1
|
Jacobs R, Dogbey MD, Mnyandu N, Neves K, Barth S, Arbuthnot P, Maepa MB. AAV Immunotoxicity: Implications in Anti-HBV Gene Therapy. Microorganisms 2023; 11:2985. [PMID: 38138129 PMCID: PMC10745739 DOI: 10.3390/microorganisms11122985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) has afflicted humankind for decades and there is still no treatment that can clear the infection. The development of recombinant adeno-associated virus (rAAV)-based gene therapy for HBV infection has become important in recent years and research has made exciting leaps. Initial studies, mainly using mouse models, showed that rAAVs are non-toxic and induce minimal immune responses. However, several later studies demonstrated rAAV toxicity, which is inextricably associated with immunogenicity. This is a major setback for the progression of rAAV-based therapies toward clinical application. Research aimed at understanding the mechanisms behind rAAV immunity and toxicity has contributed significantly to the inception of approaches to overcoming these challenges. The target tissue, the features of the vector, and the vector dose are some of the determinants of AAV toxicity, with the latter being associated with the most severe adverse events. This review discusses our current understanding of rAAV immunogenicity, toxicity, and approaches to overcoming these hurdles. How this information and current knowledge about HBV biology and immunity can be harnessed in the efforts to design safe and effective anti-HBV rAAVs is discussed.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Makafui Dennis Dogbey
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
| | - Njabulo Mnyandu
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Keila Neves
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| |
Collapse
|
2
|
Teixeira AP, Xue S, Huang J, Fussenegger M. Evolution of molecular switches for regulation of transgene expression by clinically licensed gluconate. Nucleic Acids Res 2023; 51:e85. [PMID: 37497781 PMCID: PMC10450161 DOI: 10.1093/nar/gkad600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023] Open
Abstract
Synthetic biology holds great promise to improve the safety and efficacy of future gene and engineered cell therapies by providing new means of endogenous or exogenous control of the embedded therapeutic programs. Here, we focused on gluconate as a clinically licensed small-molecule inducer and engineered gluconate-sensitive molecular switches to regulate transgene expression in human cell cultures and in mice. Several switch designs were assembled based on the gluconate-responsive transcriptional repressor GntR from Escherichia coli. Initially we assembled OFF- and ON-type switches by rewiring the native gluconate-dependent binding of GntR to target DNA sequences in mammalian cells. Then, we utilized the ability of GntR to dimerize in the presence of gluconate to activate gene expression from a split transcriptional activator. By means of random mutagenesis of GntR combined with phenotypic screening, we identified variants that significantly enhanced the functionality of the genetic devices, enabling the construction of robust two-input logic gates. We also demonstrated the potential utility of the synthetic switch in two in vivo settings, one employing implantation of alginate-encapsulated engineered cells and the other involving modification of host cells by DNA delivery. Then, as proof-of-concept, the gluconate-actuated genetic switch was connected to insulin secretion, and the components encoding gluconate-induced insulin production were introduced into type-1 diabetic mice as naked DNA via hydrodynamic tail vein injection. Normoglycemia was restored, thereby showcasing the suitability of oral gluconate to regulate in situ production of a therapeutic protein.
Collapse
Affiliation(s)
- Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
| | - Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058Basel, Switzerland
| |
Collapse
|
3
|
Keys HR, Knouse KA. Genome-scale CRISPR screening in a single mouse liver. CELL GENOMICS 2022; 2:100217. [PMID: 36643909 PMCID: PMC9835819 DOI: 10.1016/j.xgen.2022.100217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
A complete understanding of the genetic determinants underlying mammalian physiology and disease is limited by the capacity for high-throughput genetic dissection in the living organism. Genome-wide CRISPR screening is a powerful method for uncovering the genetic regulation of cellular processes, but the need to stably deliver single guide RNAs to millions of cells has largely restricted its implementation to ex vivo systems. There thus remains a need for accessible high-throughput functional genomics in vivo. Here, we establish genome-wide screening in the liver of a single mouse and use this approach to uncover regulation of hepatocyte fitness. We uncover pathways not identified in cell culture screens, underscoring the power of genetic dissection in the organism. The approach we developed is accessible, scalable, and adaptable to diverse phenotypes and applications. We have hereby established a foundation for high-throughput functional genomics in a living mammal, enabling comprehensive investigation of physiology and disease.
Collapse
Affiliation(s)
- Heather R. Keys
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kristin A. Knouse
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: The Rubik's cube of human gene therapy. Mol Ther 2022; 30:3515-3541. [PMID: 36203359 PMCID: PMC9734031 DOI: 10.1016/j.ymthe.2022.09.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
Defective genes account for ∼80% of the total of more than 7,000 diseases known to date. Gene therapy brings the promise of a one-time treatment option that will fix the errors in patient genetic coding. Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Adeno-associated virus (AAV) vectors offer unique advantages, such as tissue tropism, specificity in transduction, eliciting of a relatively low immune responses, no incorporation into the host chromosome, and long-lasting delivered gene expression, making them the most popular viral gene delivery system in clinical trials, with three AAV-based gene therapy drugs already approved by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA). Despite the success of AAV vectors, their usage in particular scenarios is still limited due to remaining challenges, such as poor transduction efficiency in certain tissues, low organ specificity, pre-existing humoral immunity to AAV capsids, and vector dose-dependent toxicity in patients. In the present review, we address the different approaches to improve AAV vectors for gene therapy with a focus on AAV capsid selection and engineering, strategies to overcome anti-AAV immune response, and vector genome design, ending with a glimpse at vector production methods and the current state of recombinant AAV (rAAV) at the clinical level.
Collapse
Affiliation(s)
- Amaury Pupo
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Audry Fernández
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Siew Hui Low
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Achille François
- Viralgen. Parque Tecnológico de Guipuzkoa, Edificio Kuatro, Paseo Mikeletegui, 83, 20009 San Sebastián, Spain
| | - Lester Suárez-Amarán
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Richard Jude Samulski
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Corresponding author: Richard Jude Samulski, R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, NC 27709, USA.
| |
Collapse
|
5
|
Sethuraman M, Dronadula N, Bi L, Wacker BK, Knight E, De Bleser P, Dichek DA. Novel expression cassettes for increasing apolipoprotein AI transgene expression in vascular endothelial cells. Sci Rep 2022; 12:21079. [PMID: 36473901 PMCID: PMC9726828 DOI: 10.1038/s41598-022-25333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Transduction of endothelial cells (EC) with a vector that expresses apolipoprotein A-I (APOAI) reduces atherosclerosis in arteries of fat-fed rabbits. However, the effects on atherosclerosis are partial and might be enhanced if APOAI expression could be increased. With a goal of developing an expression cassette that generates higher levels of APOAI mRNA in EC, we tested 4 strategies, largely in vitro: addition of 2 types of enhancers, addition of computationally identified EC-specific cis-regulatory modules (CRM), and insertion of the rabbit APOAI gene at the transcription start site (TSS) of sequences cloned from genes that are highly expressed in cultured EC. Addition of a shear stress-responsive enhancer did not increase APOAI expression. Addition of 2 copies of a Mef2c enhancer increased APOAI expression from a moderately active promoter/enhancer but decreased APOAI expression from a highly active promoter/enhancer. Of the 11 CRMs, 3 increased APOAI expression from a moderately active promoter (2-7-fold; P < 0.05); none increased expression from a highly active promoter/enhancer. Insertion of the APOAI gene into the TSS of highly expressed EC genes did not increase expression above levels obtained with a moderately active promoter/enhancer. New strategies are needed to further increase APOAI transgene expression in EC.
Collapse
Affiliation(s)
- Meena Sethuraman
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Lianxiang Bi
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bradley K Wacker
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ethan Knight
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Pieter De Bleser
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | - David A Dichek
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Tiyaboonchai A, Vonada A, Posey J, Pelz C, Wakefield L, Grompe M. Self-cleaving guide RNAs enable pharmacological selection of precise gene editing events in vivo. Nat Commun 2022; 13:7391. [PMID: 36450762 PMCID: PMC9712609 DOI: 10.1038/s41467-022-35097-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Expression of guide RNAs in the CRISPR/Cas9 system typically requires the use of RNA polymerase III promoters, which are not cell-type specific. Flanking the gRNA with self-cleaving ribozyme motifs to create a self-cleaving gRNA overcomes this limitation. Here, we use self-cleaving gRNAs to create drug-selectable gene editing events in specific hepatocyte loci. A recombinant Adeno Associated Virus vector targeting the Albumin locus with a promoterless self-cleaving gRNA to create drug resistance is linked in cis with the therapeutic transgene. Gene expression of both are dependent on homologous recombination into the target locus. In vivo drug selection for the precisely edited hepatocytes allows >30-fold expansion of gene-edited cells and results in therapeutic levels of a human Factor 9 transgene. Importantly, self-cleaving gRNA expression is also achieved after targeting weak hepatocyte genes. We conclude that self-cleaving gRNAs are a powerful system to enable cell-type specific in vivo drug resistance for therapeutic gene editing applications.
