1
|
Gene Therapy of Chronic Limb-Threatening Ischemia: Vascular Medical Perspectives. J Clin Med 2022; 11:jcm11051282. [PMID: 35268373 PMCID: PMC8910863 DOI: 10.3390/jcm11051282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
A decade ago, gene therapy seemed to be a promising approach for the treatment of chronic limb-threatening ischemia, providing new perspectives for patients without conventional, open or endovascular therapeutic options by potentially enabling neo-angiogenesis. Yet, until now, the results have been far from a safe and routine clinical application. In general, there are two approaches for inserting exogenous genes in a host genome: transduction and transfection. In case of transduction, viral vectors are used to introduce genes into cells, and depending on the selected strain of the virus, a transient or stable duration of protein production can be achieved. In contrast, the transfection of DNA is transmitted by chemical or physical processes such as lipofection, electro- or sonoporation. Relevant risks of gene therapy may be an increasing neo-vascularization in undesired tissue. The risks of malignant transformation and inflammation are the potential drawbacks. Additionally, atherosclerotic plaques can be destabilized by the increased angiogenesis, leading to arterial thrombosis. Clinical trials from pilot studies to Phase II and III studies on angiogenic gene therapy show mainly a mixed picture of positive and negative final results; thus, the role of gene therapy in vascular occlusive disease remains unclear.
Collapse
|
2
|
Lee JJ, Arpino JM, Yin H, Nong Z, Szpakowski A, Hashi AA, Chevalier J, O'Neil C, Pickering JG. Systematic Interrogation of Angiogenesis in the Ischemic Mouse Hind Limb: Vulnerabilities and Quality Assurance. Arterioscler Thromb Vasc Biol 2020; 40:2454-2467. [PMID: 32787524 PMCID: PMC7505144 DOI: 10.1161/atvbaha.120.315028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: There has been little success in translating preclinical studies of mouse hind limb ischemia into benefit for patients with peripheral artery disease. Using systematic strategies, we sought to define the injury and angiogenesis landscapes in mice subjected to hind limb ischemia and ascertain whether published studies to date have used an analysis strategy concordant with these data. Approach and Results: Maps of ischemic injury were generated from 22 different hind limb muscles and 33 muscle territories in 12-week-old C57BL/6 mice, based on loss or centralization of myofiber nuclei. Angiogenesis was similarly mapped based on CD (cluster of differentiation) 31–positive capillary content. Only 10 of 33 muscle territories displayed consistent muscle injury, with the distal anterior hind limb muscles most reliably injured. Angiogenesis was patchy and exclusively associated with zones of regenerated muscle (central nuclei). Angiogenesis was not observed in normal appearing muscle, necrotic muscle, or injury border zones. Systematic review of mouse hind limb angiogenesis studies identified 5147 unique publications, of which 509 met eligibility criteria for analysis. Only 7% of these analyzed manuscripts evaluated angiogenesis in distal anterior hind limb muscles and only 15% consistently examined for angiogenesis in zones of muscle regeneration. Conclusions: In 12-week C57BL/6 mice, angiogenesis postfemoral artery excision proceeds exclusively in zones of muscle regeneration. Only a minority of studies to date have analyzed angiogenesis in regions of demonstrably regenerating muscle or in high-likelihood territories. Quality assurance standards, informed by the atlas and mapping data herein, could augment data reliability and potentially help translate mouse hind limb ischemia studies to patient care.
Collapse
Affiliation(s)
- Jason J Lee
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada.,Department of Medicine (J.J.L., A.A.H., J.G.P.), Western University, London, Ontario, Canada.,Department of Medical Biophysics (J.J.L., J.-M.A., J.C., J.G.P.), Western University, London, Ontario, Canada
| | - John-Michael Arpino
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada.,Department of Medical Biophysics (J.J.L., J.-M.A., J.C., J.G.P.), Western University, London, Ontario, Canada
| | - Hao Yin
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada
| | - Zengxuan Nong
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada
| | - Alexis Szpakowski
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada
| | - Abdulaziz A Hashi
- Department of Medicine (J.J.L., A.A.H., J.G.P.), Western University, London, Ontario, Canada
| | - Jacqueline Chevalier
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada.,Department of Medical Biophysics (J.J.L., J.-M.A., J.C., J.G.P.), Western University, London, Ontario, Canada
| | - Caroline O'Neil
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada.,Department of Medicine (J.J.L., A.A.H., J.G.P.), Western University, London, Ontario, Canada.,Department of Medical Biophysics (J.J.L., J.-M.A., J.C., J.G.P.), Western University, London, Ontario, Canada.,Department of Biochemistry (J.G.P.), Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Han SW, Vergani CA, Reis PEO. Is gene therapy for limb ischemia a reality? J Vasc Bras 2020; 19:e20190059. [PMID: 34178054 PMCID: PMC8202161 DOI: 10.1590/1677-5449.190059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/15/2019] [Indexed: 11/21/2022] Open
Abstract
The concept of angiogenic therapy emerged in the early 1990s. The method employs genes that encode growth factors to promote formation of new vessels and remodeling of collateral vessels. Since the procedure involved in this therapy usually only consists of local injections of vectors, the process is minimally invasive, quick, and simple to perform. However, since the first clinical evidence of the effects of gene therapy with vascular endothelial growth factor (VEGF) was observed in patients with peripheral artery disease, to date only two angiogenic therapy drugs have been approved, one in Russia and another in Japan, which seem a very small number, in view of the large volume of investment made in pre-clinical and clinical studies. After all, can we conclude that angiogenic therapy is a reality?
Collapse
Affiliation(s)
- Sang Won Han
- Universidade Federal de São Paulo – UNIFESP,
Departamento de Biofísica, Escola Paulista de Medicina, São Paulo, SP,
Brasil.
- Universidade Federal de São Paulo – UNIFESP,
Centro Interdisciplinar de Terapia Gênica – CINTERGEN, São Paulo, SP,
Brasil.
| | - Carlos Alberto Vergani
- Universidade Federal de São Paulo – UNIFESP,
Centro Interdisciplinar de Terapia Gênica – CINTERGEN, São Paulo, SP,
Brasil.
| | - Paulo Eduardo Ocke Reis
- Universidade Federal Fluminense – UFF,
Departamento de Cirurgia Geral e Especializada, Rio de Janeiro, RJ,
Brasil.
| |
Collapse
|
4
|
Zhao X, Long J, Liang F, Liu N, Sun Y, Xi Y. Dynamic profiles, biodistribution and integration evaluation after intramuscular/intravenous delivery of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in vaccinated normal rodent. J Nanobiotechnology 2019; 17:94. [PMID: 31492169 PMCID: PMC6729025 DOI: 10.1186/s12951-019-0528-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/28/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The persistence, biodistribution, and risk of integration into the host genome of any new therapeutic DNA vaccine must be established in preclinical studies. We previously developed the DNA vaccine pcDNA-CCOL2A1 encoding chicken type II collagen (CCII) for the treatment of rheumatoid arthritis (RA). In the present study, we characterized its dynamic profile, biodistribution, and potential for genomic DNA integration in normal vaccinated rodent. RESULTS A real-time quantitative PCR analysis (RT-qPCR) of animals administered a single dose of pcDNA-CCOL2A1 (300 μg/kg by intramuscular injection) showed that CCOL2A1 mRNA level in the blood peaked between 2 and 6 h post-immunization and then rapidly declined, and was undetectable between day 1-42. CCOL2A1 transcript was detected at the muscle injection site on days 3-14 post-immunization. Starting from day 14, the transcript was detected in the heart, liver, lung, and kidney but not in the spleen or thymus, and was expressed only in the lung on day 28. There was no CCOL2A1 mRNA present in the testes or ovaries at any time point. Non-invasive in vivo fluorescence imaging revealed CCII protein expression from 2 h up to day 10 and from 2 h up to day 35 after administration of pcDNA-CCOL2A1 via the intravenous and intramuscular routes, respectively; the protein had disappeared by day 42. Importantly, CCOL2A1 was not integrated into the host genome. CONCLUSIONS These results indicate that pcDNA-CCOL2A1 vaccine is rapidly cleared within a short period of time and is therefore safe, and merits further development as a therapeutic vaccine for RA treatment.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Juan Long
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Fei Liang
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Nan Liu
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yuying Sun
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yongzhi Xi
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China.
