1
|
Alizadeh F, Abraghan YJ, Farrokhi S, Yousefi Y, Mirahmadi Y, Eslahi A, Mojarrad M. Production of Duchenne muscular dystrophy cellular model using CRISPR-Cas9 exon deletion strategy. Mol Cell Biochem 2024; 479:1027-1040. [PMID: 37289342 DOI: 10.1007/s11010-023-04759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is a progressive muscle wasting disorder caused by loss-of-function mutations in the dystrophin gene. Although the search for a definitive cure has failed to date, extensive efforts have been made to introduce effective therapeutic strategies. Gene editing technology is a great revolution in biology, having an immediate application in the generation of research models. DMD muscle cell lines are reliable sources to evaluate and optimize therapeutic strategies, in-depth study of DMD pathology, and screening the effective drugs. However, only a few immortalized muscle cell lines with DMD mutations are available. In addition, obtaining muscle cells from patients also requires an invasive muscle biopsy. Mostly DMD variants are rare, making it challenging to identify a patient with a particular mutation for a muscle biopsy. To overcome these challenges and generate myoblast cultures, we optimized a CRISPR/Cas9 gene editing approach to model the most common DMD mutations that include approximately 28.2% of patients. GAP-PCR and sequencing results show the ability of the CRISPR-Cas9 system to efficient deletion of mentioned exons. We showed producing truncated transcript due to the targeted deletion by RT-PCR and sequencing. Finally, mutation-induced disruption of dystrophin protein expression was confirmed by western blotting. All together, we successfully created four immortalized DMD muscle cell lines and showed the efficacy of the CRISPR-Cas9 system for the generation of immortalized DMD cell models with the targeted deletions.
Collapse
Affiliation(s)
- Farzaneh Alizadeh
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Jafari Abraghan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Farrokhi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yousefi
- Department of Biochemistry, Mashhad University of Ferdowsi, Mashhad, Iran
| | - Yeganeh Mirahmadi
- Department of Biochemistry, Genetics and Molecular Biology, Islamic Azad University, Mashhad, Iran
| | - Atieh Eslahi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Genetic Center of Khorasan Razavi, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
3
|
Roberts TC, Wood MJA, Davies KE. Therapeutic approaches for Duchenne muscular dystrophy. Nat Rev Drug Discov 2023; 22:917-934. [PMID: 37652974 DOI: 10.1038/s41573-023-00775-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disorder and a priority candidate for molecular and cellular therapeutics. Although rare, it is the most common inherited myopathy affecting children and so has been the focus of intense research activity. It is caused by mutations that disrupt production of the dystrophin protein, and a plethora of drug development approaches are under way that aim to restore dystrophin function, including exon skipping, stop codon readthrough, gene replacement, cell therapy and gene editing. These efforts have led to the clinical approval of four exon skipping antisense oligonucleotides, one stop codon readthrough drug and one gene therapy product, with other approvals likely soon. Here, we discuss the latest therapeutic strategies that are under development and being deployed to treat DMD. Lessons from these drug development programmes are likely to have a major impact on the DMD field, but also on molecular and cellular medicine more generally. Thus, DMD is a pioneer disease at the forefront of future drug discovery efforts, with these experimental treatments paving the way for therapies using similar mechanisms of action being developed for other genetic diseases.
Collapse
Affiliation(s)
- Thomas C Roberts
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- MDUK Oxford Neuromuscular Centre, Oxford, UK.
| | - Matthew J A Wood
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, Oxford, UK
| | - Kay E Davies
- MDUK Oxford Neuromuscular Centre, Oxford, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Wasala NB, Yue Y, Hu B, Shin JH, Srivastava A, Yao G, Duan D. Lifelong Outcomes of Systemic Adeno-Associated Virus Micro-Dystrophin Gene Therapy in a Murine Duchenne Muscular Dystrophy Model. Hum Gene Ther 2023; 34:449-458. [PMID: 36515166 PMCID: PMC10210228 DOI: 10.1089/hum.2022.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Adeno-associated virus (AAV)-mediated systemic micro-dystrophin (μDys) therapy is currently in clinical trials. The hope is to permanently improve the life quality of Duchenne muscular dystrophy (DMD) patients. Numerous preclinical studies have been conducted to support these trials. However, none examined whether a single therapy at a young age can lead to lifelong disease amelioration. To address this critical question, we injected 1 × 1013 vg particles/mouse of an AAV serotype-9 μDys vector to 3-month-old mdx mice through the tail vein. Therapeutic outcomes were evaluated at the age of 11 months (adulthood, 8 months postinjection) and 21 months (terminal age, 18 months postinjection). Immunostaining and Western blot showed saturated supraphysiological levels of μDys expression in skeletal muscle and heart till the end of the study. Treatment significantly improved grip force and treadmill running, and significantly reduced the serum creatine kinase level at both time points. Since cardiac death is a major threat in late-stage patients, we evaluated cardiac electrophysiology and hemodynamics by ECG and the closed-chest cardiac catheter assay, respectively. Significant improvements were observed in these assays. Importantly, many ECG and hemodynamic parameters (heart rate, PR interval, QRS duration, QTc interval, end-diastolic/systolic volume, dP/dt max and min, max pressure, and ejection fraction) were completely normalized at 21 months of age. Our results have provided direct evidence that a single systemic AAV μDys therapy has the potential to provide lifelong benefits in the murine DMD model.
Collapse
Affiliation(s)
- Nalinda B. Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Bryan Hu
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Jin-Hong Shin
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Child Health Research Institute, Department of Pediatrics, Department of Molecular Genetics and Microbiology, The University of Florida College of Medicine, Gainesville, Florida, USA
| | - Gang Yao
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, Missouri, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, Missouri, USA
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
5
|
Dystrophin myonuclear domain restoration governs treatment efficacy in dystrophic muscle. Proc Natl Acad Sci U S A 2023; 120:e2206324120. [PMID: 36595689 PMCID: PMC9926233 DOI: 10.1073/pnas.2206324120] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dystrophin is essential for muscle health: its sarcolemmal absence causes the fatal, X-linked condition, Duchenne muscular dystrophy (DMD). However, its normal, spatial organization remains poorly understood, which hinders the interpretation of efficacy of its therapeutic restoration. Using female reporter mice heterozygous for fluorescently tagged dystrophin (DmdEGFP), we here reveal that dystrophin distribution is unexpectedly compartmentalized, being restricted to myonuclear-defined sarcolemmal territories extending ~80 µm, which we called "basal sarcolemmal dystrophin units (BSDUs)." These territories were further specialized at myotendinous junctions, where both Dmd transcripts and dystrophin protein were enriched. Genome-level correction in X-linked muscular dystrophy mice via CRISPR/Cas9 gene editing restored a mosaic of separated dystrophin domains, whereas transcript-level Dmd correction, following treatment with tricyclo-DNA antisense oligonucleotides, restored dystrophin initially at junctions before extending along the entire fiber-with levels ~2% sufficient to moderate the dystrophic process. We conclude that widespread restoration of fiber dystrophin is likely critical for therapeutic success in DMD, perhaps most importantly, at muscle-tendon junctions.
Collapse
|
6
|
Monceau A, Moutachi D, Lemaitre M, Garcia L, Trollet C, Furling D, Klein A, Ferry A. Dystrophin Restoration after Adeno-Associated Virus U7-Mediated Dmd Exon Skipping Is Modulated by Muscular Exercise in the Severe D2-Mdx Duchenne Muscular Dystrophy Murine Model. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1604-1618. [PMID: 36113555 DOI: 10.1016/j.ajpath.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease caused by Dmd mutations, resulting in the absence of dystrophin in skeletal muscle, and a greater susceptibility to damage during contraction (exercise). The current study evaluated whether voluntary exercise impacts a Dmd exon skipping and muscle physiology in a severe DMD murine model. D2-mdx mice were intramuscularly injected with an adeno-associated virus (AAV) U7 snRNA to correct Dmd reading frame, and allowed to voluntary run on a wheel for 1 month. Voluntary running did not induce muscle fiber regeneration, as indicated by the percentage of centronucleated fibers, Myh3 and Myh4 expression, and maximal force production, and thus possibly did not compromise the gene therapy approach. Voluntary running did not impact the number of viral genomes and the expression of U7 and Dmd 1 month after injection of AAV-U7 injected just before exercise initiation, but reduced the amount of dystrophin in dystrophin-expressing fibers from 80% to 65% of the muscle cross-sectional area. In conclusion, voluntary running did not induce muscle damage and had no drastic detrimental effect on the AAV gene therapy exon skipping approach in a severe murine DMD model. Moreover, these results suggest considering exercise as an additional element in the design and conception of future therapeutic approaches for DMD.
Collapse
Affiliation(s)
- Alexandra Monceau
- UMRS974 INSERM, Association of Myology Institute, Myology Center of Research, UMRS974, Sorbonne Université, Paris, France
| | - Dylan Moutachi
- UMRS974 INSERM, Association of Myology Institute, Myology Center of Research, UMRS974, Sorbonne Université, Paris, France
| | | | - Luis Garcia
- U1179 INSERM, Université de Versailles Saint-Quentin-en-Yvelines, Montigny le Bretonneux, Paris, France
| | - Capucine Trollet
- UMRS974 INSERM, Association of Myology Institute, Myology Center of Research, UMRS974, Sorbonne Université, Paris, France
| | - Denis Furling
- UMRS974 INSERM, Association of Myology Institute, Myology Center of Research, UMRS974, Sorbonne Université, Paris, France
| | - Arnaud Klein
- UMRS974 INSERM, Association of Myology Institute, Myology Center of Research, UMRS974, Sorbonne Université, Paris, France
| | - Arnaud Ferry
- UMRS974 INSERM, Association of Myology Institute, Myology Center of Research, UMRS974, Sorbonne Université, Paris, France; Faculty of Science Sport, Université Paris Cité, Paris, France.
| |
Collapse
|
7
|
Wein N, Vetter TA, Vulin A, Simmons TR, Frair EC, Bradley AJ, Gushchina LV, Almeida CF, Huang N, Lesman D, Rajakumar D, Weiss RB, Flanigan KM. Systemic delivery of an AAV9 exon-skipping vector significantly improves or prevents features of Duchenne muscular dystrophy in the Dup2 mouse. Mol Ther Methods Clin Dev 2022; 26:279-293. [PMID: 35949298 PMCID: PMC9356240 DOI: 10.1016/j.omtm.2022.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
Duchenne muscular dystrophy (DMD) is typically caused by mutations that disrupt the DMD reading frame, but nonsense mutations in the 5′ part of the gene induce utilization of an internal ribosomal entry site (IRES) in exon 5, driving expression of a highly functional N-truncated dystrophin. We have developed an AAV9 vector expressing U7 small nuclear RNAs targeting DMD exon 2 and have tested it in a mouse containing a duplication of exon 2, in which skipping of both exon 2 copies induces IRES-driven expression, and skipping of one copy leads to wild-type dystrophin expression. One-time intravascular injection either at postnatal days 0–1 or at 2 months results in efficient exon skipping and dystrophin expression, and significant protection from functional and pathologic deficits. Immunofluorescence quantification showed 33%–53% average dystrophin intensity and 55%–79% average dystrophin-positive fibers in mice treated in adulthood, with partial amelioration of DMD pathology and correction of DMD-associated alterations in gene expression. In mice treated neonatally, dystrophin immunofluorescence reached 49%–85% of normal intensity and 76%–99% dystrophin-positive fibers, with near-complete correction of dystrophic pathology, and these beneficial effects persisted for at least 6 months. Our results demonstrate the robustness, durability, and safety of exon 2 skipping using scAAV9.U7snRNA.ACCA, supporting its clinical use.