Collapse
Affiliation(s)
- Amita Tiyaboonchai
- Oregon Stem Cell Center, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Anne Vonada
- Oregon Stem Cell Center, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jeffrey Posey
- Oregon Stem Cell Center, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Carl Pelz
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Leslie Wakefield
- Oregon Stem Cell Center, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
7
|
Castaman G, Di Minno G, De Cristofaro R, Peyvandi F. The Arrival of Gene Therapy for Patients with Hemophilia A. Int J Mol Sci 2022; 23:10228. [PMID: 36142153 PMCID: PMC9499514 DOI: 10.3390/ijms231810228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Historically, the standard of care for hemophilia A has been intravenous administration of exogenous factor VIII (FVIII), either as prophylaxis or episodically. The development of emicizumab, a humanized bispecific monoclonal antibody mimicking activated FVIII, was a subsequent advance in treatment. However, both exogenous FVIII and emicizumab require repeated and lifelong administration, negatively impacting patient quality of life. A recent breakthrough has been the development of gene therapy. This allows a single intravenous treatment that could result in long-term expression of FVIII, maintenance of steady-state plasma concentrations, and minimization (or possibly elimination) of bleeding episodes for the recipient's lifetime. Several gene therapies have been assessed in clinical trials, with positive outcomes. Valoctocogene roxaparvovec (an adeno-associated viral 5-based therapy encoding human B domain-deleted FVIII) is expected to be the first approved gene therapy in European countries, including Italy, in 2022. Some novel challenges exist including refining patient selection criteria, managing patient expectations, further elucidation of the durability and variability of transgene expression and long-term safety, and the development of standardized 'hub and spoke' centers to optimize and monitor this innovative treatment. Gene therapy represents a paradigm shift, and may become a new reference standard for treating patients with hemophilia A.
Collapse
Affiliation(s)
- Giancarlo Castaman
- Center for Bleeding Disorders, Department of Oncology, Careggi University Hospital, Largo Brambilla 3, 50134 Firenze, Italy
| | - Giovanni Di Minno
- Regional Reference Centre for Hemo-Coagulation Diseases, Federico II University, Via S. Pansini 5, 80131 Naples, Italy
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitraio “A. Gemelli” IRCCS, Università Cattolica S. Cuore Roma, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Flora Peyvandi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione Luigi Villa, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Pace 9, 20122 Milan, Italy
| |
Collapse
|
8
|
Jäschke N, Büning H. Adeno-Associated Virus Vector Design-Moving the Adeno-Associated Virus to a Bioengineered Therapeutic Nanoparticle. Hematol Oncol Clin North Am 2022; 36:667-685. [PMID: 35778330 DOI: 10.1016/j.hoc.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although the number of market-approved gene therapies is still low, this new class of therapeutics has become an integral part of modern medicine. The success and safety of gene therapy depend on the vectors used to deliver the therapeutic material. Adeno-associated virus (AAV) vectors have emerged as the most frequently used delivery system for in vivo gene therapy. This success was achieved with first-generation vectors, using capsids derived from natural AAV serotypes. Their broad tropism, the high seroprevalence for many of the AAV serotypes in the human population, and the high vector doses needed to transduce a sufficient number of therapy-relevant target cells are challenges that are addressed by engineering the capsid and the vector genome, improving the efficacy of these biological nanoparticles.
Collapse
Affiliation(s)
- Nico Jäschke
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany; German Center for Infection Research, Partner Site Hannover-Braunschweig.
| |
Collapse
|
9
|
Marino M, Holt MG. AAV Vector-Mediated Antibody Delivery (A-MAD) in the Central Nervous System. Front Neurol 2022; 13:870799. [PMID: 35493843 PMCID: PMC9039256 DOI: 10.3389/fneur.2022.870799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
In the last four decades, monoclonal antibodies and their derivatives have emerged as a powerful class of therapeutics, largely due to their exquisite targeting specificity. Several clinical areas, most notably oncology and autoimmune disorders, have seen the successful introduction of monoclonal-based therapeutics. However, their adoption for treatment of Central Nervous System diseases has been comparatively slow, largely due to issues of efficient delivery resulting from limited permeability of the Blood Brain Barrier. Nevertheless, CNS diseases are becoming increasingly prevalent as societies age, accounting for ~6.5 million fatalities worldwide per year. Therefore, harnessing the full therapeutic potential of monoclonal antibodies (and their derivatives) in this clinical area has become a priority. Adeno-associated virus-based vectors (AAVs) are a potential solution to this problem. Preclinical studies have shown that AAV vector-mediated antibody delivery provides protection against a broad range of peripheral diseases, such as the human immunodeficiency virus (HIV), influenza and malaria. The parallel identification and optimization of AAV vector platforms which cross the Blood Brain Barrier with high efficiency, widely transducing the Central Nervous System and allowing high levels of local transgene production, has now opened a number of interesting scenarios for the development of AAV vector-mediated antibody delivery strategies to target Central Nervous System proteinopathies.
Collapse
Affiliation(s)
- Marika Marino
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Matthew G. Holt
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Synapse Biology Group, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Matthew G. Holt
| |
Collapse
|
10
|
Sung YL, Wang TW, Lin TT, Lin SF. Optogenetics in cardiology: methodology and future applications. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2022. [DOI: 10.1186/s42444-022-00060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractOptogenetics is an emerging biological approach with the unique capability of specific targeting due to the precise light control with high spatial and temporal resolution. It uses selected light wavelengths to control and modulate the biological functions of cells, tissues, and organ levels. Optogenetics has been instrumental in different biomedical applications, including neuroscience, diabetes, and mitochondria, based on distinctive optical biomedical effects with light modulation. Nowadays, optogenetics in cardiology is rapidly evolving for the understanding and treatment of cardiovascular diseases. Several in vitro and in vivo research for cardiac optogenetics demonstrated visible progress. The optogenetics technique can be applied to address critical cardiovascular problems such as heart failure and arrhythmia. To this end, this paper reviews cardiac electrophysiology and the technical progress about experimental and clinical cardiac optogenetics and provides the background and evolution of cardiac optogenetics. We reviewed the literature to demonstrate the servo type, transfection efficiency, signal recording, and heart disease targets in optogenetic applications. Such literature review would hopefully expedite the progress of optogenetics in cardiology and further expect to translate into the clinical terminal in the future.
Collapse
|
11
|
Zhang X, Chai Z, Lee Dobbins A, Itano MS, Askew C, Miao Z, Niu H, Samulski RJ, Li C. Customized blood-brain barrier shuttle peptide to increase AAV9 vector crossing the BBB and augment transduction in the brain. Biomaterials 2022; 281:121340. [PMID: 34998171 PMCID: PMC8810684 DOI: 10.1016/j.biomaterials.2021.121340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/24/2021] [Accepted: 12/25/2021] [Indexed: 02/03/2023]
Abstract
Recombinant adeno-associated virus (rAAV) vectors have been widely used as favored delivery vehicles for the treatment of inherited diseases in clinical trials, including neurological diseases. However, the noninvasive systemic delivery of rAAV to the central nervous system is severely hampered by the blood-brain barrier (BBB). Several approaches have been exploited to enhance AAV vector brain transduction after systemic administration, including genetic modification of AAV capsids and physical methods. However, these approaches are not always predictive of desirable outcomes in humans and induce complications. It is imperative to explore novel strategies to increase the ability of AAV9 to cross the BBB for enhanced brain transduction. Herein, we have conducted a combinatorial in vivo/in vitro phage display library screening in mouse brains and purified AAV9 virions to identify a customized BBB shuttle peptide, designated as PB5-3. The PB5-3 peptide specifically bound to AAV9 virions and enhanced widespread transduction of AAV9 in mouse brains, especially in neuronal cells, after systemic administration. Further study demonstrated that systemic administration of AAV9 vectors encoding IDUA complexed with PB5-3 increased the phenotypic correction in the brains of MPS I mice. Mechanistic studies revealed that the PB5-3 peptide effectively increased AAV9 trafficking and transcytosis efficiency in the human BBB model hCMEC/D3 cell line but did not interfere with AAV9 binding to the receptor terminal N-linked galactosylated glycans. Additionally, the PB5-3 peptide slowed the clearance of AAV9 from blood without hepatic toxicity. This study highlights, for the first time, the potential of this combinatorial approach for the isolation of peptides that interact with specific AAV vectors for enhanced and targeted AAV transduction. This promising approach will open new combined therapeutic avenues and shed light on the potential applications of peptides for the treatment of human diseases in future clinical trials with AAV vector-mediated gene delivery.
Collapse
Affiliation(s)
- Xintao Zhang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zheng Chai
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda Lee Dobbins
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michelle S Itano
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles Askew
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhe Miao
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongqian Niu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Mulcrone PL, Zhang J, Pride PM, Lam AK, Frabutt DA, Ball-Kell SM, Xiao W. Genomic Designs of rAAVs Contribute to Pathological Changes in the Livers and Spleens of Mice. ADVANCES IN CELL AND GENE THERAPY 2022; 2022:6807904. [PMID: 36507314 PMCID: PMC9730939 DOI: 10.1155/2022/6807904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recombinant AAV (rAAV) gene therapy is being investigated as an effective therapy for several diseases including hemophilia B. Reports of liver tumor development in certain mouse models due to AAV treatment and genomic integration of the rAAV vector has raised concerns about the long-term safety and efficacy of this gene therapy. To investigate whether rAAV treatment causes cancer, we utilized two mouse models, inbred C57BL/6 and hemophilia B Balb/C mice (HemB), to test if injecting a high dose of various rAAV8 vectors containing or lacking hFIX transgene, a Poly-A sequence, or the CB or TTR promoter triggered liver fibrosis and/or cancer development over the course of the 6.5-month study. We observed no liver tumors in either mouse cohort regardless of rAAV treatment through ultrasound imaging, gross anatomical assessment at sacrifice, and histology. We did, however, detect differences in collagen deposition in C57BL/6 livers and HemB spleens of rAAV-injected mice. Pathology reports of the HemB mice revealed many pathological phenomena, including fibrosis and inflammation in the livers and spleens across different AAV-injected HemB mice. Mice from both cohorts injected with the TTR-hFIX vector demonstrated minimal adverse events. While not tumorigenic, high dose of rAAVs, especially those with incomplete genomes, can influence liver and spleen health negatively that could be problematic for cementing AAVs as a broad therapeutic option in the clinic.
