive-like behaviors. SD exaggerated cortisol response to HPA axis, significantly altered the circadian oscillations of clock genes, decreased the expression of tight junction protein ZO-1 and Claudin 5 and increased the number of GFAP-positive cells and Iba-1-positive cells and caused subsequent elevation of pro-inflammatory cytokines IL-6, IL-1β and TNFα. These findings demonstrated that SD for 3 days induced anxiety- and depression-like behaviors in rats in company with altering the circadian oscillations of clock genes and inducing neuroinflammation, indicating the underlying mechanism of sleep loss induced neuronal dysfunction.
Collapse
Affiliation(s)
- Chen Xing
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Yanzhao Zhou
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Huan Xu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Mengnan Ding
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Yifan Zhang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Min Zhang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Meiru Hu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Xin Huang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, China.
| | - Lun Song
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
38
|
Carter B, Justin HS, Gulick D, Gamsby JJ. The Molecular Clock and Neurodegenerative Disease: A Stressful Time. Front Mol Biosci 2021; 8:644747. [PMID: 33889597 PMCID: PMC8056266 DOI: 10.3389/fmolb.2021.644747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Circadian rhythm dysfunction occurs in both common and rare neurodegenerative diseases. This dysfunction manifests as sleep cycle mistiming, alterations in body temperature rhythms, and an increase in symptomatology during the early evening hours known as Sundown Syndrome. Disruption of circadian rhythm homeostasis has also been implicated in the etiology of neurodegenerative disease. Indeed, individuals exposed to a shifting schedule of sleep and activity, such as health care workers, are at a higher risk. Thus, a bidirectional relationship exists between the circadian system and neurodegeneration. At the heart of this crosstalk is the molecular circadian clock, which functions to regulate circadian rhythm homeostasis. Over the past decade, this connection has become a focal point of investigation as the molecular clock offers an attractive target to combat both neurodegenerative disease pathogenesis and circadian rhythm dysfunction, and a pivotal role for neuroinflammation and stress has been established. This review summarizes the contributions of molecular clock dysfunction to neurodegenerative disease etiology, as well as the mechanisms by which neurodegenerative diseases affect the molecular clock.
Collapse
Affiliation(s)
- Bethany Carter
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States
| | - Hannah S Justin
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States
| | - Danielle Gulick
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Joshua J Gamsby
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
39
|
Ullah I, Zhao L, Hai Y, Fahim M, Alwayli D, Wang X, Li H. "Metal elements and pesticides as risk factors for Parkinson's disease - A review". Toxicol Rep 2021; 8:607-616. [PMID: 33816123 PMCID: PMC8010213 DOI: 10.1016/j.toxrep.2021.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Essential metals including iron (Fe) and manganese (Mn) with known physiological functions in human body play an important role in cell homeostasis. Excessive exposure to these essential as well as non-essential metals including mercury (Hg) and Aluminum (Al) may contribute to pathological conditions, including PD. Each metal could be toxic through specific pathways. Epidemiological evidences from occupational and ecological studies besides various in vivo and in vitro studies have revealed the possible pathogenic role and neurotoxicity of different metals. Pesticides are substances that aim to mitigate the harm done by pests to plants and crops, and are extensively used to boost agricultural production. This review provides an outline of our current knowledge on the possible association between metals and PD. We have discussed the potential association between these two, furthermore the chemical properties, biological and toxicological aspects as well as possible mechanisms of Fe, Mn, Cu, Zn, Al, Ca, Pb, Hg and Zn in PD pathogenesis. In addition, we review recent evidence on deregulated microRNAs upon pesticide exposure and possible role of deregulated miRNA and pesticides to PD pathogenesis.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, China
