1
|
Beyer T, Diwan GD, Leonhard T, Dahlke K, Klose F, Stehle IF, Seda M, Bolz S, Woerz F, Russell RB, Jenkins D, Ueffing M, Boldt K. Ciliopathy-associated missense mutations in IFT140 are tolerated by the inherent resilience of the IFT machinery. Mol Cell Proteomics 2025:100916. [PMID: 39880085 DOI: 10.1016/j.mcpro.2025.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/26/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Genotype-phenotype correlations of rare diseases are complicated by low patient number, high phenotype variability and compound heterozygosity. Mutations may cause instability of single proteins, and affect protein complex formation or overall robustness of a specific process in a given cell. Ciliopathies offer an interesting case for studying genotype-phenotype correlations as they have a spectrum of severity and include diverse phenotypes depending on different mutations in the same protein. For instance, mutations in the intraflagellar transport protein IFT140 cause a vast spectrum of ciliopathies ranging from isolated retinal dystrophy to severe skeletal abnormalities and multi-organ diseases such as Mainzer-Saldino and Jeune syndrome. Here, the quantitative effects of 23 missense mutations in IFT140, which forms part of the crucial IFT-A complex of the ciliary machinery, were analyzed using affinity purification coupled to mass spectrometry (AP-MS). A subset of 10 mutations led to a significant and domain-specific reduction in IFT140-IFT-A complex interaction indicating complex formation issues and potentially hampering its molecular function. Knockout of IFT140 led to loss of cilia, as shown before. However, phenotypically only mild effects concerning cilia assembly were observed for two out of four tested IFT140 missense mutations. Therefore, our results demonstrate the utility of AP-MS in discerning pathogenic MMs from polymorphisms, and we postulate that reduced function is tolerated by the evolutionarily highly conserved IFT-A system.
Collapse
Affiliation(s)
- Tina Beyer
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany.
| | - Gaurav D Diwan
- BioQuant, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Tobias Leonhard
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany
| | - Katrin Dahlke
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany
| | - Franziska Klose
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany
| | - Isabel F Stehle
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany
| | - Marian Seda
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, GB
| | - Sylvia Bolz
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany
| | - Franziska Woerz
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany
| | - Robert B Russell
- BioQuant, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Dagan Jenkins
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, GB.
| | - Marius Ueffing
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany.
| | - Karsten Boldt
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany.
| |
Collapse
|
2
|
Chhibbar P, Guha Roy P, Harioudh MK, McGrail DJ, Yang D, Singh H, Hinterleitner R, Gong YN, Yi SS, Sahni N, Sarkar SN, Das J. Uncovering cell-type-specific immunomodulatory variants and molecular phenotypes in COVID-19 using structurally resolved protein networks. Cell Rep 2024; 43:114930. [PMID: 39504244 DOI: 10.1016/j.celrep.2024.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/22/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Immunomodulatory variants that lead to the loss or gain of specific protein interactions often manifest only as organismal phenotypes in infectious disease. Here, we propose a network-based approach to integrate genetic variation with a structurally resolved human protein interactome network to prioritize immunomodulatory variants in COVID-19. We find that, in addition to variants that pass genome-wide significance thresholds, variants at the interface of specific protein-protein interactions, even though they do not meet genome-wide thresholds, are equally immunomodulatory. The integration of these variants with single-cell epigenomic and transcriptomic data prioritizes myeloid and T cell subsets as the most affected by these variants across both the peripheral blood and the lung compartments. Of particular interest is a common coding variant that disrupts the OAS1-PRMT6 interaction and affects downstream interferon signaling. Critically, our framework is generalizable across infectious disease contexts and can be used to implicate immunomodulatory variants that do not meet genome-wide significance thresholds.
Collapse
Affiliation(s)
- Prabal Chhibbar
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Integrative Systems Biology PhD Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Priyamvada Guha Roy
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Human Genetics PhD Program, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Munesh K Harioudh
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno Oncology, Cleveland Clinic, Cleveland, OH, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Donghui Yang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yi-Nan Gong
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Oden Institute for Computational Engineering and Sciences (ICES) and Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX, USA; Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saumendra N Sarkar
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Lacoste J, Haghighi M, Haider S, Reno C, Lin ZY, Segal D, Qian WW, Xiong X, Teelucksingh T, Miglietta E, Shafqat-Abbasi H, Ryder PV, Senft R, Cimini BA, Murray RR, Nyirakanani C, Hao T, McClain GG, Roth FP, Calderwood MA, Hill DE, Vidal M, Yi SS, Sahni N, Peng J, Gingras AC, Singh S, Carpenter AE, Taipale M. Pervasive mislocalization of pathogenic coding variants underlying human disorders. Cell 2024; 187:6725-6741.e13. [PMID: 39353438 PMCID: PMC11568917 DOI: 10.1016/j.cell.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Widespread sequencing has yielded thousands of missense variants predicted or confirmed as disease causing. This creates a new bottleneck: determining the functional impact of each variant-typically a painstaking, customized process undertaken one or a few genes and variants at a time. Here, we established a high-throughput imaging platform to assay the impact of coding variation on protein localization, evaluating 3,448 missense variants of over 1,000 genes and phenotypes. We discovered that mislocalization is a common consequence of coding variation, affecting about one-sixth of all pathogenic missense variants, all cellular compartments, and recessive and dominant disorders alike. Mislocalization is primarily driven by effects on protein stability and membrane insertion rather than disruptions of trafficking signals or specific interactions. Furthermore, mislocalization patterns help explain pleiotropy and disease severity and provide insights on variants of uncertain significance. Our publicly available resource extends our understanding of coding variation in human diseases.
Collapse
Affiliation(s)
- Jessica Lacoste
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Shahan Haider
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Chloe Reno
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Dmitri Segal
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Wesley Wei Qian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xueting Xiong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Tanisha Teelucksingh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | | | - Pearl V Ryder
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Rebecca Senft
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Beth A Cimini
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ryan R Murray
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Chantal Nyirakanani
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gregory G McClain
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Frederick P Roth
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA; Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | | | | | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Beust C, Valdeolivas A, Baptista A, Brière G, Lévy N, Ozisik O, Baudot A. The Molecular Landscape of Premature Aging Diseases Defined by Multilayer Network Exploration. Adv Biol (Weinh) 2024; 8:e2400134. [PMID: 39123285 DOI: 10.1002/adbi.202400134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/26/2024] [Indexed: 08/12/2024]
Abstract
Premature Aging (PA) diseases are rare genetic disorders that mimic some aspects of physiological aging at an early age. Various causative genes of PA diseases have been identified in recent years, providing insights into some dysfunctional cellular processes. However, the identification of PA genes also revealed significant genetic heterogeneity and highlighted the gaps in this understanding of PA-associated molecular mechanisms. Furthermore, many patients remain undiagnosed. Overall, the current lack of knowledge about PA diseases hinders the development of effective diagnosis and therapies and poses significant challenges to improving patient care. Here, a network-based approach to systematically unravel the cellular functions disrupted in PA diseases is presented. Leveraging a network community identification algorithm, it is delved into a vast multilayer network of biological interactions to extract the communities of 67 PA diseases from their 132 associated genes. It is found that these communities can be grouped into six distinct clusters, each reflecting specific cellular functions: DNA repair, cell cycle, transcription regulation, inflammation, cell communication, and vesicle-mediated transport. That these clusters collectively represent the landscape of the molecular mechanisms that are perturbed in PA diseases, providing a framework for better understanding their pathogenesis is proposed. Intriguingly, most clusters also exhibited a significant enrichment in genes associated with physiological aging, suggesting a potential overlap between the molecular underpinnings of PA diseases and natural aging.
Collapse
Affiliation(s)
- Cécile Beust
- Aix Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Alberto Valdeolivas
- Aix Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Anthony Baptista
- Aix Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Galadriel Brière
- Aix Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
- Aix Marseille Univ, CNRS, I2M, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Ozan Ozisik
- Aix Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Anaïs Baudot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
- CNRS, Marseille, France
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| |
Collapse
|
5
|
Banerjee A, Rahaman AI, Mehandale A, Kraikivski P. A perturbation approach for refining Boolean models of cell cycle regulation. PLoS One 2024; 19:e0306523. [PMID: 39240895 PMCID: PMC11379194 DOI: 10.1371/journal.pone.0306523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/19/2024] [Indexed: 09/08/2024] Open
Abstract
Considerable effort is required to build mathematical models of large protein regulatory networks. Utilizing computational algorithms that guide model development can significantly streamline the process and enhance the reliability of the resulting models. In this article, we present a perturbation approach for developing data-centric Boolean models of cell cycle regulation. To evaluate networks, we assign a score based on their steady states and the dynamical trajectories corresponding to the initial conditions. Then, perturbation analysis is used to find new networks with lower scores, in which dynamical trajectories traverse through the correct cell cycle path with high frequency. We apply this method to refine Boolean models of cell cycle regulation in budding yeast and mammalian cells.