Collapse
Affiliation(s)
- Patrick L. Mulcrone
- Herman B Wells Center for Pediatric Research, Indiana University, USA
- Department of Pediatrics, Indiana University, USA
| | - Junping Zhang
- Herman B Wells Center for Pediatric Research, Indiana University, USA
- Department of Pediatrics, Indiana University, USA
| | - P. Melanie Pride
- Herman B Wells Center for Pediatric Research, Indiana University, USA
| | - Anh K. Lam
- Herman B Wells Center for Pediatric Research, Indiana University, USA
- Department of Pediatrics, Indiana University, USA
| | - Dylan A. Frabutt
- Herman B Wells Center for Pediatric Research, Indiana University, USA
- Department of Microbiology & Immunology, Indiana University, Indianapolis, IN, USA
| | | | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University, USA
| |
Collapse
|
13
|
Mnyandu N, Limani SW, Arbuthnot P, Maepa MB. Advances in designing Adeno-associated viral vectors for development of anti-HBV gene therapeutics. Virol J 2021; 18:247. [PMID: 34903258 PMCID: PMC8670254 DOI: 10.1186/s12985-021-01715-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the five decades having passed since discovery of the hepatitis B virus (HBV), together with development of an effective anti-HBV vaccine, infection with the virus remains a serious public health problem and results in nearly 900,000 annual deaths worldwide. Current therapies do not eliminate the virus and viral replication typically reactivates after treatment withdrawal. Hence, current endeavours are aimed at developing novel therapies to achieve a functional cure. Nucleic acid-based therapeutic approaches are promising, with several candidates showing excellent potencies in preclinical and early stages of clinical development. However, this class of therapeutics is yet to become part of standard anti-HBV treatment regimens. Obstacles delaying development of gene-based therapies include lack of clinically relevant delivery methods and a paucity of good animal models for preclinical characterisation. Recent studies have demonstrated safety and efficiency of Adeno-associated viral vectors (AAVs) in gene therapy. However, AAVs do have flaws and this has prompted research aimed at improving design of novel and artificially synthesised AAVs. Main goals are to improve liver transduction efficiencies and avoiding immune clearance. Application of AAVs to model HBV replication in vivo is also useful for characterising anti-HBV gene therapeutics. This review summarises recent advances in AAV engineering and their contributions to progress with anti-HBV gene therapy development.
Collapse
Affiliation(s)
- Njabulo Mnyandu
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shonisani Wendy Limani
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
14
|
Brown D, Altermatt M, Dobreva T, Chen S, Wang A, Thomson M, Gradinaru V. Deep Parallel Characterization of AAV Tropism and AAV-Mediated Transcriptional Changes via Single-Cell RNA Sequencing. Front Immunol 2021; 12:730825. [PMID: 34759919 PMCID: PMC8574206 DOI: 10.3389/fimmu.2021.730825] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Engineered variants of recombinant adeno-associated viruses (rAAVs) are being developed rapidly to meet the need for gene-therapy delivery vehicles with particular cell-type and tissue tropisms. While high-throughput AAV engineering and selection methods have generated numerous variants, subsequent tropism and response characterization have remained low throughput and lack resolution across the many relevant cell and tissue types. To fully leverage the output of these large screening paradigms across multiple targets, we have developed an experimental and computational single-cell RNA sequencing (scRNA-seq) pipeline for in vivo characterization of barcoded rAAV pools at high resolution. Using this platform, we have both corroborated previously reported viral tropisms and discovered unidentified AAV capsid targeting biases. As expected, we observed that the tropism profile of AAV.CAP-B10 in mice was shifted toward neurons and away from astrocytes when compared with AAV-PHP.eB. Transcriptomic analysis revealed that this neuronal bias is due mainly to increased targeting efficiency for glutamatergic neurons, which we confirmed by RNA fluorescence in situ hybridization. We further uncovered cell subtype tropisms of AAV variants in vascular and glial cells, such as low transduction of pericytes and Myoc+ astrocytes. Additionally, we have observed cell-type-specific transitory responses to systemic AAV-PHP.eB administration, such as upregulation of genes involved in p53 signaling in endothelial cells three days post-injection, which return to control levels by day twenty-five. The presented experimental and computational approaches for parallel characterization of AAV tropism will facilitate the advancement of safe and precise gene delivery vehicles, and showcase the power of understanding responses to gene therapies at the single-cell level.
Collapse
Affiliation(s)
- David Brown
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Michael Altermatt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Tatyana Dobreva
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sisi Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Alexander Wang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, United States
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
15
|
Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG, Arseniu AM. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021; 26:5976. [PMID: 34641519 PMCID: PMC8512881 DOI: 10.3390/molecules26195976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) has been intensively studied as a promising new strategy of prodrug delivery, with its main advantages being represented by an enhanced efficacy and a reduced off-target toxicity of the active drug. In recent years, numerous therapeutic systems based on GDEPT strategy have entered clinical trials. In order to deliver the desired gene at a specific site of action, this therapeutic approach uses vectors divided in two major categories, viral vectors and non-viral vectors, with the latter being represented by chemical delivery agents. There is considerable interest in the development of non-viral vectors due to their decreased immunogenicity, higher specificity, ease of synthesis and greater flexibility for subsequent modulations. Dendrimers used as delivery vehicles offer many advantages, such as: nanoscale size, precise molecular weight, increased solubility, high load capacity, high bioavailability and low immunogenicity. The aim of the present work was to provide a comprehensive overview of the recent advances regarding the use of dendrimers as non-viral carriers in the GDEPT therapy.
Collapse
Affiliation(s)
| | | | | | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | | | | | | | | | | |
Collapse
|
16
|
Cell type-selective targeted delivery of a recombinant lysosomal enzyme for enzyme therapies. Mol Ther 2021; 29:3512-3524. [PMID: 34400331 DOI: 10.1016/j.ymthe.2021.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Accepted: 08/08/2021] [Indexed: 11/21/2022] Open
Abstract
Lysosomal diseases are a class of genetic disorders predominantly caused by loss of lysosomal hydrolases, leading to lysosomal and cellular dysfunction. Enzyme replacement therapy (ERT), where recombinant enzyme is given intravenously, internalized by cells, and trafficked to the lysosome, has been applied to treat several lysosomal diseases. However, current ERT regimens do not correct disease phenotypes in all affected organs because the biodistribution of enzyme uptake does not match that of the affected cells that require the enzyme. We present here targeted ERT, an approach that utilizes antibody-enzyme fusion proteins to target the enzyme to specific cell types. The antibody moiety recognizes transmembrane proteins involved in lysosomal trafficking and that are also preferentially expressed in those cells most affected in disease. Using Pompe disease (PD) as an example, we show that targeted ERT is superior to ERT in treating the skeletal muscle phenotypes of PD mice both as a protein replacement therapeutic and as a gene therapy.
Collapse
|
17
|
Famà R, Borroni E, Merlin S, Airoldi C, Pignani S, Cucci A, Corà D, Bruscaggin V, Scardellato S, Faletti S, Pelicci G, Pinotti M, Walker GE, Follenzi A. Deciphering the Ets-1/2-mediated transcriptional regulation of F8 gene identifies a minimal F8 promoter for hemophilia A gene therapy. Haematologica 2021; 106:1624-1635. [PMID: 32467137 PMCID: PMC8168518 DOI: 10.3324/haematol.2019.239202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
Amajor challenge in the development of a gene therapy for hemophilia A is the selection of cell type- or tissue-specific promoters to ensure factor VIII (FVIII) expression without eliciting an immune response. As liver sinusoidal endothelial cells are the major FVIII source, understanding the transcriptional F8 regulation in these cells would help to optimize the minimal F8 promoter (pF8) to efficiently drive FVIII expression. In silico analyses predicted several binding sites (BS) for the E26 transformation-specific (Ets) transcription factors Ets-1 and Ets-2 in the pF8. Reporter assays demonstrated a significant up-regulation of pF8 activity by Ets-1 or Ets- 1/Est-2 combination, while Ets-2 alone was ineffective. Moreover, Ets-1/Ets- 2-DNA binding domain mutants (DBD) abolished promoter activation only when the Ets-1 DBD was removed, suggesting that pF8 up-regulation may occur through Ets-1/Ets-2 interaction with Ets-1 bound to DNA. pF8 carrying Ets-BS deletions unveiled two Ets-BS essential for pF8 activity and response to Ets overexpression. Lentivirus-mediated delivery of green fluorescent protein (GFP) or FVIII cassettes driven by the shortened promoters, led to GFP expression mainly in endothelial cells in the liver and to longterm FVIII activity without inhibitor formation in HA mice. These data strongly support the potential application of these promoters in hemophilia A gene therapy.
