1
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Chen Y, Liu Y, Pu J, Gui S, Wang D, Zhong X, Tao W, Chen X, Chen W, Chen X, Qiao R, Li Z, Tao X, Xie P. Treatment response of venlafaxine induced alterations of gut microbiota and metabolites in a mouse model of depression. Metab Brain Dis 2024; 39:1505-1521. [PMID: 39150654 DOI: 10.1007/s11011-024-01403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Antidepressants remain the first-line treatment for depression. However, the factors influencing medication response are still unclear. Accumulating evidence implicates an association between alterations in gut microbiota and antidepressant response. Therefore, the aim of this study is to investigate the role of the gut microbiota-brain axis in the treatment response of venlafaxine. After chronic social defeat stress and venlafaxine treatment, mice were divided into responders and non-responders groups. We compared the composition of gut microbiota using 16 S ribosomal RNA sequencing. Meanwhile, we quantified metabolomic alterations in serum and hippocampus, as well as hippocampal neurotransmitter levels using liquid chromatography-mass spectrometry. We found that the abundances of 29 amplicon sequence variants (ASVs) were significantly altered between the responders and non-responders groups. These ASVs belonged to 8 different families, particularly Muribaculaceae. Additionally, we identified 38 and 39 differential metabolites in serum and hippocampus between the responders and non-responders groups, respectively. Lipid, amino acid, and purine metabolisms were enriched in both serum and hippocampus. In hippocampus, the concentrations of tryptophan, phenylalanine, gamma-aminobutyric acid, glutamic acid, and glutamine were increased, while the level of succinic acid was decreased in the responders group, compared with the non-responders group. Our findings suggest that the gut microbiota may play a role in the antidepressant effect of venlafaxine by modulating metabolic processes in the central and peripheral tissues. This provides a novel microbial and metabolic framework for understanding the impact of the gut microbiota-brain axis on antidepressant response.
Collapse
Affiliation(s)
- Yue Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Xiaopeng Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Weiyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Renjie Qiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Zhuocan Li
- Psychologic Medicine Science, Chongqing Medical University, Chongqing, China
| | - Xiangkun Tao
- Psychologic Medicine Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Institute for Brain and Intelligence, Chongqing, China.
| |
Collapse
|
3
|
Zhao D, Zhang L, Yang Y. Transcriptome dynamics in mouse amygdala under acute and chronic stress revealed by thiol-labeled RNA sequencing. Neurobiol Stress 2024; 33:100688. [PMID: 39583745 PMCID: PMC11582550 DOI: 10.1016/j.ynstr.2024.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Both acute and chronic stress have significant impact on brain functions. The amygdala is essential in mediating stress responses, but how its transcriptomic dynamics change under stress remains elusive. To overcome the difficulties in detecting subtle stress-induced changes by evaluating total RNA using classic RNA sequencing, we conducted thiol-labeled RNA sequencing (SLAM-seq). We injected 4-thiouridine (4sU) into mouse amygdala followed by SLAM-seq to detect nascent mRNA induced by acute and chronic restraint stress, and found that SLAM-seq could label actively transcribed genes in the major neuronal and glial subtypes. Using SLAM-seq, we found that chronic stress led to higher turnover of a group of genes associated with myelination, and this finding is confirmed by immunostaining which showed increased myelination in the chronically stressed amygdala. Additionally, genes detected by SLAM-seq and RNA-seq only partially overlapped, suggesting that SLAM-seq and RNA-seq are complementary in identifying stress-responsive genes. By applying SLAM-seq in vivo, we obtained a rich dataset of genes with higher turnover in the amygdala under stress.
Collapse
Affiliation(s)
- Dan Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
4
|
Talaee N, Azadvar S, Khodadadi S, Abbasi N, Asli-Pashaki ZN, Mirabzadeh Y, Kholghi G, Akhondzadeh S, Vaseghi S. Comparing the effect of fluoxetine, escitalopram, and sertraline, on the level of BDNF and depression in preclinical and clinical studies: a systematic review. Eur J Clin Pharmacol 2024; 80:983-1016. [PMID: 38558317 DOI: 10.1007/s00228-024-03680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) dysfunction is one of the most important mechanisms underlying depression. It seems that selective serotonin reuptake inhibitors (SSRIs) improve depression via affecting BDNF level. In this systematic review, for the first time, we aimed to review the effect of three SSRIs including fluoxetine, escitalopram, and sertraline, on both depression and BDNF level in preclinical and clinical studies. PubMed electronic database was searched, and 193 articles were included in this study. After reviewing all manuscripts, only one important difference was found: subjects. We found that SSRIs induce different effects in animals vs. humans. Preclinical studies showed many controversial effects, while human studies showed only two effects: improvement of depression, with or without the improvement of BDNF. However, most studies used chronic SSRIs treatment, while acute SSRIs were not effectively used and evaluated. In conclusion, it seems that SSRIs are reliable antidepressants, and the improvement effect of SSRIs on depression is not dependent to BDNF level (at least in human studies).
Collapse
Affiliation(s)
- Nastaran Talaee
- Department of Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shataw Azadvar
- Department of Power Electronic, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nahal Abbasi
- Department of Health Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Yasaman Mirabzadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Department of Psychiatry, Faculty of Medicine, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, 1419815477, Iran.
| |
Collapse
|
5
|
Niwa M, Lockhart S, Wood DJ, Yang K, Francis-Oliveira J, Kin K, Ahmed A, Wand GS, Kano SI, Payne JL, Sawa A. Prolonged HPA axis dysregulation in postpartum depression associated with adverse early life experiences: A cross-species translational study. NATURE. MENTAL HEALTH 2024; 2:593-604. [PMID: 38736646 PMCID: PMC11087073 DOI: 10.1038/s44220-024-00217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/21/2024] [Indexed: 05/14/2024]
Abstract
Childhood and adolescent stress increase the risk of postpartum depression (PPD), often providing an increased probability of treatment refractoriness. Nevertheless, the mechanisms linking childhood/adolescent stress to PPD remain unclear. Our study investigated the longitudinal effects of adolescent stress on the hypothalamic-pituitary-adrenal (HPA) axis and postpartum behaviors in mice and humans. Adolescent social isolation prolonged glucocorticoid elevation, leading to long-lasting postpartum behavioral changes in female mice. These changes were unresponsive to current PPD treatments but improved with post-delivery glucocorticoid receptor antagonist treatment. Childhood/adolescent stress significantly impacted HPA axis dysregulation and PPD in human females. Repurposing glucocorticoid receptor antagonists for some cases of treatment-resistant PPD may be considered.
