1
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
2
|
Gomes CM, Sebastião MJ, Silva G, Moura F, Simão D, Gomes-Alves P, Alves PM, Brito C. Miniaturization of hiPSC-derived 3D neural cultures in stirred-tank bioreactors for parallelized preclinical assessment of rAAV. Front Bioeng Biotechnol 2024; 12:1379597. [PMID: 38737536 PMCID: PMC11082387 DOI: 10.3389/fbioe.2024.1379597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction: Engineered 3D models employing human induced pluripotent stem cell (hiPSC) derivatives have the potential to recapitulate the cell diversity and structure found in the human central nervous system (CNS). Therefore, these complex cellular systems offer promising human models to address the safety and potency of advanced therapy medicinal products (ATMPs), such as gene therapies. Specifically, recombinant adeno-associated viruses (rAAVs) are currently considered highly attractive for CNS gene therapy due to their broad tropism, low toxicity, and moderate immunogenicity. To accelerate the clinical translation of rAAVs, in-depth preclinical evaluation of efficacy and safety in a human setting is primordial. The integration of hiPSC-derived CNS models in rAAV development will require, amongst other factors, robust, small-scale, high-throughput culture platforms that can feed the preclinical trials. Methods: Herein, we pioneer the miniaturization and parallelization of a 200 mL stirred-tank bioreactor-based 3D brain cell culture derived from hiPSCs. We demonstrate the applicability of the automated miniaturized Ambr® 15 Cell Culture system for the maintenance of hiPSC-derived neurospheroids (iNSpheroids), composed of neuronal and glial cells. Critical process parameters were optimized, namely, cell density and agitation mode. Results: Under optimized conditions, stable iNSpheroid cultures were attained in the microbioreactors for at least 15 days, with high cell viability and astrocytic and neuronal phenotype maintenance. This culture setup allowed the parallelization of different rAAVs, in different multiplicity of infections (MOIs), to address rAAV-host interactions at a preclinical scale. The iNSpheroids were exposed to rAAV2- and rAAV9-eGFP in the microbioreactors. Transgene expression was detected 14 days post-transduction, revealing different astrocyte/neuron tropism of the two serotypes. Discussion: We advocate that the iNSpheroid cultures in miniaturized bioreactors are reliable and reproducible screening tools for addressing rAAV transduction and tropism, compatible with preclinical demands.
Collapse
Affiliation(s)
- Catarina M. Gomes
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Gabriela Silva
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
| | - Filipa Moura
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daniel Simão
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
| | | | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
3
|
Kofoed RH, Aubert I. Focused ultrasound gene delivery for the treatment of neurological disorders. Trends Mol Med 2024; 30:263-277. [PMID: 38216449 DOI: 10.1016/j.molmed.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
The transformative potential of gene therapy has been demonstrated in humans. However, there is an unmet need for non-invasive targeted gene delivery and regulation in the treatment of brain disorders. Transcranial focused ultrasound (FUS) has gained tremendous momentum to address these challenges. FUS non-invasively modulates brain cells and their environment, and is a powerful tool to facilitate gene delivery across the blood-brain barrier (BBB) with millimeter precision and promptly regulate transgene expression. This review highlights technical aspects of FUS-mediated gene therapies for the central nervous system (CNS) and lessons learned from discoveries in other organs. Understanding the possibilities and remaining obstacles of FUS-mediated gene therapy will be necessary to harness remarkable technologies and create life-changing treatments for neurological disorders.
Collapse
Affiliation(s)
- Rikke Hahn Kofoed
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Oh N, Tarte NH. Subcellular distribution of the rAAV genome depends on genome structure. Sci Rep 2023; 13:17325. [PMID: 37833341 PMCID: PMC10575858 DOI: 10.1038/s41598-023-44074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Many studies have been conducted on the transduction efficiency of recombinant adeno-associated virus (rAAV) depending on the serotype and genome structure, such as single-stranded (ss) and self-complementary (sc). To understand the variation in therapeutic efficacy, we focused on investigating subcellular distribution of viral genome depending on rAAV genome structure. It is critical to ascertain the location of the virus within the host cell after the entry because a larger amount of the viral genome placed in the nucleus facilitates viral genome replication by utilizing the host cell's system, thereby enhancing the therapeutic outcome. In this sense, tracking the location of the virus within the host cell's organelles can inform a new strategy to improve therapeutic efficacy. Therefore, we attempted to stain only the viral genome with APEX2 and DAB chemicals specifically, and the distribution of the viral genome was examined by transmission electron microscopy (TEM). Consequently, when the two types of rAAV were transduced for 6 h, scAAV2 tended to be more located in the lysosome and nucleus compared to ssAAV2.
Collapse
Affiliation(s)
- Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea.
| | - Naresh H Tarte
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea
| |
Collapse
|
5
|
Mueller SA, Oler JA, Roseboom PH, Aggarwal N, Kenwood MM, Riedel MK, Elam VR, Olsen ME, DiFilippo AH, Christian BT, Hu X, Galvan A, Boehm MA, Michaelides M, Kalin NH. DREADD-mediated amygdala activation is sufficient to induce anxiety-like responses in young nonhuman primates. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100111. [PMID: 38020807 PMCID: PMC10663133 DOI: 10.1016/j.crneur.2023.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders, with symptoms often beginning early in life. To model the pathophysiology of human pathological anxiety, we utilized Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in a nonhuman primate model of anxious temperament to selectively increase neuronal activity of the amygdala. Subjects included 10 young rhesus macaques; 5 received bilateral infusions of AAV5-hSyn-HA-hM3Dq into the dorsal amygdala, and 5 served as controls. Subjects underwent behavioral testing in the human intruder paradigm following clozapine or vehicle administration, prior to and following surgery. Behavioral results indicated that clozapine treatment post-surgery increased freezing across different threat-related contexts in hM3Dq subjects. This effect was again observed approximately 1.9 years following surgery, indicating the long-term functional capacity of DREADD-induced neuronal activation. [11C]deschloroclozapine PET imaging demonstrated amygdala hM3Dq-HA specific binding, and immunohistochemistry revealed that hM3Dq-HA expression was most prominent in basolateral nuclei. Electron microscopy confirmed expression was predominantly on neuronal membranes. Together, these data demonstrate that activation of primate amygdala neurons is sufficient to induce increased anxiety-related behaviors, which could serve as a model to investigate pathological anxiety in humans.
Collapse
Affiliation(s)
- Sascha A.L. Mueller
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Jonathan A. Oler
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Patrick H. Roseboom
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Nakul Aggarwal
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Margaux M. Kenwood
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Marissa K. Riedel
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Victoria R. Elam
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Miles E. Olsen
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Alexandra H. DiFilippo
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Bradley T. Christian
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Xing Hu
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Matthew A. Boehm
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ned H. Kalin
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| |
Collapse
|
6
|
Li L, Liu Z. Genetic Approaches for Neural Circuits Dissection in Non-human Primates. Neurosci Bull 2023; 39:1561-1576. [PMID: 37258795 PMCID: PMC10533465 DOI: 10.1007/s12264-023-01067-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 06/02/2023] Open
Abstract
Genetic tools, which can be used for the morphology study of specific neurons, pathway-selective connectome mapping, neuronal activity monitoring, and manipulation with a spatiotemporal resolution, have been widely applied to the understanding of complex neural circuit formation, interactions, and functions in rodents. Recently, similar genetic approaches have been tried in non-human primates (NHPs) in neuroscience studies for dissecting the neural circuits involved in sophisticated behaviors and clinical brain disorders, although they are still very preliminary. In this review, we introduce the progress made in the development and application of genetic tools for brain studies on NHPs. We also discuss the advantages and limitations of each approach and provide a perspective for using genetic tools to study the neural circuits of NHPs.
Collapse
Affiliation(s)
- Ling Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Kimura K, Nagai Y, Hatanaka G, Fang Y, Tanabe S, Zheng A, Fujiwara M, Nakano M, Hori Y, Takeuchi RF, Inagaki M, Minamimoto T, Fujita I, Inoue KI, Takada M. A mosaic adeno-associated virus vector as a versatile tool that exhibits high levels of transgene expression and neuron specificity in primate brain. Nat Commun 2023; 14:4762. [PMID: 37553329 PMCID: PMC10409865 DOI: 10.1038/s41467-023-40436-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Recent emphasis has been placed on gene transduction mediated through recombinant adeno-associated virus (AAV) vector to manipulate activity of neurons and their circuitry in the primate brain. In the present study, we created a novel vector of which capsid was composed of capsid proteins derived from both of the AAV serotypes 1 and 2 (AAV1 and AAV2). Following the injection into the frontal cortex of macaque monkeys, this mosaic vector, termed AAV2.1 vector, was found to exhibit the excellence in transgene expression (for AAV1 vector) and neuron specificity (for AAV2 vector) simultaneously. To explore its applicability to chemogenetic manipulation and in vivo calcium imaging, the AAV2.1 vector expressing excitatory DREADDs or GCaMP was injected into the striatum or the visual cortex of macaque monkeys, respectively. Our results have defined that such vectors secure intense and stable expression of the target proteins and yield conspicuous modulation and imaging of neuronal activity.
Collapse
Affiliation(s)
- Kei Kimura
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Gaku Hatanaka
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yang Fang
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soshi Tanabe
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Andi Zheng
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Maki Fujiwara
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Mayuko Nakano
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ryosuke F Takeuchi
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikio Inagaki
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ichiro Fujita
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| |
Collapse
|
8
|
Liu YS, Wang ML, Hu NY, Li ZM, Wu JL, Li H, Li JT, Li XW, Yang JM, Gao TM, Chen YH. A comparison of the impact on neuronal transcriptome and cognition of rAAV5 transduction with three different doses in the mouse hippocampus. Front Mol Neurosci 2023; 16:1195327. [PMID: 37520430 PMCID: PMC10375024 DOI: 10.3389/fnmol.2023.1195327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Recombinant adeno-associated viruses (rAAVs) are widely used in genetic therapeutics. AAV5 has shown superior transduction efficiency, targeting neurons and glial cells in primate brains. Nonetheless, the comprehensive impact of AAV5 transduction on molecular and behavioral alterations remains unexplored. This study focuses on evaluating the effects of AAV5 transduction in the hippocampus, a critical region for memory formation and emotional processes. Methods In this experiment, fluorescence-activated cell sorting (FACS) was utilized to isolate the mCherry-labeled pyramidal neurons in the hippocampus of CaMkIIα-cre mice following three different doses rAAV5-mCherry infusion after 3 weeks, which were then subjected to RNA sequencing (RNA-seq) to assess gene expression profiles. The cytokines concentration, mRNA expression, and glial response in hippocampi were confirmed by ELASA, digital droplet PCR and immunohistochemistry respectively. Locomotion and anxiety-like behaviors were elevated by Open Field Test and Elevated Plus Maze Test, while the Y-Maze were used to assessed spatial working memory. Recognition memory and fear responses were examined by the Novel Object Recognition Test and Fear Conditioning Test, respectively. Results We found that 2.88 × 1010 v.g rAAV5 transduction significantly upregulated genes related to the immune response and apoptosis, and downregulated genes associated with mitochondrial function and synaptic plasticity in hippocampal pyramidal neurons, while did not induce neuronal loss and gliosis compared with 2.88 × 109 v.g and 2.88 × 108 v.g. Furthermore, the same doses impaired working memory and contextual fear memory, without effects on locomotion and anxiety-related behaviors. Discussion Our findings highlight the detrimental impact of high-dose administration compared to median-dose or low-dose, resulting in increased neural vulnerability and impaired memory. Therefore, when considering the expression effectiveness of exogenous genes, it is crucial to also take potential side effects into account in clinical settings. However, the precise molecular mechanisms underlying these drawbacks of high-dose rAAV5-mCherry still require further investigation in future studies.