| |
Collapse
|
5
|
Hassanshahi M, Khabbazi S, Peymanfar Y, Hassanshahi A, Hosseini-Khah Z, Su YW, Xian CJ. Critical limb ischemia: Current and novel therapeutic strategies. J Cell Physiol 2019; 234:14445-14459. [PMID: 30637723 DOI: 10.1002/jcp.28141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Critical limb ischemia (CLI) is the advanced stage of peripheral artery disease spectrum and is defined by limb pain or impending limb loss because of compromised blood flow to the affected extremity. Current conventional therapies for CLI include amputation, bypass surgery, endovascular therapy, and pharmacological approaches. Although these conventional therapeutic strategies still remain as the mainstay of treatments for CLI, novel and promising therapeutic approaches such as proangiogenic gene/protein therapies and stem cell-based therapies have emerged to overcome, at least partially, the limitations and disadvantages of current conventional therapeutic approaches. Such novel CLI treatment options may become even more effective when other complementary approaches such as utilizing proper bioscaffolds are used to increase the survival and engraftment of delivered genes and stem cells. Therefore, herein, we address the benefits and disadvantages of current therapeutic strategies for CLI treatment and summarize the novel and promising therapeutic approaches for CLI treatment. Our analyses also suggest that these novel CLI therapeutic strategies show considerable advantages to be used when current conventional methods have failed for CLI treatment.
Collapse
Affiliation(s)
- Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Alireza Hassanshahi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Hosseini-Khah
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
6
|
Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, Mills JL, Ricco JB, Suresh KR, Murad MH, Aboyans V, Aksoy M, Alexandrescu VA, Armstrong D, Azuma N, Belch J, Bergoeing M, Bjorck M, Chakfé N, Cheng S, Dawson J, Debus ES, Dueck A, Duval S, Eckstein HH, Ferraresi R, Gambhir R, Gargiulo M, Geraghty P, Goode S, Gray B, Guo W, Gupta PC, Hinchliffe R, Jetty P, Komori K, Lavery L, Liang W, Lookstein R, Menard M, Misra S, Miyata T, Moneta G, Munoa Prado JA, Munoz A, Paolini JE, Patel M, Pomposelli F, Powell R, Robless P, Rogers L, Schanzer A, Schneider P, Taylor S, De Ceniga MV, Veller M, Vermassen F, Wang J, Wang S. Global Vascular Guidelines on the Management of Chronic Limb-Threatening Ischemia. Eur J Vasc Endovasc Surg 2019; 58:S1-S109.e33. [PMID: 31182334 PMCID: PMC8369495 DOI: 10.1016/j.ejvs.2019.05.006] [Citation(s) in RCA: 767] [Impact Index Per Article: 153.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GUIDELINE SUMMARY Chronic limb-threatening ischemia (CLTI) is associated with mortality, amputation, and impaired quality of life. These Global Vascular Guidelines (GVG) are focused on definition, evaluation, and management of CLTI with the goals of improving evidence-based care and highlighting critical research needs. The term CLTI is preferred over critical limb ischemia, as the latter implies threshold values of impaired perfusion rather than a continuum. CLTI is a clinical syndrome defined by the presence of peripheral artery disease (PAD) in combination with rest pain, gangrene, or a lower limb ulceration >2 weeks duration. Venous, traumatic, embolic, and nonatherosclerotic etiologies are excluded. All patients with suspected CLTI should be referred urgently to a vascular specialist. Accurately staging the severity of limb threat is fundamental, and the Society for Vascular Surgery Threatened Limb Classification system, based on grading of Wounds, Ischemia, and foot Infection (WIfI) is endorsed. Objective hemodynamic testing, including toe pressures as the preferred measure, is required to assess CLTI. Evidence-based revascularization (EBR) hinges on three independent axes: Patient risk, Limb severity, and ANatomic complexity (PLAN). Average-risk and high-risk patients are defined by estimated procedural and 2-year all-cause mortality. The GVG proposes a new Global Anatomic Staging System (GLASS), which involves defining a preferred target artery path (TAP) and then estimating limb-based patency (LBP), resulting in three stages of complexity for intervention. The optimal revascularization strategy is also influenced by the availability of autogenous vein for open bypass surgery. Recommendations for EBR are based on best available data, pending level 1 evidence from ongoing trials. Vein bypass may be preferred for average-risk patients with advanced limb threat and high complexity disease, while those with less complex anatomy, intermediate severity limb threat, or high patient risk may be favored for endovascular intervention. All patients with CLTI should be afforded best medical therapy including the use of antithrombotic, lipid-lowering, antihypertensive, and glycemic control agents, as well as counseling on smoking cessation, diet, exercise, and preventive foot care. Following EBR, long-term limb surveillance is advised. The effectiveness of nonrevascularization therapies (eg, spinal stimulation, pneumatic compression, prostanoids, and hyperbaric oxygen) has not been established. Regenerative medicine approaches (eg, cell, gene therapies) for CLTI should be restricted to rigorously conducted randomizsed clinical trials. The GVG promotes standardization of study designs and end points for clinical trials in CLTI. The importance of multidisciplinary teams and centers of excellence for amputation prevention is stressed as a key health system initiative.
Collapse
Affiliation(s)
- Michael S Conte
- Division of Vascular and Endovascular Surgery, University of California, San Francisco, CA, USA.
| | - Andrew W Bradbury
- Department of Vascular Surgery, University of Birmingham, Birmingham, United Kingdom
| | - Philippe Kolh
- Department of Biomedical and Preclinical Sciences, University Hospital of Liège, Wallonia, Belgium
| | - John V White
- Department of Surgery, Advocate Lutheran General Hospital, Niles, IL, USA
| | - Florian Dick
- Department of Vascular Surgery, Kantonsspital St. Gallen, St. Gallen, and University of Berne, Berne, Switzerland
| | - Robert Fitridge
- Department of Vascular and Endovascular Surgery, The University of Adelaide Medical School, Adelaide, South Australia, Australia
| | - Joseph L Mills
- Division of Vascular Surgery and Endovascular Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Jean-Baptiste Ricco
- Department of Clinical Research, University Hospitalof Poitiers, Poitiers, France
| | | | - M Hassan Murad
- Mayo Clinic Evidence-Based Practice Center, Rochester, MN, USA
| | - Victor Aboyans
- Department of Cardiology, Dupuytren, University Hospital, France
| | - Murat Aksoy
- Department of Vascular Surgery American, Hospital, Turkey
| | | | | | | | - Jill Belch
- Ninewells Hospital University of Dundee, UK
| | - Michel Bergoeing
- Escuela de Medicina Pontificia Universidad, Catolica de Chile, Chile
| | - Martin Bjorck
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Sweden
| | | | | | - Joseph Dawson
- Royal Adelaide Hospital & University of Adelaide, Australia
| | - Eike S Debus
- University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, Germany
| | - Andrew Dueck
- Schulich Heart Centre, Sunnybrook Health, Sciences Centre, University of Toronto, Canada
| | - Susan Duval
- Cardiovascular Division, University of, Minnesota Medical School, USA
| | | | - Roberto Ferraresi
- Interventional Cardiovascular Unit, Cardiology Department, Istituto Clinico, Città Studi, Milan, Italy
| | | | - Mauro Gargiulo
- Diagnostica e Sperimentale, University of Bologna, Italy
| | | | | | | | - Wei Guo
- 301 General Hospital of PLA, Beijing, China
| | | | | | - Prasad Jetty
- Division of Vascular and Endovascular Surgery, The Ottawa Hospital and the University of Ottawa, Ottawa, Canada
| | | | | | - Wei Liang
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Robert Lookstein
- Division of Vascular and Interventional Radiology, Icahn School of Medicine at Mount Sinai
| | | | | | | | | | | | | | - Juan E Paolini
- Sanatorio Dr Julio Mendez, University of Buenos Aires, Argentina
| | - Manesh Patel
- Division of Cardiology, Duke University Health System, USA
| | | | | | | | - Lee Rogers
- Amputation Prevention Centers of America, USA
| | | | - Peter Schneider
- Kaiser Foundation Hospital Honolulu and Hawaii Permanente Medical Group, USA
| | - Spence Taylor
- Greenville Health Center/USC School of Medicine Greenville, USA
| | | | - Martin Veller
- University of the Witwatersrand, Johannesburg, South Africa
| | | | - Jinsong Wang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenming Wang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Struik D, Dommerholt MB, Jonker JW. Fibroblast growth factors in control of lipid metabolism: from biological function to clinical application. Curr Opin Lipidol 2019; 30:235-243. [PMID: 30893110 PMCID: PMC6530965 DOI: 10.1097/mol.0000000000000599] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Several members of the fibroblast growth factor (FGF) family have been identified as key regulators of energy metabolism in rodents and nonhuman primates. Translational studies show that their metabolic actions are largely conserved in humans, which led to the development of various FGF-based drugs, including FGF21-mimetics LY2405319, PF-05231023, and pegbelfermin, and the FGF19-mimetic NGM282. Recently, a number of clinical trials have been published that examined the safety and efficacy of these novel therapeutic proteins in the treatment of obesity, type 2 diabetes (T2D), nonalcoholic steatohepatitis (NASH), and cholestatic liver disease. In this review, we discuss the current understanding of FGFs in metabolic regulation and their clinical potential. RECENT FINDINGS FGF21-based drugs induce weight loss and improve dyslipidemia in patients with obesity and T2D, and reduce steatosis in patients with NASH. FGF19-based drugs reduce steatosis in patients with NASH, and ameliorate bile acid-induced liver damage in patients with cholestasis. In contrast to their potent antidiabetic effects in rodents and nonhuman primates, FGF-based drugs do not appear to improve glycemia in humans. In addition, various safety concerns, including elevation of low-density lipoprotein cholesterol, modulation of bone homeostasis, and increased blood pressure, have been reported as well. SUMMARY Clinical trials with FGF-based drugs report beneficial effects in lipid and bile acid metabolism, with clinical improvements in dyslipidemia, steatosis, weight loss, and liver damage. In contrast, glucose-lowering effects, as observed in preclinical models, are currently lacking.
