1
|
Lloy S, Lin M, Franko J, Raman S. The Future of Interventions for Stage IV Colorectal Cancers. Clin Colon Rectal Surg 2024; 37:114-121. [PMID: 38327731 PMCID: PMC10843879 DOI: 10.1055/s-0043-1761624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Future options for the management of stage IV colorectal cancer are primarily focused on personalized and directed therapies. Interventions include precision cancer medicine, utilizing nanocarrier platforms for directed chemotherapy, palliative pressurized intraperitoneal aerosol chemotherapy (PIPAC), adjunctive oncolytic virotherapy, and radioembolization techniques. Comprehensive genetic profiling provides specific tumor-directed therapy based on individual genetics. Biomimetic magnetic nanoparticles as chemotherapy delivery systems may reduce systemic side effects of traditional chemotherapy by targeting tumor cells and sparing healthy cells. PIPAC is a newly emerging option for patients with peritoneal metastasis from colorectal cancer and is now being used internationally, showing promising results as a palliative therapy for colorectal cancer. Oncolytic virotherapy is another emerging potential treatment option, especially when combined with standard chemotherapy and/or radiation, as well as immunotherapy. And finally, radioembolization with yttrium-90 ( 90 Y) microspheres has shown some success in treating patients with unresectable liver metastasis from colorectal cancer via selective arterial injection.
Collapse
Affiliation(s)
- Samantha Lloy
- General Surgery Residency Program, MercyOne Des Moines Medical Center, Des Moines, Iowa
| | - Mayin Lin
- General Surgery Residency Program, MercyOne Des Moines Medical Center, Des Moines, Iowa
| | - Jan Franko
- General Surgery Residency Program, MercyOne Des Moines Medical Center, Des Moines, Iowa
| | - Shankar Raman
- General Surgery Residency Program, MercyOne Des Moines Medical Center, Des Moines, Iowa
| |
Collapse
|
2
|
Wang H, Borlongan M, Hemminki A, Basnet S, Sah N, Kaufman HL, Rabkin SD, Saha D. Viral Vectors Expressing Interleukin 2 for Cancer Immunotherapy. Hum Gene Ther 2023; 34:878-895. [PMID: 37578106 PMCID: PMC10623065 DOI: 10.1089/hum.2023.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023] Open
Abstract
Interleukin 2 (IL-2) plays a crucial role in T cell growth and survival, enhancing the cytotoxic activity of natural killer and cytotoxic T cells and thus functioning as a versatile master proinflammatory anticancer cytokine. The FDA has approved IL-2 cytokine therapy for the treatment of metastatic melanoma and metastatic renal cell carcinoma. However, IL-2 therapy has significant constraints, including a short serum half-life, low tumor accumulation, and life-threatening toxicities associated with high doses. Oncolytic viruses (OVs) offer a promising option for cancer immunotherapy, selectively targeting and destroying cancer cells while sparing healthy cells. Numerous studies have demonstrated the successful delivery of IL-2 to the tumor microenvironment without compromising safety using OVs such as vaccinia, Sendai, parvo, Newcastle disease, tanapox, and adenoviruses. Additionally, by engineering OVs to coexpress IL-2 with other anticancer transgenes, the immune properties of IL-2 can be further enhanced. Preclinical and clinical studies have shown promising antitumor effects of IL-2-expressing viral vectors, either alone or in combination with other anticancer therapies. This review summarizes the therapeutic potential of IL-2-expressing viral vectors and their antitumor mechanisms of action.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
- Master of Pharmaceutical Sciences Program, College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Mia Borlongan
- Master of Pharmaceutical Sciences Program, College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Naresh Sah
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center School of Pharmacy, Abilene, Texas, USA
| | - Howard L. Kaufman
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Ankyra Therapeutics, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel D. Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
| |
Collapse
|
3
|
Li F, Sheng Y, Hou W, Sampath P, Byrd D, Thorne S, Zhang Y. CCL5-armed oncolytic virus augments CCR5-engineered NK cell infiltration and antitumor efficiency. J Immunother Cancer 2021; 8:jitc-2019-000131. [PMID: 32098828 PMCID: PMC7057442 DOI: 10.1136/jitc-2019-000131] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Natural killer (NK) cells have potent antitumor activities. Nevertheless, adoptive transfer therapy of NK cells has gained very limited success in patients with solid tumors as most infused NK cells remain circulating in the peripheral blood instead of entering tumor sites. Chemokines and their receptors play important roles in NK cell distribution. Enhancing chemokine receptors on immune cells to match and be driven to tumor-specific chemokines may improve the therapeutic efficacy of NK cells. METHODS The CCR5-CCL5 axis is critical in NK cell homing to tumor sites. Thus, we analyzed CCR5 expression on NK cells from patients with cancer and healthy donors. We then upregulated CCR5 and CCL5 with lentiviruses and oncolytic viruses in NK and tumor cells, respectively. Animal experiments were also carried out to test the efficacy of the combination of oncolytic virus with NK cells. RESULTS In NK cells from patients with various solid tumors or healthy subjects, CCR5 was expressed at low levels before and after expansion in vitro. CCR5-engineered NK cells showed enhanced tumor infiltration and antitumor effects, but no complete regressions were noted in the in vivo tumor models. To further improve therapeutic efficacy, we constructed CCL5-expressing oncolytic vaccinia virus. In vitro data demonstrated that vaccinia virus can produce CCL5 in tumor cells while infectivity remained unaffected. Supernatants from tumor cells infected by CCL5-modified vaccinia virus enhanced the directional movement of CCR5-overexpressed NK cells but not green fluorescent protein (GFP)-expressing cells. More importantly, NK cells were resistant to the vaccinia virus and their functions were not affected after being in contact. In vivo assays demonstrated that CCL5-expressing vaccinia virus induced a greater accumulation of NK cells within tumor lesions compared with that of the prototype virus. CONCLUSION Enhancement of matched chemokines and chemokine receptors is a promising method of increasing NK cell homing and therapeutic effects. Oncolytic vaccinia viruses that express specific chemokines can synergistically augment the efficacies of NK cell-based therapy.
