1
|
Sun L, Sun J, Li C, Wu K, Gu Z, Guo L, Zhou Y, Han B, Chang J. STAT3-specific nanocarrier for shRNA/drug dual delivery and tumor synergistic therapy. Bioact Mater 2024; 41:137-157. [PMID: 39131627 PMCID: PMC11314445 DOI: 10.1016/j.bioactmat.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a major disease with high incidence, low survival rate and prone to develop drug resistance to chemotherapy. The mechanism of secondary drug resistance in NSCLC chemotherapy is very complex, and studies have shown that the abnormal activation of STAT3 (Signal Transducer and Activator of Transcription 3) plays an important role in it. In this study, the pGPU6/GFP/Neo STAT3-shRNA recombinant plasmid was constructed with STAT3 as the precise target. By modifying hydrophilic and hydrophobic blocks onto chitosan, a multifunctional vitamin E succinate-chitosan-polyethylene glycol monomethyl ether histidine (VES-CTS-mPEG-His) micelles were synthesized. The micelles could encapsulate hydrophobic drug doxorubicin through self-assembly, and load the recombinant pGPU6/GFP/Neo STAT3-shRNA (pDNA) through positive and negative charges to form dual-loaded nanoparticles DOX/VCPH/pDNA. The co-delivery and synergistic effect of DOX and pDNA could up-regulate the expression of PTEN (Phosphatase and Tensin Homolog), down-regulate the expression of CD31, and induce apoptosis of tumor cells. The results of precision targeted therapy showed that DOX/VCPH/pDNA could significantly down-regulate the expression level of STAT3 protein, further enhancing the efficacy of chemotherapy. Through this study, precision personalized treatment of NSCLC could be effectively achieved, reversing its resistance to chemotherapy drugs, and providing new strategies for the treatment of drug-resistant NSCLC.
Collapse
Affiliation(s)
- Le Sun
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Keying Wu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Zhiyang Gu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Lan Guo
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Yi Zhou
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| |
Collapse
|
2
|
Huang K, Shi Y, Lin J, Qin C, Qin C, Lu X, Lan C. Mechanism research of Tollip negative feedback regulation in TLR4 signaling pathways based on spinal tuberculosis: Detection of Tollip and NF-κB expression levels. Int J Biol Macromol 2024; 281:136458. [PMID: 39389477 DOI: 10.1016/j.ijbiomac.2024.136458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The emergence of drug-resistant mycobacterium tuberculosis (MTB, or TB) strains has led to an increasing incidence of TB. Spinal tuberculosis is the most common extrapulmonary tuberculosis. In the present study, tollip, a negative feedback regulatory factor in TLR4 signaling pathway was chosen based on previous studies on osteoarticular tuberculosis. U937 cells were transfected with recombinant lentivirus containing shRNA (RNA interference, RNAi) or overexpression vector containing Tollip gene and tested in vitro. The expression levels of Tollip and TLR4 were detected by Real-time PCR and immunofluorescence techniques, and the cell morphology and infection effect were observed by DAPI staining. The results suggested that Tollip gene could negatively inhibit the expression of related factors in TLR4 signaling pathway, and thus is a potential biomarker for early diagnosis.
Collapse
Affiliation(s)
- Ke Huang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Yu Shi
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Jiajie Lin
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Chengyi Qin
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Changshuai Qin
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Xianzhe Lu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Changgong Lan
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China.
| |
Collapse
|
3
|
Berger M, Toussaint F, Ben Djemaa S, Maquoi E, Pendeville H, Evrard B, Jerôme C, Leblond Chain J, Lechanteur A, Mottet D, Debuigne A, Piel G. Poly(N-methyl-N-vinylacetamide): A Strong Alternative to PEG for Lipid-Based Nanocarriers Delivering siRNA. Adv Healthc Mater 2024; 13:e2302712. [PMID: 37994483 DOI: 10.1002/adhm.202302712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Lipid-based nanocarriers have demonstrated high interest in delivering genetic material, exemplified by the success of Onpattro and COVID-19 vaccines. While PEGylation imparts stealth properties, it hampers cellular uptake and endosomal escape, and may trigger adverse reactions like accelerated blood clearance (ABC) and hypersensitivity reactions (HSR). This work highlights the great potential of amphiphilic poly(N-methyl-N-vinylacetamide) (PNMVA) derivatives as alternatives to lipid-PEG for siRNA delivery. PNMVA compounds with different degrees of polymerization and hydrophobic segments, are synthesized. Among them, DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine)-PNMVA efficiently integrates into lipoplexes and LNP membranes and prevents protein corona formation around these lipid carriers, exhibiting stealth properties comparable to DSPE-PEG. However, unlike DSPE-PEG, DSPE-PNMVA24 shows no adverse impact on lipoplexes cell uptake and endosomal escape. In in vivo study with mice, DSPE-PNMVA24 lipoplexes demonstrate no liver accumulation, indicating good stealth properties, extended circulation time after a second dose, reduced immunological reaction, and no systemic pro-inflammatory response. Safety of DSPE-PNMVA24 is confirmed at the cellular level and in animal models of zebrafish and mice. Overall, DSPE-PNMVA is an advantageous substitute to DSPE-PEG for siRNA delivery, offering comparable stealth and toxicity properties while improving efficacy of the lipid-based carriers by minimizing the dilemma effect and reducing immunological reactions, meaning no ABC or HSR effects.
Collapse
Affiliation(s)
- Manon Berger
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Avenue Hippocrate 15, Liège, 4000, Belgium
| | - François Toussaint
- Center for Education and Research on Macromolecules CERM, CESAM Research Unit, University of Liège, Allée du Six Août, 13, Liège, 4000, Belgium
| | - Sanaa Ben Djemaa
- Gene Expression and Cancer Laboratory GEC, GIGA-Molecular Biology of Diseases, University of Liège, Avenue de l'Hôpital 11, Liège, 4000, Belgium
| | - Erik Maquoi
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Avenue Hippocrate, 13, Liège, 4000, Belgium
| | - Hélène Pendeville
- Platform Zebrafish Facility and Transgenics, GIGA, University of Liège, Avenue de l'Hôpital 11, Liège, 4000, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Avenue Hippocrate 15, Liège, 4000, Belgium
| | - Christine Jerôme
- Center for Education and Research on Macromolecules CERM, CESAM Research Unit, University of Liège, Allée du Six Août, 13, Liège, 4000, Belgium
| | - Jeanne Leblond Chain
- University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, 146 rue Léo Saignat, Bordeaux, F-33000, France
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Avenue Hippocrate 15, Liège, 4000, Belgium
| | - Denis Mottet
- Gene Expression and Cancer Laboratory GEC, GIGA-Molecular Biology of Diseases, University of Liège, Avenue de l'Hôpital 11, Liège, 4000, Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules CERM, CESAM Research Unit, University of Liège, Allée du Six Août, 13, Liège, 4000, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Avenue Hippocrate 15, Liège, 4000, Belgium
| |
Collapse
|
4
|
Yan J, Zhang H, Li G, Su J, Wei Y, Xu C. Lipid nanovehicles overcome barriers to systemic RNA delivery: Lipid components, fabrication methods, and rational design. Acta Pharm Sin B 2024; 14:579-601. [PMID: 38322344 PMCID: PMC10840434 DOI: 10.1016/j.apsb.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 02/08/2024] Open
Abstract
Lipid nanovehicles are currently the most advanced vehicles used for RNA delivery, as demonstrated by the approval of patisiran for amyloidosis therapy in 2018. To illuminate the unique superiority of lipid nanovehicles in RNA delivery, in this review, we first introduce various RNA therapeutics, describe systemic delivery barriers, and explain the lipid components and methods used for lipid nanovehicle preparation. Then, we emphasize crucial advances in lipid nanovehicle design for overcoming barriers to systemic RNA delivery. Finally, the current status and challenges of lipid nanovehicle-based RNA therapeutics in clinical applications are also discussed. Our objective is to provide a comprehensive overview showing how to utilize lipid nanovehicles to overcome multiple barriers to systemic RNA delivery, inspiring the development of more high-performance RNA lipid nanovesicles in the future.