Collapse
Affiliation(s)
- Minae Niwa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham School of Engineering, Birmingham, AL, USA
| | - Sedona Lockhart
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel J. Wood
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jose Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Kyohei Kin
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Adeel Ahmed
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Gary S. Wand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shin-ichi Kano
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Jennifer L. Payne
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlotte, VA, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
6
|
Zhou JL, de Guglielmo G, Ho AJ, Kallupi M, Pokhrel N, Li HR, Chitre AS, Munro D, Mohammadi P, Carrette LLG, George O, Palmer AA, McVicker G, Telese F. Single-nucleus genomics in outbred rats with divergent cocaine addiction-like behaviors reveals changes in amygdala GABAergic inhibition. Nat Neurosci 2023; 26:1868-1879. [PMID: 37798411 PMCID: PMC10620093 DOI: 10.1038/s41593-023-01452-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
The amygdala processes positive and negative valence and contributes to addiction, but the cell-type-specific gene regulatory programs involved are unknown. We generated an atlas of single-nucleus gene expression and chromatin accessibility in the amygdala of outbred rats with high and low cocaine addiction-like behaviors following prolonged abstinence. Differentially expressed genes between the high and low groups were enriched for energy metabolism across cell types. Rats with high addiction index (AI) showed increased relapse-like behaviors and GABAergic transmission in the amygdala. Both phenotypes were reversed by pharmacological inhibition of the glyoxalase 1 enzyme, which metabolizes methylglyoxal-a GABAA receptor agonist produced by glycolysis. Differences in chromatin accessibility between high and low AI rats implicated pioneer transcription factors in the basic helix-loop-helix, FOX, SOX and activator protein 1 families. We observed opposite regulation of chromatin accessibility across many cell types. Most notably, excitatory neurons had greater accessibility in high AI rats and inhibitory neurons had greater accessibility in low AI rats.
Collapse
Affiliation(s)
- Jessica L Zhou
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Aaron J Ho
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Narayan Pokhrel
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Hai-Ri Li
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Munro
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Olivier George
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Graham McVicker
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Francesca Telese
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Horánszky A, Shashikadze B, Elkhateib R, Lombardo SD, Lamberto F, Zana M, Menche J, Fröhlich T, Dinnyés A. Proteomics and disease network associations evaluation of environmentally relevant Bisphenol A concentrations in a human 3D neural stem cell model. Front Cell Dev Biol 2023; 11:1236243. [PMID: 37664457 PMCID: PMC10472293 DOI: 10.3389/fcell.2023.1236243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Bisphenol A (BPA) exposure is associated with a plethora of neurodevelopmental abnormalities and brain disorders. Previous studies have demonstrated BPA-induced perturbations to critical neural stem cell (NSC) characteristics, such as proliferation and differentiation, although the underlying molecular mechanisms remain under debate. The present study evaluated the effects of a repeated-dose exposure of environmentally relevant BPA concentrations during the in vitro 3D neural induction of human induced pluripotent stem cells (hiPSCs), emulating a chronic exposure scenario. Firstly, we demonstrated that our model is suitable for NSC differentiation during the early stages of embryonic brain development. Our morphological image analysis showed that BPA exposure at 0.01, 0.1 and 1 µM decreased the average spheroid size by day 21 (D21) of the neural induction, while no effect on cell viability was detected. No alteration to the rate of the neural induction was observed based on the expression of key neural lineage and neuroectodermal transcripts. Quantitative proteomics at D21 revealed several differentially abundant proteins across all BPA-treated groups with important functions in NSC proliferation and maintenance (e.g., FABP7, GPC4, GAP43, Wnt-8B, TPPP3). Additionally, a network analysis demonstrated alterations to the glycolytic pathway, potentially implicating BPA-induced changes to glycolytic signalling in NSC proliferation impairments, as well as the pathophysiology of brain disorders including intellectual disability, autism spectrum disorders, and amyotrophic lateral sclerosis (ALS). This study enhances the current understanding of BPA-related NSC aberrations based mostly on acute, often high dose exposures of rodent in vivo and in vitro models and human GWAS data in a novel human 3D cell-based model with real-life scenario relevant prolonged and low-level exposures, offering further mechanistic insights into the ramifications of BPA exposure on the developing human brain and consequently, later life neurological disorders.
Collapse
Affiliation(s)
- Alex Horánszky
- BioTalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Radwa Elkhateib
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Salvo Danilo Lombardo
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Federica Lamberto
- BioTalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Jörg Menche
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Vlasov I, Filatova E, Slominsky P, Shadrina M. Differential expression of Dusp1 and immediate early response genes in the hippocampus of rats, subjected to forced swim test. Sci Rep 2023; 13:9985. [PMID: 37340011 DOI: 10.1038/s41598-023-36611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
The forced swim test (FST) is widely used to screen for potential antidepressant drugs and treatments. Despite this, the nature of stillness during FST and whether it resembles "depressive-like behavior" are widely debated issues. Furthermore, despite being widely used as a behavioral assay, the effects of the FST on the brain transcriptome are rarely investigated. Therefore, in this study we have investigated changes in the transcriptome of the rat hippocampus 20 min and 24 h after FST exposure. RNA-Seq is performed on the hippocampus tissues of rats 20 min and 24 h after an FST. Differentially expressed genes (DEGs) were identified using limma and used to construct gene interaction networks. Fourteen differentially expressed genes (DEGs) were identified only in the 20-m group. No DEGs were identified 24 h after the FST. These genes were used for Gene Ontology term enrichment and gene-network construction. Based on the constructed gene-interaction networks, we identified a group of DEGs (Dusp1, Fos, Klf2, Ccn1, and Zfp36) that appeared significant based on multiple methods of downstream analysis. Dusp1 appears especially important, as its role in the pathogenesis of depression has been demonstrated both in various animal models of depression and in patients with depressive disorders.
Collapse
Affiliation(s)
- Ivan Vlasov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, .
| | - Elena Filatova
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Petr Slominsky
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Maria Shadrina
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| |
Collapse
|
9
|
Chen G, Ma S, Gong Q, Xie X, Wu P, Guo W, Kang L, Li M, Zhang H, Zhou E, Zhang Y, Rong J, Duan H, Jin L, Xu S, Zhang N, Sun S, Li R, Yao L, Xiang D, Bu L, Liu Z. Assessment of brain imaging and cognitive function in a modified rhesus monkey model of depression. Behav Brain Res 2023; 445:114382. [PMID: 36871905 DOI: 10.1016/j.bbr.2023.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Depression incurs a huge personal and societal burden, impairing cognitive and social functioning and affecting millions of people worldwide. A better understanding of the biological basis of depression could facilitate the development of new and improved therapies. Rodent models have limitations and do not fully recapitulate human disease, hampering clinical translation. Primate models of depression help to bridge this translational gap and facilitate research into the pathophysiology of depression. Here we optimized a protocol for administering unpredictable chronic mild stress (UCMS) to non-human primates and evaluated the influence of UCMS on cognition using the classical Wisconsin General Test Apparatus (WGTA) method. We used resting-state functional MRI to explore changes in amplitude of low-frequency fluctuations and regional homogeneity in rhesus monkeys. Our work highlights that the UCMS paradigm effectively induces behavioral and neurophysiological (functional MRI) changes in monkeys but without significantly impacting cognition. The UCMS protocol requires further optimization in non-human primates to authentically simulate changes in cognition associated with depression.