Collapse
Affiliation(s)
- Feng Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China .,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yuqiao Sheng
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weizhou Hou
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Padma Sampath
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daniel Byrd
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephen Thorne
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China .,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
4
|
Park AK, Fong Y, Kim SI, Yang J, Murad JP, Lu J, Jeang B, Chang WC, Chen NG, Thomas SH, Forman SJ, Priceman SJ. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci Transl Med 2021; 12:12/559/eaaz1863. [PMID: 32878978 DOI: 10.1126/scitranslmed.aaz1863] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 06/12/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
Chimeric antigen receptor (CAR)-engineered T cell therapy for solid tumors is limited by the lack of both tumor-restricted and homogeneously expressed tumor antigens. Therefore, we engineered an oncolytic virus to express a nonsignaling, truncated CD19 (CD19t) protein for tumor-selective delivery, enabling targeting by CD19-CAR T cells. Infecting tumor cells with an oncolytic vaccinia virus coding for CD19t (OV19t) produced de novo CD19 at the cell surface before virus-mediated tumor lysis. Cocultured CD19-CAR T cells secreted cytokines and exhibited potent cytolytic activity against infected tumors. Using several mouse tumor models, delivery of OV19t promoted tumor control after CD19-CAR T cell administration. OV19t induced local immunity characterized by tumor infiltration of endogenous and adoptively transferred T cells. CAR T cell-mediated tumor killing also induced release of virus from dying tumor cells, which propagated tumor expression of CD19t. Our study features a combination immunotherapy approach using oncolytic viruses to promote de novo CAR T cell targeting of solid tumors.
Collapse
Affiliation(s)
- Anthony K Park
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA.,Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Jason Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - John P Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Jianming Lu
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Brook Jeang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Nanhai G Chen
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Sandra H Thomas
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA 91010, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA. .,Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Inoue T, Byrne T, Inoue M, Tait ME, Wall P, Wang A, Dermyer MR, Laklai H, Binder JJ, Lees C, Hollingsworth R, Maruri-Avidal L, Kirn DH, McDonald DM. Oncolytic Vaccinia Virus Gene Modification and Cytokine Expression Effects on Tumor Infection, Immune Response, and Killing. Mol Cancer Ther 2021; 20:1481-1494. [PMID: 34045231 DOI: 10.1158/1535-7163.mct-20-0863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/04/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022]
Abstract
Oncolytic vaccinia viruses have promising efficacy and safety profiles in cancer therapy. Although antitumor activity can be increased by manipulating viral genes, the relative efficacy of individual modifications has been difficult to assess without side-by-side comparisons. This study sought to compare the initial antitumor activity after intravenous administration of five vaccinia virus variants of the same Western Reserve backbone and thymidine kinase gene deletion in RIP-Tag2 transgenic mice with spontaneous pancreatic neuroendocrine tumors. Tumors had focal regions of infection at 5 days after all viruses. Natural killer (NK) cells were restricted to these sites of infection, but CD8+ T cells and tumor cell apoptosis were widespread and varied among the viruses. Antitumor activity of virus VV-A34, bearing amino acid substitution A34K151E to increase viral spreading, and virus VV-IL2v, expressing a mouse IL2 variant (mIL2v) with attenuated IL2 receptor alpha subunit binding, was similar to control virus VV-GFP. However, antitumor activity was significantly greater after virus VV-A34/IL2v, which expressed mIL2v together with A34K151E mutation and viral B18R gene deletion, and virus VV-GMCSF that expressed mouse GM-CSF. Both viruses greatly increased expression of CD8 antigens Cd8a/Cd8b1 and cytotoxicity genes granzyme A, granzyme B, Fas ligand, and perforin-1 in tumors. VV-A34/IL2v led to higher serum IL2 and greater tumor expression of death receptor ligand TRAIL, but VV-GMCSF led to higher serum GM-CSF, greater expression of leukocyte chemokines and adhesion molecules, and more neutrophil recruitment. Together, the results show that antitumor activity is similarly increased by viral expression of GM-CSF or IL2v combined with additional genetic modifications.