Collapse
Affiliation(s)
- Anand Banerjee
- Division of Systems Biology, Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
- VT-Center for the Mathematics of Biosystems, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | - Asif Iqbal Rahaman
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | - Alok Mehandale
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | - Pavel Kraikivski
- Division of Systems Biology, Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
- VT-Center for the Mathematics of Biosystems, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| |
Collapse
|
6
|
Pollet L, Xia Y. Structure-guided Evolutionary Analysis of Interactome Network Rewiring at Single Residue Resolution in Yeasts. J Mol Biol 2024; 436:168641. [PMID: 38844045 DOI: 10.1016/j.jmb.2024.168641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/30/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Protein-protein interactions (PPIs) are known to rewire extensively during evolution leading to lineage-specific and species-specific changes in molecular processes. However, the detailed molecular evolutionary mechanisms underlying interactome network rewiring are not well-understood. Here, we combine high-confidence PPI data, high-resolution three-dimensional structures of protein complexes, and homology-based structural annotation transfer to construct structurally-resolved interactome networks for the two yeasts S. cerevisiae and S. pombe. We then classify PPIs according to whether they are preserved or different between the two yeast species and compare site-specific evolutionary rates of interfacial versus non-interfacial residues for these different categories of PPIs. We find that residues in PPI interfaces evolve significantly more slowly than non-interfacial residues when using lineage-specific measures of evolutionary rate, but not when using non-lineage-specific measures. Furthermore, both lineage-specific and non-lineage-specific evolutionary rate measures can distinguish interfacial residues from non-interfacial residues for preserved PPIs between the two yeasts, but only the lineage-specific measure is appropriate for rewired PPIs. Finally, both lineage-specific and non-lineage-specific evolutionary rate measures are appropriate for elucidating structural determinants of protein evolution for residues outside of PPI interfaces. Overall, our results demonstrate that unlike tertiary structures of single proteins, PPIs and PPI interfaces can be highly volatile in their evolution, thus requiring the use of lineage-specific measures when studying their evolution. These results yield insight into the evolutionary design principles of PPIs and the mechanisms by which interactions are preserved or rewired between species, improving our understanding of the molecular evolution of PPIs and PPI interfaces at the residue level.
Collapse
Affiliation(s)
- Léah Pollet
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada
| | - Yu Xia
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Yagüe-Capilla M, Rudd SG. Understanding the interplay between dNTP metabolism and genome stability in cancer. Dis Model Mech 2024; 17:dmm050775. [PMID: 39206868 PMCID: PMC11381932 DOI: 10.1242/dmm.050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sean G Rudd
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
8
|
Liang H, Zhan X, Wang Y, Maegawa GHB, Zhang H. Development and validation of a new genotype-phenotype correlation for Niemann-Pick disease type C1. J Inherit Metab Dis 2024; 47:317-326. [PMID: 38131230 DOI: 10.1002/jimd.12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Hundreds of NPC1 variants cause highly heterogeneous phenotypes. This study aims to explore the genotype-phenotype correlation of NPC1, especially for missense variants. In a well-characterized cohort, phenotypes are graded into three clinical forms: mild, intermediate, and severe. Missense residue structural location was stratified into three categories: surface, partially, and fully buried. The association of phenotypes with the topography of the amino acid substitution in the protein structure was investigated in our cohort and validated in two reported cohorts. One hundred six unrelated NPC1 patients were enrolled. A significant correlation of genotype-phenotype was found in 81 classified individuals with two or one (the second was null variant) missense variant (p < 0.001): of 25 patients with at least one missense variant of surface (group A), 19 (76%) mild, six (24%) intermediate, and none severe; of 31 cases with at least one missense variant of partially buried without surface variants (group B), 11 (35%) mild, 16 (52%) intermediate, and four (13%) severe; of the remaining 25 patients with two or one buried missense variants (group C), eight (32%) mild, nine (36%) intermediate, and eight (32%) severe. Additionally, 7-ketocholesterol, the biomarker, was lower in group A than in group B (p = 0.024) and group C (p = 0.029). A model was proposed that accurately predicted phenotypes of 72 of 90 (80%), 73 of85 (86%), and 64 of 69 (93%) patients in our cohort, Italian, and UK cohort, respectively. This study proposed a novel genotype-phenotype correlation in NPC1, linking the underlying molecular pathophysiology with clinical phenotype and aiding genetic counseling and evaluation in clinical practice.
Collapse
Affiliation(s)
- Huan Liang
- Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Zhan
- Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gustavo H B Maegawa
- Department of Pediatrics, Metabolism and Genetics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, USA
| | - Huiwen Zhang
- Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Weng C, Faure AJ, Escobedo A, Lehner B. The energetic and allosteric landscape for KRAS inhibition. Nature 2024; 626:643-652. [PMID: 38109937 PMCID: PMC10866706 DOI: 10.1038/s41586-023-06954-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Thousands of proteins have been validated genetically as therapeutic targets for human diseases1. However, very few have been successfully targeted, and many are considered 'undruggable'. This is particularly true for proteins that function via protein-protein interactions-direct inhibition of binding interfaces is difficult and requires the identification of allosteric sites. However, most proteins have no known allosteric sites, and a comprehensive allosteric map does not exist for any protein. Here we address this shortcoming by charting multiple global atlases of inhibitory allosteric communication in KRAS. We quantified the effects of more than 26,000 mutations on the folding of KRAS and its binding to six interaction partners. Genetic interactions in double mutants enabled us to perform biophysical measurements at scale, inferring more than 22,000 causal free energy changes. These energy landscapes quantify how mutations tune the binding specificity of a signalling protein and map the inhibitory allosteric sites for an important therapeutic target. Allosteric propagation is particularly effective across the central β-sheet of KRAS, and multiple surface pockets are genetically validated as allosterically active, including a distal pocket in the C-terminal lobe of the protein. Allosteric mutations typically inhibit binding to all tested effectors, but they can also change the binding specificity, revealing the regulatory, evolutionary and therapeutic potential to tune pathway activation. Using the approach described here, it should be possible to rapidly and comprehensively identify allosteric target sites in many proteins.
Collapse
Affiliation(s)
- Chenchun Weng
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andre J Faure
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Albert Escobedo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- University Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
10
|
Cui H, Srinivasan S, Gao Z, Korkin D. The Extent of Edgetic Perturbations in the Human Interactome Caused by Population-Specific Mutations. Biomolecules 2023; 14:40. [PMID: 38254640 PMCID: PMC11154503 DOI: 10.3390/biom14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/24/2024] Open
Abstract
Until recently, efforts in population genetics have been focused primarily on people of European ancestry. To attenuate this bias, global population studies, such as the 1000 Genomes Project, have revealed differences in genetic variation across ethnic groups. How many of these differences can be attributed to population-specific traits? To answer this question, the mutation data must be linked with functional outcomes. A new "edgotype" concept has been proposed, which emphasizes the interaction-specific, "edgetic", perturbations caused by mutations in the interacting proteins. In this work, we performed systematic in silico edgetic profiling of ~50,000 non-synonymous SNVs (nsSNVs) from the 1000 Genomes Project by leveraging our semi-supervised learning approach SNP-IN tool on a comprehensive set of over 10,000 protein interaction complexes. We interrogated the functional roles of the variants and their impact on the human interactome and compared the results with the pathogenic variants disrupting PPIs in the same interactome. Our results demonstrated that a considerable number of nsSNVs from healthy populations could rewire the interactome. We also showed that the proteins enriched with interaction-disrupting mutations were associated with diverse functions and had implications in a broad spectrum of diseases. Further analysis indicated that distinct gene edgetic profiles among major populations could shed light on the molecular mechanisms behind the population phenotypic variances. Finally, the network analysis revealed that the disease-associated modules surprisingly harbored a higher density of interaction-disrupting mutations from healthy populations. The variation in the cumulative network damage within these modules could potentially account for the observed disparities in disease susceptibility, which are distinctly specific to certain populations. Our work demonstrates the feasibility of a large-scale in silico edgetic study, and reveals insights into the orchestrated play of population-specific mutations in the human interactome.
Collapse
Affiliation(s)
- Hongzhu Cui
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- Chromatography and Mass Spectrometry Division, Thermo Fisher Scientific, San Jose, CA 95134, USA
| | - Suhas Srinivasan
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- Program in Epithelial Biology, Stanford School of Medicine, Stanford, CA 94305, USA
- Center for Personal Dynamic Regulomes, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Ziyang Gao
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Dmitry Korkin
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
11
|
Lacoste J, Haghighi M, Haider S, Lin ZY, Segal D, Reno C, Qian WW, Xiong X, Shafqat-Abbasi H, Ryder PV, Senft R, Cimini BA, Roth FP, Calderwood M, Hill D, Vidal M, Yi SS, Sahni N, Peng J, Gingras AC, Singh S, Carpenter AE, Taipale M. Pervasive mislocalization of pathogenic coding variants underlying human disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556368. [PMID: 37732209 PMCID: PMC10508771 DOI: 10.1101/2023.09.05.556368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Widespread sequencing has yielded thousands of missense variants predicted or confirmed as disease-causing. This creates a new bottleneck: determining the functional impact of each variant - largely a painstaking, customized process undertaken one or a few genes or variants at a time. Here, we established a high-throughput imaging platform to assay the impact of coding variation on protein localization, evaluating 3,547 missense variants of over 1,000 genes and phenotypes. We discovered that mislocalization is a common consequence of coding variation, affecting about one-sixth of all pathogenic missense variants, all cellular compartments, and recessive and dominant disorders alike. Mislocalization is primarily driven by effects on protein stability and membrane insertion rather than disruptions of trafficking signals or specific interactions. Furthermore, mislocalization patterns help explain pleiotropy and disease severity and provide insights on variants of unknown significance. Our publicly available resource will likely accelerate the understanding of coding variation in human diseases.
Collapse
Affiliation(s)
- Jessica Lacoste
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Canada
- These authors contributed equally
| | - Marzieh Haghighi
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- These authors contributed equally
| | - Shahan Haider
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
| | - Dmitri Segal
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Chloe Reno
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Wesley Wei Qian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xueting Xiong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | | | | | - Rebecca Senft
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Frederick P. Roth
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Michael Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - S. Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
| | | | | | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| |
Collapse
|
12
|
Sun YH, Wu YL, Liao BY. Phenotypic heterogeneity in human genetic diseases: ultrasensitivity-mediated threshold effects as a unifying molecular mechanism. J Biomed Sci 2023; 30:58. [PMID: 37525275 PMCID: PMC10388531 DOI: 10.1186/s12929-023-00959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Phenotypic heterogeneity is very common in genetic systems and in human diseases and has important consequences for disease diagnosis and treatment. In addition to the many genetic and non-genetic (e.g., epigenetic, environmental) factors reported to account for part of the heterogeneity, we stress the importance of stochastic fluctuation and regulatory network topology in contributing to phenotypic heterogeneity. We argue that a threshold effect is a unifying principle to explain the phenomenon; that ultrasensitivity is the molecular mechanism for this threshold effect; and discuss the three conditions for phenotypic heterogeneity to occur. We suggest that threshold effects occur not only at the cellular level, but also at the organ level. We stress the importance of context-dependence and its relationship to pleiotropy and edgetic mutations. Based on this model, we provide practical strategies to study human genetic diseases. By understanding the network mechanism for ultrasensitivity and identifying the critical factor, we may manipulate the weak spot to gently nudge the system from an ultrasensitive state to a stable non-disease state. Our analysis provides a new insight into the prevention and treatment of genetic diseases.
