1
|
Tang F, Wang Y, Zeng Y, Xiao A, Tong A, Xu J. Tumor-associated macrophage-related strategies for glioma immunotherapy. NPJ Precis Oncol 2023; 7:78. [PMID: 37598273 PMCID: PMC10439959 DOI: 10.1038/s41698-023-00431-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023] Open
Abstract
High-grade glioma is one of the deadliest primary tumors of the central nervous system. Despite the many novel immunotherapies currently in development, it has been difficult to achieve breakthrough results in clinical studies. The reason may be due to the suppressive tumor microenvironment of gliomas that limits the function of specific immune cells (e.g., T cells) which are currently the primary targets of immunotherapy. However, tumor-associated macrophage, which are enriched in tumors, plays an important role in the development of GBM and is becoming a research hotspot for immunotherapy. This review focuses on current research advances in the use of macrophages as therapeutic targets or therapeutic tools for gliomas, and provides some potential research directions.
Collapse
Affiliation(s)
- Fansong Tang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuelong Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yunhui Zeng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Pereira MJ, Ayana R, Holt MG, Arckens L. Chemogenetic manipulation of astrocyte activity at the synapse- a gateway to manage brain disease. Front Cell Dev Biol 2023; 11:1193130. [PMID: 37534103 PMCID: PMC10393042 DOI: 10.3389/fcell.2023.1193130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
Astrocytes are the major glial cell type in the central nervous system (CNS). Initially regarded as supportive cells, it is now recognized that this highly heterogeneous cell population is an indispensable modulator of brain development and function. Astrocytes secrete neuroactive molecules that regulate synapse formation and maturation. They also express hundreds of G protein-coupled receptors (GPCRs) that, once activated by neurotransmitters, trigger intracellular signalling pathways that can trigger the release of gliotransmitters which, in turn, modulate synaptic transmission and neuroplasticity. Considering this, it is not surprising that astrocytic dysfunction, leading to synaptic impairment, is consistently described as a factor in brain diseases, whether they emerge early or late in life due to genetic or environmental factors. Here, we provide an overview of the literature showing that activation of genetically engineered GPCRs, known as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), to specifically modulate astrocyte activity partially mimics endogenous signalling pathways in astrocytes and improves neuronal function and behavior in normal animals and disease models. Therefore, we propose that expressing these genetically engineered GPCRs in astrocytes could be a promising strategy to explore (new) signalling pathways which can be used to manage brain disorders. The precise molecular, functional and behavioral effects of this type of manipulation, however, differ depending on the DREADD receptor used, targeted brain region and timing of the intervention, between healthy and disease conditions. This is likely a reflection of regional and disease/disease progression-associated astrocyte heterogeneity. Therefore, a thorough investigation of the effects of such astrocyte manipulation(s) must be conducted considering the specific cellular and molecular environment characteristic of each disease and disease stage before this has therapeutic applicability.
Collapse
Affiliation(s)
- Maria João Pereira
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Rajagopal Ayana
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Matthew G. Holt
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory of Synapse Biology, Universidade do Porto, Porto, Portugal
| | - Lutgarde Arckens
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
3
|
Chadman KK, Adayev T, Udayan A, Ahmed R, Dai CL, Goodman JH, Meeker H, Dolzhanskaya N, Velinov M. Efficient Delivery of FMR1 across the Blood Brain Barrier Using AAVphp Construct in Adult FMR1 KO Mice Suggests the Feasibility of Gene Therapy for Fragile X Syndrome. Genes (Basel) 2023; 14:505. [PMID: 36833432 PMCID: PMC9957373 DOI: 10.3390/genes14020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Background Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism. Gene therapy may offer an efficient method to ameliorate the symptoms of this disorder. Methods An AAVphp.eb-hSyn-mFMR1IOS7 vector and an empty control were injected into the tail vein of adult Fmr1 knockout (KO) mice and wildtype (WT) controls. The KO mice were injected with 2 × 1013 vg/kg of the construct. The control KO and WT mice were injected with an empty vector. Four weeks following treatment, the animals underwent a battery of tests: open field, marble burying, rotarod, and fear conditioning. The mouse brains were studied for levels of the Fmr1 product FMRP. Results: No significant levels of FMRP were found outside the CNS in the treated animals. The gene delivery was highly efficient, and it exceeded the control FMRP levels in all tested brain regions. There was also improved performance in the rotarod test and partial improvements in the other tests in the treated KO animals. Conclusion: These experiments demonstrate efficient, brain-specific delivery of Fmr1 via peripheral administration in adult mice. The gene delivery led to partial alleviation of the Fmr1 KO phenotypical behaviors. FMRP oversupply may explain why not all behaviors were significantly affected. Since AAV.php vectors are less efficient in humans than in the mice used in the current experiment, studies to determine the optimal dose using human-suitable vectors will be necessary to further demonstrate feasibility.