Collapse
|
9
|
Mueller SAL, Oler JA, Roseboom PH, Aggarwal N, Kenwood MM, Riedel MK, Elam VR, Olsen ME, DiFilippo AH, Christian BT, Hu X, Galvan A, Boehm MA, Michaelides M, Kalin NH. DREADD-mediated amygdala activation is sufficient to induce anxiety-like responses in young nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543911. [PMID: 37333300 PMCID: PMC10274719 DOI: 10.1101/2023.06.06.543911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders, with symptoms often beginning early in life. To model the pathophysiology of human pathological anxiety, we utilized Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in a nonhuman primate model of anxious temperament to selectively increase neuronal activity of the amygdala. Subjects included 10 young rhesus macaques; 5 received bilateral infusions of AAV5-hSyn-HA-hM3Dq into the dorsal amygdala, and 5 served as controls. Subjects underwent behavioral testing in the human intruder paradigm following clozapine or vehicle administration, prior to and following surgery. Behavioral results indicated that clozapine treatment post-surgery increased freezing across different threat-related contexts in hM3Dq subjects. This effect was again observed approximately 1.9 years following surgery, indicating the long-term functional capacity of DREADD-induced neuronal activation. [11C]deschloroclozapine PET imaging demonstrated amygdala hM3Dq-HA specific binding, and immunohistochemistry revealed that hM3Dq-HA expression was most prominent in basolateral nuclei. Electron microscopy confirmed expression was predominantly on neuronal membranes. Together, these data demonstrate that activation of primate amygdala neurons is sufficient to induce increased anxiety-related behaviors, which could serve as a model to investigate pathological anxiety in humans.
Collapse
Affiliation(s)
- Sascha A L Mueller
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Jonathan A Oler
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Patrick H Roseboom
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Nakul Aggarwal
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Margaux M Kenwood
- Department of Psychiatry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Marissa K Riedel
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Victoria R Elam
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Miles E Olsen
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Alexandra H DiFilippo
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Bradley T Christian
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Xing Hu
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Matthew A Boehm
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ned H Kalin
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| |
Collapse
|
10
|
Merlin S, Vidyasagar T. Optogenetics in primate cortical networks. Front Neuroanat 2023; 17:1193949. [PMID: 37284061 PMCID: PMC10239886 DOI: 10.3389/fnana.2023.1193949] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The implementation of optogenetics in studies on non-human primates has generally proven quite difficult, but recent successes have paved the way for its rapid increase. Limitations in the genetic tractability in primates, have been somewhat overcome by implementing tailored vectors and promoters to maximize expression and specificity in primates. More recently, implantable devices, including microLED arrays, have made it possible to deliver light deeper into brain tissue, allowing targeting of deeper structures. However, the greatest limitation in applying optogenetics to the primate brain is the complex connections that exist within many neural circuits. In the past, relatively cruder methods such as cooling or pharmacological blockade have been used to examine neural circuit functions, though their limitations were well recognized. In some ways, similar shortcomings remain for optogenetics, with the ability to target a single component of complex neural circuits being the greatest challenge in applying optogenetics to systems neuroscience in primate brains. Despite this, some recent approaches combining Cre-expressing and Cre-dependent vectors have overcome some of these limitations. Here we suggest that optogenetics provides its greatest advantage to systems neuroscientists when applied as a specific tool to complement the techniques of the past, rather than necessarily replacing them.
Collapse
Affiliation(s)
- Sam Merlin
- Medical Science, School of Science, Western Sydney University, Campbelltown, NSW, Australia
| | - Trichur Vidyasagar
- Department of Optometry and Vision Sciences, School of Health Science, The University of Melbourne, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Chen X, Dong T, Hu Y, De Pace R, Mattera R, Eberhardt K, Ziegler M, Pirovolakis T, Sahin M, Bonifacino JS, Ebrahimi-Fakhari D, Gray SJ. Intrathecal AAV9/AP4M1 gene therapy for hereditary spastic paraplegia 50 shows safety and efficacy in preclinical studies. J Clin Invest 2023; 133:e164575. [PMID: 36951961 PMCID: PMC10178841 DOI: 10.1172/jci164575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
Spastic paraplegia 50 (SPG50) is an ultrarare childhood-onset neurological disorder caused by biallelic loss-of-function variants in the AP4M1 gene. SPG50 is characterized by progressive spastic paraplegia, global developmental delay, and subsequent intellectual disability, secondary microcephaly, and epilepsy. We preformed preclinical studies evaluating an adeno-associated virus (AAV)/AP4M1 gene therapy for SPG50 and describe in vitro studies that demonstrate transduction of patient-derived fibroblasts with AAV2/AP4M1, resulting in phenotypic rescue. To evaluate efficacy in vivo, Ap4m1-KO mice were intrathecally (i.t.) injected with 5 × 1011, 2.5 × 1011, or 1.25 × 1011 vector genome (vg) doses of AAV9/AP4M1 at P7-P10 or P90. Age- and dose-dependent effects were observed, with early intervention and higher doses achieving the best therapeutic benefits. In parallel, three toxicology studies in WT mice, rats, and nonhuman primates (NHPs) demonstrated that AAV9/AP4M1 had an acceptable safety profile up to a target human dose of 1 × 1015 vg. Of note, similar degrees of minimal-to-mild dorsal root ganglia (DRG) toxicity were observed in both rats and NHPs, supporting the use of rats to monitor DRG toxicity in future i.t. AAV studies. These preclinical results identify an acceptably safe and efficacious dose of i.t.-administered AAV9/AP4M1, supporting an investigational gene transfer clinical trial to treat SPG50.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Dong
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Yuhui Hu
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Rafael Mattera
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Kathrin Eberhardt
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marvin Ziegler
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mustafa Sahin
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven J. Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Morais RDVS, Sogorb-González M, Bar C, Timmer NC, Van der Bent ML, Wartel M, Vallès A. Functional Intercellular Transmission of miHTT via Extracellular Vesicles: An In Vitro Proof-of-Mechanism Study. Cells 2022; 11:2748. [PMID: 36078156 PMCID: PMC9455173 DOI: 10.3390/cells11172748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by GAG expansion in exon 1 of the huntingtin (HTT) gene. AAV5-miHTT is an adeno-associated virus serotype 5-based vector expressing an engineered HTT-targeting microRNA (miHTT). Preclinical studies demonstrate the brain-wide spread of AAV5-miHTT following a single intrastriatal injection, which is partly mediated by neuronal transport. miHTT has been previously associated with extracellular vesicles (EVs), but whether EVs mediate the intercellular transmission of miHTT remains unknown. A contactless culture system was used to evaluate the transport of miHTT, either from a donor cell line overexpressing miHTT or AAV5-miHTT transduced neurons. Transfer of miHTT to recipient (HEK-293T, HeLa, and HD patient-derived neurons) cells was observed, which significantly reduced HTT mRNA levels. miHTT was present in EV-enriched fractions isolated from culture media. Immunocytochemical and in situ hybridization experiments showed that the signal for miHTT and EV markers co-localized, confirming the transport of miHTT within EVs. In summary, we provide evidence that an engineered miRNA-miHTT-is loaded into EVs, transported across extracellular space, and taken up by neighboring cells, and importantly, that miHTT is active in recipient cells downregulating HTT expression. This represents an additional mechanism contributing to the widespread biodistribution of AAV5-miHTT.
Collapse
Affiliation(s)
- Roberto D. V. S. Morais
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - Marina Sogorb-González
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Citlali Bar
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - Nikki C. Timmer
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - M. Leontien Van der Bent
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - Morgane Wartel
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - Astrid Vallès
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| |
Collapse
|
13
|
Hunter JE, Molony CM, Bagel JH, O’Donnell PA, Kaler SG, Wolfe JH. Transduction characteristics of alternative adeno-associated virus serotypes in the cat brain by intracisternal delivery. Mol Ther Methods Clin Dev 2022; 26:384-393. [PMID: 36034772 PMCID: PMC9391516 DOI: 10.1016/j.omtm.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
Multiple studies have examined the transduction characteristics of different AAV serotypes in the mouse brain, where they can exhibit significantly different patterns of transduction. The pattern of transduction also varies with the route of administration. Much less information exists for the transduction characteristics in large-brained animals. Large animal models have brains that are closer in size and organization to the human brain, such as being gyrencephalic compared to the lissencephalic rodent brains, pathway organization, and certain electrophysiologic properties. Large animal models are used as translational intermediates to develop gene therapies to treat human diseases. Various AAV serotypes and routes of delivery have been used to study the correction of pathology in the brain in lysosomal storage diseases. In this study, we evaluated the ability of selected AAV serotypes to transduce cells in the cat brain when delivered into the cerebrospinal fluid via the cisterna magna. We previously showed that AAV1 transduced significantly greater numbers of cells than AAV9 in the cat brain by this route. In the present study, we evaluated serotypes closely related to AAVs 1 and 9 (AAVs 6, AS, hu32) that may mediate more extensive transduction, as well as AAVs 4 and 5, which primarily transduce choroid plexus epithelial (CPE) and ependymal lining cells in the rodent brain. The related serotypes tended to have similar patterns of transduction but were divergent in some specific brain structures.