Collapse
Affiliation(s)
- Jing Yan
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Institute of Medicine, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China
| |
Collapse
|
5
|
Berger M, Toussaint F, Djemaa SB, Laloy J, Pendeville H, Evrard B, Jerôme C, Lechanteur A, Mottet D, Debuigne A, Piel G. Poly(vinyl pyrrolidone) derivatives as PEG alternatives for stealth, non-toxic and less immunogenic siRNA-containing lipoplex delivery. J Control Release 2023; 361:87-101. [PMID: 37482343 DOI: 10.1016/j.jconrel.2023.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The recent approval of Onpattro® and COVID-19 vaccines has highlighted the value of lipid nanoparticles (LNPs) for the delivery of genetic material. If it is known that PEGylation is crucial to confer stealth properties to LNPs, it is also known that PEGylation is responsible for the decrease of the cellular uptake and endosomal escape and for the production of anti-PEG antibodies inducing accelerated blood clearance (ABC) and hypersensitivity reactions. Today, the development of PEG alternatives is crucial. Poly(N-vinyl pyrrolidone) (PNVP) has shown promising results for liposome decoration but has never been tested for the delivery of nucleic acids. Our aim is to develop a series of amphiphilic PNVP compounds to replace lipids-PEG for the post-insertion of lipoplexes dedicated to siRNA delivery. PNVP compounds with different degrees of polymerization and hydrophobic segments, such as octadecyl, dioctadecyl and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), were generated. Based on the physicochemical properties and the efficiency to reduce protein corona formation, we showed that the DSPE segment is essential for the integration into the lipoplexes. Lipoplexes post-grafted with 15% DSPE-PNVP30 resulted in gene silencing efficiency close to that of lipoplexes grafted with 15% DSPE-PEG. Finally, an in vivo study in mice confirmed the stealth properties of DSPE-PNVP30 lipoplexes as well as a lower immune response ABC effect compared to DSPE-PEG lipoplexes. Furthermore, we showed a lower immune response after the second injection with DSPE-PNVP30 lipoplexes compared to DSPE-PEG lipoplexes. All these observations suggest that DSPE-PNVP30 appears to be a promising alternative to PEG, with no toxicity, good stealth properties and lower immunological response.
Collapse
Affiliation(s)
- Manon Berger
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Belgium
| | - François Toussaint
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Belgium
| | - Sanaa Ben Djemaa
- Gene Expression and Cancer Laboratory (GEC), GIGA-Molecular Biology of Diseases, University of Liège, Belgium
| | - Julie Laloy
- NNC Laboratory (NARILIS), Department of Pharmacy, University of Namur, Belgium
| | - Hélène Pendeville
- Platform Zebrafish Facility and Transgenics, GIGA, University of Liège, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Belgium
| | - Christine Jerôme
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Belgium
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Belgium
| | - Denis Mottet
- Gene Expression and Cancer Laboratory (GEC), GIGA-Molecular Biology of Diseases, University of Liège, Belgium.
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Belgium.
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Belgium.
| |
Collapse
|
6
|
Yan C, Zhang J, Huang M, Xiao J, Li N, Wang T, Ling R. Design, strategies, and therapeutics in nanoparticle-based siRNA delivery systems for breast cancer. J Mater Chem B 2023; 11:8096-8116. [PMID: 37551630 DOI: 10.1039/d3tb00278k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Utilizing small interfering RNA (siRNA) as a treatment for cancer, a disease largely driven by genetic aberrations, shows great promise. However, implementing siRNA therapy in clinical practice is challenging due to its limited bioavailability following systemic administration. An attractive approach to address this issue is the use of a nanoparticle (NP) delivery platform, which protects siRNA and delivers it to the cytoplasm of target cells. We provide an overview of design considerations for using lipid-based NPs, polymer-based NPs, and inorganic NPs to improve the efficacy and safety of siRNA delivery. We focus on the chemical structure modification of carriers and NP formulation optimization, NP surface modifications to target breast cancer cells, and the linking strategy and intracellular release of siRNA. As a practical example, recent advances in the development of siRNA therapeutics for treating breast cancer are discussed, with a focus on inhibiting cancer growth, overcoming drug resistance, inhibiting metastasis, and enhancing immunotherapy.
Collapse
Affiliation(s)
- Changjiao Yan
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Juliang Zhang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Meiling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jingjing Xiao
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Nanlin Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Ting Wang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
7
|
Wu R, Wang K, Gai Y, Li M, Wang J, Wang C, Zhang Y, Xiao Z, Jiang D, Gao Z, Xia X. Nanomedicine for renal cell carcinoma: imaging, treatment and beyond. J Nanobiotechnology 2023; 21:3. [PMID: 36597108 PMCID: PMC9809106 DOI: 10.1186/s12951-022-01761-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
The kidney is a vital organ responsible for maintaining homeostasis in the human body. However, renal cell carcinoma (RCC) is a common malignancy of the urinary system and represents a serious threat to human health. Although the overall survival of RCC has improved substantially with the development of cancer diagnosis and management, there are various reasons for treatment failure. Firstly, without any readily available biomarkers, timely diagnosis has been greatly hampered. Secondly, the imaging appearance also varies greatly, and its early detection often remains difficult. Thirdly, chemotherapy has been validated as unavailable for treating renal cancer in the clinic due to its intrinsic drug resistance. Concomitant with the progress of nanotechnological methods in pharmaceuticals, the management of kidney cancer has undergone a transformation in the recent decade. Nanotechnology has shown many advantages over widely used traditional methods, leading to broad biomedical applications ranging from drug delivery, prevention, diagnosis to treatment. This review focuses on nanotechnologies in RCC management and further discusses their biomedical translation with the aim of identifying the most promising nanomedicines for clinical needs. As our understanding of nanotechnologies continues to grow, more opportunities to improve the management of renal cancer are expected to emerge.
Collapse
Affiliation(s)
- Ruolin Wu
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Keshan Wang
- grid.33199.310000 0004 0368 7223Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yongkang Gai
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Mengting Li
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Jingjing Wang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Chenyang Wang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Yajing Zhang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Zhiwei Xiao
- grid.413247.70000 0004 1808 0969Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dawei Jiang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Zairong Gao
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Xiaotian Xia
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| |
Collapse
|
8
|
Sun D, Lu ZR. Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharm Res 2023; 40:27-46. [PMID: 36600047 PMCID: PMC9812548 DOI: 10.1007/s11095-022-03460-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
Hereditary genetic diseases, cancer, and infectious diseases are affecting global health and become major health issues, but the treatment development remains challenging. Gene therapies using DNA plasmid, RNAi, miRNA, mRNA, and gene editing hold great promise. Lipid nanoparticle (LNP) delivery technology has been a revolutionary development, which has been granted for clinical applications, including mRNA vaccines against SARS-CoV-2 infections. Due to the success of LNP systems, understanding the structure, formulation, and function relationship of the lipid components in LNP systems is crucial for design more effective LNP. Here, we highlight the key considerations for developing an LNP system. The evolution of structure and function of lipids as well as their LNP formulation from the early-stage simple formulations to multi-components LNP and multifunctional ionizable lipids have been discussed. The flexibility and platform nature of LNP enable efficient intracellular delivery of a variety of therapeutic nucleic acids and provide many novel treatment options for the diseases that are previously untreatable.
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, Mail Stop 7207, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, Mail Stop 7207, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Kandasamy G, Maity D. Current Advancements in Self-assembling Nanocarriers-Based siRNA Delivery for Cancer Therapy. Colloids Surf B Biointerfaces 2022; 221:113002. [PMID: 36370645 DOI: 10.1016/j.colsurfb.2022.113002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/01/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
Different therapeutic practices for treating cancers have significantly evolved to compensate and/or overcome the failures in conventional methodologies. The demonstrated potentiality in completely inhibiting the tumors and in preventing cancer relapse has made nucleic acids therapy (NAT)/gene therapy as an attractive practice. This has been made possible because NAT-based cancer treatments are highly focused on the fundamental mechanisms - i.e., silencing the expression of oncogenic genes responsible for producing abnormal proteins (via messenger RNAs (mRNAs)). However, the future clinical translation of NAT is majorly dependent upon the effective delivery of the exogenous nucleic acids (especially RNAs - e.g., short interfering RNAs (siRNAs) - herein called biological drugs). Moreover, nano-based vehicles (i.e., nanocarriers) are involved in delivering them to prevent degradation and undesired bioaccumulation while enhancing the stability of siRNAs. Herein, we have initially discussed about three major types of self-assembling nanocarriers (liposomes, polymeric nanoparticles and exosomes). Later, we have majorly reviewed recent developments in non-targeted/targeted nanocarriers for delivery of biological drugs (individual/dual) to silence the most important genes/mRNAs accountable for inducing protein abnormality. These proteins include polo-like kinase 1 (PLK1), survivin, vascular endothelial growth factor (VEGF), B-cell lymphoma/leukaemia-2 (Bcl-2) and multi-drug resistance (MDR). Besides, the consequent therapeutic effects on cancer growth, invasion and/or metastasis have also been discussed. Finally, we have comprehensively reviewed the improvements achieved in the cutting-edge cancer therapeutics while delivering siRNAs in combination with clinically approved chemotherapeutic drugs.