Collapse
Affiliation(s)
- Kathryn K. Chadman
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Tatyana Adayev
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Aishwarya Udayan
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Rida Ahmed
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Macaulay Honors College at Hunter CUNY, New York, NY 10065, USA
| | - Chun-Ling Dai
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Jeffrey H. Goodman
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Harry Meeker
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Natalia Dolzhanskaya
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Milen Velinov
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
4
|
Syndecan-4 Mediates the Cellular Entry of Adeno-Associated Virus 9. Int J Mol Sci 2023; 24:ijms24043141. [PMID: 36834552 PMCID: PMC9963952 DOI: 10.3390/ijms24043141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Due to their low pathogenicity, immunogenicity, and long-term gene expression, adeno-associated virus (AAV) vectors emerged as safe and efficient gene delivery tools, over-coming setbacks experienced with other viral gene delivery systems in early gene therapy trials. Among AAVs, AAV9 can translocate through the blood-brain barrier (BBB), making it a promising gene delivery tool for transducing the central nervous system (CNS) via systemic administration. Recent reports on the shortcomings of AAV9-mediated gene delivery into the CNS require reviewing the molecular base of AAV9 cellular biology. A more detailed understanding of AAV9's cellular entry would eradicate current hurdles and enable more efficient AAV9-based gene therapy approaches. Syndecans, the transmembrane family of heparan-sulfate proteoglycans, facilitate the cellular uptake of various viruses and drug delivery systems. Utilizing human cell lines and syndecan-specific cellular assays, we assessed the involvement of syndecans in AAV9's cellular entry. The ubiquitously expressed isoform, syndecan-4 proved its superiority in facilitating AAV9 internalization among syndecans. Introducing syndecan-4 into poorly transducible cell lines enabled robust AAV9-dependent gene transduction, while its knockdown reduced AAV9's cellular entry. Attachment of AAV9 to syndecan-4 is mediated not just by the polyanionic heparan-sulfate chains but also by the cell-binding domain of the extracellular syndecan-4 core protein. Co-immunoprecipitation assays and affinity proteomics also confirmed the role of syndecan-4 in the cellular entry of AAV9. Overall, our findings highlight the universally expressed syndecan-4 as a significant contributor to the cellular internalization of AAV9 and provide a molecular-based, rational explanation for the low gene delivery potential of AAV9 into the CNS.
Collapse
|
5
|
Padmakumar S, D'Souza A, Parayath NN, Bleier BS, Amiji MM. Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. J Control Release 2022; 352:121-145. [PMID: 36252748 DOI: 10.1016/j.jconrel.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Nucleic acid therapeutics have emerged as one of the very advanced and efficacious treatment approaches for debilitating health conditions, including those diseases affecting the central nervous system (CNS). Precise targeting with an optimal control over gene regulation confers long-lasting benefits through the administration of nucleic acid payloads via viral, non-viral, and engineered vectors. The current review majorly focuses on the development and clinical translational potential of non-viral vectors for treating CNS diseases with a focus on their specific design and targeting approaches. These carriers must be able to surmount the various intracellular and extracellular barriers, to ensure successful neuronal transfection and ultimately attain higher therapeutic efficacies. Additionally, the specific challenges associated with CNS administration also include the presence of blood-brain barrier (BBB), the complex pathophysiological and biochemical changes associated with different disease conditions and the existence of non-dividing cells. The advantages offered by lipid-based or polymeric systems, engineered proteins, particle-based systems coupled with various approaches of neuronal targeting have been discussed in the context of a variety of CNS diseases. The possibilities of rapid yet highly efficient gene modifications rendered by the breakthrough methodologies for gene editing and gene manipulation have also opened vast avenues of research in neuroscience and CNS disease therapy. The current review also underscores the extensive scientific efforts to optimize specialized, efficacious yet non-invasive and safer administration approaches to overcome the therapeutic delivery challenges specifically posed by the CNS transport barriers and the overall obstacles to clinical translation.