Collapse
Affiliation(s)
- Y Henry Sun
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| | - Yueh-Lin Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan
- Division of Nephrology, Department of Internal Medicine, Wei-Gong Memorial Hospital, Miaoli, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institute, Zhunan, Miaoli, Taiwan
| |
Collapse
|
13
|
Junk P, Kiel C. Structure-based prediction of Ras-effector binding affinities and design of "branchegetic" interface mutations. Structure 2023; 31:870-883.e5. [PMID: 37167973 DOI: 10.1016/j.str.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
Ras is a central cellular hub protein controlling multiple cell fates. How Ras interacts with a variety of potential effector proteins is relatively unexplored, with only some key effectors characterized in great detail. Here, we have used homology modeling based on X-ray and AlphaFold2 templates to build structural models for 54 Ras-effector complexes. These models were used to estimate binding affinities using a supervised learning regressor. Furthermore, we systematically introduced Ras "branch-pruning" (or branchegetic) mutations to identify 200 interface mutations that affect the binding energy with at least one of the model structures. The impacts of these branchegetic mutants were integrated into a mathematical model to assess the potential for rewiring interactions at the Ras hub on a systems level. These findings have provided a quantitative understanding of Ras-effector interfaces and their impact on systems properties of a key cellular hub.
Collapse
Affiliation(s)
- Philipp Junk
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland; Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
14
|
Kang J, Seshadri M, Cupp-Sutton KA, Wu S. Toward the analysis of functional proteoforms using mass spectrometry-based stability proteomics. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1186623. [PMID: 39072225 PMCID: PMC11281393 DOI: 10.3389/frans.2023.1186623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional proteomics aims to elucidate biological functions, mechanisms, and pathways of proteins and proteoforms at the molecular level to examine complex cellular systems and disease states. A series of stability proteomics methods have been developed to examine protein functionality by measuring the resistance of a protein to chemical or thermal denaturation or proteolysis. These methods can be applied to measure the thermal stability of thousands of proteins in complex biological samples such as cell lysate, intact cells, tissues, and other biological fluids to measure proteome stability. Stability proteomics methods have been popularly applied to observe stability shifts upon ligand binding for drug target identification. More recently, these methods have been applied to characterize the effect of structural changes in proteins such as those caused by post-translational modifications (PTMs) and mutations, which can affect protein structures or interactions and diversify protein functions. Here, we discussed the current application of a suite of stability proteomics methods, including thermal proteome profiling (TPP), stability of proteomics from rates of oxidation (SPROX), and limited proteolysis (LiP) methods, to observe PTM-induced structural changes on protein stability. We also discuss future perspectives highlighting the integration of top-down mass spectrometry and stability proteomics methods to characterize intact proteoform stability and understand the function of variable protein modifications.
Collapse
Affiliation(s)
- Ji Kang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Meena Seshadri
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Kellye A. Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
15
|
Jackson DB, Racz R, Kim S, Brock S, Burkhart K. Rewiring Drug Research and Development through Human Data-Driven Discovery (HD 3). Pharmaceutics 2023; 15:1673. [PMID: 37376121 PMCID: PMC10303279 DOI: 10.3390/pharmaceutics15061673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
In an era of unparalleled technical advancement, the pharmaceutical industry is struggling to transform data into increased research and development efficiency, and, as a corollary, new drugs for patients. Here, we briefly review some of the commonly discussed issues around this counterintuitive innovation crisis. Looking at both industry- and science-related factors, we posit that traditional preclinical research is front-loading the development pipeline with data and drug candidates that are unlikely to succeed in patients. Applying a first principles analysis, we highlight the critical culprits and provide suggestions as to how these issues can be rectified through the pursuit of a Human Data-driven Discovery (HD3) paradigm. Consistent with other examples of disruptive innovation, we propose that new levels of success are not dependent on new inventions, but rather on the strategic integration of existing data and technology assets. In support of these suggestions, we highlight the power of HD3, through recently published proof-of-concept applications in the areas of drug safety analysis and prediction, drug repositioning, the rational design of combination therapies and the global response to the COVID-19 pandemic. We conclude that innovators must play a key role in expediting the path to a largely human-focused, systems-based approach to drug discovery and research.
Collapse
Affiliation(s)
| | - Rebecca Racz
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (R.R.); (K.B.)
| | - Sarah Kim
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL 32827, USA;
| | | | - Keith Burkhart
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (R.R.); (K.B.)
| |
Collapse
|
16
|
Laval F, Coppin G, Twizere JC, Vidal M. Homo cerevisiae-Leveraging Yeast for Investigating Protein-Protein Interactions and Their Role in Human Disease. Int J Mol Sci 2023; 24:9179. [PMID: 37298131 PMCID: PMC10252790 DOI: 10.3390/ijms24119179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Understanding how genetic variation affects phenotypes represents a major challenge, particularly in the context of human disease. Although numerous disease-associated genes have been identified, the clinical significance of most human variants remains unknown. Despite unparalleled advances in genomics, functional assays often lack sufficient throughput, hindering efficient variant functionalization. There is a critical need for the development of more potent, high-throughput methods for characterizing human genetic variants. Here, we review how yeast helps tackle this challenge, both as a valuable model organism and as an experimental tool for investigating the molecular basis of phenotypic perturbation upon genetic variation. In systems biology, yeast has played a pivotal role as a highly scalable platform which has allowed us to gain extensive genetic and molecular knowledge, including the construction of comprehensive interactome maps at the proteome scale for various organisms. By leveraging interactome networks, one can view biology from a systems perspective, unravel the molecular mechanisms underlying genetic diseases, and identify therapeutic targets. The use of yeast to assess the molecular impacts of genetic variants, including those associated with viral interactions, cancer, and rare and complex diseases, has the potential to bridge the gap between genotype and phenotype, opening the door for precision medicine approaches and therapeutic development.
Collapse
Affiliation(s)
- Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Georges Coppin
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Jean-Claude Twizere
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, 4000 Liège, Belgium
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Ahmed F, Samantasinghar A, Manzoor Soomro A, Kim S, Hyun Choi K. A systematic review of computational approaches to understand cancer biology for informed drug repurposing. J Biomed Inform 2023; 142:104373. [PMID: 37120047 DOI: 10.1016/j.jbi.2023.104373] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Cancer is the second leading cause of death globally, trailing only heart disease. In the United States alone, 1.9 million new cancer cases and 609,360 deaths were recorded for 2022. Unfortunately, the success rate for new cancer drug development remains less than 10%, making the disease particularly challenging. This low success rate is largely attributed to the complex and poorly understood nature of cancer etiology. Therefore, it is critical to find alternative approaches to understanding cancer biology and developing effective treatments. One such approach is drug repurposing, which offers a shorter drug development timeline and lower costs while increasing the likelihood of success. In this review, we provide a comprehensive analysis of computational approaches for understanding cancer biology, including systems biology, multi-omics, and pathway analysis. Additionally, we examine the use of these methods for drug repurposing in cancer, including the databases and tools that are used for cancer research. Finally, we present case studies of drug repurposing, discussing their limitations and offering recommendations for future research in this area.
Collapse
Affiliation(s)
- Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea
| | | | | | - Sejong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| |
Collapse
|
18
|
Green AC, Marttila P, Kiweler N, Chalkiadaki C, Wiita E, Cookson V, Lesur A, Eiden K, Bernardin F, Vallin KSA, Borhade S, Long M, Ghahe EK, Jiménez-Alonso JJ, Jemth AS, Loseva O, Mortusewicz O, Meyers M, Viry E, Johansson AI, Hodek O, Homan E, Bonagas N, Ramos L, Sandberg L, Frödin M, Moussay E, Slipicevic A, Letellier E, Paggetti J, Sørensen CS, Helleday T, Henriksson M, Meiser J. Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells. Nat Metab 2023; 5:642-659. [PMID: 37012496 PMCID: PMC10132981 DOI: 10.1038/s42255-023-00771-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/28/2023] [Indexed: 04/05/2023]
Abstract
Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase-cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a 'folate trap'. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.
Collapse
Affiliation(s)
- Alanna C Green
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Petra Marttila
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Nicole Kiweler
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Christina Chalkiadaki
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Elisée Wiita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Victoria Cookson
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Antoine Lesur
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Kim Eiden
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - François Bernardin
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Karl S A Vallin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- RISE Research Institutes of Sweden, Södertälje, Sweden
| | - Sanjay Borhade
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- RedGlead Discover, Lund, Sweden
| | - Maeve Long
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Elahe Kamali Ghahe
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Julio J Jiménez-Alonso
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Marianne Meyers
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Molecular Disease Mechanisms Group, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elodie Viry
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Annika I Johansson
- Swedish Metabolomics Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Ondřej Hodek
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Evert Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Nadilly Bonagas
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Louise Ramos
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Lars Sandberg
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
| | - Morten Frödin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ana Slipicevic
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- One-carbon Therapeutics AB, Stockholm, Sweden
| | - Elisabeth Letellier
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Molecular Disease Mechanisms Group, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jérôme Paggetti
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Thomas Helleday
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK.