| | - Yang Hai
- School of Pharmacy, Lanzhou University, China
| | | | | | - Xin Wang
- School of Pharmacy, Lanzhou University, China
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, China
- School of Pharmacy, Lanzhou University, China
| |
Collapse
|
40
|
Yang Z, Zhang X, Li C, Chi S, Xie A. Molecular Mechanisms Underlying Reciprocal Interactions Between Sleep Disorders and Parkinson's Disease. Front Neurosci 2021; 14:592989. [PMID: 33642969 PMCID: PMC7902929 DOI: 10.3389/fnins.2020.592989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023] Open
Abstract
Sleep-wake disruptions are among the most prevalent and burdensome non-motor symptoms of Parkinson's disease (PD). Clinical studies have demonstrated that these disturbances can precede the onset of typical motor symptoms by years, indicating that they may play a primary function in the pathogenesis of PD. Animal studies suggest that sleep facilitates the removal of metabolic wastes through the glymphatic system via convective flow from the periarterial space to the perivenous space, upregulates antioxidative defenses, and promotes the maintenance of neuronal protein homeostasis. Therefore, disruptions to the sleep-wake cycle have been associated with inefficient metabolic clearance and increased oxidative stress in the central nervous system (CNS). This leads to excessive accumulation of alpha-synuclein and the induction of neuronal loss, both of which have been proposed to be contributing factors to the pathogenesis and progression of PD. Additionally, recent studies have suggested that PD-related pathophysiological alterations during the prodromal phase disrupt sleep and circadian rhythms. Taken together, these findings indicate potential mechanistic interactions between sleep-wake disorders and PD progression as proposed in this review. Further research into the hypothetical mechanisms underlying these interactions would be valuable, as positive findings may provide promising insights into novel therapeutic interventions for PD.
Collapse
Affiliation(s)
- Zhengjie Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaona Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengqian Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Chi
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
41
|
Steele TA, St Louis EK, Videnovic A, Auger RR. Circadian Rhythm Sleep-Wake Disorders: a Contemporary Review of Neurobiology, Treatment, and Dysregulation in Neurodegenerative Disease. Neurotherapeutics 2021; 18:53-74. [PMID: 33844152 PMCID: PMC8116400 DOI: 10.1007/s13311-021-01031-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms oscillate throughout a 24-h period and impact many physiological processes and aspects of daily life, including feeding behaviors, regulation of the sleep-wake cycle, and metabolic homeostasis. Misalignment between the endogenous biological clock and exogenous light-dark cycle can cause significant distress and dysfunction, and treatment aims for resynchronization with the external clock and environment. This article begins with a brief historical context of progress in the understanding of circadian rhythms, and then provides an overview of circadian neurobiology and the endogenous molecular clock. Various tools used in the diagnosis of circadian rhythm sleep-wake disorders, including sleep diaries and actigraphy monitoring, are then discussed, as are the therapeutic applications of strategically timed light therapy, melatonin, and other behavioral and pharmacological therapies including the melatonin agonist tasimelteon. Management strategies towards each major human circadian sleep-wake rhythm disorder, as outlined in the current International Classification of Sleep Disorders - Third Edition, including jet lag and shift work disorders, delayed and advanced sleep-wake phase rhythm disorders, non-24-h sleep-wake rhythm disorder, and irregular sleep-wake rhythm disorder are summarized. Last, an overview of chronotherapies and the circadian dysregulation of neurodegenerative diseases is reviewed.
Collapse
Affiliation(s)
- Tyler A Steele
- Mayo Center for Sleep Medicine, Rochester, Minnesota, USA
- Department of Neurology, Rochester, Minnesota, USA
- Rochester Technical and Community College, Rochester, Minnesota, USA
| | - Erik K St Louis
- Mayo Center for Sleep Medicine, Rochester, Minnesota, USA.
- Department of Neurology, Rochester, Minnesota, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rochester, Minnesota, USA.