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Yu Y, Weiss RM, Wei SG. Brain Interleukin-17A contributes to neuroinflammation and cardiac dysfunction in rats with myocardial infarction. Front Neurosci 2022; 16:1032434. [PMID: 36312009 PMCID: PMC9606756 DOI: 10.3389/fnins.2022.1032434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Proinflammatory cytokines produced outside the central nervous system can act in the brain to promote sympathetic activation that contributes to the progression of heart failure (HF). Interleukin (IL)-17A, a key inflammatory regulator which orchestrates immune responses to promote chronic inflammation, has been implicated in the pathophysiology of HF. We previously reported that IL-17A acts within the brain, particularly in the hypothalamic paraventricular nucleus (PVN), to increase expression of inflammatory mediators and, consequently, sympathetic outflow. The present study sought to determine whether IL-17A levels are elevated in a rat model of HF induced by myocardial infarction and, if so, whether increased expression of IL-17A in the brain itself contributes to neuroinflammation and cardiac dysfunction in this disease setting. Male SD rats underwent coronary artery ligation (CL) to induce HF or sham operation (SHAM). Compared with SHAM rats, HF rats exhibited significantly increased IL-17A levels in plasma, beginning within 1 week with a peak increase at 4 weeks after CL. IL-17A levels in cerebrospinal fluid (CSF) were also increased in HF rats and correlated with IL-17A levels in the plasma. The mRNA expression of IL-17A and its receptor IL-17RA, but not IL-17RC, was markedly upregulated in the PVN of HF when compared with SHAM rats. Genetic knockdown of IL-17RA by bilateral PVN microinjections of an IL-17RA siRNA AAV virus attenuated mRNA expression of proinflammatory cytokines and chemokines, and ameliorated sympathetic activation and cardiac function in HF rats. These data indicate that elevated expression of IL-17A in the brain in HF contributes to the excessive central inflammatory state and cardiac dysfunction in HF. Interventions to suppress IL-17A/IL-17RA axis in the brain have the potential for treating HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Robert M. Weiss
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
| | - Shun-Guang Wei
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
7
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
Hui Y, Zheng X, Zhang H, Li F, Yu G, Li J, Zhang J, Gong X, Guo G. Strategies for Targeting Neural Circuits: How to Manipulate Neurons Using Virus Vehicles. Front Neural Circuits 2022; 16:882366. [PMID: 35571271 PMCID: PMC9099413 DOI: 10.3389/fncir.2022.882366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Viral strategies are the leading methods for mapping neural circuits. Viral vehicles combined with genetic tools provide the possibility to visualize entire functional neural networks and monitor and manipulate neural circuit functions by high-resolution cell type- and projection-specific targeting. Optogenetics and chemogenetics drive brain research forward by exploring causal relationships among different brain regions. Viral strategies offer a fresh perspective for the analysis of the structure-function relationship of the neural circuitry. In this review, we summarize current and emerging viral strategies for targeting neural circuits and focus on adeno-associated virus (AAV) vectors.
Collapse
Affiliation(s)
- Yuqing Hui
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xuefeng Zheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Huijie Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fang Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Guangyin Yu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- Jifeng Zhang,
| | - Xiaobing Gong
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Xiaobing Gong,
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- *Correspondence: Guoqing Guo,
| |
Collapse
|
9
|
Ozgür-Günes Y, Chedik M, LE Stunff C, Fovet CM, Bougneres P. Long-term disease prevention with a gene therapy targeting oligodendrocytes in a mouse model of adrenomyeloneuropathy. Hum Gene Ther 2022; 33:936-949. [PMID: 35166123 DOI: 10.1089/hum.2021.293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adrenomyeloneuropathy (AMN) is a late-onset axonopathy of spinal cord tracts caused by mutations of the ABCD1 gene that encodes ALDP, a peroxisomal transporter of very long chain fatty acids (VLCFA). Disturbed metabolic interaction between oligodendrocytes (OL) and axons is suspected to play a major role in AMN axonopathy. To develop a vector targeting OL, the human ABCD1 gene driven by a short 0.3 kb part of the human myelin-associated glycoprotein (MAG) promoter was packaged into an adeno-associated viral serotype 9 (rAAV9). An intravenous injection of this vector at postnatal day 10 (P10) in Abcd1-/- mice, a model of AMN, allowed a near normal motor performance to persist for 24 months, while age-matched untreated mice developed major defects of balance and motricity. Three weeks post vector, 50-54% of spinal cord white matter OL were expressing ALDP at the cervical level, and only 6-7% after 24 months. In addition, 29-32% of cervical spinal cord astrocytes at 3 weeks and 16-19% at 24 months also expressed ALDP. C26:0-lysoPC, a sensitive VLCFA marker of AMN, was lower by 41% and 50%, respectively in the spinal cord and brain of vector-treated compared with untreated mice. In a non-human primate (NHP), the intrathecal injection of the rAAV9-MAG vector induced abundant ALDP expression at 3 weeks in spinal cord OL (43%, 29%, 26% at cervical, thoracic and lumbar levels) and cerebellum OL (35%). In addition, 33-41 % of spinal cord astrocytes expressed hALDP, and 27% of cerebellar astrocytes. To our knowledge, OL targeting had not been obtained before in primates with other vectors or promoters. The current results thus provide a robust proof-of-concept not only for the gene therapy of AMN but for other CNS diseases where the targeting of OL with the rAAV9-MAG vector may be of interest.