Collapse
|
10
|
Singh R, Prasad A, Kumar B, Kumari S, Sahu RK, Hedau ST. Potential of Dual Drug Delivery Systems: MOF as Hybrid Nanocarrier for Dual Drug Delivery in Cancer Treatment. ChemistrySelect 2022. [DOI: 10.1002/slct.202201288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ragini Singh
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Amrita Prasad
- Department of Chemistry Magadh Mahila College Patna University Patna Bihar. India
| | - Binayak Kumar
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Soni Kumari
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Ram Krishna Sahu
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Suresh T. Hedau
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| |
Collapse
|
11
|
Sakurai Y. Development of siRNA Delivery System by Lipid Nanoparticles Modified with Functional Materials for Cancer Treatment. Biol Pharm Bull 2022; 45:972-977. [DOI: 10.1248/bpb.b22-00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
12
|
Nakamura T, Sato Y, Yamada Y, Abd Elwakil MM, Kimura S, Younis MA, Harashima H. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv Drug Deliv Rev 2022; 188:114417. [PMID: 35787389 DOI: 10.1016/j.addr.2022.114417] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
A new era of nanomedicines that involve nucleic acids/gene therapy has been opened after two decades in 21st century and new types of more efficient drug delivery systems (DDS) are highly expected and will include extrahepatic delivery. In this review, we summarize the possibility and expectations for the extrahepatic delivery of small interfering RNA/messenger RNA/plasmid DNA/genome editing to the spleen, lung, tumor, lymph nodes as well as the liver based on our studies as well as reported information. Passive targeting and active targeting are discussed in in vivo delivery and the importance of controlled intracellular trafficking for successful therapeutic results are also discussed. In addition, mitochondrial delivery as a novel strategy for nucleic acids/gene therapy is introduced to expand the therapeutic dimension of nucleic acids/gene therapy in the liver as well as the heart, kidney and brain.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mahmoud M Abd Elwakil
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Seigo Kimura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mahmoud A Younis
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
13
|
Maishi N, Sakurai Y, Hatakeyama H, Umeyama Y, Nakamura T, Endo R, Alam MT, Li C, Annan DAM, Kikuchi H, Morimoto H, Morimoto M, Akiyama K, Ohga N, Hida Y, Harashima H, Hida K. Novel antiangiogenic therapy targeting biglycan using tumor endothelial cell-specific liposomal siRNA delivery system. Cancer Sci 2022; 113:1855-1867. [PMID: 35266253 PMCID: PMC9128192 DOI: 10.1111/cas.15323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022] Open
Abstract
Tumor blood vessels play important roles in tumor progression and metastasis. Targeting tumor endothelial cells (TECs) is one of the strategies for cancer therapy. We previously reported that biglycan, a small leucine‐rich proteoglycan, is highly expressed in TECs. TECs utilize biglycan in an autocrine manner for migration and angiogenesis. Furthermore, TEC‐derived biglycan stimulates tumor cell migration in a paracrine manner leading to tumor cell intravasation and metastasis. In this study, we explored the therapeutic effect of biglycan inhibition in the TECs of renal cell carcinoma using an in vivo siRNA delivery system known as a multifunctional envelope‐type nanodevice (MEND), which contains a unique pH‐sensitive cationic lipid. To specifically deliver MEND into TECs, we incorporated cyclo(Arg–Gly–Asp–d–Phe–Lys) (cRGD) into MEND because αVβ3 integrin, a receptor for cRGD, is selective and highly expressed in TECs. We developed RGD‐MEND‐encapsulating siRNA against biglycan. First, we confirmed that MEND was delivered into OS‐RC‐2 tumor‐derived TECs and induced in vitro RNAi‐mediated gene silencing. MEND was then injected intravenously into OS‐RC‐2 tumor‐bearing mice. Flow cytometry analysis demonstrated that MEND was specifically delivered into TECs. Quantitative RT‐PCR indicated that biglycan was knocked down by biglycan siRNA‐containing MEND. Finally, we analyzed the therapeutic effect of biglycan silencing by MEND in TECs. Tumor growth was inhibited by biglycan siRNA‐containing MEND. Tumor microenvironmental factors such as fibrosis were also normalized using biglycan inhibition in TECs. Biglycan in TECs can be a novel target for cancer treatment.
Collapse
Affiliation(s)
- Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Membrane Transport and Drug Targeting Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroto Hatakeyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yui Umeyama
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mohammad Towfik Alam
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Cong Li
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Dorcas Akuba-Muhyia Annan
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hirofumi Morimoto
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Morimoto
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kosuke Akiyama
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Noritaka Ohga
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | | | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
14
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Berger M, Lechanteur A, Evrard B, Piel G. Innovative lipoplexes formulations with enhanced siRNA efficacy for cancer treatment: Where are we now? Int J Pharm 2021; 605:120851. [PMID: 34217823 DOI: 10.1016/j.ijpharm.2021.120851] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Over the past two decades, RNA interference has become an extensively studied mechanism to silence gene and treat diseases including cancer. siRNA appears as a promising strategy that could avoid some side effects related to traditional chemotherapy. Considering the weak stability of naked siRNA in blood, vectors like cationic liposomes or Lipid Nanoparticles (LNPs) are widely used to carry and protect siRNA until it reaches the tumor targeted. Despite extensive research, only three RNAi drugs are currently approved by the Food and Drug Administration, including only one LNP formulation of siRNA to treat hereditary ATTR amyloidosis. This shows the difficulty of lipoplexes clinical translation, in particular in cancer therapy. To overcome the lipoplexes limitations, searches are made on innovative lipoplexes formulations with enhanced siRNA efficacy. The present review is focusing on the recent use of pH-sensitive lipids, peptides and cell-penetrating peptides or polymers. The incorporation of some of these components in the lipoplex formulation induces a fusogenic property or an enhanced endosomal escape, an enhanced cellular uptake, an enhanced tumor targeting, an improved stability in the blood stream …These innovations appear critical to obtain an efficient siRNA accumulation in tumor cells with effective antitumor effect considering the complex tumor environment.
Collapse
Affiliation(s)
- Manon Berger
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Belgium.
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Belgium.
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Belgium.
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Belgium.
| |
Collapse
|
16
|
Evaluation of siRNA Stability and Interaction with Serum Components Using an Agarose Gel-Based Single-Molecule FRET Labeling Method. Methods Mol Biol 2021. [PMID: 33928569 DOI: 10.1007/978-1-0716-1298-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Small interfering RNAs (siRNAs) are RNA molecules with promising therapeutic potential as a result of their selective mRNA cleavage. However, despite recent progress, low stability in the bloodstream is an impediment to successful administration in vivo. Thus, the availability of flexible and rapid methods for studying siRNA stability and vehicles is crucial for future novel siRNA-based therapeutics. Herein, we report a fast Förster resonance energy transfer (FRET) method based on agarose gel electrophoresis to evaluate the stability of siRNA in serum as well as siRNA interaction with serum proteins and enzymes.
Collapse
|
17
|
Lu Z, Laney VEA, Hall R, Ayat N. Environment-Responsive Lipid/siRNA Nanoparticles for Cancer Therapy. Adv Healthc Mater 2021; 10:e2001294. [PMID: 33615743 DOI: 10.1002/adhm.202001294] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) is a promising technology to regulate oncogenes for treating cancer. The primary limitation of siRNA for clinical application is the safe and efficacious delivery of therapeutic siRNA into target cells. Lipid-based delivery systems are developed to protect siRNA during the delivery process and to facilitate intracellular uptake. There is a significant progress in lipid nanoparticle systems that utilize cationic and protonatable amino lipid systems to deliver siRNA to tumors. Among these lipids, environment-responsive lipids are a class of novel lipid delivery systems that are capable of responding to the environment changes during the delivery process and demonstrate great promise for clinical translation for siRNA therapeutics. Protonatable or ionizable amino lipids and switchable lipids as well as pH-sensitive multifunctional amino lipids are the presentative environment-responsive lipids for siRNA delivery. These lipids are able to respond to environmental changes during the delivery process to facilitate efficient cytosolic siRNA delivery. Environment-responsive lipid/siRNA nanoparticles (ERLNP) are developed with the lipids and are tested for efficient delivery of therapeutic siRNA into the cytoplasm of cancer cells to silence target genes for cancer treatment in preclinical development. This review summarizes the recent developments in environment-response lipids and nanoparticles for siRNA delivery in cancer therapy.