- Mayo Clinic Health System, La Crosse, Wisconsin, USA.
| | - Aleksandar Videnovic
- Massachusetts General Hospital, Department of Neurology and Harvard Medical School, Boston, Massachusetts, USA
| | - R Robert Auger
- Mayo Center for Sleep Medicine, Rochester, Minnesota, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rochester, Minnesota, USA
- Department of Psychiatry, Rochester, Minnesota, USA
| |
Collapse
|
42
|
Nakanishi H, Ni J, Nonaka S, Hayashi Y. Microglial circadian clock regulation of microglial structural complexity, dendritic spine density and inflammatory response. Neurochem Int 2020; 142:104905. [PMID: 33217515 DOI: 10.1016/j.neuint.2020.104905] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023]
Abstract
Cortical microglia exhibit a ramified shape during sleep, while they have a hyper-ramified shape during wakefulness, which is characterized by their longer processes with increased branching points. The microglial molecular circadian clock regulates expressions of both cathepsin S (CatS) and P2Y12 receptors in the brain with a peak at zeitgeber time 14 (2 h after beginning of the dark phase). We postulated that these two microglia-specific molecules contribute to diurnal alterations of microglial shapes and neuronal activities in the cerebral cortex. During wakefulness, CatS secreted from cortical microglia may be involved in P2Y12 receptor-dependent process extension. Secreted CatS subsequently degrades the perineuronal nets, initiating the downscaling of both spine density and synaptic strength of cortical neurons toward the beginning of sleep. The downscaling of both spine density and synaptic strength of cortical neurons during sleep could improve signal-to-noise, which would benefit memory consolidation, or allow for new learning to occur during subsequent waking. Furthermore, disruption of CatS induces the sleep disturbance and impaired social interaction in mice. Moreover, the microglial clock system disruption may also play a role in the early pathogenesis of Alzheimer's disease. The reduced expression of BMAL1 in cortical microglia caused by oligomeric amyloid β may induce the increased presence of inflammatory phenotype through a reduction in RORα, which in turn reduced IκBα and enhanced NF-κB activation. These observations suggest that the microglial clock system disruption contribute to pathogeneses of sleep disturbance, impaired social interaction and cognitive impairment. Therefore, the growing understanding of the microglial circadian molecular clock might aid in the development of novel pharmacological interventions against both neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, 731-0153, Japan.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Saori Nonaka
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, 731-0153, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
43
|
Xia Y, Kou L, Zhang G, Han C, Hu J, Wan F, Yin S, Sun Y, Wu J, Li Y, Zhang Z, Huang J, Xiong N, Wang T. Investigation on sleep and mental health of patients with Parkinson's disease during the Coronavirus disease 2019 pandemic. Sleep Med 2020; 75:428-433. [PMID: 32980664 PMCID: PMC7481072 DOI: 10.1016/j.sleep.2020.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic is adversely affecting sleep quality and mental health, especially in individuals with chronic disease such as Parkinson's disease (PD). Methods We conducted a quantitative study, which included 119 Chinese PD patients who had been treated in an outpatient neurology clinic in Wuhan and 169 age- and sex-matched healthy controls. The questionnaire survey focused on the impact of the COVID-19 pandemic on sleep, mental status, symptoms, and daily life and medical treatment of PD patients. Results Compared to healthy controls, PD patients had significantly higher scores in both the Pittsburgh Sleep Quality Index (PSQI) (8.13 vs 5.36, p < 0.001) and the Hospital Anxiety and Depression Scale (HADS) -Depression (4.89 vs 3.82, p = 0.022), as well as a higher prevalence of sleep disturbances with PSQI > 5 points (68.9% vs 44.4%, p < 0.001). Sleep disturbance was identified in 68.9% of PD patients. A logistic regression analysis showed that sleep disturbance of PD patients was independently associated with exacerbation of PD symptoms (OR = 3.616, 95%CI= (1.479, 8.844), p = 0.005) and anxiety (OR = 1.379, 95%CI= (1.157, 1.642), p < 0.001). Compared to male PD patients, female ones had higher PSQI scores (9.28 ± 4.41 vs 7.03 ± 4.01, p = 0.009) and anxiety (32.8% vs 0.1%, p = 0.002) and depression prevalence (34.5% vs 11.5%, p = 0.003). Conclusion The findings of the present study emphasize the importance of mental and sleep health interventions in PD patients during the COVID-19 pandemic. Additional attention should be paid to the difficulty encountered by PD patients in seeking medical treatment. Patients with Parkinson's disease (PD) experience mental health and sleep disturbance during the COVID-19 pandemic. Anxiety, lack of medical consultation and exacerbation of symptoms affects the sleep health of PD patients profoundly. The exacerbation of PD related symptoms, was independently and closely associated with sleep quality. The sleep and mental health of female PD patient need more consideration and treatment. Special attention should be paid to the difficulty in seeking medical treatment for PD patients during the epidemic.