Collapse
Affiliation(s)
- Tomoyoshi Inoue
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Thomas Byrne
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Mitsuko Inoue
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Madeline E Tait
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | | | - Annabel Wang
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Michael R Dermyer
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Hanane Laklai
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Joseph J Binder
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Clare Lees
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Robert Hollingsworth
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | | | | | - Donald M McDonald
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
6
|
Jin KT, Du WL, Liu YY, Lan HR, Si JX, Mou XZ. Oncolytic Virotherapy in Solid Tumors: The Challenges and Achievements. Cancers (Basel) 2021; 13:cancers13040588. [PMID: 33546172 PMCID: PMC7913179 DOI: 10.3390/cancers13040588] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OVT) is a promising approach in cancer immunotherapy. Oncolytic viruses (OVs) could be applied in cancer immunotherapy without in-depth knowledge of tumor antigens. The capability of genetic modification makes OVs exciting therapeutic tools with a high potential for manipulation. Improving efficacy, employing immunostimulatory elements, changing the immunosuppressive tumor microenvironment (TME) to inflammatory TME, optimizing their delivery system, and increasing the safety are the main areas of OVs manipulations. Recently, the reciprocal interaction of OVs and TME has become a hot topic for investigators to enhance the efficacy of OVT with less off-target adverse events. Current investigations suggest that the main application of OVT is to provoke the antitumor immune response in the TME, which synergize the effects of other immunotherapies such as immune-checkpoint blockers and adoptive cell therapy. In this review, we focused on the effects of OVs on the TME and antitumor immune responses. Furthermore, OVT challenges, including its moderate efficiency, safety concerns, and delivery strategies, along with recent achievements to overcome challenges, are thoroughly discussed.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China;
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China;
| | - Jing-Xing Si
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| |
Collapse
|
7
|
Nakao S, Arai Y, Tasaki M, Yamashita M, Murakami R, Kawase T, Amino N, Nakatake M, Kurosaki H, Mori M, Takeuchi M, Nakamura T. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci Transl Med 2021; 12:12/526/eaax7992. [PMID: 31941828 DOI: 10.1126/scitranslmed.aax7992] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
The immune status of the tumor microenvironment is a key indicator in determining the antitumor effectiveness of immunotherapies. Data support the role of activation and expansion of tumor-infiltrating lymphocytes (TILs) in increasing the benefit of immunotherapies in patients with solid tumors. We found that intratumoral injection of a tumor-selective oncolytic vaccinia virus encoding interleukin-7 (IL-7) and IL-12 into tumor-bearing immunocompetent mice activated the inflammatory immune status of previously poorly immunogenic tumors and resulted in complete tumor regression, even in distant tumor deposits. Mice achieving complete tumor regression resisted rechallenge with the same tumor cells, suggesting establishment of long-term tumor-specific immune memory. Combining this virotherapy with anti-programmed cell death-1 (PD-1) or anti-cytotoxic T lymphocyte antigen 4 (CTLA4) antibody further increased the antitumor activity as compared to virotherapy alone, in tumor models unresponsive to either of the checkpoint inhibitor monotherapies. These findings suggest that administration of an oncolytic vaccinia virus carrying genes encoding for IL-7 and IL-12 has antitumor activity in both directly injected and distant noninjected tumors through immune status changes rendering tumors sensitive to immune checkpoint blockade. The benefit of intratumoral IL-7 and IL-12 expression was also observed in humanized mice bearing human cancer cells. These data support further investigation in patients with non-inflamed solid tumors.
Collapse
Affiliation(s)
- Shinsuke Nakao
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan.
| | - Yukinori Arai
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Mamoru Tasaki
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Midori Yamashita
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Ryuji Murakami
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Tatsuya Kawase
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Nobuaki Amino
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Motomu Nakatake
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hajime Kurosaki
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Masamichi Mori
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Masahiro Takeuchi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Takafumi Nakamura
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
8
|
Park AK, Fong Y, Kim SI, Yang J, Murad JP, Lu J, Jeang B, Chang WC, Chen NG, Thomas SH, Forman SJ, Priceman SJ. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci Transl Med 2020. [DOI: 10.1126/scitranslmed.aaz1863
http://stm.sciencemag.org] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An effective combination immunotherapy using oncolytic viruses delivers de novo CD19 to promote CD19-CAR T cell therapy against solid tumors in mice.
Collapse
Affiliation(s)
- Anthony K. Park
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Jason Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - John P. Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Jianming Lu
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Brook Jeang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Nanhai G. Chen
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Sandra H. Thomas
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA 91010, USA
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Saul J. Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Pelin A, Boulton S, Tamming LA, Bell JC, Singaravelu R. Engineering vaccinia virus as an immunotherapeutic battleship to overcome tumor heterogeneity. Expert Opin Biol Ther 2020; 20:1083-1097. [PMID: 32297534 DOI: 10.1080/14712598.2020.1757066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Immunotherapy is a rapidly evolving area of cancer therapeutics aimed at driving a systemic immune response to fight cancer. Oncolytic viruses (OVs) are at the cutting-edge of innovation in the immunotherapy field. Successful OV platforms must be effective in reshaping the tumor microenvironment and controlling tumor burden, but also be highly specific to avoid off-target side effects. Large DNA viruses, like vaccinia virus (VACV), have a large coding capacity, enabling the encoding of multiple immunostimulatory transgenes to reshape the tumor immune microenvironment. VACV-based OVs have shown promising results in both pre-clinical and clinical studies, including safe and efficient intravenous delivery to metastatic tumors. AREA COVERED This review summarizes attenuation strategies to generate a recombinant VACV with optimal tumor selectivity and immunogenicity. In addition, we discuss immunomodulatory transgenes that have been introduced into VACV and summarize their effectiveness in controlling tumor burden. EXPERT OPINION VACV encodes several immunomodulatory genes which aid the virus in overcoming innate and adaptive immune responses. Strategic deletion of these virulence factors will enable an optimal balance between viral persistence and immunogenicity, robust tumor-specific expression of payloads and promotion of a systemic anti-cancer immune response. Rational selection of therapeutic transgenes will maximize the efficacy of OVs and their synergy in combinatorial immunotherapy schemes.