Collapse
Affiliation(s)
- Zheng‐Rong Lu
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Victoria E. A. Laney
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Ryan Hall
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Nadia Ayat
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| |
Collapse
|
18
|
Younis MA, Khalil IA, Elewa YHA, Kon Y, Harashima H. Ultra-small lipid nanoparticles encapsulating sorafenib and midkine-siRNA selectively-eradicate sorafenib-resistant hepatocellular carcinoma in vivo. J Control Release 2021; 331:335-349. [PMID: 33484779 DOI: 10.1016/j.jconrel.2021.01.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a fatal disease with limited therapeutic choices. The stroma-rich tumor microenvironment hinders the in vivo delivery of most nanomedicines. Ultra-small lipid nanoparticles (usLNPs) were designed for the selective co-delivery of the cytotoxic drug, sorafenib (SOR), and siRNA against the Midkine gene (MK-siRNA) to HCC in mice. The usLNPs composed of a novel pH-sensitive lipid, a diversity of phospholipids and a highly-selective targeting peptide. A microfluidic device, iLiNP, was used and a variety of factors were controlled to tune particle size aiming at maximizing tumor penetration efficiency. Optimizing the composition and physico-chemical properties of the usLNPs resulted in an enhanced tumor accumulation, selectivity and in vivo gene silencing. The optimized usLNPs exerted potent gene silencing in the tumor (median effective dose, ED50~0.1 mg/Kg) with limited effect on the healthy liver. The novel combination synergistically-eradicated HCC in mice (~85%) at a surprisingly-low dose of SOR (2.5 mg/Kg) which could not be achieved via individual monotherapy. Toxicity studies revealed the biosafety of the usLNPs upon either acute or chronic treatment. Furthermore, the SOR-resistant HCC established in mice was eradicated by 70% using this approach. We conclude that our strategy is promising for potential clinical applications in HCC treatment.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Ikramy A Khalil
- Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
19
|
Cho R, Sakurai Y, Jones HS, Akita H, Hisaka A, Hatakeyama H. Silencing of VEGFR2 by RGD-Modified Lipid Nanoparticles Enhanced the Efficacy of Anti-PD-1 Antibody by Accelerating Vascular Normalization and Infiltration of T Cells in Tumors. Cancers (Basel) 2020; 12:cancers12123630. [PMID: 33291555 PMCID: PMC7761875 DOI: 10.3390/cancers12123630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/18/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary siRNA delivery to tumor endothelial cells was achieved using arginyl-glycyl-aspartic acid (RGD)-modified lipid nanoparticles containing a novel pH-sensitive and biodegradable lipid. The anti-tumor efficacy of an immune checkpoint inhibitor was improved by the silencing of VEGFR2 using the delivery system, because the combination therapy induced vascular normalization and increased CD8+ T cell infiltration into tumors. The efficient delivery of nucleic acids is a promising strategy to improve therapeutic outcomes in immune checkpoint inhibitor-resistant cancers. Abstract Despite the promising anticancer effects of immune checkpoint inhibitors, their low objective response rate remains to be resolved; thus, combination therapies have been investigated. We investigated the combination of an anti-programmed cell death 1 (aPD-1) monoclonal antibody with the knockdown of vascular endothelial factor receptor 2 (VEGFR2) on tumor endothelial cells to overcome resistance to immune checkpoint inhibitors and improve the objective response rate. The successful delivery of small interfering RNA to tumor endothelial cells was achieved by RGD peptide-modified lipid nanoparticles composed of a novel, pH-sensitive, and biodegradable ssPalmO-Phe. RGD-modified lipid nanoparticles efficiently induced the knockdown of VEGFR2 in tumor endothelial cells (TECs), which induced vascular normalization. The combination of a PD-1 monoclonal antibody with Vegfr2 knockdown enhanced CD8+ T cell infiltration into tumors and successfully suppressed tumor growth and improved response rate compared with monotherapy. Our combination approach provides a promising strategy to improve therapeutic outcomes in immune checkpoint inhibitor-resistant cancers.
Collapse
Affiliation(s)
- Riki Cho
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8675, Japan; (R.C.); (H.S.J.); (A.H.)
| | - Yu Sakurai
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8675, Japan; (Y.S.); (H.A.)
| | - Haleigh Sakura Jones
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8675, Japan; (R.C.); (H.S.J.); (A.H.)
| | - Hidetaka Akita
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8675, Japan; (Y.S.); (H.A.)
| | - Akihiro Hisaka
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8675, Japan; (R.C.); (H.S.J.); (A.H.)
| | - Hiroto Hatakeyama
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8675, Japan; (R.C.); (H.S.J.); (A.H.)
- Correspondence: ; Tel.: +81-43-226-2789
| |
Collapse
|
20
|
Abstract
![]()
Nanocarriers
(NCs) are promising tools to improve drug delivery
across the blood–brain barrier (BBB) for more effective treatment
of brain disorders, although there is a scarcity of clinical translation
of brain-directed NCs. In order to drive the development of brain-oriented
NCs toward clinical success, it is essential to understand the prerequisites
for nanodelivery to be successful in brain treatment. In this Perspective,
we present how pharmacokinetic/pharmacodynamic (PK/PD), formulation
and nanotoxicity factors impact the therapeutic success of brain-specific
nanodelivery. Properties including high loading efficiency, slow in vivo drug release, long systemic circulation, an increase
in unbound brain-to-plasma concentration/exposure ratio (Kp,uu,brain), high drug potency, and minimal nanotoxicity
are prerequisites that should preferably be combined to maximize the
therapeutic potential of a brain-targeted NC. The PK of brain-directed
NCs needs to be evaluated in a more therapeutically relevant manner,
focusing on the released, unbound drug. It is more crucial to increase
the Kp,uu,brain than to improve the ability
of the NC to cross the BBB in its intact form. Brain-targeted NCs,
which are mostly developed for treating brain tumors, including metastases,
should aim to enhance drug delivery not just to tumor regions with
disrupted BBB, but equally important to regions with intact BBB where
the drugs themselves have problems reaching. This article provides
critical insights into how a brain-targeted nanoformulation needs
to be designed and optimized to achieve therapeutic success in the
brain.
Collapse
Affiliation(s)
- Yang Hu
- Translational PKPD Research Group, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational PKPD Research Group, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
21
|
Ray RM, Morris KV. Long Non-coding RNAs Mechanisms of Action in HIV-1 Modulation and the Identification of Novel Therapeutic Targets. Noncoding RNA 2020; 6:ncrna6010012. [PMID: 32183241 PMCID: PMC7151623 DOI: 10.3390/ncrna6010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
This review aims to highlight the role of long non-coding RNAs in mediating human immunodeficiency virus (HIV-1) viral replication, latency, disease susceptibility and progression. In particular, we focus on identifying possible lncRNA targets and their purported mechanisms of action for future drug design or gene therapeutics.
Collapse
|
22
|
Sakurai Y, Mizumura W, Ito K, Iwasaki K, Katoh T, Goto Y, Suga H, Harashima H. Improved Stability of siRNA-Loaded Lipid Nanoparticles Prepared with a PEG-Monoacyl Fatty Acid Facilitates Ligand-Mediated siRNA Delivery. Mol Pharm 2020; 17:1397-1404. [DOI: 10.1021/acs.molpharmaceut.0c00087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Wataru Mizumura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Kenichiro Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Kazuhiro Iwasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| |
Collapse
|
23
|
Begum AA, Toth I, Hussein WM, Moyle PM. Advances in Targeted Gene Delivery. Curr Drug Deliv 2020; 16:588-608. [PMID: 31142250 DOI: 10.2174/1567201816666190529072914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/31/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
Gene therapy has the potential to treat both acquired and inherited genetic diseases. Generally, two types of gene delivery vectors are used - viral vectors and non-viral vectors. Non-viral gene delivery systems have attracted significant interest (e.g. 115 gene therapies approved for clinical trials in 2018; clinicaltrials.gov) due to their lower toxicity, lack of immunogenicity and ease of production compared to viral vectors. To achieve the goal of maximal therapeutic efficacy with minimal adverse effects, the cell-specific targeting of non-viral gene delivery systems has attracted research interest. Targeting through cell surface receptors; the enhanced permeability and retention effect, or pH differences are potential means to target genes to specific organs, tissues, or cells. As for targeting moieties, receptorspecific ligand peptides, antibodies, aptamers and affibodies have been incorporated into synthetic nonviral gene delivery vectors to fulfill the requirement of active targeting. This review provides an overview of different potential targets and targeting moieties to target specific gene delivery systems.
Collapse
Affiliation(s)
- Anjuman A Begum
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia.,Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, St Lucia 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| |
Collapse
|
24
|
Tuttolomondo M, Ditzel HJ. Simple FRET Electrophoresis Method for Precise and Dynamic Evaluation of Serum siRNA Stability. ACS Med Chem Lett 2020; 11:195-202. [PMID: 32071688 DOI: 10.1021/acsmedchemlett.9b00472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Small interfering RNAs (siRNAs) are potent therapeutic molecules, but despite recent progress, their administration in vivo remains challenging due to their low stability in the bloodstream. Thus, techniques for investigating the stability of siRNA are fundamental for the development of efficient siRNA delivery systems. We designed a simple FRET electrophoresis method to dynamically evaluate serum siRNA stability in parallel with its interaction with the serum components. Each strand of the siRNA was labeled with the fluorophore carboxyfluorescein (FAM) at the 5'-end and the quencher carboxytetramethylrhodamine (TAMRA) at the 3'-end. After incubation in serum, molecular stability was proportional to the FRET efficiency that could be quantified in-gel by ImageJ analysis. Compared to the usual gel-shift and other plate-based FRET assays, this method is more sensitive and allows investigation of the stability of serum siRNA and siRNA-based nanoparticles, as well as the extrapolation of degradation kinetics in parallel with interaction analysis.