Collapse
Affiliation(s)
- Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Han
- Department of Neurology, Anhui Provincial Hospital, The First Affiliated Hospital of Science and Technology of China, Hefei, China
| | - Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunna Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
44
|
Impact of circadian and diurnal rhythms on cellular metabolic function and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:393-412. [PMID: 32739012 DOI: 10.1016/bs.irn.2020.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The 24-h rotational period of the earth has driven evolution of biological systems that serve to synchronize organismal physiology and behavior to this predictable environmental event. In mammals, the circadian (circa, "about" and dia, "a day") clock keeps 24-h time at the organismal and cellular level, optimizing biological function for a given time of day. The most obvious circadian output is the sleep-wake cycle, though countless bodily functions, ranging from hormone levels to cognitive function, are influenced by the circadian clock. Here we discuss the regulation of metabolic pathways by the circadian clock, discuss the evidence implicating circadian and sleep disruption in neurodegenerative diseases, and suggest some possible connections between the clock, metabolism, and neurodegenerative disease.
Collapse
|
45
|
Li L, Zhao Z, Ma J, Zheng J, Huang S, Hu S, Gu Q, Chen S. Elevated Plasma Melatonin Levels Are Correlated With the Non-motor Symptoms in Parkinson's Disease: A Cross-Sectional Study. Front Neurosci 2020; 14:505. [PMID: 32508583 PMCID: PMC7248560 DOI: 10.3389/fnins.2020.00505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Melatonin is the major hormone produced and secreted at night by the pineal gland into the cerebrospinal fluid (CSF) and circulation. The relationship between plasma melatonin levels and Parkinson's disease is not clear. The aim of the current study was to assess plasma melatonin levels in Parkinson's disease (PD) patients and to analysis the relationship between plasma melatonin levels and non-motor symptoms. PARTICIPANTS AND METHODS In this cross-sectional study, we evaluated 61 patients with idiopathic PD [males n = 30 (49.2%), average age 62.4 years (range: 46-73 years)] and a total of 58 healthy volunteers [males n = 30 (51.7%), average age 64.3 years (range: 45-70 years)] who participated in the study. Plasma melatonin levels were measured using an enzyme-linked immunosorbent assay. The severity of disease in PD patients was scored by the Unified Parkinson's Disease Rating Scale and the Hoehn and Yahr Staging scale. The quality of life in PD patients was assessed by the 39-item Parkinson's Disease Questionnaire. The non-motor symptoms were assessed by the 14-item Hamilton Anxiety Rating Scale, the 24-item Hamilton Depression Rating Scale, the Parkinson Disease Sleep Scale, the Epworth Sleepiness Scale and the Non-Motor Symptoms Scale for PD. RESULTS Compared with the healthy controls, the plasma melatonin levels were significantly higher in PD patients (12.82 ± 4.85 vs. 19.40 ± 4.23, P < 0.001). Plasma melatonin levels were significantly associated with the levodopa equivalent daily dose (r = -0.262, P < 0.05, n = 61). Higher plasma melatonin concentrations were detected in the negative cardiovascular symptom group than in the cardiovascular symptom group (20.13 ± 3.74 vs. 16.93 ± 3.74, P < 0.05). Higher plasma melatonin concentrations were detected in the non-sleep-disorders group than in the sleep disorders group (22.12 ± 5.93 vs. 18.86 ± 3.66, P < 0.05). In addition, the plasma melatonin concentration was higher in the group without gastrointestinal dysfunction than in the gastrointestinal dysfunction group (21.71 ± 4.44 vs. 18.35 ± 3.74, P < 0.05). CONCLUSION This study revealed that the plasma melatonin levels in PD patients were significantly higher than those in healthy controls. Non-motor symptoms that were significantly negatively correlated with plasma melatonin levels were cardiovascular symptoms, sleep disorders, and gastrointestinal dysfunction. Plasma melatonin levels have the closest relationship with sleep disorders. There was a correlation between plasma melatonin levels and sleep quality in patients with PD. The remaining non-motor symptoms were not related to plasma melatonin levels.