Collapse
Affiliation(s)
- Rosella Famà
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Chiara Airoldi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Pignani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Alessia Cucci
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Davide Corà
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | | | - Sharon Scardellato
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Stefania Faletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuliana Pelicci
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, Universita' di Ferrara, Italy
| | - Gillian E Walker
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
18
|
Wagner HJ, Weber W, Fussenegger M. Synthetic Biology: Emerging Concepts to Design and Advance Adeno-Associated Viral Vectors for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004018. [PMID: 33977059 PMCID: PMC8097373 DOI: 10.1002/advs.202004018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Indexed: 05/28/2023]
Abstract
Three recent approvals and over 100 ongoing clinical trials make adeno-associated virus (AAV)-based vectors the leading gene delivery vehicles in gene therapy. Pharmaceutical companies are investing in this small and nonpathogenic gene shuttle to increase the therapeutic portfolios within the coming years. This prospect of marking a new era in gene therapy has fostered both investigations of the fundamental AAV biology as well as engineering studies to enhance delivery vehicles. Driven by the high clinical potential, a new generation of synthetic-biologically engineered AAV vectors is on the rise. Concepts from synthetic biology enable the control and fine-tuning of vector function at different stages of cellular transduction and gene expression. It is anticipated that the emerging field of synthetic-biologically engineered AAV vectors can shape future gene therapeutic approaches and thus the design of tomorrow's gene delivery vectors. This review describes and discusses the recent trends in capsid and vector genome engineering, with particular emphasis on synthetic-biological approaches.
Collapse
Affiliation(s)
- Hanna J. Wagner
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Wilfried Weber
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 50Basel4056Switzerland
| |
Collapse
|
19
|
Gene therapy for hemophilia B using CB 2679d-GT: a novel factor IX variant with higher potency than factor IX Padua. Blood 2021; 137:2902-2906. [PMID: 33735915 DOI: 10.1182/blood.2020006005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Sustained expression of therapeutic factor IX (FIX) levels has been achieved after adeno-associated viral (AAV) vector-based gene therapy in patients with hemophilia B. Nevertheless, patients are still at risk of vector dose-limiting toxicity, particularly liver inflammation, justifying the need for more efficient vectors and a lower dosing regimen. A novel increased potency FIX (designated as CB 2679d-GT), containing 3 amino acid substitutions (R318Y, R338E, T343R), significantly outperformed the R338L-Padua variant after gene therapy. CB 2679d-GT demonstrated a statistically significant approximately threefold improvement in clotting activity when compared with R338L-Padua after AAV-based gene therapy in hemophilic mice. Moreover, CB 2679d-GT gene therapy showed significantly reduced bleeding time (approximately fivefold to eightfold) and total blood loss volume (approximately fourfold) compared with mice treated with the R338L-Padua, thus achieving more rapid and robust hemostatic correction. FIX expression was sustained for at least 20 weeks with both CB 2679d-GT and R338L-Padua whereas immunogenicity was not significantly increased. This is a novel gene therapy study demonstrating the superiority of CB 2679d-GT, highlighting its potential to obtain higher FIX activity levels and superior hemostatic efficacy following AAV-directed gene therapy in hemophilia B patients than what is currently achievable with the R338L-Padua variant.
Collapse
|
20
|
Rambhai HK, Ashby FJ, Qing K, Srivastava A. Role of Essential Metal Ions in AAV Vector-Mediated Transduction. Mol Ther Methods Clin Dev 2020; 18:159-166. [PMID: 32637447 PMCID: PMC7321778 DOI: 10.1016/j.omtm.2020.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022]
Abstract
Metal elements are essential components of approximately half of all cellular proteins, and approximately one-third of all known enzymes thus far are metalloenzymes. Several cellular proteins and enzymes undoubtedly impact the transduction efficiency of recombinant adeno-associated virus (AAV) vectors, but the precise role of metal ions in this process has not been studied in detail. In the present studies, we systematically evaluated the effects of all 10 essential metal ions (calcium, cobalt, copper, iron, magnesium, manganese, molybdenum, potassium, sodium, and zinc) on the transduction efficiency of AAV vectors. We report herein that five essential metal ions (iron, magnesium, manganese, molybdenum, and sodium) had little to no effect, and calcium strongly inhibited the transduction efficiency of AAV2 vectors. Whereas copper and potassium increased the transduction efficiency by ∼5-fold and ∼2-fold, respectively, at low concentrations, both essential metals were strongly inhibitory at higher concentrations. Calcium also inhibited the transduction efficiency by ∼3-fold. Two metal ions (cobalt and zinc) increased the transduction efficiency up to ∼10-fold in a dose-dependent manner. The combined use of cobalt and zinc resulted in more than an additive effect on AAV2 vector transduction efficiency (∼30-fold). The transduction efficiency of AAV serotypes 1 through 6 (AAV1-AAV6) vectors was also augmented by zinc. Similarly, the transduction of both single-stranded (ss) and self-complementary (sc) AAV3 vectors was enhanced by zinc. Zinc treatment also led to a dose-dependent increase in expression of a therapeutic protein, the human clotting factor IX (hF.IX), mediated by scAAV3 vectors in a human hepatic cell line. This simple strategy of essential metal ion-mediated enhancement may be useful to lower the dose of AAV vectors for their optimal use in human gene therapy.
Collapse
Affiliation(s)
- Himanshu K. Rambhai
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32611-3633, USA
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Frederick J. Ashby
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32611-3633, USA
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Keyun Qing
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32611-3633, USA
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32611-3633, USA
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
21
|
Brown HC, Doering CB, Herzog RW, Ling C, Markusic DM, Spencer HT, Srivastava A, Srivastava A. Development of a Clinical Candidate AAV3 Vector for Gene Therapy of Hemophilia B. Hum Gene Ther 2020; 31:1114-1123. [PMID: 32657150 DOI: 10.1089/hum.2020.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although recombinant adeno-associated virus serotype 8 (AAV8) and serotype 5 (AAV5) vectors have shown efficacy in Phase 1 clinical trials for gene therapy of hemophilia B, it has become increasingly clear that these serotypes are not optimal for transducing primary human hepatocytes. We have previously reported that among the 10 most commonly used AAV serotypes, AAV serotype 3 (AAV3) vectors are the most efficient in transducing primary human hepatocytes in vitro as well as in "humanized" mice in vivo, and suggested that AAV3 vectors expressing human coagulation factor IX (hFIX) may be a more efficient alternative for clinical gene therapy of hemophilia B. In the present study, we extended these findings to develop an AAV3 vector incorporating a compact yet powerful liver-directed promoter as well as optimized hFIX cDNA sequence inserted between two AAV3 inverted terminal repeats. When packaged into an AAV3 capsid, this vector yields therapeutic levels of hFIX in hemophilia B and in "humanized" mice in vivo. Together, these studies have resulted in an AAV3 vector predicted to achieve clinical efficacy at reduced vector doses, without the need for immune-suppression, for clinical gene therapy of hemophilia B.
Collapse
Affiliation(s)
| | - Christopher B Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chen Ling
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - David M Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - H Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alok Srivastava
- Department of Haematology, Christian Medical College and Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Vellore, Tamil Nadu, India
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Departments of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
22
|
Ahmed SS, Rubin H, Wang M, Faulkner D, Sengooba A, Dollive SN, Avila N, Ellsworth JL, Lamppu D, Lobikin M, Lotterhand J, Adamson-Small L, Wright T, Seymour A, Francone OL. Sustained Correction of a Murine Model of Phenylketonuria following a Single Intravenous Administration of AAVHSC15-PAH. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:568-580. [PMID: 32258219 PMCID: PMC7118282 DOI: 10.1016/j.omtm.2020.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
Phenylketonuria is an inborn error of metabolism caused by loss of function of the liver-expressed enzyme phenylalanine hydroxylase and is characterized by elevated systemic phenylalanine levels that are neurotoxic. Current therapies do not address the underlying genetic disease or restore the natural metabolic pathway resulting in the conversion of phenylalanine to tyrosine. A family of hepatotropic clade F adeno-associated viruses (AAVs) was isolated from human CD34+ hematopoietic stem cells (HSCs) and one (AAVHSC15) was utilized to deliver a vector to correct the phenylketonuria phenotype in Pahenu2 mice. The AAVHSC15 vector containing a codon-optimized form of the human phenylalanine hydroxylase cDNA was administered as a single intravenous dose to Pahenu2 mice maintained on a phenylalanine-containing normal chow diet. Optimization of the transgene resulted in a vector that produced a sustained reduction in serum phenylalanine and normalized tyrosine levels for the lifespan of Pahenu2 mice. Brain levels of phenylalanine and the downstream serotonin metabolite 5-hydroxyindoleacetic acid were restored. In addition, the coat color of treated mice darkened following treatment, indicating restoration of the phenylalanine metabolic pathway. Taken together, these data support the potential of an AAVHSC15-based gene therapy as an investigational therapeutic for phenylketonuria patients.