Collapse
Affiliation(s)
- Martina Tuttolomondo
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
25
|
Targeting Tumor Endothelial Cells with Nanoparticles. Int J Mol Sci 2019; 20:ijms20235819. [PMID: 31756900 PMCID: PMC6928777 DOI: 10.3390/ijms20235819] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Because angiogenesis is a major contributor to cancer progression and metastasis, it is an attractive target for cancer therapy. Although a diverse number of small compounds for anti-angiogenic therapy have been developed, severe adverse effects commonly occur, since small compounds can affect not only tumor endothelial cells (TECs), but also normal endothelial cells. This low selectivity for TECs has motivated researchers to develop alternate types of drug delivery systems (DDSs). In this review, we summarize the current state of knowledge concerning the delivery of nano DDSs to TECs. Their payloads range from small compounds to nucleic acids. Perspectives regarding new therapeutic targets are also mentioned.
Collapse
|
26
|
Sakurai Y. [Development of siRNA Delivery Targeting the Tumor Microenvironment with a New Functional Device]. YAKUGAKU ZASSHI 2019; 139:1357-1363. [PMID: 31685731 DOI: 10.1248/yakushi.19-00150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tumor microenvironment plays a key role in cancer progression, drug resistance, metastasis, etc. To establish a new therapeutic strategy based on control of the tumor microenvironment, I have developed a lipid nanoparticle (LNP)-based in vivo small interfering RNA (siRNA) delivery system equipped with a targeting ligand. First, I established an LNP that induces membrane fusion in response to acidification after internalization by cells using the original pH-sensitive cationic lipid YSK05. A modification of polyethylene glycol to YSK05-containing LNPs allowed significant gene silencing in the human renal cell carcinoma model. Then, I attempted to establish a tumor vasculature-targeting LNP because the vasculature is responsible for the tumor microenvironment. Cyclic RGD peptide is known to be a ligand against integrin αVβ3, which is highly expressed on tumor endothelial cells (TECs). Optimized cyclic RGD peptide-modified LNP (RGD-LNP) suppressed gene expression in TECs to 50%. The inhibition of vascular endothelial cell growth factor receptor 2 (VEGFR2), which is a dominant factor in angiogenesis, by the injection of RGD-LNP significantly delayed tumor growth. Finally, I examined the effect of RGD-LNP on the tumor microenvironment. The suppression of VEGFR2 increased pericyte coverage and endothelial junctions, which indicate maturation of the vasculature. In RGD-LNP-treated mice, systemically administered nanoparticles encapsulating doxorubicin were distributed in a larger area than in untreated mice. Moreover, the therapeutic effect of doxorubicin-loaded liposomes was significantly enhanced by RGD-LNP. In conclusion, I succeeded in developing a new therapy based on regulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
27
|
Nakamura T, Yamada Y, Sato Y, Khalil IA, Harashima H. Innovative nanotechnologies for enhancing nucleic acids/gene therapy: Controlling intracellular trafficking to targeted biodistribution. Biomaterials 2019; 218:119329. [DOI: 10.1016/j.biomaterials.2019.119329] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
|
28
|
Khalifa AM, Elsheikh MA, Khalifa AM, Elnaggar YSR. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J Control Release 2019; 311-312:125-137. [PMID: 31476342 DOI: 10.1016/j.jconrel.2019.08.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Ovarian carcinoma (OC) is one of the leading causes of death among gynecologic malignancies all over the world. It is characterized by high mortality rate because of the lack of early diagnosis. The first-line chemotherapeutic regimen for late stage epithelial ovarian cancer is paclitaxel in combination to carboplatin. However, in most of cases, relapse occurs within six months despite the initial success of this chemotherapeutic combination. A lot of challenges have been encountered with the conventional delivery of paclitaxel in addition to the occurrence of severe off-target toxicity. One major problem is poor paclitaxel solubility which was improved by addition of Cremophor EL that unfortunately resulted in hypersensitivity side effects. Another obstacle is the multi drug resistance which is the main cause of OC recurrence. Accordingly, incorporation of paclitaxel, solely or in combination to other drugs, in nanocarrier systems has grabbed attention of many researchers to circumvent all these hurdles. The current review is the first article that provides a comprehensive overview on multi-faceted implementations of paclitaxel loaded nanoplatforms to solve delivery obstacles of paclitaxel in management of ovarian carcinoma. Moreover, challenges in physicochemical properties, biological activity and targeted delivery of PTX were depicted with corresponding solutions using nanotechnology. Different categories of nanocarriers employed were collected included lipid, protein, polymeric, solid nanoemulsion and hybrid systems. Future perspectives including imperative research considerations in ovarian cancer therapy were proposed as well.
Collapse
Affiliation(s)
- Alaa M Khalifa
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Manal A Elsheikh
- Department of pharmaceutics, Faculty of Pharmacy, Damanhur University, Damanhur, Egypt
| | - Amr M Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Yosra S R Elnaggar
- Head of International Publication and Nanotechnology Consultation Center INCC, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt; Department of Pharmaceutics Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
29
|
Khalil IA, Sato Y, Harashima H. Recent advances in the targeting of systemically administered non-viral gene delivery systems. Expert Opin Drug Deliv 2019; 16:1037-1050. [PMID: 31432700 DOI: 10.1080/17425247.2019.1656196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Systemically administered non-viral gene delivery systems face multiple biological barriers that decrease their efficiency. These systems are rapidly cleared from the circulation and sufficient concentrations do not accumulate in diseased tissues. A number of targeting strategies can be used to provide for sufficient accumulation in the desired tissues to achieve a therapeutic effect. Areas covered: We discuss recent advances in the targeting of non-viral gene delivery systems to different tissues after systemic administration. We compare passive and active targeting applied for tumor delivery and propose some strategies that can be used to overcome the drawbacks of each case. We also discuss targeting the liver and lungs as two particularly important organs in gene therapy. Expert opinion: There is currently no optimum non-viral gene delivery system for targeting genes to specific tissues. The dose delivered to tumor tissues using passive targeting is low and shows a high patient variation. Although active targeting can enhance binding to specific cells, only a few reports are available to support its value in vivo. The design of smart nanocarriers for promoting active targeting is urgently needed and targeting the endothelium is a promising strategy for gene delivery to tumors as well as other organs.
Collapse
Affiliation(s)
- Ikramy A Khalil
- Faculty of Pharmaceutical Sciences, Hokkaido University , Sapporo , Japan.,Faculty of Pharmacy, Assiut University , Assiut , Egypt
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University , Sapporo , Japan
| | | |
Collapse
|
30
|
Holm R, Schwiertz D, Weber B, Schultze J, Kuhn J, Koynov K, Lächelt U, Barz M. Multifunctional Cationic PeptoStars as siRNA Carrier: Influence of Architecture and Histidine Modification on Knockdown Potential. Macromol Biosci 2019; 20:e1900152. [PMID: 31430057 DOI: 10.1002/mabi.201900152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Indexed: 12/23/2022]
Abstract
RNA interference provides enormous potential for the treatment of several diseases, including cancer. Nevertheless, successful therapies based on siRNA require overcoming various challenges, such as poor pharmacokinetic characteristics of the small RNA molecule and inefficient cytosolic accumulation. In this respect, the development of functional siRNA carrier systems is a major task in biomedical research. To provide such a desired system, the synthesis of 3-arm and 6-arm PeptoStars is aimed for. The different branched polypept(o)idic architectures share a stealth-like polysarcosine corona for efficient shielding and a multifunctional polylysine core, which can be independently varied in size and functionality for siRNA complexation-, transport and intra cellular release. The special feature of star-like polypept(o)ides is in their uniform small size (<20 nm) and a core-shell structure, which implies a high stability and stealth-like properties and thus, they may combine long circulation times and a deep penetration of cancerous tissue. Initial toxicity and complement studies demonstrate well tolerated cationic PeptoStars with high complexation capability toward siRNA (N/P ratio up to 3:1), which can lead to potent RNAi for optimized systems. Here, the synthetic development of 3-arm and 6-arm polypept(o)idic star polymers, their modification with endosomolytic moieties, and first in vitro insights on RNA interference are reported on.