Collapse
Affiliation(s)
- Dicky Struik
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | |
Collapse
|
8
|
Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, Mills JL, Ricco JB, Suresh KR, Murad MH. Global vascular guidelines on the management of chronic limb-threatening ischemia. J Vasc Surg 2019; 69:3S-125S.e40. [PMID: 31159978 PMCID: PMC8365864 DOI: 10.1016/j.jvs.2019.02.016] [Citation(s) in RCA: 740] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic limb-threatening ischemia (CLTI) is associated with mortality, amputation, and impaired quality of life. These Global Vascular Guidelines (GVG) are focused on definition, evaluation, and management of CLTI with the goals of improving evidence-based care and highlighting critical research needs. The term CLTI is preferred over critical limb ischemia, as the latter implies threshold values of impaired perfusion rather than a continuum. CLTI is a clinical syndrome defined by the presence of peripheral artery disease (PAD) in combination with rest pain, gangrene, or a lower limb ulceration >2 weeks duration. Venous, traumatic, embolic, and nonatherosclerotic etiologies are excluded. All patients with suspected CLTI should be referred urgently to a vascular specialist. Accurately staging the severity of limb threat is fundamental, and the Society for Vascular Surgery Threatened Limb Classification system, based on grading of Wounds, Ischemia, and foot Infection (WIfI) is endorsed. Objective hemodynamic testing, including toe pressures as the preferred measure, is required to assess CLTI. Evidence-based revascularization (EBR) hinges on three independent axes: Patient risk, Limb severity, and ANatomic complexity (PLAN). Average-risk and high-risk patients are defined by estimated procedural and 2-year all-cause mortality. The GVG proposes a new Global Anatomic Staging System (GLASS), which involves defining a preferred target artery path (TAP) and then estimating limb-based patency (LBP), resulting in three stages of complexity for intervention. The optimal revascularization strategy is also influenced by the availability of autogenous vein for open bypass surgery. Recommendations for EBR are based on best available data, pending level 1 evidence from ongoing trials. Vein bypass may be preferred for average-risk patients with advanced limb threat and high complexity disease, while those with less complex anatomy, intermediate severity limb threat, or high patient risk may be favored for endovascular intervention. All patients with CLTI should be afforded best medical therapy including the use of antithrombotic, lipid-lowering, antihypertensive, and glycemic control agents, as well as counseling on smoking cessation, diet, exercise, and preventive foot care. Following EBR, long-term limb surveillance is advised. The effectiveness of nonrevascularization therapies (eg, spinal stimulation, pneumatic compression, prostanoids, and hyperbaric oxygen) has not been established. Regenerative medicine approaches (eg, cell, gene therapies) for CLTI should be restricted to rigorously conducted randomizsed clinical trials. The GVG promotes standardization of study designs and end points for clinical trials in CLTI. The importance of multidisciplinary teams and centers of excellence for amputation prevention is stressed as a key health system initiative.
Collapse
Affiliation(s)
- Michael S Conte
- Division of Vascular and Endovascular Surgery, University of California, San Francisco, Calif.
| | - Andrew W Bradbury
- Department of Vascular Surgery, University of Birmingham, Birmingham, United Kingdom
| | - Philippe Kolh
- Department of Biomedical and Preclinical Sciences, University Hospital of Liège, Wallonia, Belgium
| | - John V White
- Department of Surgery, Advocate Lutheran General Hospital, Niles, Ill
| | - Florian Dick
- Department of Vascular Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Robert Fitridge
- Department of Vascular and Endovascular Surgery, The University of Adelaide Medical School, Adelaide, South Australia
| | - Joseph L Mills
- Division of Vascular Surgery and Endovascular Therapy, Baylor College of Medicine, Houston, Tex
| | - Jean-Baptiste Ricco
- Department of Clinical Research, University Hospitalof Poitiers, Poitiers, France
| | | | - M Hassan Murad
- Mayo Clinic Evidence-Based Practice Center, Rochester, Minn
| |
Collapse
|
9
|
Iyer SR, Annex BH. Therapeutic Angiogenesis for Peripheral Artery Disease: Lessons Learned in Translational Science. JACC Basic Transl Sci 2017; 2:503-512. [PMID: 29430558 PMCID: PMC5802410 DOI: 10.1016/j.jacbts.2017.07.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 01/31/2023]
Abstract
Peripheral arterial disease (PAD) is a major health care problem. There have been limited advances in medical therapies, and a huge burden of symptomatic patients with intermittent claudication and critical limb ischemia who have limited treatment options. Angiogenesis is the growth and proliferation of blood vessels from existing vasculature. For approximately 2 decades, "therapeutic angiogenesis" has been studied as an investigational approach to treat patients with symptomatic PAD. Despite literally hundreds of positive preclinical studies, results from human clinical studies thus far have been disappointing. Here we present an overview of where the field of therapeutic angiogenesis stands today and examine lessons learned from previously conducted clinical trials. The objective is not to second-guess past efforts but to place the lessons in perspective to allow for trial success in the future to improve agent development, trial design, and ultimately, clinical outcomes for new therapeutics for PAD.
Collapse
Affiliation(s)
- Sunil R. Iyer
- Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Brian H. Annex
- Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
- Robert Bernie Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
10
|
Sultan S, Kavanagh EP, Michalus R, Hynes N. Stem Cell Smart Technology, where are we now and how far we have to go? Vascular 2017; 26:216-228. [PMID: 28841129 DOI: 10.1177/1708538117727429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approximately eight million people in the United States have peripheral arterial disease, which increases exponentially with age. There have been a plethora of available treatments including surgery, angioplasty, atherectomy, laser technology, and cell-based therapies. Cell-based therapies were developed in the hope of translating laboratory-based technology into clinical successes. However, clinical results have been disappointing. Infusion or injection for stem cell therapy is still considered experimental and investigational, and major questions on safety and durability have arisen. In no option patients, how can they be treated safely and successfully? In this article, we review contemporary practice for cell therapy, its pitfalls and breakthroughs, and look at the future ahead. We introduce a novel smart system for minimally invasive delivery of cell therapies, which exemplifies the next generation of endovascular solutions to stem cell technology and promises safety, efficacy, and reliability.