Collapse
Affiliation(s)
- Seemin S Ahmed
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Hillard Rubin
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Minglun Wang
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Deiby Faulkner
- In Vivo Group, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Arnold Sengooba
- In Vivo Group, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Serena N Dollive
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Nancy Avila
- In Vivo Group, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Jeff L Ellsworth
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Diana Lamppu
- Program Management Group, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Maria Lobikin
- Process Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Jason Lotterhand
- In Vivo Group, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Laura Adamson-Small
- Process Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Teresa Wright
- Toxicology Group, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Albert Seymour
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Omar L Francone
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| |
Collapse
|
23
|
Tipanee J, Di Matteo M, Tulalamba W, Samara-Kuko E, Keirsse J, Van Ginderachter JA, Chuah MK, VandenDriessche T. Validation of miR-20a as a Tumor Suppressor Gene in Liver Carcinoma Using Hepatocyte-Specific Hyperactive piggyBac Transposons. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1309-1329. [PMID: 32160703 PMCID: PMC7036702 DOI: 10.1016/j.omtn.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
We established a semi-high-throughput in vivo screening platform using hyperactive piggyBac (hyPB) transposons (designated as PB-miR) to identify microRNAs (miRs) that inhibit hepatocellular carcinoma (HCC) development in vivo, following miR overexpression in hepatocytes. PB-miRs encoding six different miRs from the miR-17-92 cluster and nine miRs from outside this cluster were transfected into mouse livers that were chemically induced to develop HCC. In this slow-onset HCC model, miR-20a significantly inhibited HCC. Next, we developed a more aggressive HCC model by overexpression of oncogenic Harvey rat sarcoma viral oncogene homolog (HRASG12V) and c-MYC oncogenes that accelerated HCC development after only 6 weeks. The tumor suppressor effect of miR-20a could be demonstrated even in this rapid-onset HRASG12V/c-MYC HCC model, consistent with significantly prolonged survival and decreased HCC tumor burden. Comprehensive RNA expression profiling of 95 selected genes typically associated with HCC development revealed differentially expressed genes and functional pathways that were associated with miR-20a-mediated HCC suppression. To our knowledge, this is the first study establishing a direct causal relationship between miR-20a overexpression and liver cancer inhibition in vivo. Moreover, these results demonstrate that hepatocyte-specific hyPB transposons are an efficient platform to screen and identify miRs that affect overall survival and HCC tumor regression.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mario Di Matteo
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee Khim Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
24
|
Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21:255-272. [DOI: 10.1038/s41576-019-0205-4] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
|
25
|
Richards DY, Winn SR, Dudley S, Nygaard S, Mighell TL, Grompe M, Harding CO. AAV-Mediated CRISPR/Cas9 Gene Editing in Murine Phenylketonuria. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:234-245. [PMID: 31970201 PMCID: PMC6962637 DOI: 10.1016/j.omtm.2019.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
Phenylketonuria (PKU) due to recessively inherited phenylalanine hydroxylase (PAH) deficiency results in hyperphenylalaninemia, which is toxic to the central nervous system. Restriction of dietary phenylalanine intake remains the standard of PKU care and prevents the major neurologic manifestations of the disease, yet shortcomings of dietary therapy remain, including poor adherence to a difficult and unpalatable diet, an increased incidence of neuropsychiatric illness, and imperfect neurocognitive outcomes. Gene therapy for PKU is a promising novel approach to promote lifelong neurological protection while allowing unrestricted dietary phenylalanine intake. In this study, liver-tropic recombinant AAV2/8 vectors were used to deliver CRISPR/Cas9 machinery and facilitate correction of the Pah enu2 allele by homologous recombination. Additionally, a non-homologous end joining (NHEJ) inhibitor, vanillin, was co-administered with the viral drug to promote homology-directed repair (HDR) with the AAV-provided repair template. This combinatorial drug administration allowed for lifelong, permanent correction of the Pah enu2 allele in a portion of treated hepatocytes of mice with PKU, yielding partial restoration of liver PAH activity, substantial reduction of blood phenylalanine, and prevention of maternal PKU effects during breeding. This work reveals that CRISPR/Cas9 gene editing is a promising tool for permanent PKU gene editing.
Collapse
Affiliation(s)
- Daelyn Y Richards
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shelley R Winn
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sandra Dudley
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sean Nygaard
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Taylor L Mighell
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
26
|
Domenger C, Grimm D. Next-generation AAV vectors—do not judge a virus (only) by its cover. Hum Mol Genet 2019; 28:R3-R14. [DOI: 10.1093/hmg/ddz148] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractRecombinant adeno-associated viruses (AAV) are under intensive investigation in numerous clinical trials after they have emerged as a highly promising vector for human gene therapy. Best exemplifying their power and potential is the authorization of three gene therapy products based on wild-type AAV serotypes, comprising Glybera (AAV1), Luxturna (AAV2) and, most recently, Zolgensma (AAV9). Nonetheless, it has also become evident that the current AAV vector generation will require improvements in transduction potency, antibody evasion and cell/tissue specificity to allow the use of lower and safer vector doses. To this end, others and we devoted substantial previous research to the implementation and application of key technologies for engineering of next-generation viral capsids in a high-throughput ‘top-down’ or (semi-)rational ‘bottom-up’ approach. Here, we describe a set of recent complementary strategies to enhance features of AAV vectors that act on the level of the recombinant cargo. As examples that illustrate the innovative and synergistic concepts that have been reported lately, we highlight (i) novel synthetic enhancers/promoters that provide an unprecedented degree of AAV tissue specificity, (ii) pioneering genetic circuit designs that harness biological (microRNAs) or physical (light) triggers as regulators of AAV gene expression and (iii) new insights into the role of AAV DNA structures on vector genome stability, integrity and functionality. Combined with ongoing capsid engineering and selection efforts, these and other state-of-the-art innovations and investigations promise to accelerate the arrival of the next generation of AAV vectors and to solidify the unique role of this exciting virus in human gene therapy.
Collapse
Affiliation(s)
- Claire Domenger
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| |
Collapse
|
27
|
Next-generation muscle-directed gene therapy by in silico vector design. Nat Commun 2019; 10:492. [PMID: 30700722 PMCID: PMC6353880 DOI: 10.1038/s41467-018-08283-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 12/28/2018] [Indexed: 01/10/2023] Open
Abstract
There is an urgent need to develop the next-generation vectors for gene therapy of muscle disorders, given the relatively modest advances in clinical trials. These vectors should express substantially higher levels of the therapeutic transgene, enabling the use of lower and safer vector doses. In the current study, we identify potent muscle-specific transcriptional cis-regulatory modules (CRMs), containing clusters of transcription factor binding sites, using a genome-wide data-mining strategy. These novel muscle-specific CRMs result in a substantial increase in muscle-specific gene transcription (up to 400-fold) when delivered using adeno-associated viral vectors in mice. Significantly higher and sustained human micro-dystrophin and follistatin expression levels are attained than when conventional promoters are used. This results in robust phenotypic correction in dystrophic mice, without triggering apoptosis or evoking an immune response. This multidisciplinary approach has potentially broad implications for augmenting the efficacy and safety of muscle-directed gene therapy. Adeno-associated viral vectors (AAV) are being developed for gene therapy of skeletal muscle, but it is a challenge to achieve robust gene expression. Here, the authors identify muscle-specific cisregulatory elements that lead to a substantial increase in micro-dystrophin and follistatin expression, resulting in a safe and sustainable rescue of the dystrophic phenotype in mouse models.
Collapse
|
28
|
Helper-dependent adenovirus-mediated gene transfer of a secreted LDL receptor/transferrin chimeric protein reduces aortic atherosclerosis in LDL receptor-deficient mice. Gene Ther 2019; 26:121-130. [PMID: 30700805 DOI: 10.1038/s41434-019-0061-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/02/2018] [Accepted: 11/23/2018] [Indexed: 01/05/2023]
Abstract
Familial hypercholesterolemia (FH) is a genetic hyperlipidemia characterized by elevated concentrations of plasma LDL cholesterol. Statins are not always effective for the treatment of FH patients; unresponsive patients have poor prognosis and rely on LDL apheresis. In the past, we developed safe and effective gene therapy strategies for the expression of anti-atherogenic proteins using PEGylated helper-dependent adenoviral (HD-Ad) vectors. We recently developed a HD-Ad vector for the expression of the soluble form of the extracellular portion of the human LDL receptor (LDLR) fused with a rabbit transferrin dimer (LDLR-TF). We evaluated the efficacy of the LDLR-TF chimeric protein in CHOLDLA7, a cell line lacking LDLR expression, restoring the ability to uptake LDL. Subsequently, we administered intravenously 1 × 10E13 vp/kg of this vector in LDLR-deficient mice and observed amelioration of lipid profile and reduction of aortic atherosclerosis. Finally, we studied LDL distribution after HD-Ad vector-mediated expression of LDLR-TF in LDLR-deficient mice and found LDL accumulation in liver, and in heart and intestine. These results support the possibility of lowering LDL-C levels and reducing aortic atherosclerosis using a secreted therapeutic transgene; the present strategy potentially can be modified and adapted to non-systemic gene transfer with expression of the secreted chimeric protein in muscle or other tissues. Intramuscular or local administration strategies could improve the safety profile of this strategy and facilitate applicability.