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
19
|
Genetics of mitochondrial diseases: Current approaches for the molecular diagnosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:141-165. [PMID: 36813310 DOI: 10.1016/b978-0-12-821751-1.00011-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a genetically and phenotypically variable set of monogenic disorders. The main characteristic of mitochondrial diseases is a defective oxidative phosphorylation. Both nuclear and mitochondrial DNA encode the approximately 1500 mitochondrial proteins. Since identification of the first mitochondrial disease gene in 1988 a total of 425 genes have been associated with mitochondrial diseases. Mitochondrial dysfunctions can be caused both by pathogenic variants in the mitochondrial DNA or the nuclear DNA. Hence, besides maternal inheritance, mitochondrial diseases can follow all modes of Mendelian inheritance. The maternal inheritance and tissue specificity distinguish molecular diagnostics of mitochondrial disorders from other rare disorders. With the advances made in the next-generation sequencing technology, whole exome sequencing and even whole-genome sequencing are now the established methods of choice for molecular diagnostics of mitochondrial diseases. They reach a diagnostic rate of more than 50% in clinically suspected mitochondrial disease patients. Moreover, next-generation sequencing is delivering a constantly growing number of novel mitochondrial disease genes. This chapter reviews mitochondrial and nuclear causes of mitochondrial diseases, molecular diagnostic methodologies, and their current challenges and perspectives.
Collapse
|
20
|
Helleday T. Mitotic MTH1 Inhibitors in Treatment of Cancer. Cancer Treat Res 2023; 186:223-237. [PMID: 37978139 DOI: 10.1007/978-3-031-30065-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The DNA damage response (DDR) protein MTH1 is sanitising the oxidized dNTP pool and preventing incorporation of oxidative damage into DNA and has an emerging role in mitosis. It is a stress-induced protein and often found to be overexpressed in cancer. Mitotic MTH1 inhibitors arrest cells in mitosis and result in incorporation of oxidative damage into DNA and selective killing of cancer cells. Here, I discuss the leading mitotic MTH1 inhibitor TH1579 (OXC-101, karonudib), now being evaluated in clinical trials, and describe its dual effect on mitosis and incorporation of oxidative DNA damage in cancer cells. I describe why MTH1 inhibitors that solely inhibits the enzyme activity fail to kill cancer cells and discuss if MTH1 is a valid target for cancer treatment. I discuss emerging roles of MTH1 in regulating tubulin polymerisation and mitosis and the necessity of developing the basic science insights along with translational efforts. I also give a perspective on how edgetic perturbation is making target validation difficult in the DDR field.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK.
| |
Collapse
|
21
|
Morotomi-Yano K, Hiromoto Y, Higaki T, Yano KI. Disease-associated H58Y mutation affects the nuclear dynamics of human DNA topoisomerase IIβ. Sci Rep 2022; 12:20627. [PMID: 36450898 PMCID: PMC9712534 DOI: 10.1038/s41598-022-24883-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
DNA topoisomerase II (TOP2) is an enzyme that resolves DNA topological problems and plays critical roles in various nuclear processes. Recently, a heterozygous H58Y substitution in the ATPase domain of human TOP2B was identified from patients with autism spectrum disorder, but its biological significance remains unclear. In this study, we analyzed the nuclear dynamics of TOP2B with H58Y (TOP2B H58Y). Although wild-type TOP2B was highly mobile in the nucleus of a living cell, the nuclear mobility of TOP2B H58Y was markedly reduced, suggesting that the impact of H58Y manifests as low protein mobility. We found that TOP2B H58Y is insensitive to ICRF-187, a TOP2 inhibitor that halts TOP2 as a closed clamp on DNA. When the ATPase activity of TOP2B was compromised, the nuclear mobility of TOP2B H58Y was restored to wild-type levels, indicating the contribution of the ATPase activity to the low nuclear mobility. Analysis of genome-edited cells harboring TOP2B H58Y showed that TOP2B H58Y retains sensitivity to the TOP2 poison etoposide, implying that TOP2B H58Y can undergo at least a part of its catalytic reactions. Collectively, TOP2 H58Y represents a unique example of the relationship between a disease-associated mutation and perturbed protein dynamics.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- grid.274841.c0000 0001 0660 6749Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan
| | - Yukiko Hiromoto
- grid.274841.c0000 0001 0660 6749Faculty of Science, Kumamoto University, Kumamoto, Japan
| | - Takumi Higaki
- grid.274841.c0000 0001 0660 6749Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Ken-ichi Yano
- grid.274841.c0000 0001 0660 6749Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
22
|
Helleday T, Rudd SG. Targeting the DNA damage response and repair in cancer through nucleotide metabolism. Mol Oncol 2022; 16:3792-3810. [PMID: 35583750 PMCID: PMC9627788 DOI: 10.1002/1878-0261.13227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
The exploitation of the DNA damage response and DNA repair proficiency of cancer cells is an important anticancer strategy. The replication and repair of DNA are dependent upon the supply of deoxynucleoside triphosphate (dNTP) building blocks, which are produced and maintained by nucleotide metabolic pathways. Enzymes within these pathways can be promising targets to selectively induce toxic DNA lesions in cancer cells. These same pathways also activate antimetabolites, an important group of chemotherapies that disrupt both nucleotide and DNA metabolism to induce DNA damage in cancer cells. Thus, dNTP metabolic enzymes can also be targeted to refine the use of these chemotherapeutics, many of which remain standard of care in common cancers. In this review article, we will discuss both these approaches exemplified by the enzymes MTH1, MTHFD2 and SAMHD1. © 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Oncology and Metabolism, Weston Park Cancer CentreUniversity of SheffieldUK
| | - Sean G. Rudd
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
23
|
Mondal A, Paul D, Dastidar SG, Saha T, Goswami AM. In silico analyses of Wnt1 nsSNPs reveal structurally destabilizing variants, altered interactions with Frizzled receptors and its deregulation in tumorigenesis. Sci Rep 2022; 12:14934. [PMID: 36056132 PMCID: PMC9440047 DOI: 10.1038/s41598-022-19299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Wnt1 is the first mammalian Wnt gene, which is discovered as proto-oncogene and in human the gene is located on the chromosome 12q13. Mutations in Wnt1 are reported to be associated with various cancers and other human diseases. The structural and functional consequences of most of the non-synonymous SNPs (nsSNPs), present in the human Wnt1 gene, are not known. In the present work, extensive bioinformatics analyses are used to screen 292 nsSNPs of Wnt1 for predicting pathogenic and harmless polymorphisms. We have identified 10 highly deleterious nsSNPs among which 7 are located within the highly conserved areas. These 10 nsSNPs are also predicted to affect the post-translational modifications of Wnt1. Further, structure based stability analyses of these 10 highly deleterious nsSNPs revealed 8 variants as highly destabilizing. These 8 highly destabilizing variants were shown to have high BC score and high RMSIP score from normal mode analyses. Based on the deformation energies, obtained from the normal mode analyses, variants like G169A, G169S, G331R and G331S were found to be unstable. Molecular Dynamics (MD) simulations revealed structural stability and fluctuation of WT Wnt1 and its prioritized variants. RMSD remained fluctuating mostly between 4 and 5 Å and occasionally between 3.5 and 5.5 Å ranges. RMSF in the CTD region (residues 330-360) of the binding pocket were lower compared to that of WT. Studying the impacts of nsSNPs on the binding interface of Wnt1 and seven Frizzled receptors have predicted substitutions which can stabilize or destabilize the binding interface. We have found that Wnt1 and FZD8-CRD is the best docked complex in our study. MD simulation based analyses of wild type Wnt1-FZD8-CRD complex and the 8 prioritized variants revealed that RMSF was higher in the unstructured regions and RMSD remained fluctuating in the region of 5 Å ± 1 Å. We have also observed differential Wnt1 gene expression pattern in normal, tumor and metastatic conditions across different tissues. Wnt1 gene expression was significantly higher in metastatic tissues of lungs, colon and skin; and was significantly lower in metastatic tissues of breast, esophagus and kidney. We have also found that Wnt1 deregulation is associated with survival outcome in patients with gastric and breast cancer. Furthermore, these computationally screened highly deleterious nsSNPs of Wnt1 can be analyzed in population based genetic studies and may help understand the Wnt1 associated diseases.
Collapse
Affiliation(s)
- Amalesh Mondal
- Department of Physiology, Katwa College, Purba Bardhaman, Katwa, West Bengal, 713130, India
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, Kalyani, India
| | - Debarati Paul
- Division of Bioinformatics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Tanima Saha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, Kalyani, India.
| | - Achintya Mohan Goswami
- Department of Physiology, Krishnagar Govt. College, Nadia, Krishnagar, West Bengal, 741101, India.
| |
Collapse
|
24
|
García-Vaquero ML, Gama-Carvalho M, Pinto FR, De Las Rivas J. Biological interacting units identified in human protein networks reveal tissue-functional diversification and its impact on disease. Comput Struct Biotechnol J 2022; 20:3764-3778. [PMID: 35891788 PMCID: PMC9304429 DOI: 10.1016/j.csbj.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022] Open
Abstract
Biological processes are exerted by groups of physically interacting proteins. Proteins display variable biological roles depending on tissue-interactomic context. Tissue-specific protein-protein interaction networks reveal functional diversification. Most disease associated genes/proteins display tissue-specific phenotypes. Protein interaction network analysis is a valuable resource to identify disease genes.