Collapse
Affiliation(s)
| | - Malha Chedik
- INSERM, 27102, Le Kremlin-Bicêtre, Île-de-France, France;
| | | | | | - Pierre Bougneres
- INSERM, 27102, 80 rue du Général Leclercc, Le Kremlin Bicêtre, France, 94276;
| |
Collapse
|
10
|
Siddique Y. Neurodegenerative Disorders and the Current State, Pathophysiology, and Management of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:574-595. [PMID: 34477534 DOI: 10.2174/1871527320666210903101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/14/2020] [Accepted: 02/13/2021] [Indexed: 06/13/2023]
Abstract
In the last few decades, major knowledge has been gained about pathophysiological aspects and molecular pathways behind Parkinson's Disease (PD). Based on neurotoxicological studies and postmortem investigations, there is a general concept of how environmental toxicants (neurotoxins, pesticides, insecticides) and genetic factors (genetic mutations in PD-associated proteins) cause depletion of dopamine from substantia nigra pars compacta region of the midbrain and modulate cellular processes leading to the pathogenesis of PD. α-Synuclein, a neuronal protein accumulation in oligomeric form, called protofibrils, is associated with cellular dysfunction and neuronal death, thus possibly contributing to PD propagation. With advances made in identifying loci that contribute to PD, molecular pathways involved in disease pathogenesis are now clear, and introducing therapeutic strategy at the right time may delay the progression. Biomarkers for PD have helped monitor PD progression; therefore, personalized therapeutic strategies can be facilitated. In order to further improve PD diagnostic and prognostic accuracy, independent validation of biomarkers is required.
Collapse
Affiliation(s)
- Yasir Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
11
|
Jiang Z, Li N, Zhu D, Ren L, Shao Q, Yu K, Yang G. Genetically modified cell sheets in regenerative medicine and tissue engineering. Biomaterials 2021; 275:120908. [PMID: 34119885 DOI: 10.1016/j.biomaterials.2021.120908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Genetically modified cell sheet technology is emerging as a promising biomedical tool to deliver therapeutic genes for regenerative medicine and tissue engineering. Virus-based gene transfection and non-viral gene transfection have been used to fabricate genetically modified cell sheets. Preclinical and clinical studies have shown various beneficial effects of genetically modified cell sheets in the regeneration of bone, periodontal tissue, cartilage and nerves, as well as the amelioration of dental implant osseointegration, myocardial infarction, skeletal muscle ischemia and kidney injury. Furthermore, this technology provides a potential treatment option for various hereditary diseases. However, the method has several limitations, such as safety concerns and difficulties in controlling transgene expression. Therefore, recent studies explored efficient and safe gene transfection methods, prolonged and controllable transgene expression and their potential application in personalized and precision medicine. This review summarizes various types of genetically modified cell sheets, preparation procedures, therapeutic applications and possible improvements.
Collapse
Affiliation(s)
- Zhiwei Jiang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Na Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Danji Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Lingfei Ren
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Qin Shao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Ke Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Guoli Yang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
12
|
Duarte Azevedo M, Sander S, Jeanneret C, Olfat S, Tenenbaum L. Selective targeting of striatal parvalbumin-expressing interneurons for transgene delivery. J Neurosci Methods 2021; 354:109105. [PMID: 33652020 DOI: 10.1016/j.jneumeth.2021.109105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/17/2023]
Abstract
PVCre mice--> combined with AAV-FLEX vectors allowed efficient and specific targeting of PV+ interneurons in the striatum. However, diffusion of viral particles to the globus pallidus caused massive transduction of PV+ projection neurons and subsequent anterograde transport of the transgene product to the subthalamic nucleus and the substantia nigra pars reticulata. Different AAV serotypes (1 and 9) and promoters (CBA and human synapsin) were evaluated. The combination of AAV1, a moderate expression level (human synapsin promoter) and a precise adjustment of the stereotaxic coordinates in the anterior and dorsolateral part of the striatum were necessary to avoid transduction of PV+ GP projection neurons. Even in the absence of direct transduction due to diffusion of viral particles, GP PV+ projection neurons could be retrogradely transduced via their terminals present in the dorsal striatum. However, in the absence of diffusion, GP-Str PV+ projection neurons were poorly or not transduced suggesting that retrograde transduction did not significantly impair the selective targeting of striatal PV+ neurons. Finally, a prominent reduction of the number of striatal PV+ interneurons (about 50 %) was evidenced in the presence of the Cre recombinase suggesting that functional effects of AAV-mediated transgene expression in PV+ striatal interneurons in PVCre mice should be analyzed with caution.