Collapse
Affiliation(s)
- Guopeng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Simeng Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Peng Wu
- Hubei Topgene Xinsheng Technology Co., Ltd, Wuhan 430000, China
| | - Wenbi Guo
- Department of Rehabilitation Medicine, Central Theater General Hospital, Wuhan 430070, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meng Li
- PET-CT/MRI Center and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Enqi Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuhui Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liuyin Jin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuxian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihong Bu
- PET-CT/MRI Center and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
10
|
Cai T, Zheng SP, Shi X, Yuan LZ, Hu H, Zhou B, Xiao SL, Wang F. Therapeutic effect of fecal microbiota transplantation on chronic unpredictable mild stress-induced depression. Front Cell Infect Microbiol 2022; 12:900652. [PMID: 35967846 PMCID: PMC9366333 DOI: 10.3389/fcimb.2022.900652] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022] Open
Abstract
Background and objective Depression is a complex neuropsychiatric disease with extensive morbidity. Its pathogenesis remains unclear, and it is associated with extremely low rates of cure and complete remission. It is vital to study the pathogenesis of depression to develop effective treatments. This study aimed to explore the therapeutic effects and mechanisms of fecal microbiota transplantation (FMT) for the treatment of depression in rats. Methods Thirty Sprague-Dawley (SD) rats were randomly divided into three groups: control, chronic unpredictable mild stress (CUMS) to model depression, and CUMS+FMT. For the CUMS and CUMS+FMT groups, after CUMS intervention (four weeks), the rats were given normal saline or FMT (once/week for three weeks), respectively. Behavior, colonic motility, 16S rDNA amplicon sequencing, and untargeted metabolomics on fecal samples were compared between the three rat groups. The following markers were analyzed: 5-hydroxytryptamine (5-HT), gamma-aminobutyric acid (GABA), glutamate (Glu), and brain-derived neurotrophic factor (BDNF) levels in the hippocampus; glucagon-like peptide 1 (GLP-1), lipopolysaccharide (LPS), and interleukin (IL)-6 levels in the serum; and GLP-1, GLP-1 receptor (GLP-1R), and serotonin 4 receptor (5-HT4R) levels in colonic tissues. Results FMT improved symptoms of depression and colonic motility in rats exposed to CUMS. The expression levels of 5-HT, GABA, BDNF, and other biochemical indices, significantly differed among the three groups. Meanwhile, the intestinal microbiota in the CUMS+FMT group was more similar to that of the control group with a total of 13 different fecal metabolites. Conclusion FMT exerted antidepressant effects on CUMS-induced depression in rats, and the mechanism involved various neurotransmitters, inflammatory factors, neurotrophic factors, and glucagon-like peptides.
Collapse
Affiliation(s)
- Ting Cai
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shao-peng Zheng
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Shi
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling-zhi Yuan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hai Hu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bai Zhou
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shi-lang Xiao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fen Wang,
| |
Collapse
|
11
|
Lv X, Zhang X, Zhao Q, Li C, Zhang T, Yang X. Acute stress promotes brain oscillations and hippocampal-cortical dialog in emotional processing. Biochem Biophys Res Commun 2022; 598:55-61. [PMID: 35151204 DOI: 10.1016/j.bbrc.2022.01.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Hippocampal-cortical circuit oscillations in local field potential (LFP) represent network-level signals which promotes behavior. Investigating these signals promote our understanding on how the brain process cognition and emotion, and provide further perspectives into electroencephalogram endophenotypes, especially under the pathological state. The physiological adaptive stress responses to threatening stimuli are critical for individuals. The disturbance of stress response may lead to psychiatric disorders such as major depressive disorder (MDD). To quantitatively examine the effects of acute stress on hippocampal-cortical circuit, we recorded LFPs in the hippocampus (HC) and the medial prefrontal cortex (mPFC). We analyzed three major LFP oscillations with their temporal coupling. Consistent with our hypothesis that strengthened communication of hippocampal-cortical circuit may occur in stress adaption, we found that intensive acute stress induced enhanced ripple-delta-spindle coupling. The LFP coupling may facilitate the recruitment of relevant structures in hippocampal-cortical circuit, in response to acute stress, and play a role in emotional encoding migration.
Collapse
Affiliation(s)
- Xin Lv
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaolin Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qian Zhao
- Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, 200030, China; Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Xiangyu Yang
- Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, 200030, China; Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia.
| |
Collapse
|
12
|
Harp SJ, Martini M, Rosenow W, Mesner LD, Johnson H, Farber CR, Rissman EF. Fentanyl-induced acute and conditioned behaviors in two inbred mouse lines: Potential role for Glyoxalase. Physiol Behav 2022; 243:113630. [PMID: 34710466 PMCID: PMC8713069 DOI: 10.1016/j.physbeh.2021.113630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
An increase in opioid-overdose deaths was evident before the COVID-19 pandemic, and has escalated since its onset. Fentanyl, a highly potent synthetic opioid, is the primary driver of these recent trends. The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains. We validated differences in two genes: suppressor APC domain containing 1 (Sapcd1) and Glyoxalase 1 (Glo1), with quantitative PCR on RNA from the nucleus accumbens and prefrontal cortex (). In both regions A/J mice had significantly higher expression of both genes than did C57BL/6 J. In prefrontal cortex, fentanyl treatment decreased Glo1 mRNA. Glyoxalase 1 catalyzes the detoxification of reactive alpha-oxoaldehydes such as glyoxal and methylglyoxal, is associated with anxiety and activity levels, and its inhibition reduces alcohol intake. We suggest that future studies assess the ability of Glo1 and related metabolites to modify opioid intake.