Collapse
Affiliation(s)
- Sherif Sultan
- 1 Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland Affiliated Hospitals, Galway, Ireland
| | - Edel P Kavanagh
- 1 Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland Affiliated Hospitals, Galway, Ireland
| | - Robert Michalus
- 2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland Affiliated Hospitals, Galway, Ireland
| | - Niamh Hynes
- 1 Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland Affiliated Hospitals, Galway, Ireland
| |
Collapse
|
11
|
Lakshmanan R, Ukani G, Rishi MT, Maulik N. Trimodal rescue of hind limb ischemia with growth factors, cells, and nanocarriers: fundamentals to clinical trials. Can J Physiol Pharmacol 2017; 95:1125-1140. [PMID: 28407473 DOI: 10.1139/cjpp-2016-0713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peripheral artery disease is a severe medical condition commonly characterized by critical or acute limb ischemia. Gradual accumulation of thrombotic plaques in peripheral arteries of the lower limb may lead to intermittent claudication or ischemia in muscle tissue. Ischemic muscle tissue with lesions may become infected, resulting in a non-healing wound. Stable progression of the non-healing wound associated with severe ischemia might lead to functional deterioration of the limb, which, depending on the severity, can result in amputation. Immediate rescue of ischemic muscles through revascularization strategies is considered the gold standard to treat critical limb ischemia. Growth factors offer multiple levels of protection in revascularization of ischemic tissue. In this review, the basic mechanism through which growth factors exert their beneficial properties to rescue the ischemic limb is extensively discussed. Moreover, clinical trials based on growth factor and stem cell therapy to treat critical limb ischemia are considered. The clinical utility of stem cell therapy for the treatment of limb ischemia is explained and recent advances in nanocarrier technology for selective growth factor and stem cell supplementation are summarized.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Gopi Ukani
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Muhammad Tipu Rishi
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
12
|
Kitrou P, Karnabatidis D, Brountzos E, Katsanos K, Reppas L, Spiliopoulos S. Gene-based therapies in patients with critical limb ischemia. Expert Opin Biol Ther 2017; 17:449-456. [PMID: 28133976 DOI: 10.1080/14712598.2017.1289170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Critical limb ischemia (CLI) constitutes a life-limiting and life-threatening disease. Revascularization, either endovascular or surgical, remains the best treatment option accompanied by medication and risk factor modification. Patients unable to undergo revascularization, referred as 'no-option patients', have been the center of interest the last few years, subjected to treatment therapies based on proteins (mainly growth factors) involved in angiogenesis via gene delivery to the ischemic tissue. Areas covered: This review focuses on these growth factors, gives an update of the studies available, discusses the possible problems that influence outcomes and describes future perspectives including possible new technologies that will improve them. Additionally, the authors attempt to place therapeutic angiogenesis to the bigger frame of tailored therapy in CLI. Expert opinion: Although encouraging in the beginning, growth factor therapy results have been equivocal and inconclusive. And while it would be misleading to approach gene therapy as panacea, its effect on the micro-circulatory level activating angiogenesis and arteriogenesis could act as an important adjunct in personalized treatment.
Collapse
Affiliation(s)
- Panagiotis Kitrou
- a Department of Interventional Radiology , Patras University Hospital , Rio , Greece
| | - Dimitris Karnabatidis
- a Department of Interventional Radiology , Patras University Hospital , Rio , Greece
| | - Elias Brountzos
- b 2nd Department of Radiology, Division of Interventional Radiology , Attikon University General Hospital , Athens , Greece
| | - Konstantinos Katsanos
- a Department of Interventional Radiology , Patras University Hospital , Rio , Greece
| | - Lazaros Reppas
- b 2nd Department of Radiology, Division of Interventional Radiology , Attikon University General Hospital , Athens , Greece
| | - Stavros Spiliopoulos
- b 2nd Department of Radiology, Division of Interventional Radiology , Attikon University General Hospital , Athens , Greece
| |
Collapse
|
13
|
Gavrilenko AV, Gavrilenko X, Al-yousef NN. Modern possibilities to predict surgical outcomes in patients with chronic lower limb ischemia. ACTA ACUST UNITED AC 2017. [DOI: 10.17116/kardio201710552-57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Domouzoglou EM, Naka KK, Vlahos AP, Papafaklis MI, Michalis LK, Tsatsoulis A, Maratos-Flier E. Fibroblast growth factors in cardiovascular disease: The emerging role of FGF21. Am J Physiol Heart Circ Physiol 2015; 309:H1029-38. [PMID: 26232236 PMCID: PMC4747916 DOI: 10.1152/ajpheart.00527.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/22/2015] [Indexed: 01/07/2023]
Abstract
Early detection of risk factors for enhanced primary prevention and novel therapies for treating the chronic consequences of cardiovascular disease are of the utmost importance for reducing morbidity. Recently, fibroblast growth factors (FGFs) have been intensively studied as potential new molecules in the prevention and treatment of cardiovascular disease mainly attributable to metabolic effects and angiogenic actions. Members of the endocrine FGF family have been shown to increase metabolic rate, decrease adiposity, and restore glucose homeostasis, suggesting a multiple metabolic role. Serum levels of FGFs have been associated with established cardiovascular risk factors as well as with the severity and extent of coronary artery disease and could be useful for prediction of cardiovascular death. Furthermore, preclinical investigations and clinical trials have tested FGF administration for therapeutic angiogenesis in ischemic vascular disease, demonstrating a potential role in improving angina and limb function. FGF21 has lately emerged as a potent metabolic regulator with multiple effects that ultimately improve the lipoprotein profile. Early studies show that FGF21 is associated with the presence of atherosclerosis and may play a protective role against plaque formation by improving endothelial function. The present review highlights recent investigations suggesting that FGFs, in particular FGF21, may be useful as markers of cardiovascular risk and may also serve as protective/therapeutic agents in cardiovascular disease.
Collapse
Affiliation(s)
- Eleni M Domouzoglou
- Department of Pediatrics, Medical School, University of Ioannina, Ioannina, Greece
| | - Katerina K Naka
- Second Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Antonios P Vlahos
- Department of Pediatrics, Medical School, University of Ioannina, Ioannina, Greece
| | - Michail I Papafaklis
- Second Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Lampros K Michalis
- Second Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Agathoklis Tsatsoulis
- Department of Endocrinology, Medical School, University of Ioannina, Ioannina, Greece
| | - Eleftheria Maratos-Flier
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Sapharikas E, Lokajczyk A, Fischer AM, Boisson-Vidal C. Fucoidan Stimulates Monocyte Migration via ERK/p38 Signaling Pathways and MMP9 Secretion. Mar Drugs 2015; 13:4156-70. [PMID: 26133555 PMCID: PMC4515609 DOI: 10.3390/md13074156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 01/21/2023] Open
Abstract
Critical limb ischemia (CLI) induces the secretion of paracrine signals, leading to monocyte recruitment and thereby contributing to the initiation of angiogenesis and tissue healing. We have previously demonstrated that fucoidan, an antithrombotic polysaccharide, promotes the formation of new blood vessels in a mouse model of hindlimb ischemia. We examined the effect of fucoidan on the capacity of peripheral blood monocytes to adhere and migrate. Monocytes negatively isolated with magnetic beads from peripheral blood of healthy donors were treated with fucoidan. Fucoidan induced a 1.5-fold increase in monocyte adhesion to gelatin (p < 0.05) and a five-fold increase in chemotaxis in Boyden chambers (p < 0.05). Fucoidan also enhanced migration 2.5-fold in a transmigration assay (p < 0.05). MMP9 activity in monocyte supernatants was significantly enhanced by fucoidan (p < 0.05). Finally, Western blot analysis of fucoidan-treated monocytes showed upregulation of ERK/p38 phosphorylation. Inhibition of ERK/p38 phosphorylation abrogated fucoidan enhancement of migration (p < 0.01). Fucoidan displays striking biological effects, notably promoting monocyte adhesion and migration. These effects involve the ERK and p38 pathways, and increased MMP9 activity. Fucoidan could improve critical limb ischemia by promoting monocyte recruitment.