Collapse
Affiliation(s)
- Marcelo Duarte Azevedo
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital, Switzerland
| | - Sibilla Sander
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital, Switzerland
| | - Cheryl Jeanneret
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital, Switzerland
| | - Soophie Olfat
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital, Switzerland
| | - Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital, Switzerland.
| |
Collapse
|
13
|
Wang Y, Bruggeman KF, Franks S, Gautam V, Hodgetts SI, Harvey AR, Williams RJ, Nisbet DR. Is Viral Vector Gene Delivery More Effective Using Biomaterials? Adv Healthc Mater 2021; 10:e2001238. [PMID: 33191667 DOI: 10.1002/adhm.202001238] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Gene delivery has been extensively investigated for introducing foreign genetic material into cells to promote expression of therapeutic proteins or to silence relevant genes. This approach can regulate genetic or epigenetic disorders, offering an attractive alternative to pharmacological therapy or invasive protein delivery options. However, the exciting potential of viral gene therapy has yet to be fully realized, with a number of clinical trials failing to deliver optimal therapeutic outcomes. Reasons for this include difficulty in achieving localized delivery, and subsequently lower efficacy at the target site, as well as poor or inconsistent transduction efficiency. Thus, ongoing efforts are focused on improving local viral delivery and enhancing its efficiency. Recently, biomaterials have been exploited as an option for more controlled, targeted and programmable gene delivery. There is a growing body of literature demonstrating the efficacy of biomaterials and their potential advantages over other delivery strategies. This review explores current limitations of gene delivery and the progress of biomaterial-mediated gene delivery. The combination of biomaterials and gene vectors holds the potential to surmount major challenges, including the uncontrolled release of viral vectors with random delivery duration, poorly localized viral delivery with associated off-target effects, limited viral tropism, and immune safety concerns.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Stephanie Franks
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Vini Gautam
- Department of Biomedical Engineering The University of Melbourne Melbourne Victoria 3010 Australia
| | - Stuart I. Hodgetts
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Alan R. Harvey
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Richard J. Williams
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT) School of Medicine Deakin University Waurn Ponds VIC 3216 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| |
Collapse
|
14
|
Ille AM, Kishel E, Bodea R, Ille A, Lamont H, Amico-Ruvio S. Protein LY6E as a candidate for mediating transport of adeno-associated virus across the human blood-brain barrier. J Neurovirol 2020; 26:769-778. [PMID: 32839948 DOI: 10.1007/s13365-020-00890-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) is a major obstacle for the treatment of central nervous system (CNS) disorders. Significant progress has been made in developing adeno-associated virus (AAV) variants with increased ability to cross the BBB in mice. However, these variants are not efficacious in non-human primates. Herein, we employed various bioinformatic techniques to identify lymphocyte antigen-6E (LY6E) as a candidate for mediating transport of AAV across the human BBB based on the previously determined mechanism of transport in mice. Our results provide insight into future discovery and optimization of AAV variants for CNS gene delivery in humans.
Collapse
Affiliation(s)
- Alexander M Ille
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, 07103, USA.,STEM Biomedical, Kitchener, ON, N2M 3B9, Canada
| | - Eric Kishel
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Raoul Bodea
- STEM Biomedical, Kitchener, ON, N2M 3B9, Canada
| | - Anetta Ille
- STEM Biomedical, Kitchener, ON, N2M 3B9, Canada
| | - Hannah Lamont
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, 07103, USA
| | | |
Collapse
|
15
|
Merola A, Van Laar A, Lonser R, Bankiewicz K. Gene therapy for Parkinson’s disease: contemporary practice and emerging concepts. Expert Rev Neurother 2020; 20:577-590. [DOI: 10.1080/14737175.2020.1763794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Aristide Merola
- Department of Neurology, College of Medicine, the Ohio State University, Columbus, OH, USA
| | - Amber Van Laar
- Brain Neurotherapy Bio, Inc., Columbus, OH, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Russell Lonser
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Krzysztof Bankiewicz
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Fu X, Liu Q, Li C, Li Y, Wang L. Cardiac Fibrosis and Cardiac Fibroblast Lineage-Tracing: Recent Advances. Front Physiol 2020; 11:416. [PMID: 32435205 PMCID: PMC7218116 DOI: 10.3389/fphys.2020.00416] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibrosis is a common pathological change associated with cardiac injuries and diseases. Even though the accumulation of collagens and other extracellular matrix (ECM) proteins may have some protective effects in certain situations, prolonged fibrosis usually negatively affects cardiac function and often leads to deleterious consequences. While the development of cardiac fibrosis involves several cell types, the major source of ECM proteins is cardiac fibroblast. The high plasticity of cardiac fibroblasts enables them to quickly change their behaviors in response to injury and transition between several differentiation states. However, the study of cardiac fibroblasts in vivo was very difficult due to the lack of specific research tools. The development of cardiac fibroblast lineage-tracing mouse lines has greatly promoted cardiac fibrosis research. In this article, we review the recent cardiac fibroblast lineage-tracing studies exploring the origin of cardiac fibroblasts and their complicated roles in cardiac fibrosis, and briefly discuss the translational potential of basic cardiac fibroblast researches.