Collapse
Affiliation(s)
- Samuel J. Harp
- Center for Human Health and the Environment Program in Genetics, North Carolina State University, Raleigh, NC USA
| | - Mariangela Martini
- Center for Human Health and the Environment Program in Genetics, North Carolina State University, Raleigh, NC USA
| | - Will Rosenow
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Larry D. Mesner
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Hugh Johnson
- Center for Human Health and the Environment Program in Genetics, North Carolina State University, Raleigh, NC USA
| | - Charles R. Farber
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Emilie F. Rissman
- Center for Human Health and the Environment Program in Genetics, North Carolina State University, Raleigh, NC USA,Corresponding author: Dr. E.F. Rissman, Department of Biological Sciences, Thomas Hall, North Carolina State University, Raleigh, NC 27695, Phone: (919) 515-5807, FAX: (919) 515-
| |
Collapse
|
13
|
Toriumi K, Miyashita M, Suzuki K, Tabata K, Horiuchi Y, Ishida H, Itokawa M, Arai M. Role of glyoxalase 1 in methylglyoxal detoxification-the broad player of psychiatric disorders. Redox Biol 2021; 49:102222. [PMID: 34953453 PMCID: PMC8718652 DOI: 10.1016/j.redox.2021.102222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Methylglyoxal (MG) is a highly reactive α-ketoaldehyde formed endogenously as a byproduct of the glycolytic pathway. To remove MG, various detoxification systems work together in vivo, including the glyoxalase system, which enzymatically degrades MG using glyoxalase 1 (GLO1) and GLO2. Recently, numerous reports have shown that GLO1 expression and MG accumulation in the brain are involved in the pathogenesis of psychiatric disorders, such as anxiety disorder, depression, autism, and schizophrenia. Furthermore, it has been reported that GLO1 inhibitors may be promising drugs for the treatment of psychiatric disorders. In this review, we discuss the recent findings of the effects of altered GLO1 function on mental behavior, especially focusing on results obtained from animal models.
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan; Department of Psychiatry, Takatsuki Hospital, Hachioji, Tokyo, 192-0005, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Graduate School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Science, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroaki Ishida
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
14
|
Toriumi K, Berto S, Koike S, Usui N, Dan T, Suzuki K, Miyashita M, Horiuchi Y, Yoshikawa A, Asakura M, Nagahama K, Lin HC, Sugaya Y, Watanabe T, Kano M, Ogasawara Y, Miyata T, Itokawa M, Konopka G, Arai M. Combined glyoxalase 1 dysfunction and vitamin B6 deficiency in a schizophrenia model system causes mitochondrial dysfunction in the prefrontal cortex. Redox Biol 2021; 45:102057. [PMID: 34198071 PMCID: PMC8253914 DOI: 10.1016/j.redox.2021.102057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Methylglyoxal (MG) is a reactive and cytotoxic α-dicarbonyl byproduct of glycolysis. Our bodies have several bio-defense systems to detoxify MG, including an enzymatic system by glyoxalase (GLO) 1 and GLO2. We identified a subtype of schizophrenia patients with novel mutations in the GLO1 gene that results in reductions of enzymatic activity. Moreover, we found that vitamin B6 (VB6) levels in peripheral blood of the schizophrenia patients with GLO1 dysfunction are significantly lower than that of healthy controls. However, the effects of GLO1 dysfunction and VB6 deficiency on the pathophysiology of schizophrenia remains poorly understood. Here, we generated a novel mouse model for this subgroup of schizophrenia patients by feeding Glo1 knockout mice VB6-deficent diets (KO/VB6(−)) and evaluated the combined effects of GLO1 dysfunction and VB6 deficiency on brain function. KO/VB6(−) mice accumulated homocysteine in plasma and MG in the prefrontal cortex (PFC), hippocampus, and striatum, and displayed behavioral deficits, such as impairments of social interaction and cognitive memory and a sensorimotor deficit in the prepulse inhibition test. Furthermore, we found aberrant gene expression related to mitochondria function in the PFC of the KO/VB6(−) mice by RNA-sequencing and weighted gene co-expression network analysis (WGCNA). Finally, we demonstrated abnormal mitochondrial respiratory function and subsequently enhanced oxidative stress in the PFC of KO/VB6(−) mice in the PFC. These findings suggest that the combination of GLO1 dysfunction and VB6 deficiency may cause the observed behavioral deficits via mitochondrial dysfunction and oxidative stress in the PFC. A combination of Glo1 KO and VB6 deficiency induces MG accumulation in the brain. Glo1 KO/VB6(−) mice exhibit schizophrenia-like behavioral deficits. Gene expression related to mitochondria is impaired in the PFC of the Glo1 KO/VB6(−). Mitochondria in the PFC of the Glo1 KO/VB6(−) mice show respiratory dysfunction. Oxidative stress is enhanced in the PFC of the Glo1 KO/VB6(−).
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Stefano Berto
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Center for Medical Research and Education, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka, 565-0871, Japan
| | - Takashi Dan
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Graduate School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Akane Yoshikawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Mai Asakura
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hsiao-Chun Lin
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Toshio Miyata
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
15
|
Guo Y, Zhang C, Chen X, Liu X, Ye T, Fo Y, Shi S, Qu C, Liang J, Shen B, Yang B. Sigma-1 receptor ligands improves ventricular repolarization-related ion remodeling in rats with major depression disorder. Psychopharmacology (Berl) 2021; 238:487-499. [PMID: 33140216 DOI: 10.1007/s00213-020-05697-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE It has been reported that patients with major depressive disorder (MDD) are prone to developing ventricular arrhythmias. Moreover, the Sigma-1 receptor not only plays a crucial role in MDD but has also been shown to have antiarrhythmic properties. The Sigma-1 receptor is a common receptor related to depression and ventricular arrhythmias. OBJECTIVE We analyzed the effects of the Sigma-1 receptor on depression and ventricular repolarization-related ion remodeling in MDD rats. METHODS MDD was induced in rats by chronic unpredictable mild stress (CUMS), and 28 days later, the rats were subjected to behavior tests. Protein expression was measured by western blotting, and cardiac morphological changes were observed by Masson staining. Electrophysiological measurement of the myocardium was performed with the whole-cell patch-clamp technique. RESULTS Compared with the control rats, the MDD rats exhibited lower transient outward potassium current (Ito) and L-type calcium current (ICa-L) amplitudes. On the other hand, a trend of depolarization of Ito and hyperpolarization of ICa-L was observed in the MDD rats. Thus, we investigated the effect of fluvoxamine, a Sigma-1 receptor agonist, on Ito and ICa-L. Fluvoxamine enhanced Ito and altered its current kinetics, as shown by acceleration of activation and recovery from inactivation. In contrast, fluvoxamine inhibited the Ca2+ by hyperpolarizing the steady-state activation of ICa-L. All these effects were blocked by BD1047. CONCLUSION Taken together, our results indicate that Sigma-1 receptor modulates the functions of Ito and ICa-L to possibly exert antiarrhythmic effects.
Collapse
Affiliation(s)
- Yan Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Xiuhuan Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Tianxin Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Yuhong Fo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Shaobo Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Jinjun Liang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China.