Collapse
Affiliation(s)
- Elene Sapharikas
- Inserm UMR_S 1140, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l'observatoire Paris 75006, France.
| | - Anna Lokajczyk
- Inserm UMR_S 1140, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l'observatoire Paris 75006, France.
| | - Anne-Marie Fischer
- Inserm UMR-S 970, AP-HP, Hôpital Européen Georges Pompidou, 20 rue Leblanc Paris 75015, France.
| | - Catherine Boisson-Vidal
- Inserm UMR_S 1140, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l'observatoire Paris 75006, France.
| |
Collapse
|
16
|
Asayama S, Nohara A, Negishi Y, Kawakami H. Plasmid DNA Mono-Ion Complex Stabilized by Hydrogen Bond for In Vivo Diffusive Gene Delivery. Biomacromolecules 2015; 16:1226-31. [DOI: 10.1021/acs.biomac.5b00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shoichiro Asayama
- Department
of Applied Chemistry, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Atsushi Nohara
- Department
of Applied Chemistry, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yoichi Negishi
- Department
of Drug Delivery and Molecular Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroyoshi Kawakami
- Department
of Applied Chemistry, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
17
|
Shimamura M, Nakagami H, Taniyama Y, Morishita R. Gene therapy for peripheral arterial disease. Expert Opin Biol Ther 2014; 14:1175-84. [PMID: 24766232 DOI: 10.1517/14712598.2014.912272] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Gene therapy has emerged as a novel therapy to promote angiogenesis in patients with critical limb ischemia (CLI) caused by peripheral artery disease. Researchers working in this area have focused on pro-angiogenic factors, such as VEGF, fibroblast growth factor (FGF) and hepatocyte growth factor (HGF). Based on the elaborate studies and favorable results of basic research using naked plasmid DNA (pDNA) encoding these growth factors, some clinical Phase I and Phase II trials have been performed. The results of these studies demonstrate the safety of these approaches and their potential for symptomatic improvement in CLI patients. However, the Phase III clinical trials have so far been limited to HGF gene therapy. Because one pitfall of the Phase III trials has been the limited transgene expression achieved using naked pDNA alone, the development of more efficient gene transfer systems, such as ultrasound microbubbles and the needleless injector, as well as the addition of other genes will make these novel therapies more effective and ease the symptoms of CLI. AREAS COVERED This study reviews the previously published basic research and clinical trials that have studied VEGF, FGF and HGF gene therapies for the treatment of CLI. Adjunctive therapies, such as the addition of prostacyclin synthase genes and the development of more efficient gene transfer techniques for pDNA, are also reviewed. EXPERT OPINION To date, clinical studies have demonstrated the safety of gene therapy in limb ischemia but the effectiveness of this treatment has not been determined. Larger clinical studies, as well as the development of more effective gene therapy, are needed to achieve and confirm beneficial effects.
Collapse
Affiliation(s)
- Munehisa Shimamura
- Osaka University, Kanazawa University and Hamamatsu University School of Medicine, United Graduate School of Child Development, Division of Vascular Medicine and Epigenetics, Department of Child Development , Suita , Japan
| | | | | | | |
Collapse
|
18
|
Asayama S, Nohara A, Negishi Y, Kawakami H. Alkylimidazolium end-modified poly(ethylene glycol) to form the mono-ion complex with plasmid DNA for in vivo gene delivery. Biomacromolecules 2014; 15:997-1001. [PMID: 24547884 DOI: 10.1021/bm401902j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, we consider that the decrease in the transfection activity of polycations in vivo, compared with that in vitro, results from their polyion complex formation. Namely, owing to cross-linking between polycations and plasmid DNAs (pDNAs), the disadvantage of in vivo gene delivery mainly stems from the difficulty in controlling the properties of the resulting polyion complex at the nanoscale size. To avoid the cross-linking by polycations, we have establish the concept of "mono-ion complex" formation between pDNA and a monocationic biocompatible polymer. Here we have synthesized alkylimidazolium end-modified poly(ethylene glycol), that is, R-Im-PEG, and have tuned the electrostatic interaction between the resulting alkylimidazolium group and the phosphate group of pDNA by the length of the alkyl chain to achieve "mono-ion complex" formation with pDNA for in vivo gene delivery. Instead of a polyion complex, our original concept of the "mono-ion complex" consisting of the Bu-Im-PEG and pDNA is expected to offer unique tools to break through the barriers of in vivo gene delivery. As well as the field of gene delivery, this study is considered to have exploded the common sense that it is impossible to form not a polyion complex but a "mono-ion complex" under aqueous conditions for all fields of the modification of biomacromolecules.
Collapse
Affiliation(s)
- Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University , 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | |
Collapse
|
19
|
Lijkwan MA, Hellingman AA, Bos EJ, van der Bogt KEA, Huang M, Kooreman NG, de Vries MR, Peters HAB, Robbins RC, Hamming JF, Quax PHA, Wu JC. Short hairpin RNA gene silencing of prolyl hydroxylase-2 with a minicircle vector improves neovascularization of hindlimb ischemia. Hum Gene Ther 2014; 25:41-9. [PMID: 24090375 DOI: 10.1089/hum.2013.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this study, we target the hypoxia inducible factor-1 alpha (HIF-1-alpha) pathway by short hairpin RNA interference therapy targeting prolyl hydroxylase-2 (shPHD2). We use the minicircle (MC) vector technology as an alternative for conventional nonviral plasmid (PL) vectors in order to improve neovascularization after unilateral hindlimb ischemia in a murine model. Gene expression and transfection efficiency of MC and PL, both in vitro and in vivo, were assessed using bioluminescence imaging (BLI) and firefly luciferase (Luc) reporter gene. C57Bl6 mice underwent unilateral electrocoagulation of the femoral artery and gastrocnemic muscle injection with MC-shPHD2, PL-shPHD2, or phosphate-buffered saline (PBS) as control. Blood flow recovery was monitored using laser Doppler perfusion imaging, and collaterals were visualized by immunohistochemistry and angiography. MC-Luc showed a 4.6-fold higher in vitro BLI signal compared with PL-Luc. BLI signals in vivo were 4.3×10(5)±3.3×10(5) (MC-Luc) versus 0.4×10(5)±0.3×10(5) (PL-Luc) at day 28 (p=0.016). Compared with PL-shPHD2 or PBS, MC-shPHD2 significantly improved blood flow recovery, up to 50% from day 3 until day 14 after ischemia induction. MC-shPHD2 significantly increased collateral density and capillary density, as monitored by alpha-smooth muscle actin expression and CD31(+) expression, respectively. Angiography data confirmed the histological findings. Significant downregulation of PHD2 mRNA levels by MC-shPHD2 was confirmed by quantitative polymerase chain reaction. Finally, Western blot analysis confirmed significantly higher levels of HIF-1-alpha protein by MC-shPHD2, compared with PL-shPHD2 and PBS. This study provides initial evidence of a new potential therapeutic approach for peripheral artery disease. The combination of HIF-1-alpha pathway targeting by shPHD2 with the robust nonviral MC plasmid improved postischemic neovascularization, making this approach a promising potential treatment option for critical limb ischemia.