Collapse
Affiliation(s)
- Xing Fu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Qianglin Liu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Chaoyang Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Yuxia Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Leshan Wang
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
17
|
Maguire CA, Corey DP. Viral vectors for gene delivery to the inner ear. Hear Res 2020; 394:107927. [PMID: 32199720 DOI: 10.1016/j.heares.2020.107927] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/04/2023]
Abstract
Gene therapy using virus vectors to treat hereditary diseases has made remarkable progress in the past decade. There are FDA-approved products for ex-vivo gene therapy for diseases such as immunodeficiencies (e.g., SCID), and in vivo gene therapy for a rare blindness and neuro-muscular disease. Gene therapy for hereditary hearing loss has picked up pace in the past five years due to progress in understanding disease gene function as well as the development of better technologies such as adeno-associated virus (AAV) vectors, to deliver nucleic acid to target cells in the inner ear. This review has two major goals. One is to review the state of the art for investigators already working in preclinical cochlear gene therapy. The other is to present the language of vectorology and important considerations for designing and using AAV vectors to inner ear neurobiologists who might use AAV vectors in the cochlea for either therapeutic or basic biological applications.
Collapse
Affiliation(s)
- Casey A Maguire
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, 149 13th Street, Charlestown, MA, 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA.
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
rAAV-Mediated Cochlear Gene Therapy: Prospects and Challenges for Clinical Application. J Clin Med 2020; 9:jcm9020589. [PMID: 32098144 PMCID: PMC7073754 DOI: 10.3390/jcm9020589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, pioneering molecular gene therapy for inner-ear disorders have achieved experimental hearing improvements after a single local or systemic injection of adeno-associated, virus-derived vectors (rAAV for recombinant AAV) encoding an extra copy of a normal gene, or ribozymes used to modify a genome. These results hold promise for treating congenital or later-onset hearing loss resulting from monogenic disorders with gene therapy approaches in patients. In this review, we summarize the current state of rAAV-mediated inner-ear gene therapies including the choice of vectors and delivery routes, and discuss the prospects and obstacles for the future development of efficient clinical rAAV-mediated cochlear gene medicine therapy.
Collapse
|
19
|
Hoffmann MD, Aschenbrenner S, Grosse S, Rapti K, Domenger C, Fakhiri J, Mastel M, Börner K, Eils R, Grimm D, Niopek D. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Res 2020; 47:e75. [PMID: 30982889 PMCID: PMC6648350 DOI: 10.1093/nar/gkz271] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
The rapid development of CRISPR–Cas technologies brought a personalized and targeted treatment of genetic disorders into closer reach. To render CRISPR-based therapies precise and safe, strategies to confine the activity of Cas(9) to selected cells and tissues are highly desired. Here, we developed a cell type-specific Cas-ON switch based on miRNA-regulated expression of anti-CRISPR (Acr) proteins. We inserted target sites for miR-122 or miR-1, which are abundant specifically in liver and cardiac muscle cells, respectively, into the 3′UTR of Acr transgenes. Co-expressing these with Cas9 and sgRNAs resulted in Acr knockdown and released Cas9 activity solely in hepatocytes or cardiomyocytes, while Cas9 was efficiently inhibited in off-target cells. We demonstrate control of genome editing and gene activation using a miR-dependent AcrIIA4 in combination with different Streptococcus pyogenes (Spy)Cas9 variants (full-length Cas9, split-Cas9, dCas9-VP64). Finally, to showcase its modularity, we adapted our Cas-ON system to the smaller and more target-specific Neisseria meningitidis (Nme)Cas9 orthologue and its cognate inhibitors AcrIIC1 and AcrIIC3. Our Cas-ON switch should facilitate cell-specific activity of any CRISPR–Cas orthologue, for which a potent anti-CRISPR protein is known.
Collapse
Affiliation(s)
- Mareike D Hoffmann
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Sabine Aschenbrenner
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Stefanie Grosse
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Kleopatra Rapti
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg 69120, Germany.,BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg 69120, Germany
| | - Claire Domenger
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg 69120, Germany.,BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg 69120, Germany
| | - Julia Fakhiri
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg 69120, Germany.,BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg 69120, Germany
| | - Manuel Mastel
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Kathleen Börner
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg 69120, Germany.,BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg 69120, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg 69120, Germany
| | - Roland Eils
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin 10178, Germany.,Health Data Science Unit, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Dirk Grimm
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg 69120, Germany.,BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg 69120, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg 69120, Germany
| | - Dominik Niopek
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
20
|
Li Y, Ren D, Shen Y, Zheng X, Xu G. Altered DNA methylation of TRIM13 in diabetic nephropathy suppresses mesangial collagen synthesis by promoting ubiquitination of CHOP. EBioMedicine 2020; 51:102582. [PMID: 31901873 PMCID: PMC6940716 DOI: 10.1016/j.ebiom.2019.11.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
Background Mesangial collagen synthesis in renal glomeruli contributes to the pathogenesis of diabetic nephropathy (DN) which is one of the most serious complications of diabetes mellitus. However, the underlying mechanism of mesangial collagen synthesis is largely unknown. Methods The differential expression of CHOP and TRIM13 which is a well-defined E3 ubiquitin ligase was compared in renal biopsy samples from DN/normal renal tissues, in isolated glomeruli of diabetic/control mice, as well as in high glucose (HG) or TGF-β1-stimulated renal mesangial cells. Then the relationship between TRIM13 and CHOP was explored using the ubiquitination assay. Findings We found that the expression of TRIM13 was downregulated in renal biopsies, isolated glomeruli of diabetic mice, and HG/TGF-β1-stimulated renal mesangial cells, while the expression of CHOP was upregulated. An increased level of TRIM13 promoter methylation contributed to the deregulation of TRIM13 in renal glomeruli of DN. The ubiquitination assay confirmed that TRIM13 promoted ubiquitination and degradation of CHOP. Meanwhile, overexpressing TRIM13 attenuated DN-induced collagen synthesis and restored renal function in vitro and in vivo via downregulating CHOP. Interpretation Our findings demonstrated that overexpressed TRIM13 suppresses mesangial collagen synthesis in DN by promoting ubiquitination of CHOP, suggesting TRIM13 as a potential therapeutic target in treating DN.