Collapse
Affiliation(s)
- Regina Holm
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - David Schwiertz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Benjamin Weber
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Jennifer Schultze
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jasmin Kuhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
31
|
Raju GSR, Dariya B, Mungamuri SK, Chalikonda G, Kang SM, Khan IN, Sushma PS, Nagaraju GP, Pavitra E, Han YK. Nanomaterials multifunctional behavior for enlightened cancer therapeutics. Semin Cancer Biol 2019; 69:178-189. [PMID: 31419527 DOI: 10.1016/j.semcancer.2019.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/03/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Cancer is an outrageous disease with uncontrolled differentiation, growth, and migration to the other parts of the body. It is the second-most common cause of death both in the U.S. and worldwide. Current conventional therapies, though much improved and with better prognosis, have several limitations. Chemotherapeutic agents, for instance, are cytotoxic to both tumor and healthy cells, and the non-specific distribution of drugs at tumor sites limits the dose administered. Nanotechnology, which evolved from the coalescence and union of varied scientific disciplines, is a novel science that has been the focus of much research. This technology is generating more effective cancer therapies to overcome biomedical and biophysical barriers against standard interventions in the body; its unique magnetic, electrical, and structural properties make it a promising tool. This article reviews endogenous- and exogenous-based stimulus-responsive drug delivery systems designed to overcome the limitations of conventional therapies. The article also summarizes the study of nanomaterials, including polymeric, gold, silver, magnetic, and quantum dot nanoparticles. Though an array of drug delivery systems has so far been proposed, there remain many challenges and concerns that should be addressed in order to fill the gaps in the field. Prominence is given to drug delivery systems that employ external- and internal-based stimuli and that are emerging as promising tools for cancer therapeutics in clinical settings.
Collapse
Affiliation(s)
- Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Begum Dariya
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Sathish Kumar Mungamuri
- Ramanujan Fellow, Indian Council of Medical Research-National Institute of Nutrtion, Hyderabad, 500007, India
| | - Gayathri Chalikonda
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Ishaq N Khan
- Neurooncology & Oncomedicine Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Pinninti Santosh Sushma
- Department of Biotechnology, Dr. NTR University of Health Sciences, Vijayawada, Andhra Pradesh, 520 008, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| |
Collapse
|
32
|
Younis MA, Khalil IA, Abd Elwakil MM, Harashima H. A Multifunctional Lipid-Based Nanodevice for the Highly Specific Codelivery of Sorafenib and Midkine siRNA to Hepatic Cancer Cells. Mol Pharm 2019; 16:4031-4044. [DOI: 10.1021/acs.molpharmaceut.9b00738] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mahmoud A. Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ikramy A. Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud M. Abd Elwakil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
33
|
Dalmina M, Pittella F, Sierra JA, Souza GRR, Silva AH, Pasa AA, Creczynski-Pasa TB. Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1182-1190. [DOI: 10.1016/j.msec.2019.02.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/25/2019] [Accepted: 02/08/2019] [Indexed: 11/29/2022]
|
34
|
Abstract
As synthetic small interfering RNA (siRNA) against antitumoral gene targets show promise for cancer treatment, different siRNA delivery systems have sparkled intense investigations. To develop tumor-specific carriers for cytosolic and systemic siRNA delivery, our laboratory has recently generated folate-conjugated targeted combinatorial siRNA polyplexes based on sequence-defined oligomer platform compatible with solid-phase-supported synthesis. These polyplexes presented efficient siRNA-mediated gene silencing in folate receptor-expressing tumors in vitro and in vivo. In this chapter, we provide a brief background on the formulation design and detailed protocols to evaluate polyplex formation, gene silencing efficiency, and receptor-directed cell killing in cancer cells using targeted combinatorial siRNA polyplexes.
Collapse
Affiliation(s)
- Dian-Jang Lee
- Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
- Nanosystems Initiative Munich (NIM), Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
- Nanosystems Initiative Munich (NIM), Munich, Germany.
| |
Collapse
|
35
|
Mittal R, Woo FW, Castro CS, Cohen MA, Karanxha J, Mittal J, Chhibber T, Jhaveri VM. Organ‐on‐chip models: Implications in drug discovery and clinical applications. J Cell Physiol 2018; 234:8352-8380. [DOI: 10.1002/jcp.27729] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Frank W. Woo
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Carlo S. Castro
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Madeline A. Cohen
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Joana Karanxha
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Tanya Chhibber
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University Chandigarh India
| | - Vasanti M. Jhaveri
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
36
|
Effective Therapy Using a Liposomal siRNA that Targets the Tumor Vasculature in a Model Murine Breast Cancer with Lung Metastasis. MOLECULAR THERAPY-ONCOLYTICS 2018; 11:102-108. [PMID: 30534584 PMCID: PMC6280606 DOI: 10.1016/j.omto.2018.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/23/2018] [Indexed: 11/27/2022]
Abstract
Although metastatic cancer is a major cause of death for cancer patients, no efficacious treatment for metastasis is available. We previously showed that the growth of a primary tumor could be inhibited by the administration of an anti-angiogenic small interfering RNA (siRNA) that is encapsulated in an RGD peptide-modified lipid nanoparticle (RGD-LNP). We herein report on the delivery of siRNA by an RGD-LNP to the vasculature is also effective for treating metastatic tumors. We compared the RGD-LNP with the polyethylene glycol (PEG)ylated LNP (PEG-LNP) in terms of accumulation in a lung-metastasized model. Despite malformed structure of vasculature in the metastasized lung, the accumulation of the PEG-LNP in the metastasized lung was lower than that for the RGD-LNP, which suggests that the delivery strategy based on vascular permeability is not completely effective for targeting metastasis tumors. The systemic injection of the RGD-LNP induced a significant silencing in the metastasized vasculature, but not in the normal lung. In addition, the continuous injection of the RGD-LNP encapsulating siRNA against a delta-like ligand 4 (DLL4) drastically prolonged the overall survival of metastasized model mice. Accordingly, our current findings suggest that vasculature targeting would be more effective than enhanced permeability and retention effect-based therapy for the treatment of metastatic cancer.
Collapse
|
37
|
Lai Y, Xu X, Zhu Z, Hua Z. Highly efficient siRNA transfection in macrophages using apoptotic body-mimic Ca-PS lipopolyplex. Int J Nanomedicine 2018; 13:6603-6623. [PMID: 30425477 PMCID: PMC6205523 DOI: 10.2147/ijn.s176991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The discovery and development of RNA interference has made a tremendous contribution to the biochemical and biomedical field. However, liposomal transfection protocols to deliver siRNAs to certain types of cells, eg, immune cells, are not viable due to exceedingly low transfection efficiency. While viral delivery and electroporation are two widely adopted approaches to transfect immune cells, they are associated with certain drawbacks such as complexity of preparation, biosafety issues, and high cytotoxicity. We believe amendments can be made to liposomal formulas and protocols to achieve a highly efficient knockdown of genes by liposome-loaded siRNAs. Aim The aim of this study was to use the apoptotic-mimic Ca-PS lipopolyplex to achieve highly efficient siRNA knockdown of genes in the hard-to-transfect macrophages with reduced cytotoxicity and more efficient cellular uptake. Results We devised an anionic liposomal formula containing phosphatidylserine to mimic the apoptotic body, the Ca-PS lipopolyplex. Ca-PS lipopolyplex was proven to be capable of delivering and effecting efficient gene knockdown in multiple cell lines at lowered cytotoxicity. Among the two types of macrophages, namely Ana-1 and bone-marrow derived macrophages, Ca-PS lipopolyplex showed an improvement in knockdown efficiency, as high as 157%, over Lipo2000. Further investigations revealed that Ca-PS promotes increased cellular uptake, lysosomal escape and localization of siRNAs to the perinuclear regions in macrophages. Lastly, transfection by Ca-PS lipopolyplex did not induce spontaneous polarization of macrophages. Conclusion The apoptotic body-mimic Ca-PS lipopolyplex is a stable, non-cytotoxic liposomal delivery system for siRNAs featuring vastly improved potency for macrophages and lowered cytotoxicity. It is speculated that Ca-PS lipopolyplex can be applied to other immune cells such as T cells and DC cells, but further research efforts are required to explore its promising potentials.