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China.
| |
Collapse
|
16
|
de Almeida GRL, Szczepanik JC, Selhorst I, Schmitz AE, Dos Santos B, Cunha MP, Heinrich IA, de Paula GC, De Bem AF, Leal RB, Dafre AL. Methylglyoxal-Mediated Dopamine Depletion, Working Memory Deficit, and Depression-Like Behavior Are Prevented by a Dopamine/Noradrenaline Reuptake Inhibitor. Mol Neurobiol 2021; 58:735-749. [PMID: 33011857 DOI: 10.1007/s12035-020-02146-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
Abstract
Methylglyoxal (MGO) is an endogenous toxin, mainly produced as a by-product of glycolysis that has been associated to aging, Alzheimer's disease, and inflammation. Cell culture studies reported that MGO could impair the glyoxalase, thioredoxin, and glutathione systems. Thus, we investigated the effect of in vivo MGO administration on these systems, but no major changes were observed in the glyoxalase, thioredoxin, and glutathione systems, as evaluated in the prefrontal cortex and the hippocampus of mice. A previous study from our group indicated that MGO administration produced learning/memory deficits and depression-like behavior. Confirming these findings, the tail suspension test indicated that MGO treatment for 7 days leads to depression-like behavior in three different mice strains. MGO treatment for 12 days induced working memory impairment, as evaluated in the Y maze spontaneous alternation test, which was paralleled by low dopamine and serotonin levels in the cerebral cortex. Increased DARPP32 Thr75/Thr34 phosphorylation ratio was observed, suggesting a suppression of phosphatase 1 inhibition, which may be involved in behavioral responses to MGO. Co-treatment with a dopamine/noradrenaline reuptake inhibitor (bupropion, 10 mg/kg, p.o.) reversed the depression-like behavior and working memory impairment and restored the serotonin and dopamine levels in the cerebral cortex. Overall, the cerebral cortex monoaminergic system appears to be a preferential target of MGO toxicity, a new potential therapeutic target that remains to be addressed.
Collapse
Affiliation(s)
| | - Jozimar Carlos Szczepanik
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ingrid Selhorst
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ariana Ern Schmitz
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Bárbara Dos Santos
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Maurício Peña Cunha
- Biochemistry Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Isabella Aparecida Heinrich
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Gabriela Cristina de Paula
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Andreza Fabro De Bem
- Biochemistry Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Department of Physiological Science, Institute for Biological Sciences, University of Brasília, Brasília, Brazil
| | - Rodrigo Bainy Leal
- Biochemistry Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Alcir Luiz Dafre
- Biochemistry Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
17
|
Barkley-Levenson AM, Lee A, Palmer AA. Genetic and Pharmacological Manipulations of Glyoxalase 1 Mediate Ethanol Withdrawal Seizure Susceptibility in Mice. Brain Sci 2021; 11:127. [PMID: 33478138 PMCID: PMC7835754 DOI: 10.3390/brainsci11010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/03/2022] Open
Abstract
Central nervous system (CNS) hyperexcitability is a clinically significant feature of acute ethanol withdrawal. There is evidence for a genetic contribution to withdrawal severity, but specific genetic risk factors have not been identified. The gene glyoxalase 1 (Glo1) has been previously implicated in ethanol consumption in mice, and GLO1 inhibition can attenuate drinking in mice and rats. Here, we investigated whether genetic and pharmacological manipulations of GLO1 activity can also mediate ethanol withdrawal seizure severity in mice. Mice from two transgenic lines overexpressing Glo1 on different genetic backgrounds (C57BL/6J (B6) and FVB/NJ (FVB)) were tested for handling-induced convulsions (HICs) as a measure of acute ethanol withdrawal. Following an injection of 4 g/kg alcohol, both B6 and FVB mice overexpressing Glo1 showed increases in HICs compared to wild-type littermates, though only the FVB line showed a statistically significant difference. We also administered daily ethanol injections (2 g/kg + 9 mg/kg 4-methylpyrazole) to wild-type B6 mice for 10 days and tested them for HICs on the 10th day following treatment with either a vehicle or a GLO1 inhibitor (S-bromobenzylglutathione cyclopentyl diester (pBBG)). Treatment with pBBG reduced HICs, although this effect was only statistically significant following two 10-day cycles of ethanol exposure and withdrawal. These results provide converging genetic and pharmacological evidence that GLO1 can mediate ethanol withdrawal seizure susceptibility.
Collapse
Affiliation(s)
- Amanda M. Barkley-Levenson
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (A.L.); (A.A.P.)
| | - Amy Lee
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (A.L.); (A.A.P.)
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (A.L.); (A.A.P.)
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Nguyen ET, Selmanovic D, Maltry M, Morano R, Franco-Villanueva A, Estrada CM, Solomon MB. Endocrine stress responsivity and social memory in 3xTg-AD female and male mice: A tale of two experiments. Horm Behav 2020; 126:104852. [PMID: 32949555 DOI: 10.1016/j.yhbeh.2020.104852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
Abstract
Stress confers risk for the development and progression of Alzheimer's disease (AD). Relative to men, women are disproportionately more likely to be diagnosed with this neurodegenerative disease. We hypothesized that sex differences in endocrine stress responsiveness may be a factor in this statistic. To test this hypothesis, we assessed basal and stress-induced corticosterone, social recognition, and coat state deterioration (surrogate for depression-like behavior) in male and female 3xTg-AD mice. Prior to reported amyloid plaque deposition, 3xTg females (4 months), but not 3xTg males, had heightened corticosterone responses to restraint exposure. Subsequently, only 3xTg females (6 months) displayed deficits in social memory concomitant with prominent β-amyloid (Aβ) immunostaining. These data suggest that elevated corticosterone stress responses may precede cognitive impairments in genetically vulnerable females. 3xTg mice of both sexes exhibited coat state deterioration relative to same-sex controls. Corticolimbic glucocorticoid receptor (GR) dysfunction is associated with glucocorticoid hypersecretion and cognitive impairment. Our findings indicate sex- and brain-region specific effects of genotype on hippocampal and amygdala GR protein expression. Because olfactory deficits may impede social recognition, in Experiment 2, we assessed olfaction and found no differences between genotypes. Notably, in this cohort, heightened corticosterone stress responses in 3xTg females was not accompanied by social memory deficits or coat state deterioration. However, coat state deterioration was consistent in 3xTg males. We report consistent heightened stress-induced corticosterone levels and Aβ pathology in female 3xTg-AD mice. However, the behavioral findings illuminate unknown inconsistencies in certain phenotypes in this AD mouse model.