Collapse
Affiliation(s)
- Adrian Pelin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Stephen Boulton
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Levi A Tamming
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Ragunath Singaravelu
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Pearl TM, Markert JM, Cassady KA, Ghonime MG. Oncolytic Virus-Based Cytokine Expression to Improve Immune Activity in Brain and Solid Tumors. MOLECULAR THERAPY-ONCOLYTICS 2019; 13:14-21. [PMID: 30997392 PMCID: PMC6453942 DOI: 10.1016/j.omto.2019.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oncolytic viral therapy has gained significant traction as cancer therapy over the past 2 decades. Oncolytic viruses are uniquely designed both to lyse tumor cells through their replication and to recruit immune responses against virally infected cells. Increasingly, investigators are leveraging this immune response to target the immunosuppressive tumor microenvironment and improve immune effector response against bystander tumor cells. In this article, we review the spectrum of preclinical, early-stage clinical, and potential future efforts with cytokine-secreting oncolytic viruses, with a focus on the treatment of brain tumors and solid tumors.
Collapse
Affiliation(s)
- Taylor M. Pearl
- The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kevin A. Cassady
- The Ohio State University College of Medicine, Columbus, OH 43205, USA
- The Research Institute at Nationwide Children’s Hospital Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Corresponding author: Kevin A. Cassady, Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH 43205, USA.
| | - Mohammed G. Ghonime
- The Research Institute at Nationwide Children’s Hospital Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
| |
Collapse
|
11
|
Ungerechts G, Engeland CE, Buchholz CJ, Eberle J, Fechner H, Geletneky K, Holm PS, Kreppel F, Kühnel F, Lang KS, Leber MF, Marchini A, Moehler M, Mühlebach MD, Rommelaere J, Springfeld C, Lauer UM, Nettelbeck DM. Virotherapy Research in Germany: From Engineering to Translation. Hum Gene Ther 2018; 28:800-819. [PMID: 28870120 DOI: 10.1089/hum.2017.138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Virotherapy is a unique modality for the treatment of cancer with oncolytic viruses (OVs) that selectively infect and lyse tumor cells, spread within tumors, and activate anti-tumor immunity. Various viruses are being developed as OVs preclinically and clinically, several of them engineered to encode therapeutic proteins for tumor-targeted gene therapy. Scientists and clinicians in German academia have made significant contributions to OV research and development, which are highlighted in this review paper. Innovative strategies for "shielding," entry or postentry targeting, and "arming" of OVs have been established, focusing on adenovirus, measles virus, parvovirus, and vaccinia virus platforms. Thereby, new-generation virotherapeutics have been derived. Moreover, immunotherapeutic properties of OVs and combination therapies with pharmacotherapy, radiotherapy, and especially immunotherapy have been investigated and optimized. German investigators are increasingly assessing their OV innovations in investigator-initiated and sponsored clinical trials. As a prototype, parvovirus has been tested as an OV from preclinical proof-of-concept up to first-in-human clinical studies. The approval of the first OV in the Western world, T-VEC (Imlygic), has further spurred the involvement of investigators in Germany in international multicenter studies. With the encouraging developments in funding, commercialization, and regulatory procedures, more German engineering will be translated into OV clinical trials in the near future.
Collapse
Affiliation(s)
- Guy Ungerechts
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany .,3 Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada
| | - Christine E Engeland
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian J Buchholz
- 4 Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut , Langen, Germany .,5 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Heidelberg, Germany
| | - Jürgen Eberle
- 6 Charité -Universitätsmedizin Berlin, Department of Dermatology, Skin Cancer Centre Charité , Berlin, Germany
| | - Henry Fechner
- 7 Technische Universität Berlin, Institute of Biotechnology , Department of Applied Biochemistry, Berlin, Germany
| | - Karsten Geletneky
- 8 Department of Neurosurgery, Klinikum Darmstadt , Darmstadt, Germany
| | - Per Sonne Holm
- 9 Department of Urology, Klinikum rechts der Isar, Technical University Munich , Munich, Germany
| | - Florian Kreppel
- 10 Chair of Biochemistry and Molecular Medicine, Center for Biomedical Research and Education (ZBAF), Faculty of Health, University Witten/Herdecke (UW/H), Witten, Germany
| | - Florian Kühnel
- 11 Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Karl Sebastian Lang
- 12 Institute of Immunology, Medical Faculty, University of Duisburg-Essen , Essen, Germany
| | - Mathias F Leber
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonio Marchini
- 13 Department of Tumor Virology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany .,14 Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Markus Moehler
- 15 University Medical Center Mainz , I. Dept. of Internal Medicine, Mainz, Germany
| | - Michael D Mühlebach
- 16 Product Testing of Immunological Veterinary Medicinal Products, Paul-Ehrlich-Institut , Langen, Germany
| | - Jean Rommelaere
- 13 Department of Tumor Virology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Springfeld
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany
| | - Ulrich M Lauer
- 17 Department of Clinical Tumor Biology, Medical University Hospital , Tübingen, Germany .,18 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Tübingen, Germany
| | | |
Collapse
|
12
|
Kamato D, Bhaskarala VV, Mantri N, Oh TG, Ling D, Janke R, Zheng W, Little PJ, Osman N. RNA sequencing to determine the contribution of kinase receptor transactivation to G protein coupled receptor signalling in vascular smooth muscle cells. PLoS One 2017; 12:e0180842. [PMID: 28719611 PMCID: PMC5515425 DOI: 10.1371/journal.pone.0180842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/22/2017] [Indexed: 02/02/2023] Open
Abstract