Protein-protein interactions (PPI) play an essential role in the biological processes that occur in the cell. Therefore, the dissection of PPI networks becomes decisive to model functional coordination and predict pathological de-regulation. Cellular networks are dynamic and proteins display varying roles depending on the tissue-interactomic context. Thus, the use of centrality measures in individual proteins fall short to dissect the functional properties of the cell. For this reason, there is a need for more comprehensive, relational, and context-specific ways to analyze the multiple actions of proteins in different cells and identify specific functional assemblies within global biomolecular networks. Under this framework, we define Biological Interacting units (BioInt-U) as groups of proteins that interact physically and are enriched in a common Gene Ontology. A search strategy was applied on 33 tissue-specific (TS) PPI networks to generate BioInt libraries associated with each particular human tissue. The cross-tissue comparison showed that housekeeping assemblies incorporate different proteins and exhibit distinct network properties depending on the tissue. Furthermore, disease genes (DGs) of tissue-associated pathologies preferentially accumulate in units in the expected tissues, which in turn were more central in the TS networks. Overall, the study reveals a tissue-specific functional diversification based on the identification of specific protein units and suggests vulnerabilities specific of each tissue network, which can be applied to refine protein-disease association methods.
Collapse
Key Words
- BiU, BioInt unit
- Biological function
- CO, CORUM complex
- DEg, Differentially expressed gene
- DG, Disease gene
- Disease gene
- GO-BP, Gene Ontology biological process
- HK, Housekeeping
- Housekeeping gene
- PPI network
- PPI, Protein-protein interaction
- Protein module
- SS, Simpson's similarity
- TE, Tissue enriched
- TS, Tissue-specific
- Tissue-specific gene
- UB, Ubiquitous
Collapse
Affiliation(s)
- Marina L García-Vaquero
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Cancer Research Center (CiC-IBMCC, CSIC/USAL and IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | - Margarida Gama-Carvalho
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - Francisco R Pinto
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL and IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| |
Collapse
|
25
|
Pollet L, Lambourne L, Xia Y. Structural Determinants of Yeast Protein-Protein Interaction Interface Evolution at the Residue Level. J Mol Biol 2022; 434:167750. [PMID: 35850298 DOI: 10.1016/j.jmb.2022.167750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 06/09/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022]
Abstract
Interfaces of contact between proteins play important roles in determining the proper structure and function of protein-protein interactions (PPIs). Therefore, to fully understand PPIs, we need to better understand the evolutionary design principles of PPI interfaces. Previous studies have uncovered that interfacial sites are more evolutionarily conserved than other surface protein sites. Yet, little is known about the nature and relative importance of evolutionary constraints in PPI interfaces. Here, we explore constraints imposed by the structure of the microenvironment surrounding interfacial residues on residue evolutionary rate using a large dataset of over 700 structural models of baker's yeast PPIs. We find that interfacial residues are, on average, systematically more conserved than all other residues with a similar degree of total burial as measured by relative solvent accessibility (RSA). Besides, we find that RSA of the residue when the PPI is formed is a better predictor of interfacial residue evolutionary rate than RSA in the monomer state. Furthermore, we investigate four structure-based measures of residue interfacial involvement, including change in RSA upon binding (ΔRSA), number of residue-residue contacts across the interface, and distance from the center or the periphery of the interface. Integrated modeling for evolutionary rate prediction in interfaces shows that ΔRSA plays a dominant role among the four measures of interfacial involvement, with minor, but independent contributions from other measures. These results yield insight into the evolutionary design of interfaces, improving our understanding of the role that structure plays in the molecular evolution of PPIs at the residue level.
Collapse
Affiliation(s)
- Léah Pollet
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada
| | - Luke Lambourne
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Yu Xia
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
26
|
Ozturk K, Carter H. Predicting functional consequences of mutations using molecular interaction network features. Hum Genet 2022; 141:1195-1210. [PMID: 34432150 PMCID: PMC8873243 DOI: 10.1007/s00439-021-02329-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022]
Abstract
Variant interpretation remains a central challenge for precision medicine. Missense variants are particularly difficult to understand as they change only a single amino acid in a protein sequence yet can have large and varied effects on protein activity. Numerous tools have been developed to identify missense variants with putative disease consequences from protein sequence and structure. However, biological function arises through higher order interactions among proteins and molecules within cells. We therefore sought to capture information about the potential of missense mutations to perturb protein interaction networks by integrating protein structure and interaction data. We developed 16 network-based annotations for missense mutations that provide orthogonal information to features classically used to prioritize variants. We then evaluated them in the context of a proven machine-learning framework for variant effect prediction across multiple benchmark datasets to demonstrate their potential to improve variant classification. Interestingly, network features resulted in larger performance gains for classifying somatic mutations than for germline variants, possibly due to different constraints on what mutations are tolerated at the cellular versus organismal level. Our results suggest that modeling variant potential to perturb context-specific interactome networks is a fruitful strategy to advance in silico variant effect prediction.
Collapse
Affiliation(s)
- Kivilcim Ozturk
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
27
|
Faure AJ, Domingo J, Schmiedel JM, Hidalgo-Carcedo C, Diss G, Lehner B. Mapping the energetic and allosteric landscapes of protein binding domains. Nature 2022; 604:175-183. [PMID: 35388192 DOI: 10.1038/s41586-022-04586-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Allosteric communication between distant sites in proteins is central to biological regulation but still poorly characterized, limiting understanding, engineering and drug development1-6. An important reason for this is the lack of methods to comprehensively quantify allostery in diverse proteins. Here we address this shortcoming and present a method that uses deep mutational scanning to globally map allostery. The approach uses an efficient experimental design to infer en masse the causal biophysical effects of mutations by quantifying multiple molecular phenotypes-here we examine binding and protein abundance-in multiple genetic backgrounds and fitting thermodynamic models using neural networks. We apply the approach to two of the most common protein interaction domains found in humans, an SH3 domain and a PDZ domain, to produce comprehensive atlases of allosteric communication. Allosteric mutations are abundant, with a large mutational target space of network-altering 'edgetic' variants. Mutations are more likely to be allosteric closer to binding interfaces, at glycine residues and at specific residues connecting to an opposite surface within the PDZ domain. This general approach of quantifying mutational effects for multiple molecular phenotypes and in multiple genetic backgrounds should enable the energetic and allosteric landscapes of many proteins to be rapidly and comprehensively mapped.
Collapse
Affiliation(s)
- Andre J Faure
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Júlia Domingo
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,New York Genome Center (NYGC), New York, NY, USA
| | - Jörn M Schmiedel
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cristina Hidalgo-Carcedo
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Guillaume Diss
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Ben Lehner
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
28
|
Sharifi Tabar M, Francis H, Yeo D, Bailey CG, Rasko JEJ. Mapping oncogenic protein interactions for precision medicine. Int J Cancer 2022; 151:7-19. [PMID: 35113472 PMCID: PMC9306658 DOI: 10.1002/ijc.33954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
Normal protein‐protein interactions (normPPIs) occur with high fidelity to regulate almost every physiological process. In cancer, this highly organised and precisely regulated network is disrupted, hijacked or reprogrammed resulting in oncogenic protein‐protein interactions (oncoPPIs). OncoPPIs, which can result from genomic alterations, are a hallmark of many types of cancers. Recent technological advances in the field of mass spectrometry (MS)‐based interactomics, structural biology and drug discovery have prompted scientists to identify and characterise oncoPPIs. Disruption of oncoPPI interfaces has become a major focus of drug discovery programs and has resulted in the use of PPI‐specific drugs clinically. However, due to several technical hurdles, studies to build a reference oncoPPI map for various cancer types have not been undertaken. Therefore, there is an urgent need for experimental workflows to overcome the existing challenges in studying oncoPPIs in various cancers and to build comprehensive reference maps. Here, we discuss the important hurdles for characterising oncoPPIs and propose a three‐phase multidisciplinary workflow to identify and characterise oncoPPIs. Systematic identification of cancer‐type‐specific oncogenic interactions will spur new opportunities for PPI‐focused drug discovery projects and precision medicine.
Collapse
Affiliation(s)
- Mehdi Sharifi Tabar
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Habib Francis
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Dannel Yeo
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia.,Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia.,Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
29
|
The properties of human disease mutations at protein interfaces. PLoS Comput Biol 2022; 18:e1009858. [PMID: 35120134 PMCID: PMC8849535 DOI: 10.1371/journal.pcbi.1009858] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/16/2022] [Accepted: 01/24/2022] [Indexed: 12/27/2022] Open
Abstract
The assembly of proteins into complexes and their interactions with other biomolecules are often vital for their biological function. While it is known that mutations at protein interfaces have a high potential to be damaging and cause human genetic disease, there has been relatively little consideration for how this varies between different types of interfaces. Here we investigate the properties of human pathogenic and putatively benign missense variants at homomeric (isologous and heterologous), heteromeric, DNA, RNA and other ligand interfaces, and at different regions in proteins with respect to those interfaces. We find that different types of interfaces vary greatly in their propensity to be associated with pathogenic mutations, with homomeric heterologous and DNA interfaces being particularly enriched in disease. We also find that residues that do not directly participate in an interface, but are close in three-dimensional space, show a significant disease enrichment. Finally, we observe that mutations at different types of interfaces tend to have distinct property changes when undergoing amino acid substitutions associated with disease, and that this is linked to substantial variability in their identification by computational variant effect predictors. Nearly all proteins interact with other molecules as part of their biological function. For example, proteins can interact with other copies of the same type of protein, with different proteins, with DNA, or with small ligand molecules. Many mutations at protein interfaces, the regions of proteins that interact with other molecules, are known to cause human genetic disease. In this study, we first investigate how different types of protein interfaces have different tendencies to be associated with disease. We also show that the closer a mutation is to an interface, the more likely it is to cause disease. Finally, we study how mutations at different types of interfaces tend to be associated with different changes in amino acid properties, which appears to influence our ability to computationally predict the effects of mutations. Ultimately, we hope that consideration of protein interface properties will eventually improve our ability to identify new disease-causing mutations.