Collapse
Affiliation(s)
- Elizabeth T Nguyen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Din Selmanovic
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Marissa Maltry
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Rachel Morano
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Ana Franco-Villanueva
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Christina M Estrada
- Experimental Psychology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Experimental Psychology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
19
|
Ruan QT, Yazdani N, Reed ER, Beierle JA, Peterson LP, Luttik KP, Szumlinski KK, Johnson WE, Ash PEA, Wolozin B, Bryant CD. 5' UTR variants in the quantitative trait gene Hnrnph1 support reduced 5' UTR usage and hnRNP H protein as a molecular mechanism underlying reduced methamphetamine sensitivity. FASEB J 2020; 34:9223-9244. [PMID: 32401417 DOI: 10.1096/fj.202000092r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
Abstract
We previously identified a 210 kb region on chromosome 11 (50.37-50.58 Mb, mm10) containing two protein-coding genes (Hnrnph1, Rufy1) that was necessary for reduced methamphetamine-induced locomotor activity in C57BL/6J congenic mice harboring DBA/2J polymorphisms. Gene editing of a small deletion in the first coding exon supported Hnrnph1 as a quantitative trait gene. We have since shown that Hnrnph1 mutants also exhibit reduced methamphetamine-induced reward, reinforcement, and dopamine release. However, the quantitative trait variants (QTVs) that modulate Hnrnph1 function at the molecular level are not known. Nine single nucleotide polymorphisms and seven indels distinguish C57BL/6J from DBA/2J within Hnrnph1, including four variants within the 5' untranslated region (UTR). Here, we show that a 114 kb introgressed region containing Hnrnph1 and Rufy1 was sufficient to cause a decrease in MA-induced locomotor activity. Gene-level transcriptome analysis of striatal tissue from 114 kb congenics vs Hnrnph1 mutants identified a nearly perfect correlation of fold-change in expression for those differentially expressed genes that were common to both mouse lines, indicating functionally similar effects on the transcriptome and behavior. Exon-level analysis (including noncoding exons) revealed decreased 5' UTR usage of Hnrnph1 and immunoblot analysis identified a corresponding decrease in hnRNP H protein in 114 kb congenic mice. Molecular cloning of the Hnrnph1 5' UTR containing all four variants (but none of them individually) upstream of a reporter induced a decrease in reporter signal in both HEK293 and N2a cells, thus, identifying a set of QTVs underlying molecular regulation of Hnrnph1.
Collapse
Affiliation(s)
- Qiu T Ruan
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Transformative Training Program in Addiction Science, Boston University School of Medicine, Boston, MA, USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Transformative Training Program in Addiction Science, Boston University School of Medicine, Boston, MA, USA
| | - Eric R Reed
- Ph.D. Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Transformative Training Program in Addiction Science, Boston University School of Medicine, Boston, MA, USA
| | - Lucy P Peterson
- Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Kimberly P Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - William E Johnson
- Department of Medicine, Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Peter E A Ash
- Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin Wolozin
- Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Transformative Training Program in Addiction Science, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
20
|
McMurray KMJ, Vollmer LL, Ahlbrand R, Thomas J, Winter A, Lewkowich IP, Sah R. Immunomodulatory T cell death associated gene-8 (TDAG8) receptor in depression-associated behaviors. Physiol Behav 2019; 209:112598. [PMID: 31271833 DOI: 10.1016/j.physbeh.2019.112598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 12/27/2022]
Abstract
Converging evidence supports neuroimmune factors in depression psychopathology. We previously reported reduced depression-like behavior in immunomodulatory G-protein-coupled receptor, T cell death-associated gene-8 (TDAG8) deficient mice. Here, we expand on those findings by investigating depression- and anxiety-associated behaviors, and cytokine profiles in TDAG8-deficient mice. TDAG8-deficiency reduced depression- and anxiety-associated behaviors in the forced swim test (FST), open-field test and elevated zero maze. Interestingly, cytokine expression, particularly IL-6, was attenuated within hippocampus and spleen in TDAG8-deficient mice following the FST. There were no differences in immune-cell frequencies. Collectively, these data suggest a contributory role of TDAG8 in neuroimmune regulation and depression-associated physiology.
Collapse
Affiliation(s)
- Katherine M J McMurray
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Lauren Larke Vollmer
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rebecca Ahlbrand
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joshua Thomas
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew Winter
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati, Medical Sciences Building, Room 1058B, 231 Albert Sabin Way, Cincinnati, OH 45237, USA
| | - Ian P Lewkowich
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati, Medical Sciences Building, Room 1058B, 231 Albert Sabin Way, Cincinnati, OH 45237, USA; VA Medical Center, Cincinnati, OH 45237, USA
| |
Collapse
|
21
|
Matsuo K, Watanabe T, Takenaka A. Effect of dietary vitamin E on oxidative stress-related gene-mediated differences in anxiety-like behavior in inbred strains of mice. Physiol Behav 2019; 207:64-72. [PMID: 31059718 DOI: 10.1016/j.physbeh.2019.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/29/2019] [Accepted: 04/27/2019] [Indexed: 12/16/2022]
Abstract
It has been reported that the degree of anxiety-like behavior differs between inbred strains of mice, and that this phenomenon was linked to the expression levels of the oxidative stress-related genes glyoxalase 1 (Glo1) and glutathione reductase 1 (Gsr) in the brain. Therefore, we investigated whether antioxidative activity in the brain affects the Glo1 and Gsr mRNA expressions and strain-dependent anxiety-like behavior using mice fed different amounts of vitamin E. First, we measured brain Glo1 and Gsr mRNA levels and evaluated the anxiety-like behaviors presented by C57BL/6J (B6) and DBA/2C (D2) mice. We demonstrated that D2 mice presented both significantly elevated Glo1 and Gsr mRNA levels as well as more prominent anxiety-like behavior in elevated plus-maze and open field tests. Next, we fed mice from these two strains either a control, vitamin E-free, or vitamin E-supplemented diet for four weeks. Plasma, liver, and brain α-tocopherol concentrations changed in a dose-dependent manner. However, neither brain Glo1 and Gsr mRNA levels nor anxiety-like behavior were affected by dietary vitamin E intake. These results demonstrated that while strain-dependent anxiety-like behavior in mice was related to oxidative stress-related gene expression, the regulatory mechanisms for these genes and anxiety-like behaviors were independent of antioxidative activity in the brain. Strain-dependent differences of the anxiety in mice are probably related to the anxiolytic effects of methylglyoxal, a substrate for Glo1 and Gsr.
Collapse
Affiliation(s)
- Keigo Matsuo
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Tasuku Watanabe
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Asako Takenaka
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
22
|
Page CE, Coutellier L. Prefrontal excitatory/inhibitory balance in stress and emotional disorders: Evidence for over-inhibition. Neurosci Biobehav Rev 2019; 105:39-51. [PMID: 31377218 DOI: 10.1016/j.neubiorev.2019.07.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 01/04/2023]
Abstract
Chronic stress-induced emotional disorders like anxiety and depression involve imbalances between the excitatory glutamatergic system and the inhibitory GABAergic system in the prefrontal cortex (PFC). However, the precise nature and trajectory of excitatory/inhibitory (E/I) imbalances in these conditions is not clear, with the literature reporting glutamatergic and GABAergic findings that are at times contradictory and inconclusive. Here we propose and discuss the hypothesis that chronic stress-induced emotional dysfunction involves hypoactivity of the PFC due to increased inhibition. We will also discuss E/I imbalances in the context of sex differences. In this review, we will synthesize research about how glutamatergic and GABAergic systems are perturbed by chronic stress and in related emotional disorders like anxiety and depression and propose ideas for reconciling contradictory findings in support of the hypothesis of over-inhibition. We will also discuss evidence for how aspects of the GABAergic system such as parvalbumin (PV) cells can be targeted therapeutically for reinstating activity and plasticity in the PFC and treating stress-related disorders.