Collapse
Affiliation(s)
- Maarten A Lijkwan
- 1 Department of Medicine and Radiology, Stanford University School of Medicine , Stanford, CA 94305
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Crosstalk between Fibroblast Growth Factor (FGF) Receptor and Integrin through Direct Integrin Binding to FGF and Resulting Integrin-FGF-FGFR Ternary Complex Formation. Med Sci (Basel) 2013. [DOI: 10.3390/medsci1010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
21
|
Abstract
Critical limb ischemia (CLI) is a severe form of peripheral artery disease associated with high morbidity and mortality. The primary therapeutic goals in treating CLI are to reduce the risk of adverse cardiovascular events, relieve ischemic pain, heal ulcers, prevent major amputation, and improve quality of life (QoL) and survival. These goals may be achieved by medical therapy, endovascular intervention, open surgery, or amputation and require a multidisciplinary approach including pain management, wound care, risk factors reduction, and treatment of comorbidities. No-option patients are potential candidates for the novel angiogenic therapies. The application of genetic, molecular, and cellular-based modalities, the so-called therapeutic angiogenesis, in the treatment of arterial obstructive diseases has not shown consistent efficacy. This article summarizes the current status related to the management of patients with CLI and discusses the current findings of the emerging modalities for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Geoffrey O. Ouma
- Department of Medicine, Cardiovascular Division, Vascular Medicine Section, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Barak Zafrir
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Ruth and Bruce Rappaport School of Medicine, Technion-IIT, Haifa, Israel
| | - Emile R. Mohler
- Department of Medicine, Cardiovascular Division, Vascular Medicine Section, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Moshe Y. Flugelman
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Ruth and Bruce Rappaport School of Medicine, Technion-IIT, Haifa, Israel
| |
Collapse
|
22
|
|
23
|
Fang Q, Mok PY, Thomas AE, Haddad DJ, Saini SA, Clifford BT, Kapasi NK, Danforth OM, Usui M, Ye W, Luu E, Sharma R, Bartel MJ, Pathmanabhan JA, Ang AAS, Sievers RE, Lee RJ, Springer ML. Pleiotrophin gene therapy for peripheral ischemia: evaluation of full-length and truncated gene variants. PLoS One 2013; 8:e61413. [PMID: 23630585 PMCID: PMC3632611 DOI: 10.1371/journal.pone.0061413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/10/2013] [Indexed: 11/19/2022] Open
Abstract
Pleiotrophin (PTN) is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN), along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium. In cultured myoblasts, PTN was expressed and secreted via the Golgi apparatus, but T-PTN was not properly secreted. Nonetheless, no evidence of uncontrolled growth was observed in cells expressing either form of PTN. PTN gene delivery to myocardium, and non-ischemic skeletal muscle, did not result in a detectable change in vascularity or function. In ischemic hindlimb at 14 days post-implantation, intramuscular injection with PTN-expressing myoblasts led to a significant increase in skin perfusion and muscle arteriole density. We conclude that (1) delivery of the full length PTN gene to muscle can be accomplished without tumorigenesis, (2) the truncated PTN gene may be difficult to use in a gene therapy context due to inefficient secretion, (3) PTN gene delivery leads to functional benefit in the mouse acute ischemic hindlimb model.
Collapse
Affiliation(s)
- Qizhi Fang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Pamela Y. Mok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Anila E. Thomas
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel J. Haddad
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Shereen A. Saini
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Brian T. Clifford
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Neel K. Kapasi
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Olivia M. Danforth
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Minako Usui
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Weisheng Ye
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Emmy Luu
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Rikki Sharma
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Maya J. Bartel
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Jeremy A. Pathmanabhan
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Andrew A. S. Ang
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Richard E. Sievers
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Randall J. Lee
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - Matthew L. Springer
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
24
|
Katwal AB, Konkalmatt PR, Piras BA, Hazarika S, Li SS, John Lye R, Sanders JM, Ferrante EA, Yan Z, Annex BH, French BA. Adeno-associated virus serotype 9 efficiently targets ischemic skeletal muscle following systemic delivery. Gene Ther 2013; 20:930-8. [PMID: 23535898 PMCID: PMC3758463 DOI: 10.1038/gt.2013.16] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 01/22/2013] [Accepted: 02/20/2013] [Indexed: 02/07/2023]
Abstract
Targeting therapeutic gene expression to the skeletal muscle following intravenous (IV) administration is an attractive strategy for treating peripheral arterial disease (PAD), except that vector access to the ischemic limb could be a limiting factor. As adeno-associated virus serotype 9 (AAV-9) transduces skeletal muscle at high efficiency following systemic delivery, we employed AAV-9 vectors bearing luciferase or enhanced green fluorescent protein (eGFP) reporter genes to test the hypothesis that increased desialylation of cell-surface glycans secondary to hindlimb ischemia (HLI) might help offset the reduction in tissue perfusion that occurs in mouse models of PAD. The utility of the creatine kinase-based (CK6) promoter for restricting gene expression to the skeletal muscle was also examined by comparing it with the cytomegalovirus (CMV) promoter after systemic administration following surgically induced HLI. Despite reduced blood flow to the ischemic limbs, CK6 promoter-driven luciferase activities in the ischemic gastrocnemius (GA) muscles were ∼34-, ∼28- and ∼150-fold higher than in the fully perfused contralateral GA, heart and liver, respectively, 10 days after IV administration. Furthermore, luciferase activity from the CK6 promoter in the ischemic GA muscles was ∼twofold higher than with CMV, while in the liver CK6-driven activity was ∼42-fold lower than with CMV, demonstrating that the specificity of ischemic skeletal muscle transduction can be further improved with the muscle-specific promoters. Studies with Evans blue dye and fluorescently labeled lectins revealed that vascular permeability and desialylation of the cell-surface glycans were increased in the ischemic hindlimbs. Furthermore, AAV9/CK6/Luc vector genome copy numbers were ∼sixfold higher in the ischemic muscle compared with the non-ischemic muscle in the HLI model, whereas this trend was reversed when the same genome was packaged in the AAV-1 capsid (which binds sialylated, as opposed to desialylated glycans), further underscoring the importance of desialylation in the ischemic enhancement of transduction displayed by AAV-9. Taken together, these findings suggest two complementary mechanisms contributing to the preferential transduction of ischemic muscle by AAV-9: increased vascular permeability and desialylation. In conclusion, ischemic muscle is preferentially targeted following systemic administration of AAV-9 in a mouse model of HLI. Unmasking of the primary AAV-9 receptor as a result of ischemia may contribute importantly to this effect.
Collapse
Affiliation(s)
- A B Katwal
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Losordo DW, Kibbe MR, Mendelsohn F, Marston W, Driver VR, Sharafuddin M, Teodorescu V, Wiechmann BN, Thompson C, Kraiss L, Carman T, Dohad S, Huang P, Junge CE, Story K, Weistroffer T, Thorne TM, Millay M, Runyon JP, Schainfeld R. A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ Cardiovasc Interv 2012; 5:821-30. [PMID: 23192920 PMCID: PMC3549397 DOI: 10.1161/circinterventions.112.968321] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 08/01/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND Critical limb ischemia portends a risk of major amputation of 25% to 35% within 1 year of diagnosis. Preclinical studies provide evidence that intramuscular injection of autologous CD34+ cells improves limb perfusion and reduces amputation risk. In this randomized, double-blind, placebo-controlled pilot study, we evaluated the safety and efficacy of intramuscular injections of autologous CD34+ cells in subjects with moderate or high-risk critical limb ischemia, who were poor or noncandidates for surgical or percutaneous revascularization (ACT34-CLI). METHODS AND RESULTS Twenty-eight critical limb ischemia subjects were randomized and treated: 7 to 1 × 10(5) (low-dose) and 9 to 1 × 10(6) (high-dose) autologous CD34+ cells/kg; and 12 to placebo (control). Intramuscular injections were distributed into 8 sites within the ischemic lower extremity. At 6 months postinjection, 67% of control subjects experienced a major or minor amputation versus 43% of low-dose and 22% of high-dose cell-treated subjects (P=0.137). This trend continued at 12 months, with 75% of control subjects experiencing any amputation versus 43% of low-dose and 22% of high-dose cell-treated subjects (P=0.058). Amputation incidence was lower in the combined cell-treated groups compared with control group (6 months: P=0.125; 12 months: P=0.054), with the low-dose and high-dose groups individually showing trends toward improved amputation-free survival at 6 months and 12 months. No adverse safety signal was associated with cell administration. CONCLUSIONS This study provides evidence that intramuscular administration of autologous CD34+ cells was safe in this patient population. Favorable trends toward reduced amputation rates in cell-treated versus control subjects were observed. These findings warrant further exploration in later-phase clinical trials. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT00616980.