Collapse
|
30
|
Kunowska N, Stelzl U. Decoding the cellular effects of genetic variation through interaction proteomics. Curr Opin Chem Biol 2022; 66:102100. [PMID: 34801969 DOI: 10.1016/j.cbpa.2021.102100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022]
Abstract
It is often unclear how genetic variation translates into cellular phenotypes, including how much of the coding variation can be recovered in the proteome. Proteogenomic analyses of heterogenous cell lines revealed that the genetic differences impact mostly the abundance and stoichiometry of protein complexes, with the effects propagating post-transcriptionally via protein interactions onto other subunits. Conversely, large scale binary interaction analyses of missense variants revealed that loss of interaction is widespread and caused by about 50% disease-associated mutations, while deep scanning mutagenesis of binary interactions identified thousands of interaction-deficient variants per interaction. The idea that phenotypes arise from genetic variation through protein-protein interaction is therefore substantiated by both forward and reverse interaction proteomics. With improved methodologies, these two approaches combined can close the knowledge gap between nucleotide sequence variation and its functional consequences on the cellular proteome.
Collapse
Affiliation(s)
- Natalia Kunowska
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Austria
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Austria; BioTechMed-Graz, Austria; Field of Excellence BioHealth - University of Graz, Austria.
| |
Collapse
|
31
|
Maudsley S, Leysen H, van Gastel J, Martin B. Systems Pharmacology: Enabling Multidimensional Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022:725-769. [DOI: 10.1016/b978-0-12-820472-6.00017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Anand D, Manoharan S, Iyyappan OR, Anand S, Raja K. Extracting Significant Comorbid Diseases from MeSH Index of PubMed. Methods Mol Biol 2022; 2496:283-299. [PMID: 35713870 DOI: 10.1007/978-1-0716-2305-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Text mining is an important research area to be explored in terms of understanding disease associations and have an insight in disease comorbidities. The reason for comorbid occurrence in any patient may be genetic or molecular interference from any other processes. Comorbidity and multimorbidity may be technically different, yet still are inseparable in studies. They have overlapping nature of associations and hence can be integrated for a more rational approach. The association rule generally used to determine comorbidity may also be helpful in novel knowledge prediction or may even serve as an important tool of assessment in surgical cases. Another approach of interest may be to utilize biological vocabulary resources like UMLS/MeSH across a patient health information and analyze the interrelationship between different health conditions. The protocol presented here can be utilized for understanding the disease associations and analyze at an extensive level.
Collapse
Affiliation(s)
- Dheepa Anand
- Department of Pharmacology, Cheran College of Pharmacy, Coimbatore, Tamilnadu, India
| | - Sharanya Manoharan
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai, Tamilnadu, India
| | - Oviya Ramalakshmi Iyyappan
- Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai, Tamilnadu, India
| | - Sadhanha Anand
- Department of Biomedical Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India
| | - Kalpana Raja
- Regenerative Biology, The Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
33
|
Dubé AK, Dandage R, Dibyachintan S, Dionne U, Després PC, Landry CR. Deep Mutational Scanning of Protein-Protein Interactions Between Partners Expressed from Their Endogenous Loci In Vivo. Methods Mol Biol 2022; 2477:237-259. [PMID: 35524121 DOI: 10.1007/978-1-0716-2257-5_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deep mutational scanning (DMS) generates mutants of a protein of interest in a comprehensive manner. CRISPR-Cas9 technology enables large-scale genome editing with high efficiency. Using both DMS and CRISPR-Cas9 therefore allows us to investigate the effects of thousands of mutations inserted directly in the genome. Combined with protein-fragment complementation assay (PCA), which enables the quantitative measurement of protein-protein interactions (PPIs) in vivo, these methods allow for the systematic assessment of the effects of mutations on PPIs in living cells. Here, we describe a method leveraging DMS, CRISPR-Cas9, and PCA to study the effect of point mutations on PPIs mediated by protein domains in yeast.
Collapse
Affiliation(s)
- Alexandre K Dubé
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada.
- PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Département de Biologie, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada.
| | - Rohan Dandage
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada
- PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biologie, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada
| | - Soham Dibyachintan
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada
- PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC, Canada
- Département de Biologie, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IIT), Powai, Mumbai, Maharashtra, India
| | - Ugo Dionne
- PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec, Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Philippe C Després
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada
- PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Christian R Landry
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada.
- PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Département de Biologie, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
34
|
Vazquez M, Pons T. Annotating Cancer-Related Variants at Protein-Protein Interface with Structure-PPi. Methods Mol Biol 2022; 2493:315-330. [PMID: 35751824 DOI: 10.1007/978-1-0716-2293-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A comprehensive analysis of germline and somatic variants requires complex computational approaches that combine next-generation sequencing (NGS)-based omics data with curated annotations from public repositories. Here, we describe Structure-PPi, which facilitates the analysis of cancer-related variants onto protein 3D structures, interaction interfaces, and other important functional sites (i.e., catalytic, ligand-binding, posttranslational modification). Our approach relies on features extracted from Interactome3D, UniProtKB, InterPro, APPRIS, dbNSFP, and COSMIC databases and provides complementary information to pathogenicity prediction methods. Thus, Structure-PPi helps in the discrimination of false-positive predictions and adds both mechanistic and biological insights into the role of variants in a given cancer. An online version of the tools is available at https://rbbt.bsc.es/StructurePPI/ .
Collapse
Affiliation(s)
- Miguel Vazquez
- Genome Informatics Unit, Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain.
| | - Tirso Pons
- Department of Immunology and Oncology, National Center for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| |
Collapse
|
35
|
Chen S, Liu Y, Zhang Y, Wierbowski SD, Lipkin SM, Wei X, Yu H. A full-proteome, interaction-specific characterization of mutational hotspots across human cancers. Genome Res 2022; 32:135-149. [PMID: 34963661 PMCID: PMC8744679 DOI: 10.1101/gr.275437.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
Rapid accumulation of cancer genomic data has led to the identification of an increasing number of mutational hotspots with uncharacterized significance. Here we present a biologically informed computational framework that characterizes the functional relevance of all 1107 published mutational hotspots identified in approximately 25,000 tumor samples across 41 cancer types in the context of a human 3D interactome network, in which the interface of each interaction is mapped at residue resolution. Hotspots reside in network hub proteins and are enriched on protein interaction interfaces, suggesting that alteration of specific protein-protein interactions is critical for the oncogenicity of many hotspot mutations. Our framework enables, for the first time, systematic identification of specific protein interactions affected by hotspot mutations at the full proteome scale. Furthermore, by constructing a hotspot-affected network that connects all hotspot-affected interactions throughout the whole-human interactome, we uncover genome-wide relationships among hotspots and implicate novel cancer proteins that do not harbor hotspot mutations themselves. Moreover, applying our network-based framework to specific cancer types identifies clinically significant hotspots that can be used for prognosis and therapy targets. Overall, we show that our framework bridges the gap between the statistical significance of mutational hotspots and their biological and clinical significance in human cancers.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Yuan Liu
- Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Yingying Zhang
- Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Shayne D Wierbowski
- Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Steven M Lipkin
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Xiaomu Wei
- Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
36
|
Leysen H, Walter D, Christiaenssen B, Vandoren R, Harputluoğlu İ, Van Loon N, Maudsley S. GPCRs Are Optimal Regulators of Complex Biological Systems and Orchestrate the Interface between Health and Disease. Int J Mol Sci 2021; 22:ijms222413387. [PMID: 34948182 PMCID: PMC8708147 DOI: 10.3390/ijms222413387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023] Open
Abstract
GPCRs arguably represent the most effective current therapeutic targets for a plethora of diseases. GPCRs also possess a pivotal role in the regulation of the physiological balance between healthy and pathological conditions; thus, their importance in systems biology cannot be underestimated. The molecular diversity of GPCR signaling systems is likely to be closely associated with disease-associated changes in organismal tissue complexity and compartmentalization, thus enabling a nuanced GPCR-based capacity to interdict multiple disease pathomechanisms at a systemic level. GPCRs have been long considered as controllers of communication between tissues and cells. This communication involves the ligand-mediated control of cell surface receptors that then direct their stimuli to impact cell physiology. Given the tremendous success of GPCRs as therapeutic targets, considerable focus has been placed on the ability of these therapeutics to modulate diseases by acting at cell surface receptors. In the past decade, however, attention has focused upon how stable multiprotein GPCR superstructures, termed receptorsomes, both at the cell surface membrane and in the intracellular domain dictate and condition long-term GPCR activities associated with the regulation of protein expression patterns, cellular stress responses and DNA integrity management. The ability of these receptorsomes (often in the absence of typical cell surface ligands) to control complex cellular activities implicates them as key controllers of the functional balance between health and disease. A greater understanding of this function of GPCRs is likely to significantly augment our ability to further employ these proteins in a multitude of diseases.
Collapse
Affiliation(s)
- Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Bregje Christiaenssen
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Romi Vandoren
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
- Department of Chemistry, Middle East Technical University, Çankaya, Ankara 06800, Turkey
| | - Nore Van Loon
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
- Correspondence:
| |
Collapse
|
37
|
Weiskittel TM, Ung CY, Correia C, Zhang C, Li H. De novo individualized disease modules reveal the synthetic penetrance of genes and inform personalized treatment regimens. Genome Res 2021; 32:124-134. [PMID: 34876496 PMCID: PMC8744682 DOI: 10.1101/gr.275889.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/30/2021] [Indexed: 12/04/2022]
Abstract
Current understandings of individual disease etiology and therapeutics are limited despite great need. To fill the gap, we propose a novel computational pipeline that collects potent disease gene cooperative pathways to envision individualized disease etiology and therapies. Our algorithm constructs individualized disease modules de novo, which enables us to elucidate the importance of mutated genes in specific patients and to understand the synthetic penetrance of these genes across patients. We reveal that importance of the notorious cancer drivers TP53 and PIK3CA fluctuate widely across breast cancers and peak in tumors with distinct numbers of mutations and that rarely mutated genes such as XPO1 and PLEKHA1 have high disease module importance in specific individuals. Furthermore, individualized module disruption enables us to devise customized singular and combinatorial target therapies that were highly varied across patients, showing the need for precision therapeutics pipelines. As the first analysis of de novo individualized disease modules, we illustrate the power of individualized disease modules for precision medicine by providing deep novel insights on the activity of diseased genes in individuals.