Collapse
Affiliation(s)
- Jacqueline E. Hunter
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Caitlyn M. Molony
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica H. Bagel
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia A. O’Donnell
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen G. Kaler
- Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - John H. Wolfe
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA,W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Corresponding author John H. Wolfe, Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104-4399, USA.
| |
Collapse
|
14
|
Oguchi M, Sakagami M. Dissecting the Prefrontal Network With Pathway-Selective Manipulation in the Macaque Brain-A Review. Front Neurosci 2022; 16:917407. [PMID: 35677354 PMCID: PMC9168219 DOI: 10.3389/fnins.2022.917407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Macaque monkeys are prime animal models for studying the neural mechanisms of decision-making because of their close kinship with humans. Manipulation of neural activity during decision-making tasks is essential for approaching the causal relationship between the brain and its functions. Conventional manipulation methods used in macaque studies are coarse-grained, and have worked indiscriminately on mutually intertwined neural pathways. To systematically dissect neural circuits responsible for a variety of functions, it is essential to analyze changes in behavior and neural activity through interventions in specific neural pathways. In recent years, an increasing number of studies have applied optogenetics and chemogenetics to achieve fine-grained pathway-selective manipulation in the macaque brain. Here, we review the developments in macaque studies involving pathway-selective operations, with a particular focus on applications to the prefrontal network. Pathway selectivity can be achieved using single viral vector transduction combined with local light stimulation or ligand administration directly into the brain or double-viral vector transduction combined with systemic drug administration. We discuss the advantages and disadvantages of these methods. We also highlight recent technological developments in viral vectors that can effectively infect the macaque brain, as well as the development of methods to deliver photostimulation or ligand drugs to a wide area to effectively manipulate behavior. The development and dissemination of such pathway-selective manipulations of macaque prefrontal networks will enable us to efficiently dissect the neural mechanisms of decision-making and innovate novel treatments for decision-related psychiatric disorders.
Collapse
Affiliation(s)
- Mineki Oguchi
- Brain Science Institute, Tamagawa University, Tokyo, Japan
| | | |
Collapse
|
15
|
Li H, Sun B, Huang Y, Zhang J, Xu X, Shen Y, Chen Z, Yang J, Shen L, Hu Y, Gu H. Gene therapy of yeast NDI1 on mitochondrial complex I dysfunction in rotenone-induced Parkinson’s disease models in vitro and vivo. Mol Med 2022; 28:29. [PMID: 35255803 PMCID: PMC8900322 DOI: 10.1186/s10020-022-00456-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/18/2022] [Indexed: 01/18/2023] Open
Abstract
Abstract
Purpose
Parkinson's disease (PD) is the second most common neurodegenerative disease without cure or effective treatment. This study explores whether the yeast internal NADH-quinone oxidoreductase (NDI1) can functionally replace the defective mammalian mitochondrial complex I, which may provide a gene therapy strategy for treating sporadic PD caused by mitochondrial complex I dysfunction.
Method
Recombinant lentivirus expressing NDI1 was transduced into SH-SY5Y cells, or recombinant adeno-associated virus type 5 expressing NDI1 was transduced into the right substantia nigra pars compacta (SNpc) of mouse. PD cell and mouse models were established by rotenone treatment. The therapeutic effects of NDI1 on rotenone-induced PD models in vitro and vivo were assessed in neurobehavior, neuropathology, and mitochondrial functions, by using the apomorphine-induced rotation test, immunohistochemistry, immunofluorescence, western blot, complex I enzyme activity determination, oxygen consumption detection, ATP content determination and ROS measurement.
Results
NDI1 was expressed and localized in mitochondria in SH-SY5Y cells. NDI1 resisted rotenone-induced changes in cell morphology, loss of cell viability, accumulation of α-synuclein and pS129 α-synuclein, mitochondrial ROS production and mitochondria-mediated apoptosis. The basal and maximal oxygen consumption, mitochondrial coupling efficiency, basal and oligomycin-sensitive ATP and complex I activity in cell model were significantly increased in rotenone + NDI1 group compared to rotenone + vector group. NDI1 was efficiently expressed in dopaminergic neurons in the right SNpc without obvious adverse effects. The rotation number to the right side (NDI1-treated side) was significantly increased compared to that to the left side (untreated side) in mouse model. The number of viable dopaminergic neurons, the expression of tyrosine hydroxylase, total and maximal oxygen consumption, mitochondrial coupling efficiency and complex I enzyme activity in right substantia nigra, and the content of dopamine in right striatum were significantly increased in rotenone + NDI1 group compared to rotenone + vector group.
Conclusion
Yeast NDI1 can rescue the defect of oxidative phosphorylation in rotenone-induced PD cell and mouse models, and ameliorate neurobehavioral and neuropathological damages. The results may provide a basis for the yeast NDI1 gene therapy of sporadic PD caused by mitochondrial complex I dysfunction.
Collapse
|
16
|
Applications of chemogenetics in non-human primates. Curr Opin Pharmacol 2022; 64:102204. [DOI: 10.1016/j.coph.2022.102204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022]
|
17
|
Chen X, Dong T, Hu Y, Shaffo FC, Belur NR, Mazzulli JR, Gray SJ. AAV9/MFSD8 gene therapy is effective in preclinical models of neuronal ceroid lipofuscinosis type 7 disease. J Clin Invest 2022; 132:146286. [PMID: 35025759 PMCID: PMC8884910 DOI: 10.1172/jci146286] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal ceroid lipofuscinosis type 7 (CLN7) disease is a lysosomal storage disease caused by mutations in the facilitator superfamily domain containing 8 (MFSD8) gene, which encodes a membrane-bound lysosomal protein, MFSD8. To test the effectiveness and safety of adeno-associated viral (AAV) gene therapy, an in vitro study demonstrated that AAV2/MFSD8 dose dependently rescued lysosomal function in fibroblasts from a CLN7 patient. An in vivo efficacy study using intrathecal administration of AAV9/MFSD8 to Mfsd8- /- mice at P7-P10 or P120 with high or low dose led to clear age- and dose-dependent effects. A high dose of AAV9/MFSD8 at P7-P10 resulted in widespread MFSD8 mRNA expression, tendency of amelioration of subunit c of mitochondrial ATP synthase accumulation and glial fibrillary acidic protein immunoreactivity, normalization of impaired behaviors, doubled median life span, and extended normal body weight gain. In vivo safety studies in rodents concluded that intrathecal administration of AAV9/MFSD8 was safe and well tolerated. In summary, these results demonstrated that the AAV9/MFSD8 vector is both effective and safe in preclinical models.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Thomas Dong
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Yuhui Hu
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Frances C Shaffo
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Heffernan KS, Rahman K, Smith Y, Galvan A. Characterization of the GfaABC1D Promoter to Selectively Target Astrocytes in the Rhesus Macaque Brain. J Neurosci Methods 2022; 372:109530. [PMID: 35202614 PMCID: PMC8940704 DOI: 10.1016/j.jneumeth.2022.109530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND The study of astrocytic functions in non-human primates (NHPs) has been hampered by the lack of genetic tools to selectively target astrocytes. Viral vectors with selective and efficient transduction of astrocytes could be a potent tool to express marker proteins, modulators, or sensors in NHP astrocytes, but the availability of thoroughly characterized astrocytic selective promoter sequences to use in these species remains extremely limited. NEW METHOD We describe the specificity and efficiency of an astrocyte-specific promoter, GfaABC1D in the brain of the rhesus macaque, with emphasis in basal ganglia regions. AAV5-pZac2.1-GfaABC1D-tdTomato was locally injected into the globus pallidus external segment (GPe) and putamen. The extent, efficiency, and specificity of transduction was analyzed with immunohistochemistry at the light and electron microscope levels. RESULTS The GfaABC1D promoter directed the expression of tdTomato in an astrocyte-specific manner in directly or indirectly targeted regions (including both segments of the globus pallidus, putamen, subthalamic nucleus and cortex). COMPARISON WITH EXISTING METHODS Due to its small size, the GfaABC1D promoter is advantageous over other previously used glial fibrillary acidic protein-based promoter sequences, facilitating its use to drive expression of various transgenes in adeno-associated viruses (AAV) or other viral vectors. CONCLUSION GfaABC1D is an efficient promoter that selectively targets astrocytes in the monkey basal ganglia and expands the viral vector toolbox to study astrocytic functions in non-human primates.
Collapse
Affiliation(s)
- Kate S Heffernan
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kazi Rahman
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Yoland Smith
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Pietersz KL, Pouw S, Klima J, Ellederova Z, Bohuslavova B, Chrastina J, Liscak R, Urgosik D, Starek Z, Crha M, Lewis O, Wooley M, Johnson D, Brouwers CC, Evers M, Motlik J, Martens GJM, Konstantinova PS, Blits B. Transduction profiles in minipig following MRI guided delivery of AAV-5 into thalamic and corona radiata areas. J Neurosci Methods 2022; 365:109382. [PMID: 34637809 DOI: 10.1016/j.jneumeth.2021.109382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND As a step towards clinical use of AAV-mediated gene therapy, brains of large animals are used to settle delivery parameters as most brain connections, and relative sizes in large animals and primates, are reasonably common. Prior to application in the clinic, approaches that have shown to be successful in rodent models are tested in larger animal species, such as dogs, non-human primates, and in this case, minipigs. NEW METHOD We evaluated alternate delivery routes to target the basal ganglia by injections into the more superficial corona radiata, and, deeper into the brain, the thalamus. Anatomically known connections can be used to predict the expression of the transgene following infusion of AAV5. For optimal control over delivery of the vector with regards to anatomical location in the brain and spread in the tissue, we have used magnetic resonance image-guided convection-enhanced diffusion delivery. RESULTS While the transduction of the cortex was observed, only partial transduction of the basal ganglia was achieved via the corona radiata. Thalamic administration, on the other hand, resulted in widespread transduction from the midbrain to the frontal cortex COMPARISON WITH EXISTING METHODS: Compared to other methods, such as delivery directly to the striatum, thalamic injection may provide an alternative when for instance, injection into the basal ganglia directly is not feasible. CONCLUSIONS The study results suggest that thalamic administration of AAV5 has significant potential for indications where the transduction of specific areas of the brain is required.
Collapse
Affiliation(s)
- K L Pietersz
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, The Netherlands; Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - S Pouw
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, The Netherlands
| | - J Klima
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Z Ellederova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - B Bohuslavova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - J Chrastina
- Department of Neurosurgery, St. Anne's University Hospital, Brno, Czech Republic
| | - R Liscak
- Department of Stereotactic Radioneurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - D Urgosik
- Department of Stereotactic Radioneurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Z Starek
- Interventional Cardiac Electrophysiology, St.' Anne's University Hospital, Brno, Czech Republic
| | - M Crha
- Small Animal Clinic, Veterinary and Pharmaceutical University, Brno, Czech Republic
| | - O Lewis
- Renishaw Neuro Solutions (RNS) ltd, Renishaw plc, Gloucestershire, UK
| | - M Wooley
- Renishaw Neuro Solutions (RNS) ltd, Renishaw plc, Gloucestershire, UK
| | - D Johnson
- Renishaw Neuro Solutions (RNS) ltd, Renishaw plc, Gloucestershire, UK
| | - C C Brouwers
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, The Netherlands
| | - M Evers
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, The Netherlands
| | - J Motlik
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - G J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - P S Konstantinova
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, The Netherlands
| | - B Blits
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Oguchi M, Tanaka S, Pan X, Kikusui T, Moriya-Ito K, Kato S, Kobayashi K, Sakagami M. Chemogenetic inactivation reveals the inhibitory control function of the prefronto-striatal pathway in the macaque brain. Commun Biol 2021; 4:1088. [PMID: 34531520 PMCID: PMC8446038 DOI: 10.1038/s42003-021-02623-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The lateral prefrontal cortex (LPFC) has a strong monosynaptic connection with the caudate nucleus (CdN) of the striatum. Previous human MRI studies have suggested that this LPFC-CdN pathway plays an important role in inhibitory control and working memory. We aimed to validate the function of this pathway at a causal level by pathway-selective manipulation of neural activity in non-human primates. To this end, we trained macaque monkeys on a delayed oculomotor response task with reward asymmetry and expressed an inhibitory type of chemogenetic receptors selectively to LPFC neurons that project to the CdN. Ligand administration reduced the inhibitory control of impulsive behavior, as well as the task-related neuronal responses observed in the local field potentials from the LPFC and CdN. These results show that we successfully suppressed pathway-selective neural activity in the macaque brain, and the resulting behavioral changes suggest that the LPFC-CdN pathway is involved in inhibitory control.