Collapse
Affiliation(s)
- Douglas W Losordo
- Division of Cardiovascular Medicine, Northwestern Memorial Hospital, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR. Niosomes: novel sustained release nonionic stable vesicular systems--an overview. Adv Colloid Interface Sci 2012; 183-184:46-54. [PMID: 22947187 DOI: 10.1016/j.cis.2012.08.002] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 01/19/2023]
Abstract
Vesicular systems are novel means of delivering drug in controlled manner to enhance bioavailability and get therapeutic effect over a longer period of time. Niosomes are such hydrated vesicular systems containing nonionic surfactants along with cholesterol or other lipids delivering drug to targeted site which are non toxic, requiring less production cost, stable over a longer period of time in different conditions, so overcomes drawbacks of liposome. Present review describes history, all factors affecting niosome formulation, manufacturing conditions, characterization, stability, administration routes and also their comparison with liposome. This review also gives relevant information regarding various applications of niosomes in gene delivery, vaccine delivery, anticancer drug delivery, etc.
Collapse
Affiliation(s)
- N B Mahale
- Amrutvahini College of Pharmacy, Sangamner-422608, Dist. Ahmednagar, Maharshtra, India.
| | | | | | | | | |
Collapse
|
27
|
Powell RJ. Update on clinical trials evaluating the effect of biologic therapy in patients with critical limb ischemia. J Vasc Surg 2012; 56:264-6. [DOI: 10.1016/j.jvs.2012.03.255] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 11/27/2022]
|
28
|
Bassi R, Trevisani A, Tezza S, Ben Nasr M, Gatti F, Vergani A, Farina A, Fiorina P. Regenerative therapies for diabetic microangiopathy. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:916560. [PMID: 22536216 PMCID: PMC3321284 DOI: 10.1155/2012/916560] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/18/2012] [Indexed: 12/16/2022]
Abstract
Hyperglycaemia occurring in diabetes is responsible for accelerated arterial remodeling and atherosclerosis, affecting the macro- and the microcirculatory system. Vessel injury is mainly related to deregulation of glucose homeostasis and insulin/insulin-precursors production, generation of advanced glycation end-products, reduction in nitric oxide synthesis, and oxidative and reductive stress. It occurs both at extracellular level with increased calcium and matrix proteins deposition and at intracellular level, with abnormalities of intracellular pathways and increased cell death. Peripheral arterial disease, coronary heart disease, and ischemic stroke are the main causes of morbidity/mortality in diabetic patients representing a major clinical and economic issue. Pharmacological therapies, administration of growth factors, and stem cellular strategies are the most effective approaches and will be discussed in depth in this comprehensive review covering the regenerative therapies of diabetic microangiopathy.
Collapse
Affiliation(s)
- Roberto Bassi
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- DiSTeBA, Università del Salento, 73100 Lecce, Italy
| | | | - Sara Tezza
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Moufida Ben Nasr
- Department of Biophysical and Medical Science, Higher Institute of Medical Technology, 1006 Tunis, Tunisia
| | - Francesca Gatti
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- DiSTeBA, Università del Salento, 73100 Lecce, Italy
| | - Andrea Vergani
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonio Farina
- Department of Obstetrics and Gynecology, University of Bologna, 40138 Bologna, Italy
| | - Paolo Fiorina
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
29
|
Nonviral delivery of genetic medicine for therapeutic angiogenesis. Adv Drug Deliv Rev 2012; 64:40-52. [PMID: 21971337 DOI: 10.1016/j.addr.2011.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/29/2011] [Accepted: 09/18/2011] [Indexed: 01/08/2023]
Abstract
Genetic medicines that induce angiogenesis represent a promising strategy for the treatment of ischemic diseases. Many types of nonviral delivery systems have been tested as therapeutic angiogenesis agents. However, their delivery efficiency, and consequently therapeutic efficacy, remains to be further improved, as few of these technologies are being used in clinical applications. This article reviews the diverse nonviral gene delivery approaches that have been applied to the field of therapeutic angiogenesis, including plasmids, cationic polymers/lipids, scaffolds, and stem cells. This article also reviews clinical trials employing nonviral gene therapy and discusses the limitations of current technologies. Finally, this article proposes a future strategy to efficiently develop delivery vehicles that might be feasible for clinically relevant nonviral gene therapy, such as high-throughput screening of combinatorial libraries of biomaterials.
Collapse
|
30
|
|
31
|
Van Belle E, Nikol S, Norgren L, Baumgartner I, Driver V, Hiatt W, Belch J. Insights on the Role of Diabetes and Geographic Variation in Patients with Criticial Limb Ischaemia. Eur J Vasc Endovasc Surg 2011; 42:365-73. [DOI: 10.1016/j.ejvs.2011.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
|
32
|
A polymerase chain reaction-based methodology to detect gene doping. Eur J Appl Physiol 2011; 112:1527-36. [PMID: 21847575 DOI: 10.1007/s00421-011-2113-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
The non-therapeutic use of genes to enhance athletic performance (gene doping) is a novel threat to the world of sports. Skeletal muscle is a prime target of gene therapy and we asked whether we can develop a test system to produce and detect gene doping. Towards this end, we introduced a plasmid (pCMV-FAK, 3.8 kb, 50 μg) for constitutive expression of the chicken homologue for the regulator of muscle growth, focal adhesion kinase (FAK), via gene electro transfer in the anti-gravitational muscle, m. soleus, or gastrocnemius medialis of rats. Activation of hypertrophy signalling was monitored by assessing the ribosomal kinase p70S6K and muscle fibre cross section. Detectability of the introduced plasmid was monitored with polymerase chain reaction in deoxyribonucleic acids (DNA) from transfected muscle and serum. Muscle transfection with pCMV-FAK elevated FAK expression 7- and 73-fold, respectively, and increased mean cross section by 52 and 16% in targeted muscle fibres of soleus and gastrocnemius muscle 7 days after gene electro transfer. Concomitantly p70S6K content was increased in transfected soleus muscle (+110%). Detection of the exogenous plasmid sequence was possible in DNA and cDNA of muscle until 7 days after transfection, but not in serum except close to the site of plasmid deposition, 1 h after injection and surgery. The findings suggest that the reliable detection of gene doping in the immoral athlete is not possible unless a change in the current practice of tissue sampling is applied involving the collection of muscle biopsy close to the site of gene injection.
Collapse
|
33
|
Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia. J Vasc Surg 2011; 54:1032-41. [PMID: 21684715 DOI: 10.1016/j.jvs.2011.04.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/10/2011] [Accepted: 04/04/2011] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Cell therapy is a novel experimental treatment modality for patients with critical limb ischemia (CLI) of the lower extremities and no other established treatment options. This study was conducted to assess the safety and clinical efficacy of intramuscular injection of autologous tissue repair cells (TRCs). METHODS A prospective, randomized double-blinded, placebo controlled, multicenter study (RESTORE-CLI) was conducted at 18 centers in the United States in patients with CLI and no option for revascularization. Enrollment of 86 patients began in April 2007 and ended in February 2010. For the prospectively planned interim analysis, conducted in February 2010, 33 patients had the opportunity to complete the trial (12 months of follow-up), and 46 patients had completed at least 6 months of follow-up. The interim analysis included analysis of both patient populations. An independent physician performed the bone marrow or sham control aspiration. The aspirate was processed in a closed, automated cell manufacturing system for approximately 12 days to generate the TRC population of stem and progenitor cells. An average of 136 ± 41 × 10(6) total viable cells or electrolyte (control) solution were injected into 20 sites in the ischemic lower extremity. The primary end point was safety as evaluated by adverse events, and serious adverse events as assessed at multiple follow-up time points. Clinical efficacy end points included major amputation-free survival and time to first occurrence of treatment failure (defined as any of the following: major amputation, death, de novo gangrene, or doubling of wound size), as well as major amputation rate and measures of wound healing. RESULTS There was no difference in adverse or serious adverse events between the two groups. Statistical analysis revealed a significant increase in time to treatment failure (log-rank test, P = .0053) and amputation-free survival in patients receiving TRC treatment, (log-rank test, P = .038). Major amputation occurred in 19% of TRC-treated patients compared to 43% of controls (P = .14, Fisher exact test). There was evidence of improved wound healing in the TRC-treated patients when compared with controls at 12 months. CONCLUSIONS Intramuscular injection of autologous bone marrow-derived TRCs is safe and decreases the occurrence of clinical events associated with disease progression when compared to placebo in patients with lower extremity CLI and no revascularization options.