Collapse
Affiliation(s)
- Nicolas Wein
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Adeline Vulin
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Tabatha R Simmons
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Emma C Frair
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Adrienne J Bradley
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Liubov V Gushchina
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Camila F Almeida
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Nianyuan Huang
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Daniel Lesman
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Dhanarajan Rajakumar
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Robert B Weiss
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kevin M Flanigan
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA.,Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Eser G, Topaloğlu H. Current Outline of Exon Skipping Trials in Duchenne Muscular Dystrophy. Genes (Basel) 2022; 13:genes13071241. [PMID: 35886024 PMCID: PMC9320322 DOI: 10.3390/genes13071241] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/18/2022] Open
Abstract
Molecular treatments for Duchenne muscular dystrophy (DMD) are already in clinical practice. One particular means is exon skipping, an approach which has more than 15 years of background. There are several promising clinical trials based on earlier works. The aim is to be able to initiate the production of enough dystrophin to change the rate of progression and create a clinical shift towards the better. Some of these molecules already have received at least conditional approval by health authorities; however, we still need new accumulating data.
Collapse
|
9
|
Exploring the Potential of Symmetric Exon Deletion to Treat Non-Ischemic Dilated Cardiomyopathy by Removing Frameshift Mutations in TTN. Genes (Basel) 2022; 13:genes13061093. [PMID: 35741855 PMCID: PMC9222585 DOI: 10.3390/genes13061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Non-ischemic dilated cardiomyopathy (DCM) is one of the most frequent pathologies requiring cardiac transplants. Even though the etiology of this disease is complex, frameshift mutations in the giant sarcomeric protein Titin could explain up to 25% of the familial and 18% of the sporadic cases of DCM. Many studies have shown the potential of genome editing using CRISPR/Cas9 to correct truncating mutations in sarcomeric proteins and have established the grounds for myoediting. However, these therapies are still in an immature state, with only few studies showing an efficient treatment of cardiac diseases. This publication hypothesizes that the Titin (TTN)-specific gene structure allows the application of myoediting approaches in a broad range of locations to reframe TTNtvvariants and to treat DCM patients. Additionally, to pave the way for the generation of efficient myoediting approaches for DCM, we screened and selected promising target locations in TTN. We conceptually explored the deletion of symmetric exons as a therapeutic approach to restore TTN’s reading frame in cases of frameshift mutations. We identified a set of 94 potential candidate exons of TTN that we consider particularly suitable for this therapeutic deletion. With this study, we aim to contribute to the development of new therapies to efficiently treat titinopathies and other diseases caused by mutations in genes encoding proteins with modular structures, e.g., Obscurin.
Collapse
|
10
|
Mollard A, Peccate C, Forand A, Chassagne J, Julien L, Meunier P, Guesmia Z, Marais T, Bitoun M, Piétri-Rouxel F, Benkhelifa-Ziyyat S, Lorain S. Muscle regeneration affects Adeno Associated Virus 1 mediated transgene transcription. Sci Rep 2022; 12:9674. [PMID: 35690627 PMCID: PMC9188557 DOI: 10.1038/s41598-022-13405-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022] Open
Abstract
Duchenne muscular dystrophy is a severe neuromuscular disease causing a progressive muscle wasting due to mutations in the DMD gene that lead to the absence of dystrophin protein. Adeno-associated virus (AAV)-based therapies aiming to restore dystrophin in muscles, by either exon skipping or microdystrophin expression, are very promising. However, the absence of dystrophin induces cellular perturbations that hinder AAV therapy efficiency. We focused here on the impact of the necrosis-regeneration process leading to nuclear centralization in myofiber, a common feature of human myopathies, on AAV transduction efficiency. We generated centronucleated myofibers by cardiotoxin injection in wild-type muscles prior to AAV injection. Intramuscular injections of AAV1 vectors show that transgene expression was drastically reduced in regenerated muscles, even when the AAV injection occurred 10 months post-regeneration. We show also that AAV genomes were not lost from cardiotoxin regenerated muscle and were properly localised in the myofiber nuclei but were less transcribed leading to muscle transduction defect. A similar defect was observed in muscles of the DMD mouse model mdx. Therefore, the regeneration process per se could participate to the AAV-mediated transduction defect observed in dystrophic muscles which may limit AAV-based therapies.
Collapse
Affiliation(s)
- Amédée Mollard
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Cécile Peccate
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Anne Forand
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Julie Chassagne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Laura Julien
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Pierre Meunier
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Zoheir Guesmia
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Thibaut Marais
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Marc Bitoun
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - France Piétri-Rouxel
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Sofia Benkhelifa-Ziyyat
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France.
| | - Stéphanie Lorain
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France.,AFM-Téléthon, 1 rue de l'Internationale, BP59, 91002, Evry, France
| |
Collapse
|
11
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
12
|
Lesman D, Rodriguez Y, Rajakumar D, Wein N. U7 snRNA, a Small RNA with a Big Impact in Gene Therapy. Hum Gene Ther 2021; 32:1317-1329. [PMID: 34139889 DOI: 10.1089/hum.2021.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The uridine-rich 7 (U7) small nuclear RNA (snRNA) is a component of a small nuclear ribonucleoprotein (snRNP) complex. U7 snRNA naturally contains an antisense sequence that identifies histone premessenger RNAs (pre-mRNAs) and is involved in their 3' end processing. By altering this antisense sequence, researchers have turned U7 snRNA into a versatile tool for targeting pre-mRNAs and modifying splicing. Encapsulating a modified U7 snRNA into a viral vector such as adeno-associated virus (also referred as vectorized exon skipping/inclusion, or VES/VEI) enables the delivery of this highly efficacious splicing modulator into a range of cell lines, primary cells, and tissues. In addition, and in contrast to antisense oligonucleotides, viral delivery of U7 snRNA enables long-term expression of antisense sequences in the nucleus as part of a stable snRNP complex. As a result, VES/VEI has emerged as a promising therapeutic platform for treating a large variety of human diseases caused by errors in pre-mRNA splicing or its regulation. Here we provide an overview of U7 snRNA's natural function and its applications in gene therapy.
Collapse
Affiliation(s)
- Daniel Lesman
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Yacidzohara Rodriguez
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Dhanarajan Rajakumar
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Nicolas Wein
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatric, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Morgan J, Muntoni F. Changes in Myonuclear Number During Postnatal Growth -Implications for AAV Gene Therapy for Muscular Dystrophy. J Neuromuscul Dis 2021; 8:S317-S324. [PMID: 34334413 PMCID: PMC8673494 DOI: 10.3233/jnd-210683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adult skeletal muscle is a relatively stable tissue, as the multinucleated muscle fibres contain post-mitotic myonuclei. During early postnatal life, muscle growth occurs by the addition of skeletal muscle stem cells (satellite cells) or their progeny to growing muscle fibres. In Duchenne muscular dystrophy, which we shall use as an example of muscular dystrophies, the muscle fibres lack dystrophin and undergo necrosis. Satellite-cell mediated regeneration occurs, to repair and replace the necrotic muscle fibres, but as the regenerated muscle fibres still lack dystrophin, they undergo further cycles of degeneration and regeneration.AAV gene therapy is a promising approach for treating Duchenne muscular dystrophy. But for a single dose of, for example, AAV coding for dystrophin, to be effective, the treated myonuclei must persist, produce sufficient dystrophin and a sufficient number of nuclei must be targeted. This latter point is crucial as AAV vector remains episomal and does not replicate in dividing cells. Here, we describe and compare the growth of skeletal muscle in rodents and in humans and discuss the evidence that myofibre necrosis and regeneration leads to the loss of viral genomes within skeletal muscle. In addition, muscle growth is expected to lead to the dilution of the transduced nuclei especially in case of very early intervention, but it is not clear if growth could result in insufficient dystrophin to prevent muscle fibre breakdown. This should be the focus of future studies.
Collapse
Affiliation(s)
- Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
14
|
Bizot F, Vulin A, Goyenvalle A. Current Status of Antisense Oligonucleotide-Based Therapy in Neuromuscular Disorders. Drugs 2021; 80:1397-1415. [PMID: 32696107 DOI: 10.1007/s40265-020-01363-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuromuscular disorders include a wide range of diseases affecting the peripheral nervous system, which are primarily characterized by progressive muscle weakness and wasting. While there were no effective therapies until recently, several therapeutic approaches have advanced to clinical trials in the past few years. Among these, the antisense technology aiming at modifying RNA processing and function has remarkably progressed and a few antisense oligonucleotides (ASOs) have now been approved. Despite these recent clinical successes, several ASOs have also failed and clinical programs have been suspended, in most cases when the route of administration was systemic, highlighting the existing challenges notably with respect to effective ASO delivery. In this review we summarize the recent advances and current status of antisense based-therapies for neuromuscular disorders, using successful as well as unsuccessful examples to highlight the variability of outcomes depending on the target tissue and route of administration. We describe the different ASO-mediated therapeutic approaches, including splice-switching applications, steric-blocking strategies and targeted gene knock-down mediated by ribonuclease H recruitment. In this overview, we discuss the merits and challenges of the current ASO technology, and discuss the future of ASO development.