Collapse
|
29
|
Merlin S, Follenzi A. Transcriptional Targeting and MicroRNA Regulation of Lentiviral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:223-232. [PMID: 30775404 PMCID: PMC6365353 DOI: 10.1016/j.omtm.2018.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene expression regulation is the result of complex interactions between transcriptional and post-transcriptional controls, resulting in cell-type-specific gene expression patterns that are determined by the developmental and differentiation stage of pathophysiological conditions. Understanding the complexity of gene expression regulatory networks is fundamental to gene therapy, an approach which has the potential to treat and cure inherited disorders by delivering the correct gene to patient specific cells or tissues by means of both viral and non-viral vectors. Besides the issues of biosafety, in recent years efforts have focused on achieving a robust and sustained transgene expression, which attains a phenotypic correction in several diseases, while avoiding transgene-related adverse effects, such as overexpression-associated cytotoxicity and/or immune responses to the transgene. In this sense, the use of cell-type-specific promoters and microRNA target sequences (miRTs) in gene transfer expression cassettes have allowed for a restricted expression after gene transfer in several studies. This review will focus on the use of transcriptional and post-transcriptional regulation to achieve a highly specific and safe transgene expression, as well as their application in ex vivo and in vivo gene therapeutic approaches.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
30
|
Palaschak B, Herzog RW, Markusic DM. AAV-Mediated Gene Delivery to the Liver: Overview of Current Technologies and Methods. Methods Mol Biol 2019; 1950:333-360. [PMID: 30783984 DOI: 10.1007/978-1-4939-9139-6_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV) vectors to treat liver-specific genetic diseases are the focus of several ongoing clinical trials. The ability to give a peripheral injection of virus that will successfully target the liver is one of many attractive features of this technology. Although initial studies of AAV liver gene transfer revealed some limitations, extensive animal modeling and further clinical development have helped solve some of these issues, resulting in several successful clinical trials that have reached curative levels of clotting factor expression in hemophilia. Looking beyond gene replacement, recent technologies offer the possibility for AAV liver gene transfer to directly repair deficient genes and potentially treat autoimmune disease.
Collapse
Affiliation(s)
- Brett Palaschak
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, USA.,Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - David M Markusic
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
31
|
Update on clinical gene therapy for hemophilia. Blood 2018; 133:407-414. [PMID: 30559260 DOI: 10.1182/blood-2018-07-820720] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
In contrast to other diverse therapies for the X-linked bleeding disorder hemophilia that are currently in clinical development, gene therapy holds the promise of a lasting cure with a single drug administration. Near-to-complete correction of hemophilia A (factor VIII deficiency) and hemophilia B (factor IX deficiency) have now been achieved in patients by hepatic in vivo gene transfer. Adeno-associated viral vectors with different viral capsids that have been engineered to express high-level, and in some cases hyperactive, coagulation factors were employed. Patient data support that sustained endogenous production of clotting factor as a result of gene therapy eliminates the need for infusion of coagulation factors (or alternative drugs that promote coagulation), and may therefore ultimately also reduce treatment costs. However, mild liver toxicities have been observed in some patients receiving high vector doses. In some but not all instances, the toxicities correlated with a T-cell response directed against the viral capsid, prompting use of immune suppression. In addition, not all patients can be treated because of preexisting immunity to viral capsids. Nonetheless, studies in animal models of hemophilia suggest that the approach can also be used for immune tolerance induction to prevent or eliminate inhibitory antibodies against coagulation factors. These can form in traditional protein replacement therapy and represent a major complication of treatment. The current review provides a summary and update on advances in clinical gene therapies for hemophilia and its continued development.
Collapse
|
32
|
Greig JA, Nordin JML, White JW, Wang Q, Bote E, Goode T, Calcedo R, Wadsworth S, Wang L, Wilson JM. Optimized Adeno-Associated Viral-Mediated Human Factor VIII Gene Therapy in Cynomolgus Macaques. Hum Gene Ther 2018; 29:1364-1375. [PMID: 29890905 DOI: 10.1089/hum.2018.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hemophilia A is a common hereditary bleeding disorder that is characterized by a deficiency of human blood coagulation factor VIII (hFVIII). Previous studies with adeno-associated viral (AAV) vectors identified two liver-specific promoter and enhancer combinations (E03.TTR and E12.A1AT) that drove high level expression of a codon-optimized, B-domain-deleted hFVIII transgene in a mouse model of the disease. This study further evaluated these enhancer/promoter combinations in cynomolgus macaques using two different AAV capsids (AAVrh10 and AAVhu37). Each of the four vector combinations was administered intravenously at a dose of 1.2 × 1013 genome copy/kg into five macaques per group. Delivery of the hFVIII transgene via the AAVhu37 capsid resulted in a substantial increase in hFVIII expression compared to animals administered with AAVrh10 vectors. Two weeks after administration of E03.TTR packaged within the AAVhu37 capsid, average hFVIII expression was 20.2 ± 5.0% of normal, with one animal exhibiting peak expression of 37.1% of normal hFVIII levels. The majority of animals generated an anti-hFVIII antibody response by week 8-10 post vector delivery. However, two of the five macaques administered with AAVhu37.E03.TTR were free of a detectable antibody response for 30 weeks post vector administration. Overall, the study supports the continued development of AAV-based gene therapeutics for hemophilia A using the AAVhu37 capsid.
Collapse
Affiliation(s)
- Jenny A Greig
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Jayme M L Nordin
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - John W White
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Qiang Wang
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Erin Bote
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Tamara Goode
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Roberto Calcedo
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | - Lili Wang
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - James M Wilson
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Evens H, Chuah MK, VandenDriessche T. Haemophilia gene therapy: From trailblazer to gamechanger. Haemophilia 2018; 24 Suppl 6:50-59. [DOI: 10.1111/hae.13494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/24/2022]
Affiliation(s)
- H. Evens
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
| | - M. K. Chuah
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
- Department of Cardiovascular Sciences Center for Molecular & Vascular Biology University of Leuven Leuven Belgium
| | - T. VandenDriessche
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
- Department of Cardiovascular Sciences Center for Molecular & Vascular Biology University of Leuven Leuven Belgium
| |
Collapse
|
34
|
Herrmann AK, Grimm D. High-Throughput Dissection of AAV-Host Interactions: The Fast and the Curious. J Mol Biol 2018; 430:2626-2640. [PMID: 29782834 DOI: 10.1016/j.jmb.2018.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
Abstract
Over 50 years after its initial description, adeno-associated virus (AAV) remains the most exciting but also most elusive study object in basic or applied virology. On the one hand, its simple structure not only facilitates investigations into virus biology but, combined with the availability of numerous natural AAV variants with distinct infection efficiency and specificity, also makes AAV a preferred substrate for engineering of gene delivery vectors. On the other hand, it is striking to witness a recent flurry of reports that highlight and partially close persistent gaps in our understanding of AAV virus and vector biology. This is all the more perplexing considering that recombinant AAVs have already been used in >160 clinical trials and recently been commercialized as gene therapeutics. Here, we discuss a reason for these advances in AAV research, namely, the advent and application of powerful high-throughput technology for dissection of AAV-host interactions and optimization of AAV gene therapy vectors. As relevant examples, we focus on the discovery of (i) a "new" cellular AAV receptor, AAVR, (ii) host restriction factors for AAV entry, and (iii) AAV capsid determinants that mediate trafficking through the blood-brain barrier. While items i/ii are prototypes of extra- or intracellular AAV host factors that were identified via high-throughput screenings, item iii exemplifies the power of molecular evolution to investigate the virus itself. In the future, we anticipate that these and other key technologies will continue to accelerate the dissection of AAV biology and will yield a wealth of new designer viruses for clinical use.
Collapse
Affiliation(s)
- Anne-Kathrin Herrmann
- Cluster of Excellence CellNetworks,Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; BioQuant Center, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Dirk Grimm
- Cluster of Excellence CellNetworks,Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; BioQuant Center, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
35
|
Singh K, Evens H, Nair N, Rincón MY, Sarcar S, Samara-Kuko E, Chuah MK, VandenDriessche T. Efficient In Vivo Liver-Directed Gene Editing Using CRISPR/Cas9. Mol Ther 2018; 26:1241-1254. [PMID: 29599079 PMCID: PMC5993986 DOI: 10.1016/j.ymthe.2018.02.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
In vivo tissue-specific genome editing at the desired loci is still a challenge. Here, we report that AAV9-delivery of truncated guide RNAs (gRNAs) and Cas9 under the control of a computationally designed hepatocyte-specific promoter lead to liver-specific and sequence-specific targeting in the mouse factor IX (F9) gene. The efficiency of in vivo targeting was assessed by T7E1 assays, site-specific Sanger sequencing, and deep sequencing of on-target and putative off-target sites. Though AAV9 transduction was apparent in multiple tissues and organs, Cas9 expression was restricted mainly to the liver, with only minimal or no expression in other non-hepatic tissues. Consequently, the insertions and deletion (indel) frequency was robust in the liver (up to 50%) in the desired target loci of the F9 gene, with no evidence of targeting in other organs or other putative off-target sites. This resulted in a substantial loss of FIX activity and the emergence of a bleeding phenotype, consistent with hemophilia B. The in vivo efficacy of the truncated gRNA was as high as that of full-length gRNA. Cas9 expression was transient in neonates, representing an attractive "hit-and-run" paradigm. Our findings have potentially broad implications for somatic gene targeting in the liver using the CRISPR/Cas9 platform.