Collapse
Affiliation(s)
- Taylor M Weiskittel
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Choong Y Ung
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Cristina Correia
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Cheng Zhang
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| |
Collapse
|
38
|
Identification of discriminative gene-level and protein-level features associated with pathogenic gain-of-function and loss-of-function variants. Am J Hum Genet 2021; 108:2301-2318. [PMID: 34762822 DOI: 10.1016/j.ajhg.2021.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying whether a given genetic mutation results in a gene product with increased (gain-of-function; GOF) or diminished (loss-of-function; LOF) activity is an important step toward understanding disease mechanisms because they may result in markedly different clinical phenotypes. Here, we generated an extensive database of documented germline GOF and LOF pathogenic variants by employing natural language processing (NLP) on the available abstracts in the Human Gene Mutation Database. We then investigated various gene- and protein-level features of GOF and LOF variants and applied machine learning and statistical analyses to identify discriminative features. We found that GOF variants were enriched in essential genes, for autosomal-dominant inheritance, and in protein binding and interaction domains, whereas LOF variants were enriched in singleton genes, for protein-truncating variants, and in protein core regions. We developed a user-friendly web-based interface that enables the extraction of selected subsets from the GOF/LOF database by a broad set of annotated features and downloading of up-to-date versions. These results improve our understanding of how variants affect gene/protein function and may ultimately guide future treatment options.
Collapse
|
39
|
Network-based protein-protein interaction prediction method maps perturbations of cancer interactome. PLoS Genet 2021; 17:e1009869. [PMID: 34727106 PMCID: PMC8610286 DOI: 10.1371/journal.pgen.1009869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/23/2021] [Accepted: 10/09/2021] [Indexed: 01/09/2023] Open
Abstract
The perturbations of protein-protein interactions (PPIs) were found to be the main cause of cancer. Previous PPI prediction methods which were trained with non-disease general PPI data were not compatible to map the PPI network in cancer. Therefore, we established a novel cancer specific PPI prediction method dubbed NECARE, which was based on relational graph convolutional network (R-GCN) with knowledge-based features. It achieved the best performance with a Matthews correlation coefficient (MCC) = 0.84±0.03 and an F1 = 91±2% compared with other methods. With NECARE, we mapped the cancer interactome atlas and revealed that the perturbations of PPIs were enriched on 1362 genes, which were named cancer hub genes. Those genes were found to over-represent with mutations occurring at protein-macromolecules binding interfaces. Furthermore, over 56% of cancer treatment-related genes belonged to hub genes and they were significantly related to the prognosis of 32 types of cancers. Finally, by coimmunoprecipitation, we confirmed that the NECARE prediction method was highly reliable with a 90% accuracy. Overall, we provided the novel network-based cancer protein-protein interaction prediction method and mapped the perturbation of cancer interactome. NECARE is available at: https://github.com/JiajunQiu/NECARE.
Collapse
|
40
|
Hollander M, Do T, Will T, Helms V. Detecting Rewiring Events in Protein-Protein Interaction Networks Based on Transcriptomic Data. FRONTIERS IN BIOINFORMATICS 2021; 1:724297. [PMID: 36303788 PMCID: PMC9581068 DOI: 10.3389/fbinf.2021.724297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Proteins rarely carry out their cellular functions in isolation. Instead, eukaryotic proteins engage in about six interactions with other proteins on average. The aggregated protein interactome of an organism forms a “hairy ball”-type protein-protein interaction (PPI) network. Yet, in a typical human cell, only about half of all proteins are expressed at a particular time. Hence, it has become common practice to prune the full PPI network to the subset of expressed proteins. If RNAseq data is available, one can further resolve the specific protein isoforms present in a cell or tissue. Here, we review various approaches, software tools and webservices that enable users to construct context-specific or tissue-specific PPI networks and how these are rewired between two cellular conditions. We illustrate their different functionalities on the example of the interactions involving the human TNR6 protein. In an outlook, we describe how PPI networks may be integrated with epigenetic data or with data on the activity of splicing factors.
Collapse
|
41
|
Ghadie M, Xia Y. Mutation Edgotype Drives Fitness Effect in Human. FRONTIERS IN BIOINFORMATICS 2021; 1:690769. [PMID: 36303776 PMCID: PMC9581054 DOI: 10.3389/fbinf.2021.690769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022] Open
Abstract
Missense mutations are known to perturb protein-protein interaction networks (known as interactome networks) in different ways. However, it remains unknown how different interactome perturbation patterns (“edgotypes”) impact organismal fitness. Here, we estimate the fitness effect of missense mutations with different interactome perturbation patterns in human, by calculating the fractions of neutral and deleterious mutations that do not disrupt PPIs (“quasi-wild-type”), or disrupt PPIs either by disrupting the binding interface (“edgetic”) or by disrupting overall protein stability (“quasi-null”). We first map pathogenic mutations and common non-pathogenic mutations onto homology-based three-dimensional structural models of proteins and protein-protein interactions in human. Next, we perform structure-based calculations to classify each mutation as either quasi-wild-type, edgetic, or quasi-null. Using our predicted as well as experimentally determined interactome perturbation patterns, we estimate that >∼40% of quasi-wild-type mutations are effectively neutral and the remaining are mostly mildly deleterious, that >∼75% of edgetic mutations are only mildly deleterious, and that up to ∼75% of quasi-null mutations may be strongly detrimental. These estimates are the first such estimates of fitness effect for different network perturbation patterns in any interactome. Our results suggest that while mutations that do not disrupt the interactome tend to be effectively neutral, the majority of human PPIs are under strong purifying selection and the stability of most human proteins is essential to human life.
Collapse
|
42
|
Grillo E, Ravelli C, Corsini M, Zammataro L, Mitola S. Protein domain-based approaches for the identification and prioritization of therapeutically actionable cancer variants. Biochim Biophys Acta Rev Cancer 2021; 1876:188614. [PMID: 34403770 DOI: 10.1016/j.bbcan.2021.188614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/04/2023]
Abstract
The tremendous number of cancer variants that can be detected by NGS analyses has required the development of computational approaches to prioritize mutations on the basis of their biological and clinical significance. Standard strategies take a gene-centric approach to the problem, allowing exclusively the identification of highly frequent variants. On the contrary, protein domain (PD)-based approaches allow to identify functionally relevant low frequency variants by searching for mutations that recur on analogous residues across homologous proteins (i.e. containing the same PD). Such approaches enable to transfer information about the effects and druggability from one known mutation to unknown ones. Here we describe how PD-based strategies work, and discuss how they could be exploited for mutation prioritization. The principle that mutations clustered on specific residues of PDs have the same functional consequences and are therapeutically actionable in a similar manner could help the choice of patient-specific targeted drugs, eventually improving the management of cancer patients.
Collapse
Affiliation(s)
- Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Zammataro
- Division of Artificial Intelligence Systems for Immunoinformatics, Kiromic BioPharma, Inc., Houston, USA
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
43
|
Moesslacher CS, Kohlmayr JM, Stelzl U. Exploring absent protein function in yeast: assaying post translational modification and human genetic variation. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:164-183. [PMID: 34395585 PMCID: PMC8329848 DOI: 10.15698/mic2021.08.756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023]
Abstract
Yeast is a valuable eukaryotic model organism that has evolved many processes conserved up to humans, yet many protein functions, including certain DNA and protein modifications, are absent. It is this absence of protein function that is fundamental to approaches using yeast as an in vivo test system to investigate human proteins. Functionality of the heterologous expressed proteins is connected to a quantitative, selectable phenotype, enabling the systematic analyses of mechanisms and specificity of DNA modification, post-translational protein modifications as well as the impact of annotated cancer mutations and coding variation on protein activity and interaction. Through continuous improvements of yeast screening systems, this is increasingly carried out on a global scale using deep mutational scanning approaches. Here we discuss the applicability of yeast systems to investigate absent human protein function with a specific focus on the impact of protein variation on protein-protein interaction modulation.
Collapse
Affiliation(s)
- Christina S Moesslacher
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Johanna M Kohlmayr
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| |
Collapse
|
44
|
Nissa MU, Jiang ZX, Zheng GD, Zou SM. Selection of functional EPHB2 genotypes from ENU mutated grass carp treated with GCRV. BMC Genomics 2021; 22:516. [PMID: 34233620 PMCID: PMC8265083 DOI: 10.1186/s12864-021-07858-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background N-ethyl-N-nitrosourea (ENU) mutagenesis is a useful method for the genetic engineering of plants, and the production of functional mutants in animal models including mice and zebrafish. Grass carp reovirus (GCRV) is a haemorrhagic disease of grass carp which has caused noteworthy losses in fingerlings over the last few years. To overcome this problem, we used ENU mutant grass carp in an attempt to identify functional resistance genes for future hereditary rearing projects in grass carp. Results This study used ENU-mutated grass carp to identify genetic markers associated with resistance to the haemorrhagic disease caused by GCRV. Bulked segregant analysis (BSA) was performed on two homozygous gynogenetic ENU grass carp groups who were susceptible or resistant to GCRV. This analysis identified 466,162 SNPs and 197,644 InDels within the genomes of these mixed pools with a total of 170 genes annotated in the associated region, including 49 genes with non-synonymous mutations at SNP sites and 25 genes with frame shift mutations at InDel sites. Of these 170 mutated genes, 5 randomly selected immune-related genes were shown to be more strongly expressed in the resistant group as compared to the susceptible animals. In addition, we found that one immune-related gene, EPHB2, presented with two heterozygous SNP mutations which altered the animal’s responded to GCRV disease. These SNPs were found in the intron region of EPHB2 at positions 5859 (5859G > A) and 5968 (5968G > A) and were significantly (p = 0.002, 0.003) associated with resistance to GCRV. These SNP sites were also shown to correlate with the GCRV-resistant phenotype in these ENU grass carp. We also evaluated the mortality of the different ENU fish genotypes in response to GCRV and the SNPs in EPHB2. The outcomes of these evaluations will be useful in future selections of GCRV-resistant genes for genetic breeding in grass carp. Conclusion Our results provide a proof of concept for the application of BSA-sequence analysis in detecting genes responsible for specific functional genotypes and may help to develop better methods for marker-assisted selection, especially for disease resistance in response to GCRV. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07858-x.