Collapse
Affiliation(s)
- Flavien Bizot
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France
| | - Adeline Vulin
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France.,SQY Therapeutics, Université de Versailles St-Quentin, Montigny le Bretonneux, France
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France. .,LIA BAHN, Centre scientifique de Monaco, Monaco, Monaco.
| |
Collapse
|
15
|
Gadgil A, Raczyńska KD. U7 snRNA: A tool for gene therapy. J Gene Med 2021; 23:e3321. [PMID: 33590603 PMCID: PMC8243935 DOI: 10.1002/jgm.3321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Abstract
Most U-rich small nuclear ribonucleoproteins (snRNPs) are complexes that mediate the splicing of pre-mRNAs. U7 snRNP is an exception in that it is not involved in splicing but is a key factor in the unique 3' end processing of replication-dependent histone mRNAs. However, by introducing controlled changes in the U7 snRNA histone binding sequence and in the Sm motif, it can be used as an effective tool for gene therapy. The modified U7 snRNP (U7 Sm OPT) is thus not involved in the processing of replication-dependent histone pre-mRNA but targets splicing by inducing efficient skipping or inclusion of selected exons. U7 Sm OPT is of therapeutic importance in diseases that are an outcome of splicing defects, such as myotonic dystrophy, Duchenne muscular dystrophy, amyotrophic lateral sclerosis, β-thalassemia, HIV-1 infection and spinal muscular atrophy. The benefits of using U7 Sm OPT for gene therapy are its compact size, ability to accumulate in the nucleus without causing any toxic effects in the cells, and no immunoreactivity. The risk of transgene misregulation by using U7 Sm OPT is also low because it is involved in correcting the expression of an endogenous gene controlled by its own regulatory elements. Altogether, using U7 Sm OPT as a tool in gene therapy can ensure lifelong treatment, whereas an oligonucleotide or other drug/compound would require repeated administration. It would thus be strategic to harness these unique properties of U7 snRNP and deploy it as a tool in gene therapy.
Collapse
Affiliation(s)
- Ankur Gadgil
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland
- Center for Advanced TechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Katarzyna Dorota Raczyńska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland
- Center for Advanced TechnologyAdam Mickiewicz UniversityPoznanPoland
| |
Collapse
|
16
|
Hanson B, Wood MJA, Roberts TC. Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing. RNA Biol 2021; 18:1048-1062. [PMID: 33472516 DOI: 10.1080/15476286.2021.1874161] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a currently incurable X-linked neuromuscular disorder, characterized by progressive muscle wasting and premature death, typically as a consequence of cardiac failure. DMD-causing mutations in the dystrophin gene are highly diverse, meaning that the development of a universally-applicable therapy to treat all patients is very challenging. The leading therapeutic strategy for DMD is antisense oligonucleotide-mediated splice modulation, whereby one or more specific exons are excluded from the mature dystrophin mRNA in order to correct the translation reading frame. Indeed, three exon skipping oligonucleotides have received FDA approval for use in DMD patients. Second-generation exon skipping drugs (i.e. peptide-antisense oligonucleotide conjugates) exhibit enhanced potency, and also induce dystrophin restoration in the heart. Similarly, multiple additional antisense oligonucleotide drugs targeting various exons are in clinical development in order to treat a greater proportion of DMD patient mutations. Relatively recent advances in the field of genome engineering (specifically, the development of the CRISPR/Cas system) have provided multiple promising therapeutic approaches for the RNA-directed genetic correction of DMD, including exon excision, exon reframing via the introduction of insertion/deletion mutations, disruption of splice signals to promote exon skipping, and the templated correction of point mutations by seamless homology directed repair or base editing technology. Potential limitations to the clinical translation of the splice modulation and gene editing approaches are discussed, including drug delivery, the importance of uniform dystrophin expression in corrected myofibres, safety issues (e.g. renal toxicity, viral vector immunogenicity, and off-target gene editing), and the high cost of therapy.
Collapse
Affiliation(s)
- Britt Hanson
- Department of Paediatrics, University of Oxford, Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford, UK.,MDUK Oxford Neuromuscular Centre, Oxford, UK
| | - Thomas C Roberts
- Department of Paediatrics, University of Oxford, Oxford, UK.,MDUK Oxford Neuromuscular Centre, Oxford, UK
| |
Collapse
|
17
|
Mariot V, Le Guiner C, Barthélémy I, Montus M, Blot S, Torelli S, Morgan J, Muntoni F, Voit T, Dumonceaux J. Myostatin Is a Quantifiable Biomarker for Monitoring Pharmaco-gene Therapy in Duchenne Muscular Dystrophy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:415-421. [PMID: 32695843 PMCID: PMC7363622 DOI: 10.1016/j.omtm.2020.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022]
Abstract
Recently, several promising treatments have emerged for neuromuscular disorders, highlighting the need for robust biomarkers for monitoring therapeutic efficacy and maintenance of the therapeutic effect. Several studies have proposed circulating and tissue biomarkers, but none of them has been validated to monitor acute and long-term drug response. We previously described how the myostatin (MSTN) level is naturally downregulated in several neuromuscular diseases, including Duchenne muscular dystrophy (DMD). Here, we show that the dystrophin-deficient Golden Retriever muscular dystrophy (GRMD) dog model also presents an intrinsic loss of Mstn production in muscle. The abnormally low levels of Mstn observed in the GRMD dog puppies at 2 months were partially rescued at both mRNA and protein level after adeno-associated virus (AAV)-microdystrophin treatment in a dose-dependent manner. These results show that circulating Mstn is a robust and reliable quantitative biomarker, capable of measuring a therapeutic response to pharmaco-gene therapy in real time in the neuromuscular system, as well as a quantitative means for non-invasive follow-up of a therapeutic effect. Moreover, a 2-year follow-up also suggests that Mstn could be a longitudinal monitoring tool to follow maintenance or decrease of the therapeutic effect.
Collapse
Affiliation(s)
- Virginie Mariot
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Caroline Le Guiner
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France
| | - Inès Barthélémy
- U955-IMRB, Team 10, Biology of the Neuromuscular System, INSERM, UPEC, EFS, Ecole Nationale Vétérinaire d'Alfort, 94700 Maisons-Alfort, France
| | - Marie Montus
- Généthon, 1 bis rue de l'Internationale, 91000 Evry, France
| | - Stéphane Blot
- U955-IMRB, Team 10, Biology of the Neuromuscular System, INSERM, UPEC, EFS, Ecole Nationale Vétérinaire d'Alfort, 94700 Maisons-Alfort, France
| | - Silvia Torelli
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK.,Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | - Jennifer Morgan
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK.,Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | - Francesco Muntoni
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK.,Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | - Thomas Voit
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| |
Collapse
|
18
|
Aupy P, Zarrouki F, Sandro Q, Gastaldi C, Buclez PO, Mamchaoui K, Garcia L, Vaillend C, Goyenvalle A. Long-Term Efficacy of AAV9-U7snRNA-Mediated Exon 51 Skipping in mdx52 Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1037-1047. [PMID: 32462052 PMCID: PMC7240049 DOI: 10.1016/j.omtm.2020.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/16/2023]
Abstract
Gene therapy and antisense approaches hold promise for the treatment of Duchenne muscular dystrophy (DMD). The advantages of both therapeutic strategies can be combined by vectorizing antisense sequences into an adeno-associated virus (AAV) vector. We previously reported the efficacy of AAV-U7 small nuclear RNA (U7snRNA)-mediated exon skipping in the mdx mouse, the dys−/utr− mouse, and the golden retriever muscular dystrophy (GRMD) dog model. In this study, we examined the therapeutic potential of an AAV-U7snRNA targeting the human DMD exon 51, which could be applicable to 13% of DMD patients. A single injection of AAV9-U7 exon 51 (U7ex51) induces widespread and sustained levels of exon 51 skipping, leading to significant restoration of dystrophin and improvement of the dystrophic phenotype in the mdx52 mouse. However, levels of dystrophin re-expression are lower than the skipping levels, in contrast with previously reported results in the mdx mouse, suggesting that efficacy of exon skipping may vary depending on the targeted exon. Additionally, while low levels of exon skipping were measured in the brain, the dystrophin protein could not be detected, in line with a lack of improvement of their abnormal behavioral fear response. These results thus confirm the high therapeutic potential of the AAV-mediated exon-skipping approach, yet the apparent discrepancies between exon skipping and protein restoration levels suggest some limitations of this experimental model.
Collapse
Affiliation(s)
- Philippine Aupy
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France
| | - Faouzi Zarrouki
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France.,Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91190 Orsay, France
| | - Quentin Sandro
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France
| | - Cécile Gastaldi
- LIA BAHN, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | | | - Kamel Mamchaoui
- Sorbonne Université, INSERM, Institut de Myologie, U974, Centre de Recherche en Myologie, 75013 Paris, France
| | - Luis Garcia
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France.,LIA BAHN, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Cyrille Vaillend
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91190 Orsay, France
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France.,LIA BAHN, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| |
Collapse
|
19
|
Forand A, Muchir A, Mougenot N, Sevoz-Couche C, Peccate C, Lemaitre M, Izabelle C, Wood M, Lorain S, Piétri-Rouxel F. Combined Treatment with Peptide-Conjugated Phosphorodiamidate Morpholino Oligomer-PPMO and AAV-U7 Rescues the Severe DMD Phenotype in Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:695-708. [PMID: 32346547 PMCID: PMC7177166 DOI: 10.1016/j.omtm.2020.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease caused by an absence of the dystrophin protein, which is essential for muscle fiber integrity. Among the developed therapeutic strategies for DMD, the exon-skipping approach corrects the frameshift and partially restores dystrophin expression. It could be achieved through the use of antisense sequences, such as peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) or the small nuclear RNA-U7 carried by an adeno-associated virus (AAV) vector. AAV-based gene therapy approaches have potential for use in DMD treatment but are subject to a major limitation: loss of the AAV genome, necessitating readministration of the vector, which is not currently possible, due to the immunogenicity of the capsid. The PPMO approach requires repeated administrations and results in only weak cardiac dystrophin expression. Here, we evaluated a combination of PPMO- and AAV-based therapy in a mouse model of severe DMD. Striking benefits of this combined therapy were observed in striated muscles, with marked improvements in heart and diaphragm structure and function, with unrivalled extent of survival, opening novel therapeutic perspectives for patients.