Collapse
Affiliation(s)
- Kshitiz Singh
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Hanneke Evens
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Nisha Nair
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Melvin Y Rincón
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium; Centro de Investigaciones, Fundacion Cardiovascular de Colombia, 681004 Floridablanca, Colombia
| | - Shilpita Sarcar
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
36
|
Pirih N, Kunej T. An Updated Taxonomy and a Graphical Summary Tool for Optimal Classification and Comprehension of Omics Research. ACTA ACUST UNITED AC 2018; 22:337-353. [DOI: 10.1089/omi.2017.0186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Nina Pirih
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| |
Collapse
|
37
|
Rincon MY, de Vin F, Duqué SI, Fripont S, Castaldo SA, Bouhuijzen-Wenger J, Holt MG. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector. Gene Ther 2018. [PMID: 29523880 DOI: 10.1038/s41434-018-0005-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.
Collapse
Affiliation(s)
- Melvin Y Rincon
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Filip de Vin
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Sandra I Duqué
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Shelly Fripont
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Stephanie A Castaldo
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,KU Leuven, Department of Oncology, Leuven, Belgium
| | - Jessica Bouhuijzen-Wenger
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Matthew G Holt
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium. .,KU Leuven, Department of Neuroscience, Leuven, Belgium.
| |
Collapse
|
38
|
Vidal P, Pagliarani S, Colella P, Costa Verdera H, Jauze L, Gjorgjieva M, Puzzo F, Marmier S, Collaud F, Simon Sola M, Charles S, Lucchiari S, van Wittenberghe L, Vignaud A, Gjata B, Richard I, Laforet P, Malfatti E, Mithieux G, Rajas F, Comi GP, Ronzitti G, Mingozzi F. Rescue of GSDIII Phenotype with Gene Transfer Requires Liver- and Muscle-Targeted GDE Expression. Mol Ther 2017; 26:890-901. [PMID: 29396266 DOI: 10.1016/j.ymthe.2017.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
Abstract
Glycogen storage disease type III (GSDIII) is an autosomal recessive disorder caused by a deficiency of glycogen-debranching enzyme (GDE), which results in profound liver metabolism impairment and muscle weakness. To date, no cure is available for GSDIII and current treatments are mostly based on diet. Here we describe the development of a mouse model of GSDIII, which faithfully recapitulates the main features of the human condition. We used this model to develop and test novel therapies based on adeno-associated virus (AAV) vector-mediated gene transfer. First, we showed that overexpression of the lysosomal enzyme alpha-acid glucosidase (GAA) with an AAV vector led to a decrease in liver glycogen content but failed to reverse the disease phenotype. Using dual overlapping AAV vectors expressing the GDE transgene in muscle, we showed functional rescue with no impact on glucose metabolism. Liver expression of GDE, conversely, had a direct impact on blood glucose levels. These results provide proof of concept of correction of GSDIII with AAV vectors, and they indicate that restoration of the enzyme deficiency in muscle and liver is necessary to address both the metabolic and neuromuscular manifestations of the disease.
Collapse
Affiliation(s)
- Patrice Vidal
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Serena Pagliarani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Pasqualina Colella
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France
| | - Helena Costa Verdera
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Louisa Jauze
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France
| | | | - Francesco Puzzo
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France
| | - Solenne Marmier
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Fanny Collaud
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France
| | - Marcelo Simon Sola
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Severine Charles
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France
| | - Sabrina Lucchiari
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | | | | | - Isabelle Richard
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France
| | - Pascal Laforet
- Myology Institute, Neuromuscular Morphology Unit, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, 75005 Paris, France; Paris-Est neuromuscular center, Pitié-Salpêtrière Hospital, APHP, 75005 Paris, France; Raymond Poincaré Teaching Hospital, APHP, 92380 Garches, France
| | - Edoardo Malfatti
- Myology Institute, Neuromuscular Morphology Unit, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, 75005 Paris, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France.
| | - Federico Mingozzi
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France; Genethon, 91002 Evry, France.
| |
Collapse
|
39
|
VandenDriessche T, Chuah MK. Hemophilia Gene Therapy: Ready for Prime Time? Hum Gene Ther 2017; 28:1013-1023. [DOI: 10.1089/hum.2017.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Repeated AAV-mediated gene transfer by serotype switching enables long-lasting therapeutic levels of hUgt1a1 enzyme in a mouse model of Crigler-Najjar Syndrome Type I. Gene Ther 2017; 24:649-660. [PMID: 28805798 DOI: 10.1038/gt.2017.75] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/28/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
Adeno-associated virus (AAV) -mediated gene therapy is a promising strategy to treat liver-based monogenic diseases. However, two major obstacles limit its success: first, vector dilution in actively dividing cells, such as hepatocytes in neonates/children, due to the non-integrating nature of the vector; second, development of an immune response against the transgene and/or viral vector. Crigler-Najjar Syndrome Type I is a rare monogenic disease with neonatal onset, caused by mutations in the liver-specific UGT1 gene, with toxic accumulation of unconjugated bilirubin in plasma, tissues and brain. To establish an effective and long lasting cure, we applied AAV-mediated liver gene therapy to a relevant mouse model of the disease. Repeated gene transfer to adults by AAV-serotype switching, upon neonatal administration, resulted in lifelong correction of total bilirubin (TB) levels in both genders. In contrast, vector loss over time was observed after a single neonatal administration. Adult administration resulted in lifelong TB levels correction in male, but not female Ugt1-/- mice. Our findings demonstrate that neonatal AAV-mediated gene transfer to the liver supports a second transfer of the therapeutic vector, by preventing the induction of an immune response and supporting the possibility to improve AAV-therapeutic efficacy by repeated administration.
Collapse
|
41
|
Weinmann J, Grimm D. Next-generation AAV vectors for clinical use: an ever-accelerating race. Virus Genes 2017; 53:707-713. [PMID: 28762205 DOI: 10.1007/s11262-017-1502-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022]
Abstract
During the past five decades, it has become evident that Adeno-associated virus (AAV) represents one of the most potent, most versatile, and thus most auspicious platforms available for gene delivery into cells, animals and, ultimately, humans. Particularly attractive is the ease with which the viral capsid-the major determinant of virus-host interaction including cell specificity and antibody recognition-can be modified and optimized at will. This has motivated countless researchers to develop high-throughput technologies in which genetically engineered AAV capsid libraries are subjected to a vastly hastened emulation of natural evolution, with the aim to enrich novel synthetic AAV capsids displaying superior features for clinical application. While the power and potential of these forward genetics approaches is undisputed, they are also inherently challenging as success depends on a combination of library quality, fidelity, and complexity. Here, we will describe and discuss two original, very exciting strategies that have emerged over the last three years and that promise to alleviate at least some of these concerns, namely, (i) a reverse genetics approach termed "ancestral AAV sequence reconstruction," and (ii) AAV genome barcoding as a technology that can advance both, forward and reverse genetics stratagems. Notably, despite the conceptual differences of these two technologies, they pursue the same goal which is tailored acceleration of AAV evolution and thus winning the race for the next-generation AAV vectors for clinical use.
Collapse
Affiliation(s)
- Jonas Weinmann
- Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, Heidelberg University Hospital, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, Heidelberg University Hospital, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,BioQuant, University of Heidelberg, Heidelberg, Germany. .,German Center for Infection Research (DZIF), partner site Heidelberg, Braunschweig, Germany.
| |
Collapse
|
42
|
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic metabolic disease with autosomal recessive inheritance caused by mutations in the ABCC6 gene. The lack of functional ABCC6 protein leads to ectopic mineralization that is most apparent in the elastic tissues of the skin, eyes and blood vessels. The clinical prevalence of PXE has been estimated at between 1 per 100,000 and 1 per 25,000, with slight female predominance. The first clinical sign of PXE is almost always small yellow papules on the nape and sides of the neck and in flexural areas. The papules coalesce, and the skin becomes loose and wrinkled. The mid-dermal elastic fibers are short, fragmented, clumped and calcified. Dystrophic calcification of Bruch's membrane, revealed by angioid streaks, may trigger choroidal neovascularization and, ultimately, loss of central vision and blindness in late-stage disease. Lesions in small and medium-sized artery walls may result in intermittent claudication and peripheral artery disease. Cardiac complications (myocardial infarction, angina pectoris) are thought to be relatively rare but merit thorough investigation. Ischemic strokes have been reported. PXE is a metabolic disease in which circulating levels of an anti-mineralization factor are low. There is good evidence to suggest that the factor is inorganic pyrophosphate (PPi), and that the circulating low levels of PPi and decreased PPi/Pi ratio result from the lack of ATP release by hepatocytes harboring the mutant ABCC6 protein. However, the substrate(s) bound, transported or modulated by the ABCC6 protein remain unknown. More than 300 sequence variants of the ABCC6 gene have been identified. There is no cure for PXE; the main symptomatic treatments are vascular endothelial growth factor inhibitor therapy (for ophthalmic manifestations), lifestyle, lipid-lowering and dietary measures (for reducing vascular risk factors), and vascular surgery (for severe cardiovascular manifestations). Future treatment options may include gene therapy/editing and pharmacologic chaperone therapy.