G protein coupled receptor (GPCR) signalling covers three major mechanisms. GPCR agonist engagement allows for the G proteins to bind to the receptor leading to a classical downstream signalling cascade. The second mechanism is via the utilization of the β-arrestin signalling molecule and thirdly via transactivation dependent signalling. GPCRs can transactivate protein tyrosine kinase receptors (PTKR) to activate respective downstream signalling intermediates. In the past decade GPCR transactivation dependent signalling was expanded to show transactivation of serine/threonine kinase receptors (S/TKR). Kinase receptor transactivation enormously broadens the GPCR signalling paradigm. This work utilizes next generation RNA-sequencing to study the contribution of transactivation dependent signalling to total protease activated receptor (PAR)-1 signalling. Transactivation, assessed as gene expression, accounted for 50 percent of the total genes regulated by thrombin acting through PAR-1 in human coronary artery smooth muscle cells. GPCR transactivation of PTKRs is approximately equally important as the transactivation of the S/TKR with 209 and 177 genes regulated respectively, via either signalling pathway. This work shows that genome wide studies can provide powerful insights into GPCR mediated signalling pathways.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
- * E-mail:
| | - Venkata Vijayanand Bhaskarala
- Department of Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora, VIC, Australia
| | - Nitin Mantri
- Department of Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora, VIC, Australia
| | - Tae Gyu Oh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld, Australia
| | - Dora Ling
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Reearna Janke
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
- Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, China
| | - Narin Osman
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
- Diabetes Complications Group, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Monash University, Departments of Medicine and Immunology, Central and Eastern Clinical School, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Delivering safer immunotherapies for cancer. Adv Drug Deliv Rev 2017; 114:79-101. [PMID: 28545888 DOI: 10.1016/j.addr.2017.05.011] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy is now a powerful clinical reality, with a steady progression of new drug approvals and a massive pipeline of additional treatments in clinical and preclinical development. However, modulation of the immune system can be a double-edged sword: Drugs that activate immune effectors are prone to serious non-specific systemic inflammation and autoimmune side effects. Drug delivery technologies have an important role to play in harnessing the power of immune therapeutics while avoiding on-target/off-tumor toxicities. Here we review mechanisms of toxicity for clinically-relevant immunotherapeutics, and discuss approaches based in drug delivery technology to enhance the safety and potency of these treatments. These include strategies to merge drug delivery with adoptive cellular therapies, targeting immunotherapies to tumors or select immune cells, and localizing therapeutics intratumorally. Rational design employing lessons learned from the drug delivery and nanomedicine fields has the potential to facilitate immunotherapy reaching its full potential.
Collapse
|
14
|
Zhang T, Suryawanshi YR, Woyczesczyk HM, Essani K. Targeting Melanoma with Cancer-Killing Viruses. Open Virol J 2017; 11:28-47. [PMID: 28567163 PMCID: PMC5420172 DOI: 10.2174/1874357901711010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Melanoma is the deadliest skin cancer with ever-increasing incidence. Despite the development in diagnostics and therapies, metastatic melanoma is still associated with significant morbidity and mortality. Oncolytic viruses (OVs) represent a class of novel therapeutic agents for cancer by possessing two closely related properties for tumor reduction: virus-induced lysis of tumor cells and induction of host anti-tumor immune responses. A variety of viruses, either in "natural" or in genetically modified forms, have exhibited a remarkable therapeutic efficacy in regressing melanoma in experimental and/or clinical studies. This review provides a comprehensive summary of the molecular and cellular mechanisms of action of these viruses, which involve manipulating and targeting the abnormalities of melanoma, and can be categorized as enhancing viral tropism, targeting the tumor microenvironment and increasing the innate and adaptive antitumor responses. Additionally, this review describes the "biomarkers" and deregulated pathways of melanoma that are responsible for melanoma initiation, progression and metastasis. Advances in understanding these abnormalities of melanoma have resulted in effective targeted and immuno-therapies, and could potentially be applied for engineering OVs with enhanced oncolytic activity in future.
Collapse
Affiliation(s)
- Tiantian Zhang
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Yogesh R. Suryawanshi
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Helene M. Woyczesczyk
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| |
Collapse
|
15
|
Berkey SE, Thorne SH, Bartlett DL. Oncolytic Virotherapy and the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:157-172. [PMID: 29275471 DOI: 10.1007/978-3-319-67577-0_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncolytic viral therapy is a promising approach to treat many malignancies, including breast, colorectal, hepatocellular, and melanoma. The best results are seen when using "targeted and armed" viruses. These are viruses that have been genetically modified to selectively replicate within cancer cells and express specific transgenes that alter the tumor microenvironment to inhibit tumor progression. The products of these transgenes induce cell death, make the virus less virulent, compromise tumor vascularity, and are capable of modulating or enhancing the immune system-such as cytokines and chemokines. In addition, oncolytic viruses can induce anti-vascular effects and disrupt the extracellular matrix to improve viral spread within the tumor. Oncolytic viruses also improve crosstalk between fibroblasts, cytokine-induced killer cells, and cancer cells within the microenvironment, leading to enhanced tumor cell death.