Collapse
Affiliation(s)
- Anne Forand
- Centre de Recherche en Myologie, Sorbonne Université, UMRS974, INSERM, Institut de Myologie-Faculté de Médecine de la Pitié Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | - Antoine Muchir
- Centre de Recherche en Myologie, Sorbonne Université, UMRS974, INSERM, Institut de Myologie-Faculté de Médecine de la Pitié Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | - Nathalie Mougenot
- Sorbonne Université, UPMC Paris 06, INSERM UMS28, Phénotypage du petit animal, Faculté de Médecine Pierre et Marie Curie, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Caroline Sevoz-Couche
- Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Faculté de Médecine Pierre et Marie Curie, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Cécile Peccate
- Centre de Recherche en Myologie, Sorbonne Université, UMRS974, INSERM, Institut de Myologie-Faculté de Médecine de la Pitié Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, UPMC Paris 06, INSERM UMS28, Phénotypage du petit animal, Faculté de Médecine Pierre et Marie Curie, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Charlotte Izabelle
- Centre de Recherche en Myologie, Sorbonne Université, UMRS974, INSERM, Institut de Myologie-Faculté de Médecine de la Pitié Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | - Matthew Wood
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, United Kingdom.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Stéphanie Lorain
- Centre de Recherche en Myologie, Sorbonne Université, UMRS974, INSERM, Institut de Myologie-Faculté de Médecine de la Pitié Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | - France Piétri-Rouxel
- Centre de Recherche en Myologie, Sorbonne Université, UMRS974, INSERM, Institut de Myologie-Faculté de Médecine de la Pitié Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
20
|
Wang S, Li Y, Xu Y, Ma Q, Lin Z, Schlame M, Bezzerides VJ, Strathdee D, Pu WT. AAV Gene Therapy Prevents and Reverses Heart Failure in a Murine Knockout Model of Barth Syndrome. Circ Res 2020; 126:1024-1039. [PMID: 32146862 PMCID: PMC7233109 DOI: 10.1161/circresaha.119.315956] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Barth syndrome is an X-linked cardiac and skeletal myopathy caused by mutation of the gene Tafazzin (TAZ). Currently, there is no targeted treatment for Barth syndrome. Lack of a proper genetic animal model that recapitulates the features of Barth syndrome has hindered understanding of disease pathogenesis and therapeutic development. OBJECTIVE We characterized murine germline TAZ knockout mice (TAZ-KO) and cardiomyocyte-specific TAZ knockout mice models and tested the efficacy of adeno-associated virus (AAV)-mediated gene replacement therapy with human TAZ (hTAZ). METHODS AND RESULTS TAZ-KO caused embryonic and neonatal lethality, impaired growth, dilated cardiomyopathy, and skeletal myopathy. TAZ-KO mice that survived the neonatal period developed progressive, severe cardiac dysfunction, and fibrosis. Cardiomyocyte-specific inactivation of floxed Taz in cardiomyocytes using Myh6-Cre caused progressive dilated cardiomyopathy without fetal or perinatal loss. Using both constitutive and conditional knockout models, we tested the efficacy and durability of Taz replacement by AAV gene therapy. Neonatal AAV-hTAZ rescued neonatal death, cardiac dysfunction, and fibrosis in TAZ-KO mice, and both prevented and reversed established cardiac dysfunction in TAZ-KO and cardiomyocyte-specific TAZ knockout mice models. However, both neonatal and adult therapies required high cardiomyocyte transduction (≈70%) for durable efficacy. CONCLUSIONS TAZ-KO and cardiomyocyte-specific TAZ knockout mice recapitulate many of the key clinical features of Barth syndrome. AAV-mediated gene replacement is efficacious when a sufficient fraction of cardiomyocytes are transduced.
Collapse
Affiliation(s)
- Suya Wang
- From the Department of Cardiology, Boston Children's Hospital, MA (S.W., Y.L., Q.M., Z.L., V.J.B., W.T.P.)
| | - Yifei Li
- From the Department of Cardiology, Boston Children's Hospital, MA (S.W., Y.L., Q.M., Z.L., V.J.B., W.T.P.).,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China (Y.L.)
| | - Yang Xu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China (Y.L.)
| | - Qing Ma
- From the Department of Cardiology, Boston Children's Hospital, MA (S.W., Y.L., Q.M., Z.L., V.J.B., W.T.P.)
| | - Zhiqiang Lin
- From the Department of Cardiology, Boston Children's Hospital, MA (S.W., Y.L., Q.M., Z.L., V.J.B., W.T.P.)
| | - Michael Schlame
- Department of Anesthesiology (Y.X., M.S.).,Department of Cell Biology (M.S.), New York University School of Medicine
| | - Vassilios J Bezzerides
- From the Department of Cardiology, Boston Children's Hospital, MA (S.W., Y.L., Q.M., Z.L., V.J.B., W.T.P.)
| | - Douglas Strathdee
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom (D.S.)
| | - William T Pu
- From the Department of Cardiology, Boston Children's Hospital, MA (S.W., Y.L., Q.M., Z.L., V.J.B., W.T.P.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| |
Collapse
|
21
|
Echevarría L, Aupy P, Goyenvalle A. Exon-skipping advances for Duchenne muscular dystrophy. Hum Mol Genet 2019; 27:R163-R172. [PMID: 29771317 DOI: 10.1093/hmg/ddy171] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic disorder characterized by progressive muscle wasting that has currently no cure. Exon-skipping strategy represents one of the most promising therapeutic approaches that aim to restore expression of a shorter but functional dystrophin protein. The antisense field has remarkably progress over the last years with recent accelerated approval of the first antisense oligonucleotide-based therapy for DMD, Exondys 51, though the therapeutic benefit remains to be proved in patients. Despite clinical advances, the poor effective delivery to target all muscle remains the main hurdle for antisense drug therapy. This review describes the antisense-based exon-skipping approach for DMD, from proof-of-concept to first marketed drug. We discuss the main obstacles to achieve a successful exon-skipping therapy and the latest advances of the international community to develop more powerful chemistries and more sophisticated delivery systems in order to increase potency, bioavailability and safety. Finally, we highlight the importance of collaborative efforts and early dialogue between drug developers and regulatory agencies in order to overcome difficulties, find appropriate outcome markers and collect useful data.
Collapse
Affiliation(s)
- Lucía Echevarría
- U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France.,SQY Therapeutics, Université de Versailles St-Quentin, Montigny le Bretonneux, France
| | - Philippine Aupy
- U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| | - Aurélie Goyenvalle
- U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| |
Collapse
|
22
|
An AAV-SGCG Dose-Response Study in a γ-Sarcoglycanopathy Mouse Model in the Context of Mechanical Stress. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:494-502. [PMID: 31194043 PMCID: PMC6545357 DOI: 10.1016/j.omtm.2019.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/23/2019] [Indexed: 12/04/2022]
Abstract
Sarcoglycanopathies are rare autosomic limb girdle muscular dystrophies caused by mutations in one of the genes coding for sarcoglycans. Sarcoglycans form a complex, which is an important part of the dystrophin-associated glycoprotein complex and which protects the sarcolemma against muscle contraction-induced damage. Absence of one of the sarcoglycans on the plasma membrane reduces the stability of the whole complex and perturbs muscle fiber membrane integrity. There is currently no curative treatment for any of the sarcoglycanopathies. A first clinical trial to evaluate the safety of a recombinant AAV2/1 vector expressing γ-sarcoglycan using an intramuscular route of administration showed limited expression of the transgene and good tolerance of the approach. In this report, we undertook a dose-effect study in mice to evaluate the efficiency of an AAV2/8-expressing γ-sarcoglycan controlled by a muscle-specific promoter with a systemic mode of administration. We observed a dose-related efficiency with a nearly complete restoration of gamma sarcoglycan (SGCG) expression, histological appearance, biomarker level, and whole-body strength at the highest dose tested. In addition, our data suggest that a high expression threshold level must be achieved for effective protection of the transduced muscle, while a suboptimal transgene expression level might be less protective in the context of mechanical stress.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The current knowledge of pathophysiological and molecular mechanisms responsible for the genesis and development of heart failure (HF) is absolutely vast. Nonetheless, the hiatus between experimental findings and therapeutic options remains too deep, while the available pharmacological treatments are mostly seasoned and display limited efficacy. The necessity to identify new, non-pharmacological strategies to target molecular alterations led investigators, already many years ago, to propose gene therapy for HF. Here, we will review some of the strategies proposed over the past years to target major pathogenic mechanisms/factors responsible for severe cardiac injury developing into HF and will provide arguments in favor of the necessity to keep alive research on this topic. RECENT FINDINGS After decades of preclinical research and phases of enthusiasm and disappointment, clinical trials were finally launched in recent years. The first one to reach phase II and testing gene delivery of sarcoendoplasmic reticulum calcium ATPase did not yield encouraging results; however, other trials are ongoing, more efficient viral vectors are being developed, and promising new potential targets have been identified. For instance, recent research is focused on gene repair, in vivo, to treat heritable forms of HF, while strong experimental evidence indicates that specific microRNAs can be delivered to post-ischemic hearts to induce regeneration, a result that was previously thought possible only by using stem cell therapy. Gene therapy for HF is aging, but exciting perspectives are still very open.
Collapse
Affiliation(s)
- Khatia Gabisonia
- Institute of Life Sciences, Fondazione Toscana Gabriele Monasterio, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta` 33, 56127, Pisa, Italy
| | - Fabio A Recchia
- Institute of Life Sciences, Fondazione Toscana Gabriele Monasterio, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta` 33, 56127, Pisa, Italy.
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
24
|
González-Sánchez J, Sánchez-Temprano A, Cid-Díaz T, Pabst-Fernández R, Mosteiro CS, Gallego R, Nogueiras R, Casabiell X, Butler-Browne GS, Mouly V, Relova JL, Pazos Y, Camiña JP. Improvement of Duchenne muscular dystrophy phenotype following obestatin treatment. J Cachexia Sarcopenia Muscle 2018; 9:1063-1078. [PMID: 30216693 PMCID: PMC6240759 DOI: 10.1002/jcsm.12338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND This study was performed to test the therapeutic potential of obestatin, an autocrine anabolic factor regulating skeletal muscle repair, to ameliorate the Duchenne muscular dystrophy (DMD) phenotype. METHODS AND RESULTS Using a multidisciplinary approach, we characterized the ageing-related preproghrelin/GPR39 expression patterns in tibialis anterior (TA) muscles of 4-, 8-, and 18-week-old mdx mice (n = 3/group) and established the effects of obestatin administration at this level in 8-week-old mdx mice (n = 5/group). The findings were extended to in vitro effects on human immortalized DMD myotubes. An analysis of TAs revealed an age-related loss of preproghrelin expression, as precursor of obestatin, in mdx mice. Administration of obestatin resulted in a significant increase in tetanic specific force (33.0% ± 1.5%, P < 0.05), compared with control mdx mice. Obestatin-treated TAs were characterized by reduction of fibres with centrally located nuclei (10.0% ± 1.2%, P < 0.05) together with an increase in the number of type I fibres (25.2% ± 1.7%, P < 0.05) associated to histone deacetylases/myocyte enhancer factor-2 and peroxisome proliferator-activated receptor-gamma coactivator 1α axis, and down-regulation of ubiquitin E3-ligases by inactivation of FoxO1/4, indexes of muscle atrophy. Obestatin reduced the level of contractile damage and tissue fibrosis. These observations correlated with decline in serum creatine kinase (58.8 ± 15.2, P < 0.05). Obestatin led to stabilization of the sarcolemma by up-regulation of utrophin, α-syntrophin, β-dystroglycan, and α7β1-integrin proteins. These pathways were also operative in human DMD myotubes. CONCLUSIONS These results highlight the potential of obestatin as a peptide therapeutic for preserving muscle integrity in DMD, thus allowing a better efficiency of gene or cell therapy in a combined therapeutic approach.