Collapse
Affiliation(s)
- Mineki Oguchi
- grid.412905.b0000 0000 9745 9416Brain Science Institute, Tamagawa University, Tokyo, Japan ,grid.252643.40000 0001 0029 6233School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Shingo Tanaka
- grid.412905.b0000 0000 9745 9416Brain Science Institute, Tamagawa University, Tokyo, Japan ,grid.260975.f0000 0001 0671 5144Department of Physiology, School of Medicine, Niigata University, Niigata, Japan
| | - Xiaochuan Pan
- grid.28056.390000 0001 2163 4895Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai, China
| | - Takefumi Kikusui
- grid.252643.40000 0001 0029 6233School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Keiko Moriya-Ito
- grid.272456.0Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shigeki Kato
- grid.411582.b0000 0001 1017 9540Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Kazuto Kobayashi
- grid.411582.b0000 0001 1017 9540Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Masamichi Sakagami
- grid.412905.b0000 0000 9745 9416Brain Science Institute, Tamagawa University, Tokyo, Japan
| |
Collapse
|
21
|
Abulimiti A, Lai MSL, Chang RCC. Applications of adeno-associated virus vector-mediated gene delivery for neurodegenerative diseases and psychiatric diseases: Progress, advances, and challenges. Mech Ageing Dev 2021; 199:111549. [PMID: 34352323 DOI: 10.1016/j.mad.2021.111549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022]
Abstract
Neurodegeneration is the most common disease in the elderly population due to its slowly progressive nature of neuronal deterioration, eventually leading to executive dysfunction. The pathological markers of neurological disorders are relatively well-established, however, detailed molecular mechanisms of progression and therapeutic targets are needed to develop novel treatments in human patients. Treating known therapeutic targets of neurological diseases has been aided by recent advancements in adeno-associated virus (AAV) technology. AAVs are known for their low-immunogenicity, blood-brain barrier (BBB) penetrating ability, selective neuronal tropism, stable transgene expression, and pleiotropy. In addition, the usage of AAVs has enormous potential to be optimized. Therefore, AAV can be a powerful tool used to uncover the underlying pathophysiology of neurological disorders and to increase the success in human gene therapy. This review summarizes different optimization approaches of AAV vectors with their current applications in disease modeling, neural tracing and gene therapy, hence exploring progressive mechanisms of neurodegenerative diseases as well as effective therapy. Lastly, this review discusses the limitations and future perspectives of the AAV-mediated transgene delivery system.
Collapse
Affiliation(s)
- Amina Abulimiti
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Michael Siu-Lun Lai
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
22
|
Vallès A, Evers MM, Stam A, Sogorb-Gonzalez M, Brouwers C, Vendrell-Tornero C, Acar-Broekmans S, Paerels L, Klima J, Bohuslavova B, Pintauro R, Fodale V, Bresciani A, Liscak R, Urgosik D, Starek Z, Crha M, Blits B, Petry H, Ellederova Z, Motlik J, van Deventer S, Konstantinova P. Widespread and sustained target engagement in Huntington's disease minipigs upon intrastriatal microRNA-based gene therapy. Sci Transl Med 2021; 13:13/588/eabb8920. [PMID: 33827977 DOI: 10.1126/scitranslmed.abb8920] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022]
Abstract
Huntingtin (HTT)-lowering therapies hold promise to slow down neurodegeneration in Huntington's disease (HD). Here, we assessed the translatability and long-term durability of recombinant adeno-associated viral vector serotype 5 expressing a microRNA targeting human HTT (rAAV5-miHTT) administered by magnetic resonance imaging-guided convention-enhanced delivery in transgenic HD minipigs. rAAV5-miHTT (1.2 × 1013 vector genome (VG) copies per brain) was successfully administered into the striatum (bilaterally in caudate and putamen), using age-matched untreated animals as controls. Widespread brain biodistribution of vector DNA was observed, with the highest concentration in target (striatal) regions, thalamus, and cortical regions. Vector DNA presence and transgene expression were similar at 6 and 12 months after administration. Expression of miHTT strongly correlated with vector DNA, with a corresponding reduction of mutant HTT (mHTT) protein of more than 75% in injected areas, and 30 to 50% lowering in distal regions. Translational pharmacokinetic and pharmacodynamic measures in cerebrospinal fluid (CSF) were largely in line with the effects observed in the brain. CSF miHTT expression was detected up to 12 months, with CSF mHTT protein lowering of 25 to 30% at 6 and 12 months after dosing. This study demonstrates widespread biodistribution, strong and durable efficiency of rAAV5-miHTT in disease-relevant regions in a large brain, and the potential of using CSF analysis to determine vector expression and efficacy in the clinic.
Collapse
Affiliation(s)
- Astrid Vallès
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands.
| | - Melvin M Evers
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands.
| | - Anouk Stam
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Marina Sogorb-Gonzalez
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Cynthia Brouwers
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Carlos Vendrell-Tornero
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Seyda Acar-Broekmans
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Lieke Paerels
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Jiri Klima
- Institute of Animal Physiology and Genetics, Rumburská 89, 277 21 Libechov, Czech Republic
| | - Bozena Bohuslavova
- Institute of Animal Physiology and Genetics, Rumburská 89, 277 21 Libechov, Czech Republic
| | - Roberta Pintauro
- Department of Translational Biology, IRBM Science Park S.p.A., Via Pontina km 30,600, 00071 Pomezia, Italy
| | - Valentina Fodale
- Department of Translational Biology, IRBM Science Park S.p.A., Via Pontina km 30,600, 00071 Pomezia, Italy
| | - Alberto Bresciani
- Department of Translational Biology, IRBM Science Park S.p.A., Via Pontina km 30,600, 00071 Pomezia, Italy
| | - Roman Liscak
- Department of Stereotactic Radioneurosurgery, Na Homolce Hospital, Roentgenova 37/2, 150 30, Prague 5, Czech Republic
| | - Dusan Urgosik
- Department of Stereotactic Radioneurosurgery, Na Homolce Hospital, Roentgenova 37/2, 150 30, Prague 5, Czech Republic
| | - Zdenek Starek
- Interventional Cardiac Electrophysiology, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Michal Crha
- Small Animal Clinic, Veterinary and Pharmaceutical University, Palackého třída 1946/1, 612 42 Brno, Czech Republic
| | - Bas Blits
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Harald Petry
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Rumburská 89, 277 21 Libechov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Rumburská 89, 277 21 Libechov, Czech Republic
| | - Sander van Deventer
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Pavlina Konstantinova
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| |
Collapse
|
23
|
Nonhuman Primate Optogenetics: Current Status and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:345-358. [PMID: 33398825 DOI: 10.1007/978-981-15-8763-4_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonhuman primates (NHPs) have widely and crucially been utilized as model animals for understanding various higher brain functions and neurological disorders since their behavioral actions mimic both normal and disease states in humans. To know about how such behaviors emerge from the functions and dysfunctions of complex neural networks, it is essential to define the role of a particular pathway or neuron-type constituting these networks. Optogenetics is a potential technique that enables analyses of network functions. However, because of the large size of the NHP brain and the difficulty in creating genetically modified animal models, this technique is currently still hard to apply effectively and efficiently to NHP neuroscience. In this article, we focus on the issues that should be overcome for the development of NHP optogenetics, with special reference to the gene introduction strategy. We review the recent breakthroughs that have been made in NHP optogenetics to address these issues and discuss future prospects regarding more effective and efficient approaches to successful optogenetic manipulation in NHPs.
Collapse
|
24
|
Rook N, Tuff JM, Isparta S, Masseck OA, Herlitze S, Güntürkün O, Pusch R. AAV1 is the optimal viral vector for optogenetic experiments in pigeons (Columba livia). Commun Biol 2021; 4:100. [PMID: 33483632 PMCID: PMC7822860 DOI: 10.1038/s42003-020-01595-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/13/2020] [Indexed: 01/30/2023] Open
Abstract
Although optogenetics has revolutionized rodent neuroscience, it is still rarely used in other model organisms as the efficiencies of viral gene transfer differ between species and comprehensive viral transduction studies are rare. However, for comparative research, birds offer valuable model organisms as they have excellent visual and cognitive capabilities. Therefore, the following study establishes optogenetics in pigeons on histological, physiological, and behavioral levels. We show that AAV1 is the most efficient viral vector in various brain regions and leads to extensive anterograde and retrograde ChR2 expression when combined with the CAG promoter. Furthermore, transient optical stimulation of ChR2 expressing cells in the entopallium decreases pigeons' contrast sensitivity during a grayscale discrimination task. This finding demonstrates causal evidence for the involvement of the entopallium in contrast perception as well as a proof of principle for optogenetics in pigeons and provides the groundwork for various other methods that rely on viral gene transfer in birds.
Collapse
Affiliation(s)
- Noemi Rook
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - John Michael Tuff
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sevim Isparta
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, Şht. Ömer Halisdemir Blv, 06110, Ankara, Turkey
| | | | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Roland Pusch
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
25
|
Spronck EA, Vallès A, Lampen MH, Montenegro-Miranda PS, Keskin S, Heijink L, Evers MM, Petry H, van Deventer SJ, Konstantinova P, de Haan M. Intrastriatal Administration of AAV5-miHTT in Non-Human Primates and Rats Is Well Tolerated and Results in miHTT Transgene Expression in Key Areas of Huntington Disease Pathology. Brain Sci 2021; 11:brainsci11020129. [PMID: 33498212 PMCID: PMC7908995 DOI: 10.3390/brainsci11020129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/10/2021] [Accepted: 01/17/2021] [Indexed: 02/04/2023] Open
Abstract
Huntington disease (HD) is a fatal, neurodegenerative genetic disorder with aggregation of mutant Huntingtin protein (mutHTT) in the brain as a key pathological mechanism. There are currently no disease modifying therapies for HD; however, HTT-lowering therapies hold promise. Recombinant adeno-associated virus serotype 5 expressing a microRNA that targets HTT mRNA (AAV5-miHTT) is in development for the treatment of HD with promising results in rodent and minipig HD models. To support a clinical trial, toxicity studies were performed in non-human primates (NHP, Macaca fascicularis) and Sprague-Dawley rats to evaluate the safety of AAV5-miHTT, the neurosurgical administration procedure, vector delivery and expression of the miHTT transgene during a 6-month observation period. For accurate delivery of AAV5-miHTT to the striatum, real-time magnetic resonance imaging (MRI) with convection-enhanced delivery (CED) was used in NHP. Catheters were successfully implanted in 24 NHP, without neurological symptoms, and resulted in tracer signal in the target areas. Widespread vector DNA and miHTT transgene distribution in the brain was found, particularly in areas associated with HD pathology. Intrastriatal administration of AAV5-miHTT was well tolerated with no clinically relevant changes in either species. These studies demonstrate the excellent safety profile of AAV5-miHTT, the reproducibility and tolerability of intrastriatal administration, and the delivery of AAV5-miHTT to the brain, which support the transition of AAV5-miHTT into clinical studies.