Collapse
Affiliation(s)
- Yueyang Lai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China,
| | - Xuebo Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China,
| | - Zhenyu Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China,
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China, .,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China,
| |
Collapse
|
38
|
Reinhard S, Wang Y, Dengler S, Wagner E. Precise Enzymatic Cleavage Sites for Improved Bioactivity of siRNA Lipo-Polyplexes. Bioconjug Chem 2018; 29:3649-3657. [DOI: 10.1021/acs.bioconjchem.8b00585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sören Reinhard
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Yanfang Wang
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Sebastian Dengler
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
- Nanosystems Initiative
Munich (NIM), Schellingstrasse 4, 80799 München, Germany
| |
Collapse
|
39
|
Klein PM, Kern S, Lee DJ, Schmaus J, Höhn M, Gorges J, Kazmaier U, Wagner E. Folate receptor-directed orthogonal click-functionalization of siRNA lipopolyplexes for tumor cell killing in vivo. Biomaterials 2018; 178:630-642. [DOI: 10.1016/j.biomaterials.2018.03.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022]
|
40
|
Neutralization of negative charges of siRNA results in improved safety and efficient gene silencing activity of lipid nanoparticles loaded with high levels of siRNA. J Control Release 2018; 284:179-187. [DOI: 10.1016/j.jconrel.2018.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/01/2018] [Accepted: 06/12/2018] [Indexed: 11/24/2022]
|
41
|
Shirane D, Tanaka H, Nakai Y, Yoshioka H, Akita H. Development of an Alcohol Dilution–Lyophilization Method for Preparing Lipid Nanoparticles Containing Encapsulated siRNA. Biol Pharm Bull 2018; 41:1291-1294. [DOI: 10.1248/bpb.b18-00208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Daiki Shirane
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
42
|
Klein PM, Klinker K, Zhang W, Kern S, Kessel E, Wagner E, Barz M. Efficient Shielding of Polyplexes Using Heterotelechelic Polysarcosines. Polymers (Basel) 2018; 10:E689. [PMID: 30966723 PMCID: PMC6404158 DOI: 10.3390/polym10060689] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/13/2018] [Accepted: 06/17/2018] [Indexed: 11/16/2022] Open
Abstract
Shielding agents are commonly used to shield polyelectrolyte complexes, e.g., polyplexes, from agglomeration and precipitation in complex media like blood, and thus enhance their in vivo circulation times. Since up to now primarily poly(ethylene glycol) (PEG) has been investigated to shield non-viral carriers for systemic delivery, we report on the use of polysarcosine (pSar) as a potential alternative for steric stabilization. A redox-sensitive, cationizable lipo-oligomer structure (containing two cholanic acids attached via a bioreducible disulfide linker to an oligoaminoamide backbone in T-shape configuration) was equipped with azide-functionality by solid phase supported synthesis. After mixing with small interfering RNA (siRNA), lipopolyplexes formed spontaneously and were further surface-functionalized with polysarcosines. Polysarcosine was synthesized by living controlled ring-opening polymerization using an azide-reactive dibenzo-aza-cyclooctyne-amine as an initiator. The shielding ability of the resulting formulations was investigated with biophysical assays and by near-infrared fluorescence bioimaging in mice. The modification of ~100 nm lipopolyplexes was only slightly increased upon functionalization. Cellular uptake into cells was strongly reduced by the pSar shielding. Moreover, polysarcosine-shielded polyplexes showed enhanced blood circulation times in bioimaging studies compared to unshielded polyplexes and similar to PEG-shielded polyplexes. Therefore, polysarcosine is a promising alternative for the shielding of non-viral, lipo-cationic polyplexes.
Collapse
Affiliation(s)
- Philipp Michael Klein
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Pharmaceutical Biotechnology, Butenandtstrasse 5-13, D-81377 Munich, Germany.
| | - Kristina Klinker
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, D-55128 Mainz, Germany.
- Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
| | - Wei Zhang
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Pharmaceutical Biotechnology, Butenandtstrasse 5-13, D-81377 Munich, Germany.
| | - Sarah Kern
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Pharmaceutical Biotechnology, Butenandtstrasse 5-13, D-81377 Munich, Germany.
| | - Eva Kessel
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Pharmaceutical Biotechnology, Butenandtstrasse 5-13, D-81377 Munich, Germany.
| | - Ernst Wagner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Pharmaceutical Biotechnology, Butenandtstrasse 5-13, D-81377 Munich, Germany.
- Nanosystems Initiative Munich, Schellingstraße 4, D-80799 Munich, Germany.
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, D-55128 Mainz, Germany.
| |
Collapse
|
43
|
Hatakeyama H. [Development of a Novel Liposomal DDS by Manipulating Pharmacokinetics and Intracellular Trafficking for Drug Therapy and Nucleic Acid Medicine]. YAKUGAKU ZASSHI 2018; 138:591-598. [PMID: 29709998 DOI: 10.1248/yakushi.17-00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleic acid therapy is expected to be a next generation medicine. We recently developed a multifunctional envelope-type nano device (MEND) for use as a novel delivery system. The modification of polyethylene glycol (PEG), i.e., PEGylation, is useful for achieving the delivery of MENDs to tumors via an enhanced permeability and retention (EPR) effect. However, PEGylation strongly inhibits the cellular uptake and endosomal escape of MEND, which results in significant loss of action, and therefore lost effectiveness, of the cargo therapeutic. For successful nucleic acid delivery in cancer treatment, the crucial problem associated with the use of PEG, known as the "PEG dilemma", must be solved. In this review, we describe the development and application of MEND in overcoming the PEG dilemma based on manipulating both the pharmacokinetics and intracellular trafficking of cellular uptake and endosomal release using a cleavable PEG lipid, a pH-sensitive fusogenic peptide, and a pH-sensitive cationic lipid. We also developed dual-ligand liposomes with a controlled diameter of around 300 nm, then modified these with a specific ligand and a cell penetrating peptide designed to target the neovasculature of tumors. Dual-ligand liposomes could induce an anti-tumor effect in drug resistant tumors by delivering drugs to tumor blood vessels, rather than to the cancer cells themselves. Here, we review our recent efforts to develop a novel liposomal drug delivery system (DDS) by manipulating pharmacokinetics and intracellular trafficking for drug therapy and nucleic acid medicine.
Collapse
Affiliation(s)
- Hiroto Hatakeyama
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
44
|
Failure of active targeting by a cholesterol-anchored ligand and improvement by altering the lipid composition to prevent ligand desorption. Int J Pharm 2018; 536:42-49. [DOI: 10.1016/j.ijpharm.2017.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/12/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
|
45
|
Xu Q, Junttila S, Scherer A, Giri KR, Kivelä O, Skovorodkin I, Röning J, Quaggin SE, Marti HP, Shan J, Samoylenko A, Vainio SJ. Renal carcinoma/kidney progenitor cell chimera organoid as a novel tumorigenesis gene discovery model. Dis Model Mech 2017; 10:1503-1515. [PMID: 29084770 PMCID: PMC5769601 DOI: 10.1242/dmm.028332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) organoids provide a new way to model various diseases, including cancer. We made use of recently developed kidney-organ-primordia tissue-engineering technologies to create novel renal organoids for cancer gene discovery. We then tested whether our novel assays can be used to examine kidney cancer development. First, we identified the transcriptomic profiles of quiescent embryonic mouse metanephric mesenchyme (MM) and of MM in which the nephrogenesis program had been induced ex vivo. The transcriptome profiles were then compared to the profiles of tumor biopsies from renal cell carcinoma (RCC) patients, and control samples from the same kidneys. Certain signature genes were identified that correlated in the developmentally induced MM and RCC, including components of the caveolar-mediated endocytosis signaling pathway. An efficient siRNA-mediated knockdown (KD) of Bnip3, Gsn, Lgals3, Pax8, Cav1, Egfr or Itgb2 gene expression was achieved in mouse RCC (Renca) cells. The live-cell imaging analysis revealed inhibition of cell migration and cell viability in the gene-KD Renca cells in comparison to Renca controls. Upon siRNA treatment, the transwell invasion capacity of Renca cells was also inhibited. Finally, we mixed E11.5 MM with yellow fluorescent protein (YFP)-expressing Renca cells to establish chimera organoids. Strikingly, we found that the Bnip3-, Cav1- and Gsn-KD Renca-YFP+ cells as a chimera with the MM in 3D organoid rescued, in part, the RCC-mediated inhibition of the nephrogenesis program during epithelial tubules formation. Altogether, our research indicates that comparing renal ontogenesis control genes to the genes involved in kidney cancer may provide new growth-associated gene screens and that 3D RCC-MM chimera organoids can serve as a novel model with which to investigate the behavioral roles of cancer cells within the context of emergent complex tissue structures. Editor’s Choice: Chimeras between embryonic kidney cells and renal carcinoma cells serve as a novel model to assay the roles of co-regulated genes in kidney development and renal carcinogenesis.