Collapse
Affiliation(s)
- Jessica González-Sánchez
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Agustín Sánchez-Temprano
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Tania Cid-Díaz
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Regina Pabst-Fernández
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Xesús Casabiell
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Gillian S Butler-Browne
- Center for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, Paris, France
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, Paris, France
| | | | - Yolanda Pazos
- Laboratorio de Patología Digestiva, IDIS, CHUS, SERGAS, Santiago de Compostela, Spain
| | - Jesús P Camiña
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| |
Collapse
|
25
|
Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther 2018; 26:2337-2356. [PMID: 30093306 PMCID: PMC6171037 DOI: 10.1016/j.ymthe.2018.07.011] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin gene mutation. Conceptually, replacing the mutated gene with a normal one would cure the disease. However, this task has encountered significant challenges due to the enormous size of the gene and the distribution of muscle throughout the body. The former creates a hurdle for viral vector packaging and the latter begs for whole-body therapy. To address these obstacles, investigators have invented the highly abbreviated micro-dystrophin gene and developed body-wide systemic gene transfer with adeno-associated virus (AAV). Numerous microgene configurations and various AAV serotypes have been explored in animal models in many laboratories. Preclinical data suggests that intravascular AAV micro-dystrophin delivery can significantly ameliorate muscle pathology, enhance muscle force, and attenuate dystrophic cardiomyopathy in animals. Against this backdrop, several clinical trials have been initiated to test the safety and tolerability of this promising therapy in DMD patients. While these trials are not powered to reach a conclusion on clinical efficacy, findings will inform the field on the prospects of body-wide DMD therapy with a synthetic micro-dystrophin AAV vector. This review discusses the history, current status, and future directions of systemic AAV micro-dystrophin therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Bioengineering, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
26
|
Cordova G, Negroni E, Cabello-Verrugio C, Mouly V, Trollet C. Combined Therapies for Duchenne Muscular Dystrophy to Optimize Treatment Efficacy. Front Genet 2018; 9:114. [PMID: 29692797 PMCID: PMC5902687 DOI: 10.3389/fgene.2018.00114] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/22/2018] [Indexed: 01/01/2023] Open
Abstract
Duchene Muscular Dystrophy (DMD) is the most frequent muscular dystrophy and one of the most severe due to the absence of the dystrophin protein. Typical pathological features include muscle weakness, muscle wasting, degeneration, and inflammation. At advanced stages DMD muscles present exacerbated extracellular matrix and fat accumulation. Recent progress in therapeutic approaches has allowed new strategies to be investigated, including pharmacological, gene-based and cell-based therapies. Gene and cell-based therapies are still limited by poor targeting and low efficiency in fibrotic dystrophic muscle, therefore it is increasingly evident that future treatments will have to include “combined therapies” to reach maximal efficiency. The scope of this mini-review is to provide an overview of the current literature on such combined therapies for DMD. By “combined therapies” we mean those that include both a therapy to correct the genetic defect and an additional one to address one of the secondary pathological features of the disease. In this mini-review, we will not provide a comprehensive view of the literature on therapies for DMD, since many such reviews already exist, but we will focus on the characteristics, efficiency, and potential of such combined therapeutic strategies that have been described so far for DMD.
Collapse
Affiliation(s)
- Gonzalo Cordova
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Elisa Negroni
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Claudio Cabello-Verrugio
- Laboratorio de Patologías Musculares, Fragilidad y Envejecimiento, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Vincent Mouly
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Capucine Trollet
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| |
Collapse
|
27
|
Trochet D, Prudhon B, Beuvin M, Peccate C, Lorain S, Julien L, Benkhelifa-Ziyyat S, Rabai A, Mamchaoui K, Ferry A, Laporte J, Guicheney P, Vassilopoulos S, Bitoun M. Allele-specific silencing therapy for Dynamin 2-related dominant centronuclear myopathy. EMBO Mol Med 2018; 10:239-253. [PMID: 29246969 PMCID: PMC5801507 DOI: 10.15252/emmm.201707988] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 11/09/2022] Open
Abstract
Rapid advances in allele-specific silencing by RNA interference established a strategy of choice to cure dominant inherited diseases by targeting mutant alleles. We used this strategy for autosomal-dominant centronuclear myopathy (CNM), a rare neuromuscular disorder without available treatment due to heterozygous mutations in the DNM2 gene encoding Dynamin 2. Allele-specific siRNA sequences were developed in order to specifically knock down the human and murine DNM2-mRNA harbouring the p.R465W mutation without affecting the wild-type allele. Functional restoration was achieved in muscle from a knock-in mouse model and in patient-derived fibroblasts, both expressing the most frequently encountered mutation in patients. Restoring either muscle force in a CNM mouse model or DNM2 function in patient-derived cells is an essential breakthrough towards future gene-based therapy for dominant centronuclear myopathy.
Collapse
Affiliation(s)
- Delphine Trochet
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Bernard Prudhon
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Maud Beuvin
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Cécile Peccate
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Stéphanie Lorain
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Laura Julien
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Sofia Benkhelifa-Ziyyat
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Aymen Rabai
- Department of Translational Medicine and Neurogenetics, IGBMC, INSERM U964, CNRS UMR7104, Collège de France, University of Strasbourg, Illkirch, France
| | - Kamel Mamchaoui
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Arnaud Ferry
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, IGBMC, INSERM U964, CNRS UMR7104, Collège de France, University of Strasbourg, Illkirch, France
| | - Pascale Guicheney
- Institute of Cardiometabolism and Nutrition (ICAN), INSERM UMR_S1166, UPMC Univ Paris 06, Sorbonne Universités, Paris, France
| | - Stéphane Vassilopoulos
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Marc Bitoun
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| |
Collapse
|
28
|
Godfrey C, Desviat LR, Smedsrød B, Piétri-Rouxel F, Denti MA, Disterer P, Lorain S, Nogales-Gadea G, Sardone V, Anwar R, El Andaloussi S, Lehto T, Khoo B, Brolin C, van Roon-Mom WM, Goyenvalle A, Aartsma-Rus A, Arechavala-Gomeza V. Delivery is key: lessons learnt from developing splice-switching antisense therapies. EMBO Mol Med 2017; 9:545-557. [PMID: 28289078 PMCID: PMC5412803 DOI: 10.15252/emmm.201607199] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The use of splice‐switching antisense therapy is highly promising, with a wealth of pre‐clinical data and numerous clinical trials ongoing. Nevertheless, its potential to treat a variety of disorders has yet to be realized. The main obstacle impeding the clinical translation of this approach is the relatively poor delivery of antisense oligonucleotides to target tissues after systemic delivery. We are a group of researchers closely involved in the development of these therapies and would like to communicate our discussions concerning the validity of standard methodologies currently used in their pre‐clinical development, the gaps in current knowledge and the pertinent challenges facing the field. We therefore make recommendations in order to focus future research efforts and facilitate a wider application of therapeutic antisense oligonucleotides.
Collapse
Affiliation(s)
- Caroline Godfrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Bård Smedsrød
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | | | - Michela A Denti
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Petra Disterer
- Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Stéphanie Lorain
- UPMC, INSERM, UMRS 974, CNRS FRE 3617, Institut de Myologie, Paris, France
| | - Gisela Nogales-Gadea
- Grup d'Investigació en Malalties Neuromusculars i Neuropediatriques, Institut d' Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona Barcelona, Spain
| | - Valentina Sardone
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Rayan Anwar
- Drug Discovery Informatics Lab, Qasemi-Research Center, Al-Qasemi Academic College, Baka El-Garbiah, Israel.,Drug Discovery and Development Laboratory, Institute of Applied Research, Galilee Society, Shefa-Amr, Israel
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Taavi Lehto
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Bernard Khoo
- Centre for Neuroendocrinology, Division of Medicine, University College London, London, UK
| | - Camilla Brolin
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Aurélie Goyenvalle
- INSERM U1179, UFR des sciences de la santé, Université Versailles Saint Quentin, Montigny-le-Bretonneux, France
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
29
|
Amoasii L, Long C, Li H, Mireault AA, Shelton JM, Sanchez-Ortiz E, McAnally JR, Bhattacharyya S, Schmidt F, Grimm D, Hauschka SD, Bassel-Duby R, Olson EN. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med 2017; 9:eaan8081. [PMID: 29187645 PMCID: PMC5749406 DOI: 10.1126/scitranslmed.aan8081] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle disease caused by mutations in the dystrophin gene. The majority of DMD mutations are deletions that prematurely terminate the dystrophin protein. Deletions of exon 50 of the dystrophin gene are among the most common single exon deletions causing DMD. Such mutations can be corrected by skipping exon 51, thereby restoring the dystrophin reading frame. Using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9), we generated a DMD mouse model by deleting exon 50. These ΔEx50 mice displayed severe muscle dysfunction, which was corrected by systemic delivery of adeno-associated virus encoding CRISPR/Cas9 genome editing components. We optimized the method for dystrophin reading frame correction using a single guide RNA that created reframing mutations and allowed skipping of exon 51. In conjunction with muscle-specific expression of Cas9, this approach restored up to 90% of dystrophin protein expression throughout skeletal muscles and the heart of ΔEx50 mice. This method of permanently bypassing DMD mutations using a single cut in genomic DNA represents a step toward clinical correction of DMD mutations and potentially those of other neuromuscular disorders.