Collapse
Affiliation(s)
- Elisabeth A. Spronck
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
- Correspondence: ; Tel.: +31-(0)20-240-6091
| | - Astrid Vallès
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Margit H. Lampen
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Paula S. Montenegro-Miranda
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Sonay Keskin
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Liesbeth Heijink
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Melvin M. Evers
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Harald Petry
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Sander J. van Deventer
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Pavlina Konstantinova
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Martin de Haan
- Madeha Management & Consultancy, 1222 LM Nederhorst den Berg, The Netherlands;
| |
Collapse
|
26
|
Tremblay S, Acker L, Afraz A, Albaugh DL, Amita H, Andrei AR, Angelucci A, Aschner A, Balan PF, Basso MA, Benvenuti G, Bohlen MO, Caiola MJ, Calcedo R, Cavanaugh J, Chen Y, Chen S, Chernov MM, Clark AM, Dai J, Debes SR, Deisseroth K, Desimone R, Dragoi V, Egger SW, Eldridge MAG, El-Nahal HG, Fabbrini F, Federer F, Fetsch CR, Fortuna MG, Friedman RM, Fujii N, Gail A, Galvan A, Ghosh S, Gieselmann MA, Gulli RA, Hikosaka O, Hosseini EA, Hu X, Hüer J, Inoue KI, Janz R, Jazayeri M, Jiang R, Ju N, Kar K, Klein C, Kohn A, Komatsu M, Maeda K, Martinez-Trujillo JC, Matsumoto M, Maunsell JHR, Mendoza-Halliday D, Monosov IE, Muers RS, Nurminen L, Ortiz-Rios M, O'Shea DJ, Palfi S, Petkov CI, Pojoga S, Rajalingham R, Ramakrishnan C, Remington ED, Revsine C, Roe AW, Sabes PN, Saunders RC, Scherberger H, Schmid MC, Schultz W, Seidemann E, Senova YS, Shadlen MN, Sheinberg DL, Siu C, Smith Y, Solomon SS, Sommer MA, Spudich JL, Stauffer WR, Takada M, Tang S, Thiele A, Treue S, Vanduffel W, Vogels R, Whitmire MP, Wichmann T, Wurtz RH, Xu H, Yazdan-Shahmorad A, Shenoy KV, DiCarlo JJ, Platt ML. An Open Resource for Non-human Primate Optogenetics. Neuron 2020; 108:1075-1090.e6. [PMID: 33080229 PMCID: PMC7962465 DOI: 10.1016/j.neuron.2020.09.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022]
Abstract
Optogenetics has revolutionized neuroscience in small laboratory animals, but its effect on animal models more closely related to humans, such as non-human primates (NHPs), has been mixed. To make evidence-based decisions in primate optogenetics, the scientific community would benefit from a centralized database listing all attempts, successful and unsuccessful, of using optogenetics in the primate brain. We contacted members of the community to ask for their contributions to an open science initiative. As of this writing, 45 laboratories around the world contributed more than 1,000 injection experiments, including precise details regarding their methods and outcomes. Of those entries, more than half had not been published. The resource is free for everyone to consult and contribute to on the Open Science Framework website. Here we review some of the insights from this initial release of the database and discuss methodological considerations to improve the success of optogenetic experiments in NHPs.
Collapse
Affiliation(s)
- Sébastien Tremblay
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Leah Acker
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arash Afraz
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel L Albaugh
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Hidetoshi Amita
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariana R Andrei
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Alessandra Angelucci
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Amir Aschner
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Puiu F Balan
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium
| | - Michele A Basso
- Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, UCLA, Los Angeles, CA 90095, USA
| | - Giacomo Benvenuti
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Michael J Caiola
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - James Cavanaugh
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20982, USA
| | - Yuzhi Chen
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Spencer Chen
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Mykyta M Chernov
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Andrew M Clark
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Ji Dai
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Samantha R Debes
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Karl Deisseroth
- Neuroscience Program, Departments of Bioengineering, Psychiatry, and Behavioral Science, Wu Tsai Neurosciences Institute, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Robert Desimone
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Valentin Dragoi
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Seth W Egger
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Hala G El-Nahal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Francesco Fabbrini
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Frederick Federer
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Christopher R Fetsch
- The Solomon H. Snyder Department of Neuroscience & Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michal G Fortuna
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Robert M Friedman
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Naotaka Fujii
- Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Alexander Gail
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Adriana Galvan
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Supriya Ghosh
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| | - Marc Alwin Gieselmann
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Roberto A Gulli
- Zuckerman Institute, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eghbal A Hosseini
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xing Hu
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Janina Hüer
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Roger Janz
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rundong Jiang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Niansheng Ju
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Kohitij Kar
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carsten Klein
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Adam Kohn
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Misako Komatsu
- Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Kazutaka Maeda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julio C Martinez-Trujillo
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Masayuki Matsumoto
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - John H R Maunsell
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ilya E Monosov
- Department of Neuroscience, Biomedical Engineering, Electrical Engineering, Neurosurgery and Pain Center, Washington University, St. Louis, MO 63110, USA
| | - Ross S Muers
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Lauri Nurminen
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Michael Ortiz-Rios
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Daniel J O'Shea
- Department of Electrical Engineering, Wu Tsai Neurosciences Institute, and Bio-X Institute, and Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Stéphane Palfi
- Department of Neurosurgery, Assistance Publique-Hopitaux de Paris (APHP), U955 INSERM IMRB eq.15, University of Paris 12 UPEC, Faculté de Médecine, Créteil 94010, France
| | - Christopher I Petkov
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Sorin Pojoga
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Rishi Rajalingham
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Evan D Remington
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cambria Revsine
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Anna W Roe
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Interdisciplinary Institute of Neuroscience and Technology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, Zhejiang University, Hangzhou 310029, China
| | - Philip N Sabes
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Hansjörg Scherberger
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Michael C Schmid
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK; Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Wolfram Schultz
- Department of Physiology, Development of Neuroscience, University of Cambridge, Cambridge CB3 0LT, UK
| | - Eyal Seidemann
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Yann-Suhan Senova
- Department of Neurosurgery, Assistance Publique-Hopitaux de Paris (APHP), U955 INSERM IMRB eq.15, University of Paris 12 UPEC, Faculté de Médecine, Créteil 94010, France
| | - Michael N Shadlen
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, The Kavli Institute for Brain Science & Howard Hughes Medical Institute, Columbia University, NY 10027, USA
| | - David L Sheinberg
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Caitlin Siu
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Selina S Solomon
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marc A Sommer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - John L Spudich
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas-Houston, Houston, TX 77030, USA
| | - William R Stauffer
- Systems Neuroscience Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Shiming Tang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Alexander Thiele
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Stefan Treue
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Wim Vanduffel
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; MGH Martinos Center, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02144, USA
| | - Rufin Vogels
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Matthew P Whitmire
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Robert H Wurtz
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20982, USA
| | - Haoran Xu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Azadeh Yazdan-Shahmorad
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Departments of Bioengineering and Electrical and Computer Engineering, Washington National Primate Research Center, University of Washington, Seattle, WA 98105, USA
| | - Krishna V Shenoy
- Departments of Electrical Engineering, Bioengineering, and Neurobiology, Wu Tsai Neurosciences Institute and Bio-X Institute, Neuroscience Graduate Program, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - James J DiCarlo
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Marketing, Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Luchicchi A, Pattij T, Viaña JNM, de Kloet S, Marchant N. Tracing goes viral: Viruses that introduce expression of fluorescent proteins in chemically-specific neurons. J Neurosci Methods 2020; 348:109004. [PMID: 33242528 DOI: 10.1016/j.jneumeth.2020.109004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
Over the last century, there has been great progress in understanding how the brain works. In particular, the last two decades have been crucial in gaining more awareness over the complex functioning of neurotransmitter systems. The use of viral vectors in neuroscience has been pivotal for such development. Exploiting the properties of viral particles, modifying them according to the research needs, and making them target chemically-specific neurons, techniques such as optogenetics and chemogenetics have been developed, which could lead to a giant step toward gene therapy for brain disorders. In this review, we aim to provide an overview of some of the most widely used viral techniques in neuroscience. We will discuss advantages and disadvantages of these methods. In particular, attention is dedicated to the pivotal role played by the introduction of adeno-associated virus and the retrograde tracer canine-associated-2 Cre virus in order to achieve optimal visualization, and interrogation, of chemically-specific neuronal populations and their projections.
Collapse
Affiliation(s)
- Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands.
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands
| | - John Noel M Viaña
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, de Boelelaan 1085, 1081HZ, Amsterdam, the Netherlands; Australian National Centre for the Public Awareness of Science, ANU College of Science, The Australian National University, Linnaeus Way, Acton, ACT 2601, Australia
| | - Sybren de Kloet
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, de Boelelaan 1085, 1081HZ, Amsterdam, the Netherlands
| | - Nathan Marchant
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Pietersz KL, Martier RM, Baatje MS, Liefhebber JM, Brouwers CC, Pouw SM, Fokkert L, Lubelski J, Petry H, Martens GJM, van Deventer SJ, Konstantinova P, Blits B. Transduction patterns in the CNS following various routes of AAV-5-mediated gene delivery. Gene Ther 2020; 28:435-446. [PMID: 32801344 DOI: 10.1038/s41434-020-0178-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/12/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
Various administration routes of adeno-associated virus (AAV)-based gene therapy have been examined to target the central nervous system to answer the question what the most optimal delivery route is for treatment of the brain with certain indications. In this study, we evaluated AAV5 vector system for its capability to target the central nervous system via intrastriatal, intrathalamic or intracerebroventricular delivery routes in rats. AAV5 is an ideal candidate for gene therapy because of its relatively low level of existing neutralizing antibodies compared to other serotypes, and its broad tissue and cell tropism. Intrastriatal administration of AAV5-GFP resulted in centralized localized vector distribution and expression in the frontal part of the brain. Intrathalamic injection showed transduction and gradient expression from the rostral brain into lumbar spinal cord, while intracerebroventricular administration led to a more evenly, albeit relatively superficially distributed, transduction and expression throughout the central nervous system. To visualize the differences between localized and intra-cerebral spinal fluid administration routes, we compared intrastriatal to intracerebroventricular and intrathecal administration of AAV5-GFP. Together, our results demonstrate that for efficient transgene expression, various administration routes can be applied.