Collapse
Affiliation(s)
- Sara E Berkey
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Steve H Thorne
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Holay N, Kim Y, Lee P, Gujar S. Sharpening the Edge for Precision Cancer Immunotherapy: Targeting Tumor Antigens through Oncolytic Vaccines. Front Immunol 2017; 8:800. [PMID: 28751892 PMCID: PMC5507961 DOI: 10.3389/fimmu.2017.00800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy represents a promising, modern-age option for treatment of cancers. Among the many immunotherapies being developed, oncolytic viruses (OVs) are slowly moving to the forefront of potential clinical therapeutic agents, especially considering the fact that the first oncolytic virus was recently approved by the Food and Drug Administration for the treatment of melanoma. OVs were originally discovered for their ability to kill cancer cells, but they have emerged as unconventional cancer immunotherapeutics due to their ability to activate a long-term antitumor immune response. This immune response not only eliminates cancer cells but also offers potential for preventing cancer recurrence. A fundamental requirement for the generation of such a strong antitumor T cell response is the recognition of an immunogenic tumor antigen by the antitumor T cell. Several tumor antigens capable of activating these antitumor T cells have been identified and are now being expressed through genetically engineered OVs to potentiate antitumor immunity. With the emergence of novel technologies for identifying tumor antigens and immunogenic epitopes in a myriad of cancers, design of "oncolytic vaccines" expressing highly specific tumor antigens provides a great strategy for targeting tumors. Here, we highlight the various OVs engineered to target tumor antigens and discuss multiple studies and strategies used to develop oncolytic vaccine regimens. We also contend how, going forward, a combination of technologies for identifying novel immunogenic tumor antigens and rational design of oncolytic vaccines will pave the way for the next generation of clinically efficacious cancer immunotherapies.
Collapse
Affiliation(s)
- Namit Holay
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Patrick Lee
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
- *Correspondence: Shashi Gujar,
| |
Collapse
|
17
|
Hou W, Sampath P, Rojas JJ, Thorne SH. Oncolytic Virus-Mediated Targeting of PGE2 in the Tumor Alters the Immune Status and Sensitizes Established and Resistant Tumors to Immunotherapy. Cancer Cell 2016; 30:108-119. [PMID: 27374223 PMCID: PMC4962335 DOI: 10.1016/j.ccell.2016.05.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/26/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022]
Abstract
Immunotherapies are highly promising cancer treatments, but understanding the factors mediating their resistance remains critical. Successes in randomized clinical testing have supported the growing appreciation that oncolytic virotherapies primarily act as immunotherapies. Here we identified prostaglandin E2 (PGE2) in the tumor as a key mediator of resistance to immunotherapies, including oncolytic vaccinia virotherapy. Elevated levels of PGE2 coupled to suppressive chemokine profiles and high levels of granulocytic myeloid-derived suppressor cells resulted in loss of immunotherapeutic potential. Viral vectors engineered to target PGE2 were capable of overcoming localized immunosuppression leading to profound changes in the tumor's immune status. This allowed the viral vectors to raise robust anti-tumor adaptive immune responses and sensitized established and previously resistant tumors to immunotherapies.
Collapse
Affiliation(s)
- Weizhou Hou
- Department of Cell Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Padma Sampath
- Department of Cell Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Juan J Rojas
- Department of Cell Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Steve H Thorne
- Department of Cell Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, G17a, Hillman Cancer Center, University of Pittsburgh, 5117 Center Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
18
|
Rojas JJ, Sampath P, Bonilla B, Ashley A, Hou W, Byrd D, Thorne SH. Manipulating TLR Signaling Increases the Anti-tumor T Cell Response Induced by Viral Cancer Therapies. Cell Rep 2016; 15:264-73. [PMID: 27050526 PMCID: PMC4830920 DOI: 10.1016/j.celrep.2016.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/08/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
The immune response plays a key role in enhancing the therapeutic activity of oncolytic virotherapies. However, to date, investigators have relied on inherent interactions between the virus and the immune system, often coupled to the expression of a single cytokine transgene. Recently, the importance of TLR activation in mediating adaptive immunity has been demonstrated. We therefore sought to influence the type and level of immune response raised after oncolytic vaccinia therapy through manipulation of TLR signaling. Vaccinia naturally activates TLR2, associated with an antibody response, whereas a CTL response is associated with TLR3-TRIF-signaling pathways. We manipulated TLR signaling by vaccinia through deglycosylation of the viral particle to block TLR2 activation and expression of a TRIF transgene. The resulting vector displayed greatly reduced production of anti-viral neutralizing antibody as well as an increased anti-tumor CTL response. Delivery in both naive and pre-treated mice was enhanced and immunotherapeutic activity dramatically improved.