Collapse
Affiliation(s)
- Leonela Amoasii
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chengzu Long
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Alex A Mireault
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - John R McAnally
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Samadrita Bhattacharyya
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Florian Schmidt
- Heidelberg University Hospital, Center for Infectious Diseases, Virology, Cluster of Excellence Cell Networks, DZIF partner, BioQuant Center, Heidelberg D-69120, Germany
| | - Dirk Grimm
- Heidelberg University Hospital, Center for Infectious Diseases, Virology, Cluster of Excellence Cell Networks, DZIF partner, BioQuant Center, Heidelberg D-69120, Germany
| | - Stephen D Hauschka
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
30
|
Specific targeting of TGF-β family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease. Proc Natl Acad Sci U S A 2017; 114:E5266-E5275. [PMID: 28607086 DOI: 10.1073/pnas.1620013114] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transforming growth factor-β (TGF-β) network of ligands and intracellular signaling proteins is a subject of intense interest within the field of skeletal muscle biology. To define the relative contribution of endogenous TGF-β proteins to the negative regulation of muscle mass via their activation of the Smad2/3 signaling axis, we used local injection of adeno-associated viral vectors (AAVs) encoding ligand-specific antagonists into the tibialis anterior (TA) muscles of C57BL/6 mice. Eight weeks after AAV injection, inhibition of activin A and activin B signaling produced moderate (∼20%), but significant, increases in TA mass, indicating that endogenous activins repress muscle growth. Inhibiting myostatin induced a more profound increase in muscle mass (∼45%), demonstrating a more prominent role for this ligand as a negative regulator of adult muscle mass. Remarkably, codelivery of activin and myostatin inhibitors induced a synergistic response, resulting in muscle mass increasing by as much as 150%. Transcription and protein analysis indicated that this substantial hypertrophy was associated with both the complete inhibition of the Smad2/3 pathway and activation of the parallel bone morphogenetic protein (BMP)/Smad1/5 axis (recently identified as a positive regulator of muscle mass). Analyses indicated that hypertrophy was primarily driven by an increase in protein synthesis, but a reduction in ubiquitin-dependent protein degradation pathways was also observed. In models of muscular dystrophy and cancer cachexia, combined inhibition of activins and myostatin increased mass or prevented muscle wasting, respectively, highlighting the potential therapeutic advantages of specifically targeting multiple Smad2/3-activating ligands in skeletal muscle.
Collapse
|
31
|
Suñé-Pou M, Prieto-Sánchez S, Boyero-Corral S, Moreno-Castro C, El Yousfi Y, Suñé-Negre JM, Hernández-Munain C, Suñé C. Targeting Splicing in the Treatment of Human Disease. Genes (Basel) 2017; 8:genes8030087. [PMID: 28245575 PMCID: PMC5368691 DOI: 10.3390/genes8030087] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 02/07/2023] Open
Abstract
The tightly regulated process of precursor messenger RNA (pre-mRNA) alternative splicing (AS) is a key mechanism in the regulation of gene expression. Defects in this regulatory process affect cellular functions and are the cause of many human diseases. Recent advances in our understanding of splicing regulation have led to the development of new tools for manipulating splicing for therapeutic purposes. Several tools, including antisense oligonucleotides and trans-splicing, have been developed to target and alter splicing to correct misregulated gene expression or to modulate transcript isoform levels. At present, deregulated AS is recognized as an important area for therapeutic intervention. Here, we summarize the major hallmarks of the splicing process, the clinical implications that arise from alterations in this process, and the current tools that can be used to deliver, target, and correct deficiencies of this key pre-mRNA processing event.
Collapse
Affiliation(s)
- Marc Suñé-Pou
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
- Drug Development Service, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII, s/n 08028 Barcelona, Spain.
| | - Silvia Prieto-Sánchez
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Sofía Boyero-Corral
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Cristina Moreno-Castro
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Younes El Yousfi
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Josep Mª Suñé-Negre
- Drug Development Service, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII, s/n 08028 Barcelona, Spain.
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| |
Collapse
|
32
|
Correction of the Exon 2 Duplication in DMD Myoblasts by a Single CRISPR/Cas9 System. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624187 PMCID: PMC5363679 DOI: 10.1016/j.omtn.2017.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exonic duplications account for 10%-15% of all mutations in Duchenne muscular dystrophy (DMD), a severe hereditary neuromuscular disorder. We report a CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9-based strategy to correct the most frequent (exon 2) duplication in the DMD gene by targeted deletion, and tested the efficacy of such an approach in patient-derived myogenic cells. We demonstrate restoration of wild-type dystrophin expression at transcriptional and protein level in myotubes derived from genome-edited myoblasts in the absence of selection. Removal of the duplicated exon was achieved by the use of only one guide RNA (gRNA) directed against an intronic duplicated region, thereby increasing editing efficiency and reducing the risk of off-target effects. This study opens a novel therapeutic perspective for patients carrying disease-causing duplications.
Collapse
|
33
|
Viral Vector-Mediated Antisense Therapy for Genetic Diseases. Genes (Basel) 2017; 8:genes8020051. [PMID: 28134780 PMCID: PMC5333040 DOI: 10.3390/genes8020051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 01/16/2023] Open
Abstract
RNA plays complex roles in normal health and disease and is becoming an important target for therapeutic intervention; accordingly, therapeutic strategies that modulate RNA function have gained great interest over the past decade. Antisense oligonucleotides (AOs) are perhaps the most promising strategy to modulate RNA expression through a variety of post binding events such as gene silencing through degradative or non-degradative mechanisms, or splicing modulation which has recently demonstrated promising results. However, AO technology still faces issues like poor cellular-uptake, low efficacy in target tissues and relatively rapid clearance from the circulation which means repeated injections are essential to complete therapeutic efficacy. To overcome these limitations, viral vectors encoding small nuclear RNAs have been engineered to shuttle antisense sequences into cells, allowing appropriate subcellular localization with pre-mRNAs and permanent correction. In this review, we outline the different strategies for antisense therapy mediated by viral vectors and provide examples of each approach. We also address the advantages and limitations of viral vector use, with an emphasis on their clinical application.
Collapse
|
34
|
Tabebordbar M, Cheng J, Wagers AJ. Therapeutic Gene Editing in Muscles and Muscle Stem Cells. RESEARCH AND PERSPECTIVES IN NEUROSCIENCES 2017. [DOI: 10.1007/978-3-319-60192-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Reprogramming the Dynamin 2 mRNA by Spliceosome-mediated RNA Trans-splicing. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e362. [PMID: 27623444 PMCID: PMC5056991 DOI: 10.1038/mtna.2016.67] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/20/2016] [Indexed: 02/04/2023]
Abstract
Dynamin 2 (DNM2) is a large GTPase, ubiquitously expressed, involved in membrane trafficking and regulation of actin and microtubule cytoskeletons. DNM2 mutations cause autosomal dominant centronuclear myopathy which is a rare congenital myopathy characterized by skeletal muscle weakness and histopathological features including nuclear centralization in absence of regeneration. No curative treatment is currently available for the DNM2-related autosomal dominant centronuclear myopathy. In order to develop therapeutic strategy, we evaluated here the potential of Spliceosome-Mediated RNA Trans-splicing technology to reprogram the Dnm2-mRNA in vitro and in vivo in mice. We show that classical 3′-trans-splicing strategy cannot be considered as accurate therapeutic strategy regarding toxicity of the pre-trans-splicing molecules leading to low rate of trans-splicing in vivo. Thus, we tested alternative strategies devoted to prevent this toxicity and enhance frequency of trans-splicing events. We succeeded to overcome the toxicity through a 5′-trans-splicing strategy which also allows detection of trans-splicing events at mRNA and protein levels in vitro and in vivo. These results suggest that the Spliceosome-Mediated RNA Trans-splicing strategy may be used to reprogram mutated Dnm2-mRNA but highlight the potential toxicity linked to the molecular tools which have to be carefully investigated during preclinical development.
Collapse
|
36
|
Peccate C, Mollard A, Le Hir M, Julien L, McClorey G, Jarmin S, Le Heron A, Dickson G, Benkhelifa-Ziyyat S, Piétri-Rouxel F, Wood MJ, Voit T, Lorain S. Antisense pre-treatment increases gene therapy efficacy in dystrophic muscles. Hum Mol Genet 2016; 25:3555-3563. [PMID: 27378686 DOI: 10.1093/hmg/ddw201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 12/25/2022] Open
Abstract
In preclinical models for Duchenne muscular dystrophy, dystrophin restoration during adeno-associated virus (AAV)-U7-mediated exon-skipping therapy was shown to decrease drastically after six months in treated muscles. This decline in efficacy is strongly correlated with the loss of the therapeutic AAV genomes, probably due to alterations of the dystrophic myofiber membranes. To improve the membrane integrity of the dystrophic myofibers at the time of AAV-U7 injection, mdx muscles were pre-treated with a single dose of the peptide-phosphorodiamidate morpholino (PPMO) antisense oligonucleotides that induced temporary dystrophin expression at the sarcolemma. The PPMO pre-treatment allowed efficient maintenance of AAV genomes in mdx muscles and enhanced the AAV-U7 therapy effect with a ten-fold increase of the protein level after 6 months. PPMO pre-treatment was also beneficial to AAV-mediated gene therapy with transfer of micro-dystrophin cDNA into muscles. Therefore, avoiding vector genome loss after AAV injection by PPMO pre-treatment would allow efficient long-term restoration of dystrophin and the use of lower and thus safer vector doses for Duchenne patients.
Collapse
Affiliation(s)
- Cécile Peccate
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris 13, France
| | - Amédée Mollard
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris 13, France
| | - Maëva Le Hir
- Université de Versailles St-Quentin, INSERM U1179, LIA BAHN CSM, Montigny-le-Bretonneux, France
| | - Laura Julien
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris 13, France
| | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK
| | - Susan Jarmin
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Anita Le Heron
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - George Dickson
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Sofia Benkhelifa-Ziyyat
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris 13, France
| | - France Piétri-Rouxel
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris 13, France
| | - Matthew J Wood
- Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK
| | - Thomas Voit
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris 13, France.,NIHR Biomedical Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Stéphanie Lorain
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris 13, France
| |
Collapse
|
37
|
Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2015; 351:407-411. [PMID: 26721686 DOI: 10.1126/science.aad5177] [Citation(s) in RCA: 768] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/08/2015] [Indexed: 12/28/2022]
Abstract
Frame-disrupting mutations in the DMD gene, encoding dystrophin, compromise myofiber integrity and drive muscle deterioration in Duchenne muscular dystrophy (DMD). Removing one or more exons from the mutated transcript can produce an in-frame mRNA and a truncated, but still functional, protein. In this study, we developed and tested a direct gene-editing approach to induce exon deletion and recover dystrophin expression in the mdx mouse model of DMD. Delivery by adeno-associated virus (AAV) of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonucleases coupled with paired guide RNAs flanking the mutated Dmd exon23 resulted in excision of intervening DNA and restored the Dmd reading frame in myofibers, cardiomyocytes, and muscle stem cells after local or systemic delivery. AAV-Dmd CRISPR treatment partially recovered muscle functional deficiencies and generated a pool of endogenously corrected myogenic precursors in mdx mouse muscle.