Collapse
Affiliation(s)
- Chloe E Page
- Department of Neuroscience, Ohio State University, Columbus OH, United States
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, Columbus OH, United States; Department of Psychology, Ohio State University, Columbus OH, United States.
| |
Collapse
|
23
|
Tian JS, Meng Y, Wu YF, Zhao L, Xiang H, Jia JP, Qin XM. A novel insight into the underlying mechanism of Baihe Dihuang Tang improving the state of psychological suboptimal health subjects obtained from plasma metabolic profiles and network analysis. J Pharm Biomed Anal 2019; 169:99-110. [DOI: 10.1016/j.jpba.2019.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023]
|
24
|
Perez C, Barkley-Levenson AM, Dick BL, Glatt PF, Martinez Y, Siegel D, Momper JD, Palmer AA, Cohen SM. Metal-Binding Pharmacophore Library Yields the Discovery of a Glyoxalase 1 Inhibitor. J Med Chem 2019; 62:1609-1625. [PMID: 30628789 DOI: 10.1021/acs.jmedchem.8b01868] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anxiety and depression are common, highly comorbid psychiatric diseases that account for a large proportion of worldwide medical disability. Glyoxalase 1 (GLO1) has been identified as a possible target for the treatment of anxiety and depression. GLO1 is a Zn2+-dependent enzyme that isomerizes a hemithioacetal, formed from glutathione and methylglyoxal, to a lactic acid thioester. To develop active inhibitors of GLO1, fragment-based drug discovery was used to identify fragments that could serve as core scaffolds for lead development. After screening a focused library of metal-binding pharmacophores, 8-(methylsulfonylamino)quinoline (8-MSQ) was identified as a hit. Through computational modeling and synthetic elaboration, a potent GLO1 inhibitor was developed with a novel sulfonamide core pharmacophore. A lead compound was demonstrated to penetrate the blood-brain barrier, elevate levels of methylglyoxal in the brain, and reduce depression-like behavior in mice. These findings provide the basis for GLO1 inhibitors to treat depression and related psychiatric illnesses.
Collapse
|
25
|
Yin S, Shao J, Wang X, Yin X, Li W, Gao Y, Velez de-la-Paz OI, Shi H, Li S. Methylene blue exerts rapid neuroprotective effects on lipopolysaccharide-induced behavioral deficits in mice. Behav Brain Res 2019; 356:288-294. [DOI: 10.1016/j.bbr.2018.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 01/01/2023]
|
26
|
Mickey BJ, White AT, Arp AM, Leonardi K, Torres MM, Larson AL, Odell DH, Whittingham SA, Beck MM, Jessop JE, Sakata DJ, Bushnell LA, Pierson MD, Solzbacher D, Kendrick EJ, Weeks HR, Light AR, Light KC, Tadler SC. Propofol for Treatment-Resistant Depression: A Pilot Study. Int J Neuropsychopharmacol 2018; 21:1079-1089. [PMID: 30260415 PMCID: PMC6276046 DOI: 10.1093/ijnp/pyy085] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We hypothesized that propofol, a unique general anesthetic that engages N-methyl-D-aspartate and gamma-aminobutyric acid receptors, has antidepressant properties. This open-label trial was designed to collect preliminary data regarding the feasibility, tolerability, and efficacy of deep propofol anesthesia for treatment-resistant depression. METHODS Ten participants with moderate-to-severe medication-resistant depression (age 18-45 years and otherwise healthy) each received a series of 10 propofol infusions. Propofol was dosed to strongly suppress electroencephalographic activity for 15 minutes. The primary depression outcome was the 24-item Hamilton Depression Rating Scale. Self-rated depression scores were compared with a group of 20 patients who received electroconvulsive therapy. RESULTS Propofol treatments were well tolerated by all subjects. No serious adverse events occurred. Montreal Cognitive Assessment scores remained stable. Hamilton scores decreased by a mean of 20 points (range 0-45 points), corresponding to a mean 58% improvement from baseline (range 0-100%). Six of the 10 subjects met the criteria for response (>50% improvement). Self-rated depression improved similarly in the propofol group and electroconvulsive therapy group. Five of the 6 propofol responders remained well for at least 3 months. In posthoc analyses, electroencephalographic measures predicted clinical response to propofol. CONCLUSIONS These findings demonstrate that high-dose propofol treatment is feasible and well tolerated by individuals with treatment-resistant depression who are otherwise healthy. Propofol may trigger rapid, durable antidepressant effects similar to electroconvulsive therapy but with fewer side effects. Controlled studies are warranted to further evaluate propofol's antidepressant efficacy and mechanisms of action. ClinicalTrials.gov: NCT02935647.