Collapse
Affiliation(s)
- Juan J Rojas
- Department of Cell Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Padma Sampath
- Department of Cell Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Braulio Bonilla
- Department of Cell Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alexandra Ashley
- Department of Cell Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Weizhou Hou
- Department of Cell Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daniel Byrd
- Department of Cell Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Steve H Thorne
- Department of Cell Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
19
|
Rojas JJ, Sampath P, Hou W, Thorne SH. Defining Effective Combinations of Immune Checkpoint Blockade and Oncolytic Virotherapy. Clin Cancer Res 2015; 21:5543-51. [PMID: 26187615 DOI: 10.1158/1078-0432.ccr-14-2009] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 07/08/2015] [Indexed: 01/18/2023]
Abstract
PURPOSE Recent data from randomized clinical trials with oncolytic viral therapies and with cancer immunotherapies have finally recapitulated the promise these platforms demonstrated in preclinical models. Perhaps the greatest advance with oncolytic virotherapy has been the appreciation of the importance of activation of the immune response in therapeutic activity. Meanwhile, the understanding that blockade of immune checkpoints (with antibodies that block the binding of PD1 to PDL1 or CTLA4 to B7-2) is critical for an effective antitumor immune response has revitalized the field of immunotherapy. The combination of immune activation using an oncolytic virus and blockade of immune checkpoints is therefore a logical next step. EXPERIMENTAL DESIGN Here, we explore such combinations and demonstrate their potential to produce enhanced responses in mouse tumor models. Different combinations and regimens were explored in immunocompetent mouse models of renal and colorectal cancer. Bioluminescence imaging and immune assays were used to determine the mechanisms mediating synergistic or antagonistic combinations. RESULTS Interaction between immune checkpoint inhibitors and oncolytic virotherapy was found to be complex, with correct selection of viral strain, antibody, and timing of the combination being critical for synergistic effects. Indeed, some combinations produced antagonistic effects and loss of therapeutic activity. A period of oncolytic viral replication and directed targeting of the immune response against the tumor were required for the most beneficial effects, with CD8(+) and NK, but not CD4(+) cells mediating the effects. CONCLUSIONS These considerations will be critical in the design of the inevitable clinical translation of these combination approaches. Clin Cancer Res; 21(24); 5543-51. ©2015 AACR.See related commentary by Slaney and Darcy, p. 5417.
Collapse
Affiliation(s)
- Juan J Rojas
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Padma Sampath
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Weizhou Hou
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steve H Thorne
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania.
| |
Collapse
|
20
|
Sampath P, Thorne SH. Novel therapeutic strategies in human malignancy: combining immunotherapy and oncolytic virotherapy. Oncolytic Virother 2015; 4:75-82. [PMID: 27512672 PMCID: PMC4918382 DOI: 10.2147/ov.s54738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Results from randomized clinical trials over the last several years have finally begun to demonstrate the potential of oncolytic viral therapies to treat a variety of cancers. One reason for these successes has been the realization that this platform is most effective when considered primarily as an immunotherapy. Cancer immunotherapy has also made dramatic strides recently with antibodies capable of blocking immune checkpoint inhibitors and adoptive T-cell therapies, notably CAR T-cells, leading a panel of novel and highly clinically effective therapies. It is clear therefore that an understanding of how and when these complementary approaches can most effectively be combined offers the real hope of moving beyond simply treating the disease and toward starting to talk about curative therapies. In this review we discuss approaches to combining these therapeutic platforms, both through engineering the viral vectors to more beneficially interact with the host immune response during therapy, as well as through the direct combinations of different therapeutics. This primarily, but not exclusively focuses on strains of oncolytic vaccinia virus. Some of the results reported to date, primarily in pre-clinical models but also in early clinical trials, are dramatic and hold great promise for the future development of similar therapies and their translation into cancer therapies.
Collapse
Affiliation(s)
- Padma Sampath
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steve H Thorne
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Workenhe ST, Verschoor ML, Mossman KL. The role of oncolytic virus immunotherapies to subvert cancer immune evasion. Future Oncol 2015; 11:675-89. [DOI: 10.2217/fon.14.254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT Despite huge economic and intellectual investments, developing effective cancer treatments continues to be an overarching challenge. Engineered oncolytic viruses (OVs) present self-amplifying immunotherapy platforms capable of preferential cytotoxicity to cancer cells and simultaneous activation of host anti-tumor immunity. In preclinical studies, OVs are showing potent therapeutic effects when used in combination with other immune therapy strategies. In the clinic, the immunotherapeutic effects of OVs are showing promising results. Here we review current strategies for engineering OVs, and present a perspective of future directions within a discussion of the current outcomes of combinatorial approaches with other cancer immunotherapy platforms.
Collapse
Affiliation(s)
- Samuel T Workenhe
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Meghan L Verschoor
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Karen L Mossman
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
22
|
Salem ML, Gadalla KKE, Fielding BC, Thorne SH. Gene Therapy and Virus-Based Cancer Vaccines. CANCER IMMUNOLOGY 2015:131-150. [DOI: 10.1007/978-3-662-44946-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Fernández-Ulibarri I, Hammer K, Arndt MAE, Kaufmann JK, Dorer D, Engelhardt S, Kontermann RE, Hess J, Allgayer H, Krauss J, Nettelbeck DM. Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity. Int J Cancer 2014; 136:2228-40. [PMID: 25303768 DOI: 10.1002/ijc.29258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/22/2014] [Indexed: 01/27/2023]
Abstract
Antibody therapy of solid cancers is well established, but suffers from unsatisfactory tumor penetration of large immunoglobulins or from low serum retention of antibody fragments. Oncolytic viruses are in advanced clinical development showing excellent safety, but suboptimal potency due to limited virus spread within tumors. Here, by developing an immunoRNase-encoding oncolytic adenovirus, we combine viral oncolysis with intratumoral genetic delivery of a small antibody-fusion protein for targeted bystander killing of tumor cells (viro-antibody therapy). Specifically, we explore genetic delivery of a small immunoRNase consisting of an EGFR-binding scFv antibody fragment fused to the RNase Onconase (ONC(EGFR)) that induces tumor cell death by RNA degradation after cellular internalization. Onconase is a frog RNase that combines lack of immunogenicity and excellent safety in patients with high tumor killing potency due to its resistance to the human cytosolic RNase inhibitor. We show that ONC(EGFR) expression by oncolytic adenoviruses is feasible with an optimized, replication-dependent gene expression strategy. Virus-encoded ONC(EGFR) induces potent and EGFR-dependent bystander killing of tumor cells. Importantly, the ONC(EGFR)-encoding oncolytic adenovirus showed dramatically increased cytotoxicity specifically to EGFR-positive tumor cells in vitro and significantly enhanced therapeutic activity in a mouse xenograft tumor model. The latter demonstrates that ONC(EGFR) is expressed at levels sufficient to trigger tumor cell killing in vivo. The established ONC(EGFR)-encoding oncolytic adenovirus represents a novel agent for treatment of EGFR-positive tumors. This viro-antibody therapy platform can be further developed for targeted/personalized cancer therapy by exploiting antibody diversity to target further established or emerging tumor markers or combinations thereof.