Collapse
Affiliation(s)
- Qi Xu
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Sanna Junttila
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | | | - Khem Raj Giri
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Oona Kivelä
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland.,ValiFinn, FI-90220 Oulu, Finland
| | - Ilya Skovorodkin
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Juha Röning
- Department of Computer Science and Engineering, University of Oulu, FI-90014 Oulu, Finland
| | - Susan E Quaggin
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland.,Feinberg Cardiovascular Research Institute, Division of Medicine-Nephrology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Jingdong Shan
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Anatoly Samoylenko
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| |
Collapse
|
46
|
Delivery Pathway Regulation of 3',3″-Bis-Peptide-siRNA Conjugate via Nanocarrier Architecture Engineering. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:75-90. [PMID: 29499958 PMCID: PMC5726857 DOI: 10.1016/j.omtn.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/21/2023]
Abstract
Small interfering RNA (siRNA) has been continuously explored for clinical applications. However, neither nanocarriers nor conjugates have been able to remove the obstacles. In this study, we employed a combined nanochemistry strategy to optimize its delivery dilemma, where different interactions and assembly modes were cooperatively introduced into the forming process of siRNA/lipids nanoplexes. In the nanoplexes, the 3',3″-bis-peptide-siRNA conjugate (pp-siRNA) and gemini-like cationic lipids (CLDs) were employed as dual regulators to improve their bio-behavior. We demonstrated that the "cicada pupa"-shaped nanoplexes of MT-pp-siRNA/CLDs (MT represented the mixed two-phase method) exhibited more compact multi-sandwich structure (∼25 layers), controllable size (∼150 nm), and lower zeta potential (∼22 mV) than other comparable nanoplexes and presented an increased siRNA protection and stability. Significantly, the nanoplex was internalized into melanoma cells by almost caveolae-mediated endocytosis and macropinocytosis (∼99.46%), and later reduced/avoided lysosomal degradation. Finally, the nanoplex facilitated the silencing of mRNA of the mutant B-Raf protein (down by ∼60%). In addition, pp-siRNA had a high intracellular sustainability, a significantly prolonged circulating time, and accumulation in tumor tissues in vivo. Our results have demonstrated that the combined approach can improve the intracellular fate of siRNA, which opens up novel avenues for efficient siRNA delivery.
Collapse
|
47
|
Satyal U, Draghici B, Dragic LL, Zhang Q, Norris KW, Madesh M, Brailoiu E, Ilies MA. Interfacially Engineered Pyridinium Pseudogemini Surfactants as Versatile and Efficient Supramolecular Delivery Systems for DNA, siRNA, and mRNA. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29481-29495. [PMID: 28809098 PMCID: PMC7774514 DOI: 10.1021/acsami.7b07066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This article presents the synthesis, self-assembly, and biological activity as transfection agents for pDNA, siRNA, and mRNA of novel pyridinium pseudogemini surfactants, interfacially engineered from the most efficient gemini surfactants and lipids generated in our amphiphile research program. Formulation of novel amphiphiles in water revealed supramolecular properties very similar to those of gemini surfactants, despite their lipidlike charge/mass ratio. This dual character was found also to enhance endosomal escape and significantly increase the transfection efficiency. We were also successful in identifying the parameters governing the efficient delivery of pDNA, siRNA, and mRNA, drawing valuable structure-activity and structure-property relationships for each nucleic acid type, and establishing DNA/siRNA/mRNA comparisons. Several supramolecular complexes identified in this study proved to be extremely efficient nucleic acid delivery systems, displaying excellent serum stability and tissue penetration in three-dimensional organoids.
Collapse
Affiliation(s)
- Uttam Satyal
- Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| | - Bogdan Draghici
- Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| | - Lisa L. Dragic
- Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| | - Qiangnan Zhang
- Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| | - Kyle W. Norris
- Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Center for Translational Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Marc A. Ilies
- Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
48
|
Sakurai Y, Mizumura W, Murata M, Hada T, Yamamoto S, Ito K, Iwasaki K, Katoh T, Goto Y, Takagi A, Kohara M, Suga H, Harashima H. Efficient siRNA Delivery by Lipid Nanoparticles Modified with a Nonstandard Macrocyclic Peptide for EpCAM-Targeting. Mol Pharm 2017; 14:3290-3298. [DOI: 10.1021/acs.molpharmaceut.7b00362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu Sakurai
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Wataru Mizumura
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Manami Murata
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Tomoya Hada
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Shoshiro Yamamoto
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Kenichiro Ito
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kazuhiro Iwasaki
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Takayuki Katoh
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Asako Takagi
- Department of Microbiology
and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Michinori Kohara
- Department of Microbiology
and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Hideyoshi Harashima
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| |
Collapse
|
49
|
Lee DJ, Kessel E, Lehto T, Liu X, Yoshinaga N, Padari K, Chen YC, Kempter S, Uchida S, Rädler JO, Pooga M, Sheu MT, Kataoka K, Wagner E. Systemic Delivery of Folate-PEG siRNA Lipopolyplexes with Enhanced Intracellular Stability for In Vivo Gene Silencing in Leukemia. Bioconjug Chem 2017; 28:2393-2409. [PMID: 28772071 DOI: 10.1021/acs.bioconjchem.7b00383] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protection of small interfering RNA (siRNA) against degradation and targeted delivery across the plasma and endosomal membranes to the final site of RNA interference (RNAi) are major aims for the development of siRNA therapeutics. Targeting for folate receptor (FR)-expressing tumors, we optimized siRNA polyplexes by coformulating a folate-PEG-oligoaminoamide (for surface shielding and targeting) with one of three lipo-oligoaminoamides (optionally tyrosine-modified, for optimizing stability and size) to generate ∼100 nm targeted lipopolyplexes (TLPs), which self-stabilize by cysteine disulfide cross-links. To better understand parameters for improved tumor-directed gene silencing, we analyzed intracellular distribution and siRNA release kinetics. FR-mediated endocytosis and endosomal escape of TLPs was confirmed by immuno-TEM. We monitored colocalization of TLPs with endosomes and lysosomes, and onset of siRNA release by time-lapse confocal microscopy; analyzed intracellular stability by FRET using double-labeled siRNA; and correlated results with knockdown of eGFPLuc protein and EG5 mRNA expression. The most potent formulation, TLP1, containing lipopolyplex-stabilizing tyrosine trimers, was found to unpack siRNA in sustained manner with up to 5-fold higher intracellular siRNA stability after 4 h compared to other TLPs. Unexpectedly, data indicated that intracellular siRNA stability instead of an early endosomal exit dominate as a deciding factor for silencing efficiency of TLPs. After i.v. administration in a subcutaneous leukemia mouse model, TLP1 exhibited ligand-dependent tumoral siRNA retention, resulting in 65% EG5 gene silencing at mRNA level without detectable adverse effects. In sum, tyrosine-modified TLP1 conveys superior protection of siRNA for an effective tumor-targeted delivery and RNAi in vivo.
Collapse
Affiliation(s)
- Dian-Jang Lee
- Department of Pharmacy and Center for NanoScience, Ludwig-Maximilians-Universität München , Butenandtstr. 5-13, 81377 Munich, Germany.,Nanosystems Initiative Munich (NIM) , Schellingstr. 4, 80799 Munich, Germany
| | - Eva Kessel
- Department of Pharmacy and Center for NanoScience, Ludwig-Maximilians-Universität München , Butenandtstr. 5-13, 81377 Munich, Germany.,Nanosystems Initiative Munich (NIM) , Schellingstr. 4, 80799 Munich, Germany
| | - Taavi Lehto
- Department of Pharmacy and Center for NanoScience, Ludwig-Maximilians-Universität München , Butenandtstr. 5-13, 81377 Munich, Germany
| | - Xueying Liu
- Innovation Center of NanoMedicine (iCONM), Institute of Industry Promotion-Kawasaki , 3-25-14 Tonomachi, Kawasaki-ku, 210-0821 Kawasaki, Japan
| | - Naoto Yoshinaga
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Kärt Padari
- Institute of Molecular and Cell Biology and Institute of Technology, University of Tartu , 23 Riia Str., 51010 Tartu, Estonia
| | - Ying-Chen Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University , No. 250, Wuxin St., 11031 Taipei, Taiwan
| | - Susanne Kempter
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Institute of Industry Promotion-Kawasaki , 3-25-14 Tonomachi, Kawasaki-ku, 210-0821 Kawasaki, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Joachim O Rädler
- Nanosystems Initiative Munich (NIM) , Schellingstr. 4, 80799 Munich, Germany.,Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Margus Pooga
- Institute of Molecular and Cell Biology and Institute of Technology, University of Tartu , 23 Riia Str., 51010 Tartu, Estonia
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University , No. 250, Wuxin St., 11031 Taipei, Taiwan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Institute of Industry Promotion-Kawasaki , 3-25-14 Tonomachi, Kawasaki-ku, 210-0821 Kawasaki, Japan.,Policy Alternatives Research Institute, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Ernst Wagner
- Department of Pharmacy and Center for NanoScience, Ludwig-Maximilians-Universität München , Butenandtstr. 5-13, 81377 Munich, Germany.,Nanosystems Initiative Munich (NIM) , Schellingstr. 4, 80799 Munich, Germany
| |
Collapse
|
50
|
Reinhard S, Zhang W, Wagner E. Optimized Solid‐Phase‐Assisted Synthesis of Oleic Acid Containing siRNA Nanocarriers. ChemMedChem 2017; 12:1464-1470. [DOI: 10.1002/cmdc.201700350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/17/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Sören Reinhard
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience, CeNSLudwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Wei Zhang
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience, CeNSLudwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience, CeNSLudwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
- Nanosystems Initiative Munich, NIM Schellingstr. 4 80799 München Germany
| |
Collapse
|