Collapse
|
34
|
Geusens B, Strobbe T, Bracke S, Dynoodt P, Sanders N, Gele MV, Lambert J. Lipid-mediated gene delivery to the skin. Eur J Pharm Sci 2011; 43:199-211. [DOI: 10.1016/j.ejps.2011.04.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 11/16/2010] [Accepted: 04/09/2011] [Indexed: 11/29/2022]
|
35
|
Long-term safety of intramuscular gene transfer of non-viral FGF1 for peripheral artery disease. Gene Ther 2011; 19:264-70. [DOI: 10.1038/gt.2011.85] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Abstract
Gene and stem cell therapies have been shown to be safe and well tolerated. Early trial results using these therapies have had promising results on important clinical end points such as wound healing, ischemic pain, and major amputation. Despite this, there have been no pivotal trials to date that have proved the benefit of biological therapy, although there are numerous pivotal trials in progress or about to initiate enrollment. Persistent obstacles exist with current study designs that complicate the ability to successfully perform clinical critical limb ischemia trials.
Collapse
Affiliation(s)
- Richard J Powell
- Section of Vascular Surgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA.
| |
Collapse
|
37
|
Belch J, Hiatt WR, Baumgartner I, Driver IV, Nikol S, Norgren L, Van Belle E. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 2011; 377:1929-37. [PMID: 21621834 DOI: 10.1016/s0140-6736(11)60394-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Patients with critical limb ischaemia have a high rate of amputation and mortality. We tested the hypothesis that non-viral 1 fibroblast growth factor (NV1FGF) would improve amputation-free survival. METHODS In this phase 3 trial (EFC6145/TAMARIS), 525 patients with critical limb ischaemia unsuitable for revascularisation were enrolled from 171 sites in 30 countries. All had ischaemic ulcer in legs or minor skin gangrene and met haemodynamic criteria (ankle pressure <70 mm Hg or a toe pressure <50 mm Hg, or both, or a transcutaneous oxygen pressure <30 mm Hg on the treated leg). Patients were randomly assigned to either NV1FGF at 0·2 mg/mL or matching placebo (visually identical) in a 1:1 ratio. Randomisation was done with a central interactive voice response system by block size 4 and was stratified by diabetes status and country. Investigators, patients, and study teams were masked to treatment. Patients received eight intramuscular injections of their assigned treatment in the index leg on days 1, 15, 29, and 43. The primary endpoint was time to major amputation or death at 1 year analysed by intention to treat with a log-rank test using a multivariate Cox proportional hazard model. This trial is registered with ClinicalTrials.gov, number NCT00566657. FINDINGS 259 patients were assigned to NV1FGF and 266 to placebo. All 525 patients were analysed. The mean age was 70 years (range 50-92), 365 (70%) were men, 280 (53%) had diabetes, and 248 (47%) had a history of coronary artery disease. The primary endpoint or components of the primary did not differ between treatment groups, with major amputation or death in 86 patients (33%) in the placebo group, and 96 (36%) in the active group (hazard ratio 1·11, 95% CI 0·83-1·49; p=0·48). No significant safety issues were recorded. INTERPRETATION TAMARIS provided no evidence that NV1FGF is effective in reduction of amputation or death in patients with critical limb ischaemia. Thus, this group of patients remains a major therapeutic challenge for the clinician. FUNDING Sanofi-Aventis, Paris, France.
Collapse
Affiliation(s)
- Jill Belch
- The Institute of Cardiovascular Research, Vascular and Inflammatory Diseases Research Unit, Ninewells Hospital and Medical School, Dundee, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Despite three decades of huge progress in molecular genetics, in cloning of disease causative gene as well as technology breakthroughs in viral biotechnology, out of thousands of gene therapy clinical trials that have been initiated, only very few are now reaching regulatory approval. We shall review some of the major hurdles, and based on the current either positive or negative examples, we try to initiate drawing a learning curve from experience and possibly identify the major drivers for future successful achievement of human gene therapy trials.
Collapse
Affiliation(s)
- Patrice P Denèfle
- Translational Sciences, IPSEN, and Biotherapies, ParisTech Institute, Paris-Descartes University, Paris, France.
| |
Collapse
|
39
|
Powell RJ, Goodney P, Mendelsohn FO, Moen EK, Annex BH. Safety and efficacy of patient specific intramuscular injection of HGF plasmid gene therapy on limb perfusion and wound healing in patients with ischemic lower extremity ulceration: results of the HGF-0205 trial. J Vasc Surg 2010; 52:1525-30. [PMID: 21146749 PMCID: PMC5292269 DOI: 10.1016/j.jvs.2010.07.044] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 12/16/2022]
Abstract
OBJECTIVES We have previously reported the results of a dose-finding phase II trial showing that HGF angiogenic gene therapy can increase TcPO2 compared with placebo in patients with critical limb ischemia (CLI). The purpose of this randomized placebo controlled multi-center trial was to further assess the safety and clinical efficacy of a modified HGF gene delivery technique in patients with CLI and no revascularization options. METHODS Patients with lower extremity ischemic tissue loss (Rutherford 5 and 6) received three sets of eight intramuscular injections every 2 weeks of HGF plasmid under duplex ultrasound guidance. Injection locations were individualized for each patient based on arteriographically defined vascular anatomy. Primary safety end point was incidence of adverse events (AE) or serious adverse events (SAE). Clinical end points included change from baseline in toe brachial index (TBI), rest pain assessment by a 10 cm visual analogue scale (VAS) as well as wound healing, amputation, and survival at 3 and 6 months. RESULTS Randomization ratio was 3:1 HGF (n = 21) vs placebo (n = 6). Mean age was 76 ± 2 years, with 56% male and 59% diabetic. There was no difference in demographics between groups. There was no difference in AEs or SAEs, which consisted mostly of transient injection site discomfort, worsening of CLI, and intercurrent illnesses. Change in TBI significantly improved from baseline at 6 months in the HGF-treated group compared with placebo (0.05 ± 0.05 vs -0.17 ± 0.04; P = .047). Change in VAS from baseline at 6 months was also significantly improved in the HGF-treated group compared with placebo (-1.9 ± 1.3 vs +0.06 ± 0.2; P = .04). Complete ulcer healing at 12 months occurred in 31% of the HGF group and 0% of the placebo (P = .28) There was no difference in major amputation of the treated limb (HGF 29% vs placebo 33%) or mortality at 12 months (HGF 19% vs placebo 17%) between groups. CONCLUSION HGF gene therapy using a patient vascular anatomy specific delivery technique appears safe, maintained limb perfusion, and decreased rest pain in patients with CLI compared with placebo. A larger study to assess the efficacy of this therapy on more clinically relevant end points is warranted.
Collapse
Affiliation(s)
- Richard J Powell
- Section of Vascular Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | | | | | | | | |
Collapse
|
40
|
Oliveira NAJ, Cecchi CR, Higuti E, Oliveira JE, Jensen TG, Bartolini P, Peroni CN. Long-term human growth hormone expression and partial phenotypic correction by plasmid-based gene therapy in an animal model of isolated growth hormone deficiency. J Gene Med 2010; 12:580-5. [DOI: 10.1002/jgm.1470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
41
|
Gene doping detection: evaluation of approach for direct detection of gene transfer using erythropoietin as a model system. Gene Ther 2010; 17:1022-32. [DOI: 10.1038/gt.2010.49] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
Mori T, Sasaki J, Kanamori T, Aoyama Y, Sera T. Hypoxia-specific upregulation of the endogenous human VEGF-A gene by hypoxia-driven expression of artificial transcription factor. Biochem Biophys Res Commun 2009; 390:845-8. [DOI: 10.1016/j.bbrc.2009.10.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 10/13/2009] [Indexed: 01/10/2023]
|