Collapse
Affiliation(s)
- Inés Fernández-Ulibarri
- Oncolytic Adenovirus Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Thorne SH. Immunotherapeutic potential of oncolytic vaccinia virus. Front Oncol 2014; 4:155. [PMID: 24987615 PMCID: PMC4060052 DOI: 10.3389/fonc.2014.00155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022] Open
Abstract
The concept of oncolytic viral therapy was based on the hypothesis that engineering tumor-selectivity into the replication potential of viruses would permit direct destruction of tumor cells as a result of viral-mediated lysis, resulting in amplification of the therapy exclusively within the tumor environment. The immune response raised by the virus was not only considered to be necessary for the safety of the approach, but also something of a hindrance to optimal therapeutic activity and repeat dosing. However, the pre-clinical and subsequent clinical success of several oncolytic viruses expressing selected cytokines has demonstrated the potential for harnessing the immune response as an additional and beneficial mechanism of therapeutic activity within the platform. Over the last few years, a variety of novel approaches have been incorporated to try to enhance this immunotherapeutic activity. Several innovative and subtle approaches have moved far beyond the expression of a single cytokine transgene, with the hope of optimizing anti-tumor immunity while having minimal detrimental impact on viral oncolytic activity.
Collapse
Affiliation(s)
- Steve H. Thorne
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, Hillman Cancer Center, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Sampath P, Thorne SH. Arming viruses in multi-mechanistic oncolytic viral therapy: current research and future developments, with emphasis on poxviruses. Oncolytic Virother 2013; 3:1-9. [PMID: 27512659 PMCID: PMC4918358 DOI: 10.2147/ov.s36703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The field of oncolytic virology has made great strides in recent years. However, one key finding has been that the use of viral agents that replicate selectively in tumors is usually insufficient to achieve anything beyond small and transient responses. Instead, like most cancer therapies, oncolytic viruses are most effective in combination with other therapies, which is where they have proven therapeutic effects in clinical and preclinical studies. In cases of some of the smaller RNA viruses, effects can only be achieved through combination regimens with chemotherapy, radiotherapy, or targeted conventional therapies. However, larger DNA viruses are able to express one or more transgenes; thus, therapeutic mechanisms can be built into the viral vector itself. The incorporated approaches into arming oncolytic viruses through transgene expression will be the main focus of this review, including use of immune activators, prodrug converting enzymes, anti-angiogenic factors, and targeting of the stroma. This will focus on poxviruses as model systems with large cloning capacities, which have routinely been used as transgene expression vectors in different settings, including vaccine and oncolytic viral therapy.
Collapse
Affiliation(s)
- Padma Sampath
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steve H Thorne
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Atherton MJ, Lichty BD. Evolution of oncolytic viruses: novel strategies for cancer treatment. Immunotherapy 2013; 5:1191-206. [DOI: 10.2217/imt.13.123] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many viruses have documented oncolytic activity, with the first evidence observed clinically over a decade ago. In recent years, there has been a resurgence of interest in the field of oncolytic viruses. Viruses may be innately oncotropic, lacking the ability to cause disease in people or they may require engineering to allow selective tumor targeting and attenuation of pathogenicity. Following infection of a neoplastic cell, several events may occur, including direct viral oncolysis, apoptosis, necrotic cell death and autophagic cellular demise. Of late, a large body of work has recognized the ability of oncolytic viruses (OVs) to activate the innate and adaptive immune system, as well as directly killing tumors. The production of viruses expressing transgenes encoding for cytokines, colony-stimulating factors, costimulatory molecules and tumor-associated antigens has been able to further incite immune responses against target tumors. Multiple OVs are now in the advanced stages of clinical trials, with several individual viruses having completed their respective trials with positive results. This review introduces the multiple mechanisms by which OVs are able to act as an antineoplastic therapy, either on their own or in combination with other more traditional treatment modalities. The full benefit and the place where OVs will be integrated into standard-of-care therapies will be determined with ongoing studies ranging from the laboratory to the patient. With various different viruses now in the clinic this therapeutic option is beginning to prove its worth, and the versatility of these agents means further innovative and novel applications will continue to be developed.
Collapse
Affiliation(s)
- Matthew J Atherton
- McMaster Immunology Research Centre, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4K1
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|