Collapse
Affiliation(s)
- Yebei Li
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, Jiangxi 330006, China
| | - Daijin Ren
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, Jiangxi 330006, China
| | - Yunfeng Shen
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, China
| | - Xiaoxu Zheng
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington DC, United States
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
21
|
Kery R, Chen APF, Kirschen GW. Genetic targeting of astrocytes to combat neurodegenerative disease. Neural Regen Res 2020; 15:199-211. [PMID: 31552885 PMCID: PMC6905329 DOI: 10.4103/1673-5374.265541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Astrocytes, glial cells that interact extensively with neurons and other support cells throughout the central nervous system, have recently come under the spotlight for their potential contribution to, or potential regenerative role in a host of neurodegenerative disorders. It is becoming increasingly clear that astrocytes, in concert with microglial cells, activate intrinsic immunological pathways in the setting of neurodegenerative injury, although the direct and indirect consequences of such activation are still largely unknown. We review the current literature on the astrocyte’s role in several neurodegenerative diseases, as well as highlighting recent advances in genetic manipulation of astrocytes that may prove critical to modulating their response to neurological injury, potentially combatting neurodegenerative damage.
Collapse
Affiliation(s)
- Rachel Kery
- Medical Scientist Training Program (MSTP), Stony Brook Medicine; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Allen P F Chen
- Medical Scientist Training Program (MSTP), Stony Brook Medicine; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA
| |
Collapse
|
22
|
Hanlon KS, Meltzer JC, Buzhdygan T, Cheng MJ, Sena-Esteves M, Bennett RE, Sullivan TP, Razmpour R, Gong Y, Ng C, Nammour J, Maiz D, Dujardin S, Ramirez SH, Hudry E, Maguire CA. Selection of an Efficient AAV Vector for Robust CNS Transgene Expression. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:320-332. [PMID: 31788496 PMCID: PMC6881693 DOI: 10.1016/j.omtm.2019.10.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Adeno-associated virus (AAV) capsid libraries have generated improved transgene delivery vectors. We designed an AAV library construct, iTransduce, that combines a peptide library on the AAV9 capsid with a Cre cassette to enable sensitive detection of transgene expression. After only two selection rounds of the library delivered intravenously in transgenic mice carrying a Cre-inducible fluorescent protein, we flow sorted fluorescent cells from brain, and DNA sequencing revealed two dominant capsids. One of the capsids, termed AAV-F, mediated transgene expression in the brain cortex more than 65-fold (astrocytes) and 171-fold (neurons) higher than the parental AAV9. High transduction efficiency was sex-independent and sustained in two mouse strains (C57BL/6 and BALB/c), making it a highly useful capsid for CNS transduction of mice. Future work in large animal models will test the translation potential of AAV-F.