Collapse
|
29
|
Giordano L, Porta GD, Peretti GM, Maffulli N. Therapeutic potential of microRNA in tendon injuries. Br Med Bull 2020; 133:79-94. [PMID: 32219416 DOI: 10.1093/bmb/ldaa002] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/07/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The regulatory role of microRNA (miRNA) in several conditions has been studied, but their function in tendon healing remains elusive. This review summarizes how miRNAs are related to the pathogenesis of tendon injuries and highlights their clinical potential, focusing on the issues related to their delivery for clinical purposes. SOURCES OF DATA We searched multiple databases to perform a systematic review on miRNA in relation to tendon injuries. We included in the present work a total of 15 articles. AREAS OF AGREEMENT The mechanism of repair of tendon injuries is probably mediated by resident tenocytes. These maintain a fine equilibrium between anabolic and catabolic events of the extracellular matrix. Specific miRNAs regulate cytokine expression and orchestrate proliferation and differentiation of stromal cell lines involved in the composition of the extracellular matrix. AREAS OF CONTROVERSY The lack of effective delivery systems poses serious obstacles to the clinical translation of these basic science findings. GROWING POINT In vivo studies should be planned to better explore the relationship between miRNA and tendon injuries and evaluate the most suitable delivery system for these molecules. AREAS TIMELY FOR DEVELOPING RESEARCH Investigations ex vivo suggest therapeutic opportunities of miRNA for the management of tendon injuries. Given the poor pharmacokinetic properties of miRNAs, these must be delivered by an adequate adjuvant transport system.
Collapse
Affiliation(s)
- Lorenzo Giordano
- Department of Musculoskeletal Disorder, Faculty of Medicine, Surgery and Dentistry, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
| | - Giovanna Della Porta
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Giuseppe M Peretti
- Department of Biomedical Sciences for Health, University of Milan, Via Riccardo Galeazzi 4, 20161, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorder, Faculty of Medicine, Surgery and Dentistry, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy.,Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, England.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5B, England
| |
Collapse
|
30
|
Glial cells involvement in spinal muscular atrophy: Could SMA be a neuroinflammatory disease? Neurobiol Dis 2020; 140:104870. [PMID: 32294521 DOI: 10.1016/j.nbd.2020.104870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/16/2020] [Accepted: 04/10/2020] [Indexed: 01/11/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, inherited disease characterized by the progressive degeneration and death of motor neurons of the anterior horns of the spinal cord, which results in muscular atrophy and weakness of variable severity. Its early-onset form is invariably fatal in early childhood, while milder forms lead to permanent disability, physical deformities and respiratory complications. Recently, two novel revolutionary therapies, antisense oligonucleotides and gene therapy, have been approved, and might prove successful in making long-term survival of these patients likely. In this perspective, a deep understanding of the pathogenic mechanisms and of their impact on the interactions between motor neurons and other cell types within the central nervous system (CNS) is crucial. Studies using SMA animal and cellular models have taught us that the survival and functionality of motor neurons is highly dependent on a whole range of other cell types, namely glial cells, which are responsible for a variety of different functions, such as neuronal trophic support, synaptic remodeling, and immune surveillance. Thus, it emerges that SMA is likely a non-cell autonomous, multifactorial disease in which the interaction of different cell types and disease mechanisms leads to motor neurons failure and loss. This review will introduce the different glial cell types in the CNS and provide an overview of the role of glial cells in motor neuron degeneration in SMA. Furthermore, we will discuss the relevance of these findings so far and the potential impact on the success of available therapies and on the development of novel ones.
Collapse
|
31
|
Abati E, Bresolin N, Comi G, Corti S. Silence superoxide dismutase 1 (SOD1): a promising therapeutic target for amyotrophic lateral sclerosis (ALS). Expert Opin Ther Targets 2020; 24:295-310. [PMID: 32125907 DOI: 10.1080/14728222.2020.1738390] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Amyotrophic lateral sclerosis (ALS) is a progressive and incurable neurodegenerative disorder that targets upper and lower motor neurons and leads to fatal muscle paralysis. Mutations in the superoxide dismutase 1 (SOD1) gene are responsible for 15% of familial ALS cases, but several studies have indicated that SOD1 dysfunction may also play a pathogenic role in sporadic ALS. SOD1 induces numerous toxic effects through the pathological misfolding and aggregation of mutant SOD1 species, hence a reduction of the levels of toxic variants appears to be a promising therapeutic strategy for SOD1-related ALS. Several methods are used to modulate gene expression in vivo; these include RNA interference, antisense oligonucleotides (ASOs) and CRISPR/Cas9 technology.Areas covered: This paper examines the current approaches for gene silencing and the progress made in silencing SOD1 in vivo. It progresses to shed light on the key results and pitfalls of these studies and highlights the future challenges and new perspectives for this exciting research field.Expert opinion: Gene silencing strategies targeting SOD1 may represent effective approaches for familial and sporadic ALS-related neurodegeneration; however, the risk of off-target effects must be minimized, and effective and minimally invasive delivery strategies should be fine-tuned.
Collapse
Affiliation(s)
- Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Giacomo Comi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
32
|
Fredericks JM, Fujimoto A, Rudebeck PH. Trust, but verify: A cautionary tale of translating chemogenetic methods (A commentray on Galvan et al). Eur J Neurosci 2019; 50:2751-2754. [DOI: 10.1111/ejn.14496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 11/30/2022]
Affiliation(s)
- J. Megan Fredericks
- Nash Family Department of Neuroscience Friedman Brain Institute Icahn School of Medicine at Mount Sinai New York New York USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience Friedman Brain Institute Icahn School of Medicine at Mount Sinai New York New York USA
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience Friedman Brain Institute Icahn School of Medicine at Mount Sinai New York New York USA
| |
Collapse
|
33
|
Hoshino Y, Nishide K, Nagoshi N, Shibata S, Moritoki N, Kojima K, Tsuji O, Matsumoto M, Kohyama J, Nakamura M, Okano H. The adeno-associated virus rh10 vector is an effective gene transfer system for chronic spinal cord injury. Sci Rep 2019; 9:9844. [PMID: 31285460 PMCID: PMC6614469 DOI: 10.1038/s41598-019-46069-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/20/2019] [Indexed: 11/09/2022] Open
Abstract
Treatment options for chronic spinal cord injury (SCI) remain limited due to unfavourable changes in the microenvironment. Gene therapy can overcome these barriers through continuous delivery of therapeutic gene products to the target tissue. In particular, adeno-associated virus (AAV) vectors are potential candidates for use in chronic SCI, considering their safety and stable gene expression in vivo. Given that different AAV serotypes display different cellular tropisms, it is extremely important to select an optimal serotype for establishing a gene transfer system during the chronic phase of SCI. Therefore, we generated multiple AAV serotypes expressing ffLuc-cp156, a fusion protein of firefly luciferase and Venus, a variant of yellow fluorescent protein with fast and efficient maturation, as a reporter, and we performed intraparenchymal injection in a chronic SCI mouse model. Among the various serotypes tested, AAVrh10 displayed the highest photon count on bioluminescence imaging. Immunohistological analysis revealed that AAVrh10 showed favourable tropism for neurons, astrocytes, and oligodendrocytes. Additionally, with AAVrh10, the area expressing Venus was larger in the injury epicentre and extended to the surrounding tissue. Furthermore, the fluorescence intensity was significantly higher with AAVrh10 than with the other vectors. These results indicate that AAVrh10 may be an appropriate serotype for gene delivery to the chronically injured spinal cord. This promising tool may be applied for research and development related to the treatment of chronic SCI.
Collapse
Affiliation(s)
- Yutaka Hoshino
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kenji Nishide
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Electron microscope laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Nobuko Moritoki
- Electron microscope laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kota Kojima
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Osahiko Tsuji
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Electron microscope laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
34
|
Spronck EA, Brouwers CC, Vallès A, de Haan M, Petry H, van Deventer SJ, Konstantinova P, Evers MM. AAV5-miHTT Gene Therapy Demonstrates Sustained Huntingtin Lowering and Functional Improvement in Huntington Disease Mouse Models. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:334-343. [PMID: 30984798 PMCID: PMC6446047 DOI: 10.1016/j.omtm.2019.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
Abstract
Huntington disease (HD) is a fatal neurodegenerative disorder caused by an autosomal dominant CAG repeat expansion in the huntingtin (HTT) gene. The translated expanded polyglutamine repeat in the HTT protein is known to cause toxic gain of function. We showed previously that strong HTT lowering prevented neuronal dysfunction in HD rodents and minipigs after single intracranial injection of adeno-associated viral vector serotype 5 expressing a microRNA targeting human HTT (AAV5-miHTT). To evaluate long-term efficacy, AAV5-miHTT was injected into the striatum of knockin Q175 HD mice, and the mice were sacrificed 12 months post-injection. AAV5-miHTT caused a dose-dependent and sustained HTT protein reduction with subsequent suppression of mutant HTT aggregate formation in the striatum and cortex. Functional proof of concept was shown in transgenic R6/2 HD mice. Eight weeks after AAV5-miHTT treatment, a significant improvement in motor coordination on the rotarod was observed. Survival analysis showed that a single AAV5-miHTT treatment resulted in a significant 4-week increase in median survival compared with vehicle-treated R6/2 HD mice. The combination of long-term HTT lowering, reduction in aggregation, prevention of neuronal dysfunction, alleviation of HD-like symptoms, and beneficial survival observed in HD rodents treated with AAV5-miHTT supports the continued development of HTT-lowering gene therapies for HD.
Collapse
Affiliation(s)
- Elisabeth A Spronck
- Department of Research and Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Cynthia C Brouwers
- Department of Research and Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Astrid Vallès
- Department of Research and Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Martin de Haan
- Department of Research and Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Harald Petry
- Department of Research and Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Sander J van Deventer
- Department of Research and Development, uniQure biopharma B.V., Amsterdam, the Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pavlina Konstantinova
- Department of Research and Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Melvin M Evers
- Department of Research and Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| |
Collapse
|
35
|
Barbullushi K, Abati E, Rizzo F, Bresolin N, Comi GP, Corti S. Disease Modeling and Therapeutic Strategies in CMT2A: State of the Art. Mol Neurobiol 2019; 56:6460-6471. [DOI: 10.1007/s12035-019-1533-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
|
36
|
Abstract
Huntington's disease (HD) is characterized by a significant loss of striatal neurons that project to the globus pallidus and substantia nigra, together with loss of cortical projection neurons in varying regions. Mutant huntingtin is suggested to drive the pathogenesis partially by downregulating corticostriatal brain-derived neurotrophic factor (BDNF) levels and signaling. Neurotrophic factors are endogenous peptides that promote the survival and maintenance of neurons. BDNF and other neurotrophic factors have shown neuroprotective benefits in various animal models of neurodegeneration, and are interesting candidates to protect the cell populations that are destined to die in HD. In an attempt to enhance the delivery of neurotrophic factors, several methods have been established to deliver long-term neurotrophic factor gene therapy to human target tissues. This chapter discusses two alternative approaches that have been shown to have potential to deliver neurotrophic factors as a neuroprotective gene therapy for HD. The methods are (1) ex vivo approach where encapsulated cells engineered to express neurotrophic factor are inserted into brain parenchyma or ventricle, and (2) in vivo viral vector therapy, in which viral vector is injected into desired brain area to express gene of interest in the host cells.