Collapse
Affiliation(s)
- Brian J Mickey
- Department of Psychiatry, University Neuropsychiatric Institute, University of Utah, Salt Lake City, UT
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
- Correspondence: Brian J. Mickey, MD, PhD, 501 Chipeta Way, Salt Lake City, Utah, 84108 ()
| | - Andrea T White
- Department of Psychiatry, University Neuropsychiatric Institute, University of Utah, Salt Lake City, UT
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | - Anna M Arp
- Department of Psychiatry, University Neuropsychiatric Institute, University of Utah, Salt Lake City, UT
| | - Kolby Leonardi
- Department of Psychiatry, University Neuropsychiatric Institute, University of Utah, Salt Lake City, UT
| | - Marina M Torres
- Department of Psychiatry, University Neuropsychiatric Institute, University of Utah, Salt Lake City, UT
| | - Adam L Larson
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | - David H Odell
- Department of Psychiatry, University Neuropsychiatric Institute, University of Utah, Salt Lake City, UT
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | | | - Michael M Beck
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | - Derek J Sakata
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | - Lowry A Bushnell
- Department of Psychiatry, University Neuropsychiatric Institute, University of Utah, Salt Lake City, UT
| | - Matthew D Pierson
- Department of Psychiatry, University Neuropsychiatric Institute, University of Utah, Salt Lake City, UT
| | - Daniela Solzbacher
- Department of Psychiatry, University Neuropsychiatric Institute, University of Utah, Salt Lake City, UT
| | - E Jeremy Kendrick
- Department of Psychiatry, University Neuropsychiatric Institute, University of Utah, Salt Lake City, UT
| | - Howard R Weeks
- Department of Psychiatry, University Neuropsychiatric Institute, University of Utah, Salt Lake City, UT
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | - Alan R Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | - Kathleen C Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | - Scott C Tadler
- Department of Psychiatry, University Neuropsychiatric Institute, University of Utah, Salt Lake City, UT
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| |
Collapse
|
27
|
Barkley-Levenson AM, Lagarda FA, Palmer AA. Glyoxalase 1 (GLO1) Inhibition or Genetic Overexpression Does Not Alter Ethanol's Locomotor Effects: Implications for GLO1 as a Therapeutic Target in Alcohol Use Disorders. Alcohol Clin Exp Res 2018. [PMID: 29532486 DOI: 10.1111/acer.13623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Glyoxalase 1 (GLO1) is an enzyme that metabolizes methylglyoxal (MG), which is a competitive partial agonist at GABAA receptors. Inhibition of GLO1 increases concentrations of MG in the brain and decreases binge-like ethanol (EtOH) drinking. This study assessed whether inhibition of GLO1, or genetic overexpression of Glo1, would also alter the locomotor effects of EtOH, which might explain reduced EtOH consumption following GLO1 inhibition. We used the prototypical GABAA receptor agonist muscimol as a positive control. METHODS Male C57BL/6J mice were pretreated with either the GLO1 inhibitor S-bromobenzylglutathione cyclopentyl diester (pBBG; 7.5 mg/kg; Experiment 1) or muscimol (0.75 mg/kg; Experiment 2), or their corresponding vehicle. We then determined whether locomotor response to a range of EtOH doses (0, 0.5, 1.0, 1.5, 2.0, and 2.5) was altered by either pBBG or muscimol pretreatment. We also examined the locomotor response to a range of EtOH doses in FVB/NJ wild-type and transgenic Glo1 overexpressing mice (Experiment 3). Anxiety-like behavior (time spent in the center of the open field) was assessed in all 3 experiments. RESULTS The EtOH dose-response curve was not altered by pretreatment with pBBG or by transgenic overexpression of Glo1. In contrast, muscimol blunted locomotor stimulation at low EtOH doses and potentiated locomotor sedation at higher EtOH doses. No drug or genotype differences were seen in anxiety-like behavior after EtOH treatment. CONCLUSIONS The dose of pBBG used in this study is within the effective range shown previously to reduce EtOH drinking. Glo1 overexpression has been previously shown to increase EtOH drinking. However, neither manipulation altered the dose-response curve for EtOH's locomotor effects, whereas muscimol appeared to enhance the locomotor sedative effects of EtOH. The present data demonstrate that reduced EtOH drinking caused by GLO1 inhibition is not due to potentiation of EtOH's stimulant or depressant effects.
Collapse
Affiliation(s)
| | - Frances A Lagarda
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
28
|
de Guglielmo G, Conlisk DE, Barkley-Levenson AM, Palmer AA, George O. Inhibition of Glyoxalase 1 reduces alcohol self-administration in dependent and nondependent rats. Pharmacol Biochem Behav 2018; 167:36-41. [PMID: 29505808 PMCID: PMC5866249 DOI: 10.1016/j.pbb.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/01/2018] [Accepted: 03/01/2018] [Indexed: 01/12/2023]
Abstract
Previous studies showed that the glyoxalase 1 (Glo1) gene modulates anxiety-like behavior, seizure susceptibility, depression-like behavior, and alcohol drinking in the drinking-in-the-dark paradigm in nondependent mice. Administration of the small-molecule GLO1 inhibitor S-bromobenzylglutathione cyclopentyl diester (pBBG) decreased alcohol drinking in nondependent mice, suggesting a possible therapeutic strategy. However, the preclinical therapeutic efficacy of pBBG in animal models of alcohol dependence remains to be demonstrated. We tested the effect of pBBG (7.5 and 25 mg/kg) on operant alcohol self-administration in alcohol-dependent and nondependent rats. Wistar rats were trained to self-administer 10% alcohol (v/v) and made dependent by chronic intermittent passive exposure to alcohol vapor for 5 weeks. Pretreatment with pBBG dose-dependently reduced alcohol self-administration in both nondependent and dependent animals, without affecting water self-administration. pBBG treatment was more effective in dependent rats than in nondependent rats. These data extend previous findings that implicated Glo1 in alcohol drinking in nondependent mice by showing even more profound effects in alcohol-dependent rats. These results suggest that the pharmacological inhibition of GLO1 is a relevant therapeutic target for the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Giordano de Guglielmo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Dana E Conlisk
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Abstract
Traditional pharmacological treatments for depression have a delayed therapeutic onset, ranging from several weeks to months, and there is a high percentage of individuals who never respond to treatment. In contrast, ketamine produces rapid-onset antidepressant, anti-suicidal, and anti-anhedonic actions following a single administration to patients with depression. Proposed mechanisms of the antidepressant action of ketamine include N-methyl-D-aspartate receptor (NMDAR) modulation, gamma aminobutyric acid (GABA)-ergic interneuron disinhibition, and direct actions of its hydroxynorketamine (HNK) metabolites. Downstream actions include activation of the mechanistic target of rapamycin (mTOR), deactivation of glycogen synthase kinase-3 and eukaryotic elongation factor 2 (eEF2), enhanced brain-derived neurotrophic factor (BDNF) signaling, and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs). These putative mechanisms of ketamine action are not mutually exclusive and may complement each other to induce potentiation of excitatory synapses in affective-regulating brain circuits, which results in amelioration of depression symptoms. We review these proposed mechanisms of ketamine action in the context of how such mechanisms are informing the development of novel putative rapid-acting antidepressant drugs. Such drugs that have undergone pre-clinical, and in some cases clinical, testing include the muscarinic acetylcholine receptor antagonist scopolamine, GluN2B-NMDAR antagonists (i.e., CP-101,606, MK-0657), (2R,6R)-HNK, NMDAR glycine site modulators (i.e., 4-chlorokynurenine, pro-drug of the glycineB NMDAR antagonist 7-chlorokynurenic acid), NMDAR agonists [i.e., GLYX-13 (rapastinel)], metabotropic glutamate receptor 2/3 (mGluR2/3) antagonists, GABAA receptor modulators, and drugs acting on various serotonin receptor subtypes. These ongoing studies suggest that the future acute treatment of depression will typically occur within hours, rather than months, of treatment initiation.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 934F MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, St. BRB 5-007, 655 W. Baltimore St., Baltimore, MD, 21201, USA, Baltimore, MD, 21201, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 936 MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA
| |
Collapse
|