Collapse
Affiliation(s)
- Mohammadsharif Tabebordbar
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Kexian Zhu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jason K W Cheng
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Wei Leong Chew
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey J Widrick
- Division of Genetics and Program in Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Winston X Yan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Science, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Claire Maesner
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Elizabeth Y Wu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ru Xiao
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA
| | - F Ann Ran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Science, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Le Cong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Science, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Science, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
38
|
Nance ME, Duan D. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy. Hum Gene Ther 2015; 26:786-800. [PMID: 26414293 PMCID: PMC4692109 DOI: 10.1089/hum.2015.107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/01/2015] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.
Collapse
MESH Headings
- Animals
- Capsid/chemistry
- Capsid/metabolism
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Dependovirus/genetics
- Dependovirus/metabolism
- Dystrophin/deficiency
- Dystrophin/genetics
- Gene Expression
- Genetic Therapy/methods
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Mutation
- Protein Engineering
- Species Specificity
Collapse
Affiliation(s)
- Michael E. Nance
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
39
|
|
40
|
Heller KN, Montgomery CL, Shontz KM, Clark KR, Mendell JR, Rodino-Klapac LR. Human α7 Integrin Gene (ITGA7) Delivered by Adeno-Associated Virus Extends Survival of Severely Affected Dystrophin/Utrophin-Deficient Mice. Hum Gene Ther 2015; 26:647-56. [PMID: 26076707 DOI: 10.1089/hum.2015.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene. It is the most common, severe childhood form of muscular dystrophy. We investigated an alternative to dystrophin replacement by overexpressing ITGA7 using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal muscle that, like the dystrophin-glycoprotein complex, links the extracellular matrix to the internal actin cytoskeleton. ITGA7 is expressed in DMD patients and overexpression does not elicit an immune response to the transgene. We delivered rAAVrh.74.MCK.ITGA7 systemically at 5-7 days of age to the mdx/utrn(-/-) mouse deficient for dystrophin and utrophin, a severe mouse model of DMD. At 8 weeks postinjection, widespread expression of ITGA7 was observed at the sarcolemma of multiple muscle groups following gene transfer. The increased expression of ITGA7 significantly extended longevity and reduced common features of the mdx/utrn(-/-) mouse, including kyphosis. Overexpression of α7 expression protected against loss of force following contraction-induced damage and increased specific force in the diaphragm and EDL muscles 8 weeks after gene transfer. Taken together, these results further support the use of α7 integrin as a potential therapy for DMD.
Collapse
Affiliation(s)
- Kristin N Heller
- 1 Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 Department of Pediatrics and Neurology, The Ohio State University , Columbus, Ohio
| | - Chrystal L Montgomery
- 1 Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 Department of Pediatrics and Neurology, The Ohio State University , Columbus, Ohio
| | - Kimberly M Shontz
- 1 Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 Department of Pediatrics and Neurology, The Ohio State University , Columbus, Ohio
| | - K Reed Clark
- 1 Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 Department of Pediatrics and Neurology, The Ohio State University , Columbus, Ohio
| | - Jerry R Mendell
- 1 Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 Department of Pediatrics and Neurology, The Ohio State University , Columbus, Ohio
| | - Louise R Rodino-Klapac
- 1 Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 Department of Pediatrics and Neurology, The Ohio State University , Columbus, Ohio
| |
Collapse
|
41
|
Guiraud S, Chen H, Burns DT, Davies KE. Advances in genetic therapeutic strategies for Duchenne muscular dystrophy. Exp Physiol 2015; 100:1458-67. [PMID: 26140505 PMCID: PMC4973818 DOI: 10.1113/ep085308] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/01/2015] [Indexed: 01/16/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review highlights recent progress in genetically based therapies targeting the primary defect of Duchenne muscular dystrophy. What advances does it highlight? Over the last two decades, considerable progress has been made in understanding the mechanisms underlying Duchenne muscular dystrophy, leading to the development of genetic therapies. These include manipulation of the expression of the gene or related genes, the splicing of the gene and its translation, and replacement of the gene using viral approaches. Duchenne muscular dystrophy is a lethal X-linked disorder caused by mutations in the dystrophin gene. In the absence of the dystrophin protein, the link between the cytoskeleton and extracellular matrix is destroyed, and this severely compromises the strength, flexibility and stability of muscle fibres. The devastating consequence is progressive muscle wasting and premature death in Duchenne muscular dystrophy patients. There is currently no cure, and despite exhaustive palliative care, patients are restricted to a wheelchair by the age of 12 years and usually succumb to cardiac or respiratory complications in their late 20s. This review provides an update on the current genetically based therapies and clinical trials that target or compensate for the primary defect of this disease. These include dystrophin gene-replacement strategies, genetic modification techniques to restore dystrophin expression, and modulation of the dystrophin homologue, utrophin, as a surrogate to re-establish muscle function.
Collapse
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Huijia Chen
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - David T Burns
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Kay E Davies
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| |
Collapse
|
42
|
Simple downstream process based on detergent treatment improves yield and in vivo transduction efficacy of adeno-associated virus vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015. [PMID: 26207258 PMCID: PMC4502676 DOI: 10.1038/mtm.2015.24] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recombinant adeno-associated viruses (rAAV) are promising candidates for gene therapy approaches. The last two decades were particularly fruitful in terms of processes applied in the production and purification of this type of gene transfer vectors. This rapid technological evolution led to better yields and higher levels of vector purity. Recently, some reports showed that rAAV produced by transient tri-transfection method in adherent human embryonic kidney 293 cells can be harvested directly from supernatant, leading to easier and faster purification compared to classical virus extraction from cell pellets. Here, we compare these approaches with new vector recovery method using small quantity of detergent at the initial clarification step to treat the whole transfected cell culture. Coupled with tangential flow filtration and iodixanol-based isopycnic density gradient, this new method significantly increases rAAV yields and conserves high vector purity. Moreover, this approach leads to the reduction of the total process duration. Finally, the vectors maintain their functionality, showing unexpected higher in vitro and in vivo transduction efficacies. This new development in rAAV downstream process once more demonstrates the great capacity of these vectors to easily accommodate to large panel of methods, able to furthermore ameliorate their safety, functionality, and scalability.
Collapse
|
43
|
Short-lived recombinant adeno-associated virus transgene expression in dystrophic muscle is associated with oxidative damage to transgene mRNA. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15010. [PMID: 26029721 PMCID: PMC4445007 DOI: 10.1038/mtm.2015.10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/15/2015] [Accepted: 02/17/2015] [Indexed: 12/27/2022]
Abstract
Preclinical gene therapy strategies using recombinant adeno-associated virus (AAV) vectors in animal models of Duchenne muscular dystrophy have shown dramatic phenotype improvements, but long-lasting efficacy remains questionable. It is believed that in dystrophic muscles, transgene persistence is hampered, notably by the progressive loss of therapeutic vector genomes resulting from muscle fibers degeneration. Intracellular metabolic perturbations resulting from dystrophin deficiency could also be additional factors impacting on rAAV genomes and transgene mRNA molecular fate. In this study, we showed that rAAV genome loss is not the only cause of reduced transgene mRNA level and we assessed the contribution of transcriptional and post-transcriptional factors. We ruled out the implication of transgene silencing by epigenetic mechanisms and demonstrated that rAAV inhibition occurred mostly at the post-transcriptional level. Since Duchenne muscular dystrophy (DMD) physiopathology involves an elevated oxidative stress, we hypothesized that in dystrophic muscles, transgene mRNA could be damaged by oxidative stress. In the mouse and dog dystrophic models, we found that rAAV-derived mRNA oxidation was increased. Interestingly, when a high expression level of a therapeutic transgene is achieved, oxidation is less pronounced. These findings provide new insights into rAAV transductions in dystrophic muscles, which ultimately may help in the design of more effective clinical trials.
Collapse
|
44
|
Dal Mas A, Rogalska M, Bussani E, Pagani F. Improvement of SMN2 pre-mRNA processing mediated by exon-specific U1 small nuclear RNA. Am J Hum Genet 2015; 96:93-103. [PMID: 25557785 PMCID: PMC4289686 DOI: 10.1016/j.ajhg.2014.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022] Open
Abstract
Exon-specific U1 snRNAs (ExSpe U1s) are modified U1 snRNAs that interact with intronic sequences downstream of the 5′ splice site (ss) by complementarity. This process restores exon skipping caused by different types of mutation. We have investigated the molecular mechanism and activity of these molecules in spinal muscular atrophy (SMA), a genetic neuromuscular disease where a silent exonic transition on the survival motor neuron 2 (SMN2) leads to exon 7 (E7) skipping. By using different cellular models, we show that a single chromosome-integrated copy of ExSpe U1 induced a significant correction of endogenous SMN2 E7 splicing and resulted in the restoration of the corresponding SMN protein levels. Interestingly, the analysis of pre-mRNA transcript abundance and decay showed that ExSpe U1s promote E7 inclusion and stabilizes the SMN pre-mRNA intermediate. This selective effect on pre-mRNA stability resulted in higher levels of SMN mRNAs in comparison with those after treatment with an antisense oligonucleotide (AON) that targets corresponding intronic sequences. In mice harboring the SMN2 transgene, AAV-mediated delivery of ExSpe U1 increased E7 inclusion in brain, heart, liver, kidney, and skeletal muscle. The positive effect of ExSpe U1s on SMN pre-mRNA processing highlights their therapeutic potential in SMA and in other pathologies caused by exon-skipping mutations.