Collapse
|
37
|
Yrigollen CM, Davidson BL. CRISPR to the Rescue: Advances in Gene Editing for the FMR1 Gene. Brain Sci 2019; 9:E17. [PMID: 30669625 PMCID: PMC6357057 DOI: 10.3390/brainsci9010017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
Gene-editing using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is promising as a potential therapeutic strategy for many genetic disorders. CRISPR-based therapies are already being assessed in clinical trials, and evaluation of this technology in Fragile X syndrome has been performed by a number of groups. The findings from these studies and the advancement of CRISPR-based technologies are insightful as the field continues towards treatments and cures of Fragile X-Associated Disorders (FXADs). In this review, we summarize reports using CRISPR-editing strategies to target Fragile X syndrome (FXS) molecular dysregulation, and highlight how differences in FXS and Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) might alter treatment strategies for each syndrome. We discuss the various modifications and evolutions of the CRISPR toolkit that expand its therapeutic potential, and other considerations for moving these strategies from bench to bedside. The rapidly growing field of CRISPR therapeutics is providing a myriad of approaches to target a gene, pathway, or transcript for modification. As cures for FXADs have remained elusive, CRISPR opens new avenues to pursue.
Collapse
Affiliation(s)
- Carolyn M Yrigollen
- The Raymond G. Perelman Center of Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Beverly L Davidson
- The Raymond G. Perelman Center of Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Pshezhetsky AV, Martins C, Ashmarina M. Sanfilippo type C disease: pathogenic mechanism and potential therapeutic applications. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1534585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Alexey V. Pshezhetsky
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Carla Martins
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, Montreal, Canada
| | - Mila Ashmarina
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, Montreal, Canada
| |
Collapse
|
39
|
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov 2018; 17:641-659. [DOI: 10.1038/nrd.2018.110] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Zhao C, Gammie SC. The circadian gene Nr1d1 in the mouse nucleus accumbens modulates sociability and anxiety-related behaviour. Eur J Neurosci 2018; 48:1924-1943. [PMID: 30028550 DOI: 10.1111/ejn.14066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/11/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Nuclear receptor subfamily 1, group D, member 1 (Nr1d1) (also known as Rev-erb alpha) has been linked to circadian rhythm regulation, mood-related behaviour and disorders associated with social deficits. Recent work from our laboratory found striking decreases in Nr1d1 in the nucleus accumbens (NAc) in the maternal condition and indirect evidence that Nr1d1 was interacting with numerous addiction and reward-related genes to modulate social reward. In this study, we applied our insights from the maternal state to nonparental adult mice to determine whether decreases in Nr1d1 expression in the NAc via adeno-associated viral (AAV) vectors and short hairpin RNA (shRNA)-mediated gene knockdown were sufficient to modulate social behaviours and mood-related behaviours. Knockdown of Nr1d1 in the NAc enhanced sociability and reduced anxiety, but did not affect depressive-like traits in female mice. In male mice, Nr1d1 knockdown had no significant behavioural effects. Microarray analysis of Nr1d1 knockdown in females identified changes in circadian rhythm and histone deacetylase genes and suggested possible drugs, including histone deacetylase inhibitors, that could mimic actions of Nr1d1 knockdown. Quantitative real-time PCR (qPCR) analysis confirmed expression upregulation of gene period circadian clock 1 (Per1) and period circadian clock 2 (Per2) with Nr1d1 knockdown. The evidence for roles for opioid-related genes opioid receptor, delta 1 (Oprd1) and preproenkephalin (Penk) was also found. Together, these results suggest that Nr1d1 in the NAc modulates sociability and anxiety-related behaviour in a sex-specific manner, and circadian, histone deacetylase and opioid-related genes may be involved in the expression of these behavioural phenotypes.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
41
|
Sun S, Schaffer DV. Engineered viral vectors for functional interrogation, deconvolution, and manipulation of neural circuits. Curr Opin Neurobiol 2018; 50:163-170. [PMID: 29614429 PMCID: PMC5984719 DOI: 10.1016/j.conb.2017.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/27/2017] [Accepted: 12/16/2017] [Indexed: 12/19/2022]
Abstract
Optimization of traditional replication-competent viral tracers has granted access to immediate synaptic partners of target neuronal populations, enabling the dissection of complex brain circuits into functional neural pathways. The excessive virulence of most conventional tracers, however, impedes their utility in revealing and genetically perturbing cellular function on long time scales. As a promising alternative, the natural capacity of adeno-associated viral (AAV) vectors to safely mediate persistent and robust gene expression has stimulated strong interest in adapting them for sparse neuronal labeling and physiological studies. Furthermore, increasingly refined engineering strategies have yielded novel AAV variants with enhanced target specificity, transduction, and retrograde trafficking in the CNS. These potent vectors offer new opportunities for characterizing the identity and connectivity of single neurons within immense networks and modulating their activity via robust delivery of functional genetic tools.
Collapse
Affiliation(s)
- Sabrina Sun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
42
|
Sullivan JA, Stanek LM, Lukason MJ, Bu J, Osmond SR, Barry EA, O'Riordan CR, Shihabuddin LS, Cheng SH, Scaria A. Rationally designed AAV2 and AAVrh8R capsids provide improved transduction in the retina and brain. Gene Ther 2018; 25:205-219. [PMID: 29785047 DOI: 10.1038/s41434-018-0017-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 01/18/2023]
Abstract
The successful application of adeno-associated virus (AAV) gene delivery vectors as a therapeutic paradigm will require efficient gene delivery to the appropriate cells in affected organs. In this study, we utilized a rational design approach to introduce modifications to the AAV2 and AAVrh8R capsids and the resulting variants were evaluated for transduction activity in the retina and brain. The modifications disrupted either capsid/receptor binding or altered capsid surface charge. Specifically, we mutated AAV2 amino acids R585A and R588A, which are required for binding to its receptor, heparan sulfate proteoglycans, to generate a variant referred to as AAV2-HBKO. In contrast to parental AAV2, the AAV2-HBKO vector displayed low-transduction activity following intravitreal delivery to the mouse eye; however, following its subretinal delivery, AAV2-HBKO resulted in significantly greater photoreceptor transduction. Intrastriatal delivery of AAV2-HBKO to mice facilitated widespread striatal and cortical expression, in contrast to the restricted transduction pattern of the parental AAV2 vector. Furthermore, we found that altering the surface charge on the AAVrh8R capsid by modifying the number of arginine residues on the capsid surface had a profound impact on subretinal transduction. The data further validate the potential of capsid engineering to improve AAV gene therapy vectors for clinical applications.
Collapse
Affiliation(s)
| | - Lisa M Stanek
- Sanofi, 49 New York Avenue, Framingham, MA, 01701-9322, USA
| | | | - Jie Bu
- Sanofi, 49 New York Avenue, Framingham, MA, 01701-9322, USA
| | | | | | | | | | - Seng H Cheng
- Sanofi, 49 New York Avenue, Framingham, MA, 01701-9322, USA
| | - Abraham Scaria
- Sanofi, 49 New York Avenue, Framingham, MA, 01701-9322, USA
| |
Collapse
|
43
|
O'Shea DJ, Kalanithi P, Ferenczi EA, Hsueh B, Chandrasekaran C, Goo W, Diester I, Ramakrishnan C, Kaufman MT, Ryu SI, Yeom KW, Deisseroth K, Shenoy KV. Development of an optogenetic toolkit for neural circuit dissection in squirrel monkeys. Sci Rep 2018; 8:6775. [PMID: 29712920 PMCID: PMC5928036 DOI: 10.1038/s41598-018-24362-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
Optogenetic tools have opened a rich experimental landscape for understanding neural function and disease. Here, we present the first validation of eight optogenetic constructs driven by recombinant adeno-associated virus (AAV) vectors and a WGA-Cre based dual injection strategy for projection targeting in a widely-used New World primate model, the common squirrel monkey Saimiri sciureus. We observed opsin expression around the local injection site and in axonal projections to downstream regions, as well as transduction to thalamic neurons, resembling expression patterns observed in macaques. Optical stimulation drove strong, reliable excitatory responses in local neural populations for two depolarizing opsins in anesthetized monkeys. Finally, we observed continued, healthy opsin expression for at least one year. These data suggest that optogenetic tools can be readily applied in squirrel monkeys, an important first step in enabling precise, targeted manipulation of neural circuits in these highly trainable, cognitively sophisticated animals. In conjunction with similar approaches in macaques and marmosets, optogenetic manipulation of neural circuits in squirrel monkeys will provide functional, comparative insights into neural circuits which subserve dextrous motor control as well as other adaptive behaviors across the primate lineage. Additionally, development of these tools in squirrel monkeys, a well-established model system for several human neurological diseases, can aid in identifying novel treatment strategies.
Collapse
Affiliation(s)
- Daniel J O'Shea
- Neurosciences Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Paul Kalanithi
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Brian Hsueh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Werapong Goo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ilka Diester
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Otophysiologie, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Matthew T Kaufman
- Neurosciences Program, Stanford University, Stanford, CA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - Kristen W Yeom
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Krishna V Shenoy
- Neurosciences Program, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
44
|
Miniarikova J, Evers MM, Konstantinova P. Translation of MicroRNA-Based Huntingtin-Lowering Therapies from Preclinical Studies to the Clinic. Mol Ther 2018; 26:947-962. [PMID: 29503201 DOI: 10.1016/j.ymthe.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022] Open
Abstract
The single mutation underlying the fatal neuropathology of Huntington's disease (HD) is a CAG triplet expansion in exon 1 of the huntingtin (HTT) gene, which gives rise to a toxic mutant HTT protein. There have been a number of not yet successful therapeutic advances in the treatment of HD. The current excitement in the HD field is due to the recent development of therapies targeting the culprit of HD either at the DNA or RNA level to reduce the overall mutant HTT protein. In this review, we briefly describe short-term and long-term HTT-lowering strategies targeting HTT transcripts. One of the most advanced HTT-lowering strategies is a microRNA (miRNA)-based gene therapy delivered by a single administration of an adeno-associated viral (AAV) vector to the HD patient. We outline the outcome measures for the miRNA-based HTT-lowering therapy in the context of preclinical evaluation in HD animal and cell models. We highlight the strengths and ongoing queries of the HTT-lowering gene therapy as an HD intervention with a potential disease-modifying effect. This review provides a perspective on the fast-developing HTT-lowering therapies for HD and their translation to the clinic based on existing knowledge in preclinical models.