Collapse
Affiliation(s)
- Linyi Li
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Zhenxiang Zhao
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Jianjun Ma
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Jinhua Zheng
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Shen Huang
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Shiyu Hu
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Henan University, Zhengzhou, China
| | - Qi Gu
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
46
|
Liu WW, Wei SZ, Huang GD, Liu LB, Gu C, Shen Y, Wang XH, Xia ST, Xie AM, Hu LF, Wang F, Liu CF. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson's disease mouse model. FASEB J 2020; 34:6570-6581. [PMID: 32246801 DOI: 10.1096/fj.201901565rr] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/21/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
Dysfunction of the circadian rhythm is one of most common nonmotor symptoms in Parkinson's disease (PD), but the molecular role of the circadian rhythm in PD is unclear. We here showed that inactivation of brain and muscle ARNT-like 1 (BMAL1) in 1-methyl-4-phenyl-1,2,4,5-tetrahydropyridine (MPTP)-treated mice resulted in obvious motor functional deficit, loss of dopaminergic neurons (DANs) in the substantia nigra pars compacta (SNpc), decrease of dopamine (DA) transmitter, and increased activation of microglia and astrocytes in the striatum. Time on the rotarod or calorie consumption, and food and water intake were reduced in the Bmal1-/- mice after MPTP treatment, suggesting that absence of Bmal1 may exacerbate circadian and PD motor function. We observed a significant reduction of DANs (~35%) in the SNpc, the tyrosine hydroxylase protein level in the striatum (~60%), the DA (~22%), and 3,4-dihydroxyphenylacetic acid content (~29%), respectively, in MPTP-treated Bmal1-/- mice. Loss of Bmal1 aggravated the inflammatory reaction both in vivo and in vitro. These findings suggest that BMAL1 may play an essential role in the survival of DANs and maintain normal function of the DA signaling pathway via regulating microglia-mediated neuroinflammation in the brain.
Collapse
Affiliation(s)
- Wen-Wen Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Shi-Zhuang Wei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Guo-Dong Huang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lu-Bing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chao Gu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yun Shen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xian-Hui Wang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China
| | - Shu-Ting Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - An-Mu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li-Fang Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
47
|
Keshavarzian A, Engen P, Bonvegna S, Cilia R. The gut microbiome in Parkinson's disease: A culprit or a bystander? PROGRESS IN BRAIN RESEARCH 2020; 252:357-450. [PMID: 32247371 DOI: 10.1016/bs.pbr.2020.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, large-scale metagenomics projects such as the Human Microbiome Project placed the gut microbiota under the spotlight of research on its role in health and in the pathogenesis several diseases, as it can be a target for novel therapeutical approaches. The emerging concept of a microbiota modulation of the gut-brain axis in the pathogenesis of neurodegenerative disorders has been explored in several studies in animal models, as well as in human subjects. Particularly, research on changes in the composition of gut microbiota as a potential trigger for alpha-synuclein (α-syn) pathology in Parkinson's disease (PD) has gained increasing interest. In the present review, we first provide the basis to the understanding of the role of gut microbiota in healthy subjects and the molecular basis of the gut-brain interaction, focusing on metabolic and neuroinflammatory factors that could trigger the alpha-synuclein conformational changes and aggregation. Then, we critically explored preclinical and clinical studies reporting on the changes in gut microbiota in PD, as compared to healthy subjects. Furthermore, we examined the relationship between the gut microbiota and PD clinical features, discussing data consistently reported across studies, as well as the potential sources of inconsistencies. As a further step toward understanding the effects of gut microbiota on PD, we discussed the relationship between dysbiosis and response to dopamine replacement therapy, focusing on Levodopa metabolism. We conclude that further studies are needed to determine whether the gut microbiota changes observed so far in PD patients is the cause or, instead, it is merely a consequence of lifestyle changes associated with the disease. Regardless, studies so far strongly suggest that changes in microbiota appears to be impactful in pathogenesis of neuroinflammation. Thus, dysbiotic microbiota in PD could influence the disease course and response to medication, especially Levodopa. Future research will assess the impact of microbiota-directed therapeutic intervention in PD patients.