Collapse
Affiliation(s)
- Meher Un Nissa
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhu-Xiang Jiang
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guo-Dong Zheng
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China. .,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China. .,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
45
|
Berger CM, Landry CR. Yeast proteins do not practice social distancing as species hybridize. Curr Genet 2021; 67:755-759. [PMID: 33948708 PMCID: PMC8096128 DOI: 10.1007/s00294-021-01188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
With the current COVID-19 pandemic, we all realized how important interactions are. Interactions are everywhere. At the cellular level, protein interactions play a key role and their ensemble, also called interactome, is often referred as the basic building blocks of life. Given its importance, the maintenance of the integrity of the interactome is a real challenge in the cell. Many events during evolution can disrupt interactomes and potentially result in different characteristics for the organisms. However, the molecular underpinnings of changes in interactions at the cellular level are still largely unexplored. Among the perturbations, hybridization puts in contact two different interactomes, which may lead to many changes in the protein interaction network of the hybrid, including gains and losses of interactions. We recently investigated the fate of the interactomes after hybridization between yeast species using a comparative proteomics approach. A large-scale conservation of the interactions was observed in hybrids, but we also noticed the presence of proteostasis-related changes. This suggests that, despite a general robustness, small differences may accumulate in hybrids and perturb their protein physiology. Here, we summarize our work with a broader perspective on the importance of interactions.
Collapse
Affiliation(s)
- Caroline M Berger
- Département de Biologie, Faculté des sciences et de génie, Université Laval, Quebec, QC, G1V0A6, Canada.
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec, QC, G1V0A6, Canada.
- Le réseau québécois de recherche sur la fonction, la structure et l'ingénierie de protéines, PROTEO, Université Laval, Quebec, QC, G1V0A6, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Quebec, QC, G1V0A6, Canada.
| | - Christian R Landry
- Département de Biologie, Faculté des sciences et de génie, Université Laval, Quebec, QC, G1V0A6, Canada
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec, QC, G1V0A6, Canada
- Le réseau québécois de recherche sur la fonction, la structure et l'ingénierie de protéines, PROTEO, Université Laval, Quebec, QC, G1V0A6, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Quebec, QC, G1V0A6, Canada
| |
Collapse
|
46
|
Shojaie A. Differential Network Analysis: A Statistical Perspective. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL STATISTICS 2021; 13:e1508. [PMID: 37050915 PMCID: PMC10088462 DOI: 10.1002/wics.1508] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/03/2020] [Indexed: 11/06/2022]
Abstract
Networks effectively capture interactions among components of complex systems, and have thus become a mainstay in many scientific disciplines. Growing evidence, especially from biology, suggest that networks undergo changes over time, and in response to external stimuli. In biology and medicine, these changes have been found to be predictive of complex diseases. They have also been used to gain insight into mechanisms of disease initiation and progression. Primarily motivated by biological applications, this article provides a review of recent statistical machine learning methods for inferring networks and identifying changes in their structures.
Collapse
Affiliation(s)
- Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle WA
| |
Collapse
|
47
|
Li Y, Burgman B, Khatri IS, Pentaparthi SR, Su Z, McGrail DJ, Li Y, Wu E, Eckhardt SG, Sahni N, Yi SS. e-MutPath: computational modeling reveals the functional landscape of genetic mutations rewiring interactome networks. Nucleic Acids Res 2021; 49:e2. [PMID: 33211847 PMCID: PMC7797045 DOI: 10.1093/nar/gkaa1015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the functional impact of cancer somatic mutations represents a critical knowledge gap for implementing precision oncology. It has been increasingly appreciated that the interaction profile mediated by a genomic mutation provides a fundamental link between genotype and phenotype. However, specific effects on biological signaling networks for the majority of mutations are largely unknown by experimental approaches. To resolve this challenge, we developed e-MutPath (edgetic Mutation-mediated Pathway perturbations), a network-based computational method to identify candidate ‘edgetic’ mutations that perturb functional pathways. e-MutPath identifies informative paths that could be used to distinguish disease risk factors from neutral elements and to stratify disease subtypes with clinical relevance. The predicted targets are enriched in cancer vulnerability genes, known drug targets but depleted for proteins associated with side effects, demonstrating the power of network-based strategies to investigate the functional impact and perturbation profiles of genomic mutations. Together, e-MutPath represents a robust computational tool to systematically assign functions to genetic mutations, especially in the context of their specific pathway perturbation effect.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.,Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
| | - Brandon Burgman
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.,Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ishaani S Khatri
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.,Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
| | - Sairahul R Pentaparthi
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhe Su
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.,Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Science Park, Smithville, TX 78957, USA
| | - Erxi Wu
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.,Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA.,Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA.,Department of Pharmaceutical Sciences, Texas A & M University Health Science Center, College of Pharmacy, College Station, TX 77843, USA
| | - S Gail Eckhardt
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.,Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Science Park, Smithville, TX 78957, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX 77030, USA
| | - S Stephen Yi
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.,Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA.,Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA.,Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
48
|
Leroux M, Boutchueng-Djidjou M, Faure R. Insulin's Discovery: New Insights on Its Hundredth Birthday: From Insulin Action and Clearance to Sweet Networks. Int J Mol Sci 2021; 22:ijms22031030. [PMID: 33494161 PMCID: PMC7864324 DOI: 10.3390/ijms22031030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/28/2022] Open
Abstract
In 2021, the 100th anniversary of the isolation of insulin and the rescue of a child with type 1 diabetes from death will be marked. In this review, we highlight advances since the ingenious work of the four discoverers, Frederick Grant Banting, John James Rickard Macleod, James Bertram Collip and Charles Herbert Best. Macleoad closed his Nobel Lecture speech by raising the question of the mechanism of insulin action in the body. This challenge attracted many investigators, and the question remained unanswered until the third part of the 20th century. We summarize what has been learned, from the discovery of cell surface receptors, insulin action, and clearance, to network and precision medicine.
Collapse
|
49
|
Slater O, Miller B, Kontoyianni M. Decoding Protein-protein Interactions: An Overview. Curr Top Med Chem 2021; 20:855-882. [PMID: 32101126 DOI: 10.2174/1568026620666200226105312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
Drug discovery has focused on the paradigm "one drug, one target" for a long time. However, small molecules can act at multiple macromolecular targets, which serves as the basis for drug repurposing. In an effort to expand the target space, and given advances in X-ray crystallography, protein-protein interactions have become an emerging focus area of drug discovery enterprises. Proteins interact with other biomolecules and it is this intricate network of interactions that determines the behavior of the system and its biological processes. In this review, we briefly discuss networks in disease, followed by computational methods for protein-protein complex prediction. Computational methodologies and techniques employed towards objectives such as protein-protein docking, protein-protein interactions, and interface predictions are described extensively. Docking aims at producing a complex between proteins, while interface predictions identify a subset of residues on one protein that could interact with a partner, and protein-protein interaction sites address whether two proteins interact. In addition, approaches to predict hot spots and binding sites are presented along with a representative example of our internal project on the chemokine CXC receptor 3 B-isoform and predictive modeling with IP10 and PF4.
Collapse
Affiliation(s)
- Olivia Slater
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, IL 62026, United States
| | - Bethany Miller
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, IL 62026, United States
| | - Maria Kontoyianni
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, IL 62026, United States
| |
Collapse
|
50
|
Pejaver V, Urresti J, Lugo-Martinez J, Pagel KA, Lin GN, Nam HJ, Mort M, Cooper DN, Sebat J, Iakoucheva LM, Mooney SD, Radivojac P. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat Commun 2020; 11:5918. [PMID: 33219223 PMCID: PMC7680112 DOI: 10.1038/s41467-020-19669-x] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/23/2020] [Indexed: 01/02/2023] Open
Abstract
Identifying pathogenic variants and underlying functional alterations is challenging. To this end, we introduce MutPred2, a tool that improves the prioritization of pathogenic amino acid substitutions over existing methods, generates molecular mechanisms potentially causative of disease, and returns interpretable pathogenicity score distributions on individual genomes. Whilst its prioritization performance is state-of-the-art, a distinguishing feature of MutPred2 is the probabilistic modeling of variant impact on specific aspects of protein structure and function that can serve to guide experimental studies of phenotype-altering variants. We demonstrate the utility of MutPred2 in the identification of the structural and functional mutational signatures relevant to Mendelian disorders and the prioritization of de novo mutations associated with complex neurodevelopmental disorders. We then experimentally validate the functional impact of several variants identified in patients with such disorders. We argue that mechanism-driven studies of human inherited disease have the potential to significantly accelerate the discovery of clinically actionable variants.
Collapse
Affiliation(s)
- Vikas Pejaver
- Department of Computer Science, Indiana University, Bloomington, IN, USA
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| | - Jorge Urresti
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jose Lugo-Martinez
- Department of Computer Science, Indiana University, Bloomington, IN, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Kymberleigh A Pagel
- Department of Computer Science, Indiana University, Bloomington, IN, USA
- Institute for Computational Medicine, Whiting School of Engineering, Johns Hopkins University, 220 Hackerman Hall, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Guan Ning Lin
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Hyun-Jun Nam
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Sean D Mooney
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA.
| | - Predrag Radivojac
- Department of Computer Science, Indiana University, Bloomington, IN, USA.
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|