Collapse
|
45
|
Fu H, Tan J, Yin Q. Effects of recombinant adeno-associated virus-mediated CD151 gene transfer on the expression of rat vascular endothelial growth factor in ischemic myocardium. Exp Ther Med 2014; 9:187-190. [PMID: 25452800 PMCID: PMC4247325 DOI: 10.3892/etm.2014.2079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/06/2014] [Indexed: 01/18/2023] Open
Abstract
The aim of this study was to observe the effects of cluster of differentiation (CD) 151 on the expression of vascular endothelial growth factor (VEGF) in ischemic myocardium by the injection of a recombinant adeno-associated virus (rAAV) vector carrying the human CD151 gene. A rat acute myocardial infarction model was established, and rAAV-CD151 was injected into the ischemic myocardium. Four weeks later, the ischemic myocardium was removed in order to detect the expression of exogenous CD151 mRNA by reverse transcriptase polymerase chain reaction. In addition, the expression of CD151 and VEGF was detected by western blot analysis to evaluate the effect of CD151 overexpression on VEGF expression. Four weeks after injection of the vector, exogenous CD151 mRNA was expressed in the myocardial tissues of the CD151 group, whereas it was not detected in sham surgery, model control or rAAV-green fluorescent protein (GFP) gene-treated groups. The expression levels of CD151 protein were significantly higher in the CD151 group compared with those in the other three groups (P<0.05). The VEGF expression level in the CD151 group was higher compared with those in the control and GFP groups (P>0.05). These results indicate that rAAV-CD151 effectively transfects rat myocardial tissues, and may promote angiogenesis of the ischemic myocardium, improve left ventricular function and increase VEGF expression to improve ventricular function.
Collapse
Affiliation(s)
- Hairong Fu
- Division of Basic Medical Sciences, Chongqing Three Gorges Medical College, Chongqing 404000, P.R. China
| | - Jiahua Tan
- Division of Basic Medical Sciences, Chongqing Three Gorges Medical College, Chongqing 404000, P.R. China
| | - Qi'nan Yin
- Endocrinology and Reproduction Laboratory, Gynecology Hospital of Freiburg, Freiburg D-79106, Germany
| |
Collapse
|
46
|
Le Guiner C, Montus M, Servais L, Cherel Y, Francois V, Thibaud JL, Wary C, Matot B, Larcher T, Guigand L, Dutilleul M, Domenger C, Allais M, Beuvin M, Moraux A, Le Duff J, Devaux M, Jaulin N, Guilbaud M, Latournerie V, Veron P, Boutin S, Leborgne C, Desgue D, Deschamps JY, Moullec S, Fromes Y, Vulin A, Smith RH, Laroudie N, Barnay-Toutain F, Rivière C, Bucher S, Le TH, Delaunay N, Gasmi M, Kotin RM, Bonne G, Adjali O, Masurier C, Hogrel JY, Carlier P, Moullier P, Voit T. Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in Duchenne patients. Mol Ther 2014; 22:1923-35. [PMID: 25200009 PMCID: PMC4429735 DOI: 10.1038/mt.2014.151] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/14/2014] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by mutations in the dystrophin gene, without curative treatment yet available. Our study provides, for the first time, the overall safety profile and therapeutic dose of a recombinant adeno-associated virus vector, serotype 8 (rAAV8) carrying a modified U7snRNA sequence promoting exon skipping to restore a functional in-frame dystrophin transcript, and injected by locoregional transvenous perfusion of the forelimb. Eighteen Golden Retriever Muscular Dystrophy (GRMD) dogs were exposed to increasing doses of GMP-manufactured vector. Treatment was well tolerated in all, and no acute nor delayed adverse effect, including systemic and immune toxicity was detected. There was a dose relationship for the amount of exon skipping with up to 80% of myofibers expressing dystrophin at the highest dose. Similarly, histological, nuclear magnetic resonance pathological indices and strength improvement responded in a dose-dependent manner. The systematic comparison of effects using different independent methods, allowed to define a minimum threshold of dystrophin expressing fibers (>33% for structural measures and >40% for strength) under which there was no clear-cut therapeutic effect. Altogether, these results support the concept of a phase 1/2 trial of locoregional delivery into upper limbs of nonambulatory DMD patients.
Collapse
Affiliation(s)
- Caroline Le Guiner
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Généthon, Evry, France
| | | | - Laurent Servais
- Institut de Myologie, Service of Clinical Trials and Databases, Paris, France
| | - Yan Cherel
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Virginie Francois
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Jean-Laurent Thibaud
- Institut de Myologie, Laboratoire RMN, AIM & CEA, Paris, France
- UPR de Neurobiologie, Ecole Nationale Vétérinaire d'Alfort, Maisons Alfort, France
| | - Claire Wary
- Institut de Myologie, Laboratoire RMN, AIM & CEA, Paris, France
| | - Béatrice Matot
- Institut de Myologie, Laboratoire RMN, AIM & CEA, Paris, France
| | - Thibaut Larcher
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Lydie Guigand
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Maeva Dutilleul
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Claire Domenger
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Marine Allais
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Maud Beuvin
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre and Marie Curie Paris 6 UPMC-INSERM UMR 974, CNRS FRE 3617, Paris, France
| | - Amélie Moraux
- Institut de Myologie, Neuromuscular Physiology and Evaluation Laboratory, Paris, France
| | - Johanne Le Duff
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Marie Devaux
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Nicolas Jaulin
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Mickaël Guilbaud
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | | | | | | | | | | | - Jack-Yves Deschamps
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
- Atlantic Gene Therapies, Centre de Boisbonne, ONIRIS, Nantes, France
| | - Sophie Moullec
- Atlantic Gene Therapies, Centre de Boisbonne, ONIRIS, Nantes, France
| | - Yves Fromes
- Atlantic Gene Therapies, Centre de Boisbonne, ONIRIS, Nantes, France
| | - Adeline Vulin
- Research Institute, Center for Gene Therapy, Nationwide Childrens Hospital, Columbus, Ohio, USA
| | - Richard H Smith
- Laboratory of Molecular Virology and Gene Therapy, National Heart Lung and Blood Institute, National Institute of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | - Robert M Kotin
- Laboratory of Molecular Virology and Gene Therapy, National Heart Lung and Blood Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Gisèle Bonne
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre and Marie Curie Paris 6 UPMC-INSERM UMR 974, CNRS FRE 3617, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, U.F. Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Paris, France
| | - Oumeya Adjali
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | | | - Jean-Yves Hogrel
- Institut de Myologie, Neuromuscular Physiology and Evaluation Laboratory, Paris, France
| | - Pierre Carlier
- Institut de Myologie, Laboratoire RMN, AIM & CEA, Paris, France
| | - Philippe Moullier
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Généthon, Evry, France
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Thomas Voit
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre and Marie Curie Paris 6 UPMC-INSERM UMR 974, CNRS FRE 3617, Paris, France
| |
Collapse
|
47
|
Childers MK, Joubert R, Poulard K, Moal C, Grange RW, Doering JA, Lawlor MW, Rider BE, Jamet T, Danièle N, Martin S, Rivière C, Soker T, Hammer C, Van Wittenberghe L, Lockard M, Guan X, Goddard M, Mitchell E, Barber J, Williams JK, Mack DL, Furth ME, Vignaud A, Masurier C, Mavilio F, Moullier P, Beggs AH, Buj-Bello A. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 2014; 6:220ra10. [PMID: 24452262 DOI: 10.1126/scitranslmed.3007523] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Loss-of-function mutations in the myotubularin gene (MTM1) cause X-linked myotubular myopathy (XLMTM), a fatal, congenital pediatric disease that affects the entire skeletal musculature. Systemic administration of a single dose of a recombinant serotype 8 adeno-associated virus (AAV8) vector expressing murine myotubularin to Mtm1-deficient knockout mice at the onset or at late stages of the disease resulted in robust improvement in motor activity and contractile force, corrected muscle pathology, and prolonged survival throughout a 6-month study. Similarly, single-dose intravascular delivery of a canine AAV8-MTM1 vector in XLMTM dogs markedly improved severe muscle weakness and respiratory impairment, and prolonged life span to more than 1 year in the absence of toxicity or a humoral or cell-mediated immune response. These results demonstrate the therapeutic efficacy of AAV-mediated gene therapy for myotubular myopathy in small- and large-animal models, and provide proof of concept for future clinical trials in XLMTM patients.
Collapse
Affiliation(s)
- Martin K Childers
- Department of Rehabilitation Medicine, School of Medicine, University of Washington, Campus Box 358056, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Abstract
Duchenne muscular dystrophy (DMD) is an inherited, progressive muscle wasting disorder caused by mutations in the dystrophin gene. An increasing variety of approaches are moving towards clinical testing that all aim to restore dystrophin production and to enhance or preserve muscle mass. Gene therapy methods are being developed to replace the defective dystrophin gene or induce dystrophin production from mutant genes. Stem cell approaches are being developed to replace lost muscle cells while also bringing in new dystrophin genes. This review summarizes recent progress in the field with an emphasis on clinical applications.
Collapse
|
50
|
The Dynamics of Compound, Transcript, and Protein Effects After Treatment With 2OMePS Antisense Oligonucleotides in mdx Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e148. [PMID: 24549299 PMCID: PMC3950770 DOI: 10.1038/mtna.2014.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/24/2013] [Indexed: 12/28/2022]
Abstract
Antisense-mediated exon skipping is currently in clinical development for Duchenne muscular dystrophy (DMD) to amend the consequences of the underlying genetic defect and restore dystrophin expression. Due to turnover of compound, transcript, and protein, chronic treatment with effector molecules (antisense oligonucleotides) will be required. To investigate the dynamics and persistence of antisense 2′-O-methyl phosphorothioate oligonucleotides, exon skipping, and dystrophin expression after dosing was concluded, mdx mice were treated subcutaneously for 8 weeks with 100 mg/kg oligonucleotides twice weekly. Thereafter, mice were sacrificed at different time points after the final injection (36 hours–24 weeks). Oligonucleotide half-life was longer in heart (~65 days) compared with that in skeletal muscle, liver, and kidney (~35 days). Exon skipping half-lives varied between 33 and 53 days, whereas dystrophin protein showed a long half-life (>100 days). Oligonucleotide and exon-skipping levels peaked in the first week and declined thereafter. By contrast, dystrophin expression peaked after 3–8 weeks and then slowly declined, remaining detectable after 24 weeks. Concordance between levels of oligonucleotides, exon skipping, and proteins was observed, except in heart, wherein high oligonucleotide levels but low exon skipping and dystrophin expression were seen. Overall, these results enhance our understanding of the pharmacokinetics and pharmacodynamics of 2′-O-methyl phosphorothioate oligos used for the treatment of DMD.
Collapse
|