Collapse
Affiliation(s)
- Jana Miniarikova
- Department of Research and Development, uniQure, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Melvin M Evers
- Department of Research and Development, uniQure, Amsterdam, the Netherlands
| | | |
Collapse
|
45
|
Miniarikova J, Zimmer V, Martier R, Brouwers CC, Pythoud C, Richetin K, Rey M, Lubelski J, Evers MM, van Deventer SJ, Petry H, Déglon N, Konstantinova P. AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington's disease. Gene Ther 2017; 24:630-639. [PMID: 28771234 PMCID: PMC5658675 DOI: 10.1038/gt.2017.71] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/16/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is a fatal progressive neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene. To date, there is no treatment to halt or reverse the course of HD. Lowering of either total or only the mutant HTT expression is expected to have therapeutic benefit. This can be achieved by engineered micro (mi)RNAs targeting HTT transcripts and delivered by an adeno-associated viral (AAV) vector. We have previously showed a miHTT construct to induce total HTT knock-down in Hu128/21 HD mice, while miSNP50T and miSNP67T constructs induced allele-selective HTT knock-down in vitro. In the current preclinical study, the mechanistic efficacy and gene specificity of these selected constructs delivered by an AAV serotype 5 (AAV5) vector was addressed using an acute HD rat model. Our data demonstrated suppression of mutant HTT messenger RNA, which almost completely prevented mutant HTT aggregate formation, and ultimately resulted in suppression of DARPP-32-associated neuronal dysfunction. The AAV5-miHTT construct was found to be the most efficient, although AAV5-miSNP50T demonstrated the anticipated mutant HTT allele selectivity and no passenger strand expression. Ultimately, AAV5-delivered-miRNA-mediated HTT lowering did not cause activation of microglia or astrocytes suggesting no immune response to the AAV5 vector or therapeutic precursor sequences. These preclinical results suggest that using gene therapy to knock-down HTT may provide important therapeutic benefit for HD patients and raised no safety concerns, which supports our ongoing efforts for the development of an RNA interference-based gene therapy product for HD.
Collapse
Affiliation(s)
- J Miniarikova
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - V Zimmer
- Neurosciences Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne University Hospital, Lausanne, Switzerland
- Department of Clinical Neurosciences, LCMN, Lausanne University Hospital, Lausanne, Switzerland
| | - R Martier
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - C C Brouwers
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
| | - C Pythoud
- Neurosciences Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne University Hospital, Lausanne, Switzerland
- Department of Clinical Neurosciences, LCMN, Lausanne University Hospital, Lausanne, Switzerland
| | - K Richetin
- Neurosciences Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne University Hospital, Lausanne, Switzerland
- Department of Clinical Neurosciences, LCMN, Lausanne University Hospital, Lausanne, Switzerland
| | - M Rey
- Neurosciences Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne University Hospital, Lausanne, Switzerland
- Department of Clinical Neurosciences, LCMN, Lausanne University Hospital, Lausanne, Switzerland
| | - J Lubelski
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
| | - M M Evers
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
| | - S J van Deventer
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Petry
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
| | - N Déglon
- Neurosciences Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne University Hospital, Lausanne, Switzerland
- Department of Clinical Neurosciences, LCMN, Lausanne University Hospital, Lausanne, Switzerland
| | - P Konstantinova
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
| |
Collapse
|
46
|
Abstract
Given their neuroanatomical similarities to humans and their ability to perform complex behaviors, the nonhuman primate has been an important model for understanding complex systems such as sensory processing, motor control, social interaction, and nervous system disorders. Optogenetics offers cell-type specific neural control with millisecond precision, making it a powerful neural modulation technique. Combining optogenetics with the nonhuman primate model promises to lead to significant advances in both basic and applied research. In the past few years, optogenetics has made considerable progress in the nonhuman primate. Here, we systematically review the current state-of-art of optogenetics in the nonhuman primate with an emphasis on behavioral manipulation. Given its recent successes, we believe that the progress in the nonhuman primate will boost the translation of optogenetics to clinical applications in the near future.
Collapse
Affiliation(s)
- Chunshan Deng
- 1 State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,2 Department of Neurology, Shenzhen People' s Hospital, Second Clinical College, Jinan University, Guangzhou, China
| | - Hong Yuan
- 1 State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,3 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ji Dai
- 1 State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,3 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Epilepsy and optogenetics: can seizures be controlled by light? Clin Sci (Lond) 2017; 131:1605-1616. [DOI: 10.1042/cs20160492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/30/2017] [Accepted: 04/13/2017] [Indexed: 01/12/2023]
Abstract
Over the past decade, ‘optogenetics’ has been consolidated as a game-changing tool in the neuroscience field, by allowing optical control of neuronal activity with high cell-type specificity. The ability to activate or inhibit targeted neurons at millisecond resolution not only offers an investigative tool, but potentially also provides a therapeutic intervention strategy for acute correction of aberrant neuronal activity. As efficient therapeutic tools are in short supply for neurological disorders, optogenetic technology has therefore spurred considerable enthusiasm and fostered a new wave of translational studies in neuroscience. Epilepsy is among the disorders that have been widely explored. Partial epilepsies are characterized by seizures arising from excessive excitatory neuronal activity that emerges from a focal area. Based on the constricted seizure focus, it appears feasible to intercept partial seizures by acutely shutting down excitatory neurons by means of optogenetics. The availability of both inhibitory and excitatory optogenetic probes, along with the available targeting strategies for respective excitatory or inhibitory neurons, allows multiple conceivable scenarios for controlling abnormal circuit activity. Several such scenarios have been explored in the settings of experimental epilepsy and have provided encouraging translational findings and revealed interesting and unexpected new aspects of epileptogenesis. However, it has also emerged that considerable challenges persist before clinical translation becomes feasible. This review provides a general introduction to optogenetics, and an overview of findings that are relevant for understanding how optogenetics may be utilized therapeutically as a highly innovative treatment for epilepsy.
Collapse
|
48
|
Lau AA, Hemsley KM. Adeno-associated viral gene therapy for mucopolysaccharidoses exhibiting neurodegeneration. J Mol Med (Berl) 2017; 95:1043-1052. [PMID: 28660346 DOI: 10.1007/s00109-017-1562-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
The mucopolysaccharidoses (MPS) are a subgroup of lysosomal storage disorders that are caused by mutations in the genes involved in glycosaminoglycan breakdown. Multiple organs and tissues are affected, including the central nervous system. At present, hematopoietic stem cell transplantation and enzyme replacement therapies are approved for some of the (non-neurological) MPS. Treatments that effectively ameliorate the neurological aspects of the disease are being assessed in clinical trials. This review will focus on the recent outcomes and planned viral vector-mediated gene therapy clinical trials, and the pre-clinical data that supported these studies, for MPS-I (Hurler/Scheie syndrome), MPS-II (Hunter syndrome), and MPS-IIIA and -IIIB (Sanfilippo syndrome).
Collapse
Affiliation(s)
- Adeline A Lau
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, South Australia, 5001, Australia.
| | - Kim M Hemsley
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
49
|
Wu SH, Liao ZX, D Rizak J, Zheng N, Zhang LH, Tang H, He XB, Wu Y, He XP, Yang MF, Li ZH, Qin DD, Hu XT. Comparative study of the transfection efficiency of commonly used viral vectors in rhesus monkey ( Macaca mulatta) brains. Zool Res 2017; 38:88-95. [PMID: 28409504 PMCID: PMC5396031 DOI: 10.24272/j.issn.2095-8137.2017.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/03/2017] [Indexed: 02/05/2023] Open
Abstract
Viral vector transfection systems are among the simplest of biological agents with the ability to transfer genes into the central nervous system. In brain research, a series of powerful and novel gene editing technologies are based on these systems. Although many viral vectors are used in rodents, their full application has been limited in non-human primates. To identify viral vectors that can stably and effectively express exogenous genes within non-human primates, eleven commonly used recombinant adeno-associated viral and lentiviral vectors, each carrying a gene to express green or red fluorescence, were injected into the parietal cortex of four rhesus monkeys. The expression of fluorescent cells was used to quantify transfection efficiency. Histological results revealed that recombinant adeno-associated viral vectors, especially the serotype 2/9 coupled with the cytomegalovirus, human synapsin I, or Ca2+/calmodulin-dependent protein kinase II promoters, and lentiviral vector coupled with the human ubiquitin C promoter, induced higher expression of fluorescent cells, representing high transfection efficiency. This is the first comparison of transfection efficiencies of different viral vectors carrying different promoters and serotypes in non-human primates (NHPs). These results can be used as an aid to select optimal vectors to transfer exogenous genes into the central nervous system of non-human primates.
Collapse
Affiliation(s)
- Shi-Hao Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Nerve System Coding Discipline Group, Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650000, China
| | - Zhi-Xing Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Nerve System Coding Discipline Group, Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650000, China
| | - Joshua D Rizak
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Na Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Nerve System Coding Discipline Group, Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650000, China
| | - Lin-Heng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Nerve System Coding Discipline Group, Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650000, China
| | - Hen Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Xiao-Bin He
- Center for Excellence in Brain Science, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan Hubei 430071, Chin
| | - Yang Wu
- Center for Excellence in Brain Science, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan Hubei 430071, China
| | - Xia-Ping He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Nerve System Coding Discipline Group, Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650000, China
| | - Mei-Feng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming Yunnan 650500, China
| | - Zheng-Hui Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Nerve System Coding Discipline Group, Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650000, China
| | - Dong-Dong Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
50
|
Galvan A, Caiola MJ, Albaugh DL. Advances in optogenetic and chemogenetic methods to study brain circuits in non-human primates. J Neural Transm (Vienna) 2017; 125:547-563. [PMID: 28238201 DOI: 10.1007/s00702-017-1697-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
Over the last 10 years, the use of opto- and chemogenetics to modulate neuronal activity in research applications has increased exponentially. Both techniques involve the genetic delivery of artificial proteins (opsins or engineered receptors) that are expressed on a selective population of neurons. The firing of these neurons can then be manipulated using light sources (for opsins) or by systemic administration of exogenous compounds (for chemogenetic receptors). Opto- and chemogenetic tools have enabled many important advances in basal ganglia research in rodent models, yet these techniques have faced a slow progress in non-human primate (NHP) research. In this review, we present a summary of the current state of these techniques in NHP research and outline some of the main challenges associated with the use of these genetic-based approaches in monkeys. We also explore cutting-edge developments that will facilitate the use of opto- and chemogenetics in NHPs, and help advance our understanding of basal ganglia circuits in normal and pathological conditions.
Collapse
Affiliation(s)
- Adriana Galvan
- Department of Neurology, Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, 30329, USA. .,Udall Center of Excellence for Parkinson's Disease Research, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA. .,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Michael J Caiola
- Department of Neurology, Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, 30329, USA.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA
| | - Daniel L Albaugh
- Department of Neurology, Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, 30329, USA.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA
| |
Collapse
|