Collapse
Affiliation(s)
- Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL, United States
| | - Phillip Engen
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL, United States
| | | | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Movement Disorders Unit, Milan, Italy.
| |
Collapse
|
48
|
Circadian rhythms, Neuroinflammation and Oxidative Stress in the Story of Parkinson's Disease. Cells 2020; 9:cells9020314. [PMID: 32012898 PMCID: PMC7072287 DOI: 10.3390/cells9020314] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is one of the main neurodegenerative disease characterized by a progressive degeneration of neurons constituted by dopamine in the substantia nigra pars compacta. The etiologies of PD remain unclear. Aging is the main risk factor for PD. Aging could dysregulate molecular pathways controlling cell homeostatic mechanisms. PD cells are the sites of several metabolic abnormalities including neuroinflammation and oxidative stress. Metabolic structures are driven by circadian rhythms. Biologic rhythms are complex systems interacting with the environment and controlling several physiological pathways. Recent findings have shown that the dysregulation of the circadian rhythms is correlated with PD and its metabolic dysregulations. This review is focused on the key role of circadian rhythms and their impact on neuroinflammation and oxidative stress in Parkinson’s disease.
Collapse
|
49
|
Mitsumoto Y, Nagai Y, Takata R, Mori A. Rapid eye movement sleep deprivation enhances vulnerability of striatal dopaminergic neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in mice. Psychogeriatrics 2020; 20:129-130. [PMID: 31012197 DOI: 10.1111/psyg.12456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Yasuhide Mitsumoto
- Laboratory of Alternative Medicine and Experimental Therapeutics, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Yuna Nagai
- Laboratory of Alternative Medicine and Experimental Therapeutics, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Ryoji Takata
- Laboratory of Alternative Medicine and Experimental Therapeutics, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Atsushi Mori
- Department of Perioperative Management System, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
50
|
Chang YC, Kim JY. Therapeutic implications of circadian clocks in neurodegenerative diseases. J Neurosci Res 2019; 98:1095-1113. [PMID: 31833091 DOI: 10.1002/jnr.24572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Circadian clocks, endogenous oscillators generating daily biological rhythms, have important roles in the nervous system to control diverse cellular processes-not only in the suprachiasmatic nucleus (SCN), where the master clocks reside to synchronize all circadian clocks in the body but also in other non-SCN areas. Accumulating evidence has shown relationships between circadian abnormalities (e.g., sleep disturbances and abnormal rest-activity rhythms) and disease progressions in various neurodegenerative diseases, including Alzheimer's (AD) and Parkinson's (PD) disease. Although circadian abnormalities were frequently considered as consequences of disease onsets, recent studies suggest altered circadian clocks as risk factors to develop neurodegenerative diseases via altered production or clearance rates of toxic metabolites like amyloid β. In this review, we will summarize circadian clock-related pathologies in the most common neurodegenerative diseases in the central nervous system, AD and PD. Then, we will introduce the current clinical trials to rescue circadian abnormalities in AD and PD patients. Finally, a discussion about how to improve targeting circadian clocks to increase treatment efficiencies and specificities will be followed. This discussion will provide insight into circadian clocks as potential therapeutic targets to attenuate onsets and progressions of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Chen Chang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|