Collapse
Affiliation(s)
- Dominique P Germain
- Division of Medical Genetics, University of Versailles - Saint Quentin en Yvelines, Paris-Saclay University, 2 avenue de la source de la Bièvre, F-78180, Montigny, France.
| |
Collapse
|
43
|
Greig JA, Wang Q, Reicherter AL, Chen SJ, Hanlon AL, Tipper CH, Clark KR, Wadsworth S, Wang L, Wilson JM. Characterization of Adeno-Associated Viral Vector-Mediated Human Factor VIII Gene Therapy in Hemophilia A Mice. Hum Gene Ther 2017; 28:392-402. [PMID: 28056565 DOI: 10.1089/hum.2016.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated viral (AAV) vectors are promising vehicles for hemophilia gene therapy, with favorable clinical trial data seen in the treatment of hemophilia B. In an effort to optimize the expression of human coagulation factor VIII (hFVIII) for the treatment of hemophilia A, an extensive study was performed with numerous combinations of liver-specific promoter and enhancer elements with a codon-optimized hFVIII transgene. After generating 42 variants of three reduced-size promoters and three small enhancers, transgene cassettes were packaged within a single AAV capsid, AAVrh10, to eliminate performance differences due to the capsid type. Each hFVIII vector was administered to FVIII knockout (KO) mice at a dose of 1010 genome copies (GC) per mouse. Criteria for distinguishing the performance of the different enhancer/promoter combinations were established prior to the initiation of the studies. These criteria included prominently the level of hFVIII activity (0.12-2.12 IU/mL) and the pattern of development of anti-hFVIII antibodies. In order to evaluate the impact of capsid on hFVIII expression and antibody formation, one of the enhancer and promoter combinations that exhibited high hFVIII immunogenicity was evaluated using AAV8, AAV9, AAVrh10, AAVhu37, and AAVrh64R1 capsids. The capsids subdivided into two groups: those that generated anti-hFVIII antibodies in ≤20% of mice (AAV8 and AAV9), and those that generated anti-hFVIII antibodies in >20% of mice (AAVrh10, AAVhu37, and AAVrh64R1). The results of this study, which entailed extensive vector optimization and in vivo testing, demonstrate the significant impact that transcriptional control elements and capsid can have on vector performance.
Collapse
Affiliation(s)
- Jenny A Greig
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Qiang Wang
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Amanda L Reicherter
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Shu-Jen Chen
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Alexandra L Hanlon
- 2 School of Nursing, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | - K Reed Clark
- 3 Dimension Therapeutics , Cambridge, Massachusetts
| | | | - Lili Wang
- 4 Department of Pathology and Laboratory Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - James M Wilson
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
44
|
|
45
|
Levy C, Fusil F, Amirache F, Costa C, Girard-Gagnepain A, Negre D, Bernadin O, Garaulet G, Rodriguez A, Nair N, Vandendriessche T, Chuah M, Cosset FL, Verhoeyen E. Baboon envelope pseudotyped lentiviral vectors efficiently transduce human B cells and allow active factor IX B cell secretion in vivo in NOD/SCIDγc -/- mice. J Thromb Haemost 2016; 14:2478-2492. [PMID: 27685947 DOI: 10.1111/jth.13520] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/25/2016] [Indexed: 12/30/2022]
Abstract
Essentials B cells are attractive targets for gene therapy and particularly interesting for immunotherapy. A baboon envelope pseudotyped lentiviral vector (BaEV-LV) was tested for B-cell transduction. BaEV-LVs transduced mature and plasma human B cells with very high efficacy. BaEV-LVs allowed secretion of functional factor IX from B cells at therapeutic levels in vivo. SUMMARY Background B cells are attractive targets for gene therapy for diseases associated with B-cell dysfunction and particularly interesting for immunotherapy. Moreover, B cells are potent protein-secreting cells and can be tolerogenic antigen-presenting cells. Objective Evaluation of human B cells for secretion of clotting factors such as factor IX (FIX) as a possible treatment for hemophilia. Methods We tested here for the first time our newly developed baboon envelope (BaEV) pseudotyped lentiviral vectors (LVs) for human (h) B-cell transduction following their adaptive transfer into an NOD/SCIDγc-/- (NSG) mouse. Results Upon B-cell receptor stimulation, BaEV-LVs transduced up to 80% of hB cells, whereas vesicular stomatitis virus G protein VSV-G-LV only reached 5%. Remarkably, BaEVTR-LVs permitted efficient transduction of 20% of resting naive and 40% of resting memory B cells. Importantly, BaEV-LVs reached up to 100% transduction of human plasmocytes ex vivo. Adoptive transfer of BaEV-LV-transduced mature B cells into NOD/SCID/γc-/- (NSG) [non-obese diabetic (NOD), severe combined immuno-deficiency (SCID)] mice allowed differentiation into plasmablasts and plasma B cells, confirming a sustained high-level gene marking in vivo. As proof of principle, we assessed BaEV-LV for transfer of human factor IX (hFIX) into B cells. BaEV-LVs encoding FIX efficiently transduced hB cells and their transfer into NSG mice demonstrated for the first time secretion of functional hFIX from hB cells at therapeutic levels in vivo. Conclusions The BaEV-LVs might represent a valuable tool for therapeutic protein secretion from autologous B cells in vivo in the treatment of hemophilia and other acquired or inherited diseases.
Collapse
Affiliation(s)
- C Levy
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - F Fusil
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - F Amirache
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - C Costa
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - A Girard-Gagnepain
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - D Negre
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - O Bernadin
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - G Garaulet
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
| | - A Rodriguez
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
| | - N Nair
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels, Brussels, Belgium
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - T Vandendriessche
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels, Brussels, Belgium
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - M Chuah
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - F-L Cosset
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - E Verhoeyen
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), Inserm, U1065, Équipe 'contrôle métabolique des morts cellulaires', Nice, France
| |
Collapse
|
46
|
Kattenhorn LM, Tipper CH, Stoica L, Geraghty DS, Wright TL, Clark KR, Wadsworth SC. Adeno-Associated Virus Gene Therapy for Liver Disease. Hum Gene Ther 2016; 27:947-961. [PMID: 27897038 PMCID: PMC5177998 DOI: 10.1089/hum.2016.160] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The field of adeno-associated virus (AAV) gene therapy has progressed rapidly over the past decade, with the advent of novel capsid serotype and organ-specific promoters, and an increasing understanding of the immune response to AAV administration. In particular, liver-directed therapy has made remarkable strides, with a number of clinical trials currently planned and ongoing in hemophilia A and B, as well as other liver disorders. This review focuses on liver-directed AAV gene therapy, including historic context, current challenges, and future developments.
Collapse
|
47
|
Hickmott JW, Chen CY, Arenillas DJ, Korecki AJ, Lam SL, Molday LL, Bonaguro RJ, Zhou M, Chou AY, Mathelier A, Boye SL, Hauswirth WW, Molday RS, Wasserman WW, Simpson EM. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina. Mol Ther Methods Clin Dev 2016; 3:16051. [PMID: 27556059 PMCID: PMC4980111 DOI: 10.1038/mtm.2016.51] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022]
Abstract
Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.
Collapse
Affiliation(s)
- Jack W Hickmott
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chih-yu Chen
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Arenillas
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siu Ling Lam
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Russell J Bonaguro
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Zhou
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alice Y Chou
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony Mathelier
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanford L Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
48
|
El-Shamayleh Y, Ni AM, Horwitz GD. Strategies for targeting primate neural circuits with viral vectors. J Neurophysiol 2016; 116:122-34. [PMID: 27052579 PMCID: PMC4961743 DOI: 10.1152/jn.00087.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/05/2016] [Indexed: 11/22/2022] Open
Abstract
Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remains challenging. In this review, we discuss existing and emerging strategies for directing genetic manipulations to targeted neurons in the adult primate central nervous system. We review the literature on viral vectors for gene delivery to neurons, focusing on adeno-associated viral vectors and lentiviral vectors, their tropism for different cell types, and prospects for new variants with improved efficacy and selectivity. We discuss two projection targeting approaches for probing neural circuits: anterograde projection targeting and retrograde transport of viral vectors. We conclude with an analysis of cell type-specific promoters and other nucleotide sequences that can be used in viral vectors to target neuronal types at the transcriptional level.
Collapse
Affiliation(s)
- Yasmine El-Shamayleh
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington; and
| | - Amy M Ni
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gregory D Horwitz
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington; and
| |
Collapse
|
49
|
Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev 2016; 99:113-128. [PMID: 26004498 DOI: 10.1016/j.addr.2015.05.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/19/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
Among various gene therapy methods for cancer, suicide gene therapy attracts a special attention because it allows selective conversion of non-toxic compounds into cytotoxic drugs inside cancer cells. As a result, therapeutic index can be increased significantly by introducing high concentrations of cytotoxic molecules to the tumor environment while minimizing impact on normal tissues. Despite significant success at the preclinical level, no cancer suicide gene therapy protocol has delivered the desirable clinical significance yet. This review gives a critical look at the six main enzyme/prodrug systems that are used in suicide gene therapy of cancer and familiarizes readers with the state-of-the-art research and practices in this field. For each enzyme/prodrug system, the mechanisms of action, protein engineering strategies to enhance enzyme stability/affinity and chemical modification techniques to increase prodrug kinetics and potency are discussed. In each category, major clinical trials that have been performed in the past decade with each enzyme/prodrug system are discussed to highlight the progress to date. Finally, shortcomings are underlined and areas that need improvement in order to produce clinical significance are delineated.
Collapse
|
50
|
Aravalli RN, Steer CJ. Gene editing technology as an approach to the treatment of liver diseases. Expert Opin Biol Ther 2016; 16:595-608. [PMID: 26914853 DOI: 10.1517/14712598.2016.1158808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|