Collapse
Affiliation(s)
- Killian S Hanlon
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129.,Harvard Medical School, Boston, MA 02115, USA
| | - Jonah C Meltzer
- Harvard Medical School, Boston, MA 02115, USA.,Alzheimer's Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Tetyana Buzhdygan
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Shriners Hospital's Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ming J Cheng
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129.,Harvard Medical School, Boston, MA 02115, USA
| | | | - Rachel E Bennett
- Harvard Medical School, Boston, MA 02115, USA.,Alzheimer's Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Timothy P Sullivan
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Shriners Hospital's Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Roshanak Razmpour
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Shriners Hospital's Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yi Gong
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129.,Harvard Medical School, Boston, MA 02115, USA
| | - Carrie Ng
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129.,Harvard Medical School, Boston, MA 02115, USA
| | - Josette Nammour
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129.,Harvard Medical School, Boston, MA 02115, USA
| | - Daniela Maiz
- Harvard Medical School, Boston, MA 02115, USA.,Alzheimer's Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Simon Dujardin
- Harvard Medical School, Boston, MA 02115, USA.,Alzheimer's Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Shriners Hospital's Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Eloise Hudry
- Harvard Medical School, Boston, MA 02115, USA.,Alzheimer's Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Casey A Maguire
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129.,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Leopold AV, Shcherbakova DM, Verkhusha VV. Fluorescent Biosensors for Neurotransmission and Neuromodulation: Engineering and Applications. Front Cell Neurosci 2019; 13:474. [PMID: 31708747 PMCID: PMC6819510 DOI: 10.3389/fncel.2019.00474] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
Understanding how neuronal activity patterns in the brain correlate with complex behavior is one of the primary goals of modern neuroscience. Chemical transmission is the major way of communication between neurons, however, traditional methods of detection of neurotransmitter and neuromodulator transients in mammalian brain lack spatiotemporal precision. Modern fluorescent biosensors for neurotransmitters and neuromodulators allow monitoring chemical transmission in vivo with millisecond precision and single cell resolution. Changes in the fluorescent biosensor brightness occur upon neurotransmitter binding and can be detected using fiber photometry, stationary microscopy and miniaturized head-mounted microscopes. Biosensors can be expressed in the animal brain using adeno-associated viral vectors, and their cell-specific expression can be achieved with Cre-recombinase expressing animals. Although initially fluorescent biosensors for chemical transmission were represented by glutamate biosensors, nowadays biosensors for GABA, acetylcholine, glycine, norepinephrine, and dopamine are available as well. In this review, we overview functioning principles of existing intensiometric and ratiometric biosensors and provide brief insight into the variety of neurotransmitter-binding proteins from bacteria, plants, and eukaryotes including G-protein coupled receptors, which may serve as neurotransmitter-binding scaffolds. We next describe a workflow for development of neurotransmitter and neuromodulator biosensors. We then discuss advanced setups for functional imaging of neurotransmitter transients in the brain of awake freely moving animals. We conclude by providing application examples of biosensors for the studies of complex behavior with the single-neuron precision.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
24
|
Jüttner J, Szabo A, Gross-Scherf B, Morikawa RK, Rompani SB, Hantz P, Szikra T, Esposti F, Cowan CS, Bharioke A, Patino-Alvarez CP, Keles Ö, Kusnyerik A, Azoulay T, Hartl D, Krebs AR, Schübeler D, Hajdu RI, Lukats A, Nemeth J, Nagy ZZ, Wu KC, Wu RH, Xiang L, Fang XL, Jin ZB, Goldblum D, Hasler PW, Scholl HPN, Krol J, Roska B. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat Neurosci 2019; 22:1345-1356. [PMID: 31285614 DOI: 10.1038/s41593-019-0431-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/17/2019] [Indexed: 01/20/2023]
Abstract
Targeting genes to specific neuronal or glial cell types is valuable for both understanding and repairing brain circuits. Adeno-associated viruses (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is an unsolved problem. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies. We show that a number of these AAVs specifically target expression to neuronal and glial cell types in the mouse and non-human primate retina in vivo and in the human retina in vitro. We demonstrate applications for recording and stimulation, as well as the intersectional and combinatorial labeling of cell types. These resources and approaches allow economic, fast and efficient cell-type targeting in a variety of species, both for fundamental science and for gene therapy.
Collapse
Affiliation(s)
- Josephine Jüttner
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Arnold Szabo
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Brigitte Gross-Scherf
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Rei K Morikawa
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Santiago B Rompani
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Peter Hantz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamas Szikra
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Federico Esposti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Division of Neuroscience, San Raffaele Research Institute, Università Vita-Salute San Raffaele, Milan, Italy
| | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Arjun Bharioke
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Claudia P Patino-Alvarez
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Özkan Keles
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Akos Kusnyerik
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | | - Dominik Hartl
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Arnaud R Krebs
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Rozina I Hajdu
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Akos Lukats
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Janos Nemeth
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltan Z Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Kun-Chao Wu
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Rong-Han Wu
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Lue Xiang
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Xiao-Long Fang
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Zi-Bing Jin
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - David Goldblum
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Pascal W Hasler
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jacek Krol
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
25
|
Orefice NS, Souchet B, Braudeau J, Alves S, Piguet F, Collaud F, Ronzitti G, Tada S, Hantraye P, Mingozzi F, Ducongé F, Cartier N. Real-Time Monitoring of Exosome Enveloped-AAV Spreading by Endomicroscopy Approach: A New Tool for Gene Delivery in the Brain. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:237-251. [PMID: 31440523 PMCID: PMC6699252 DOI: 10.1016/j.omtm.2019.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
Exosomes represent a strategy for optimizing the adeno-associated virus (AAV) toward the development of novel therapeutic options for neurodegenerative disorders. However, in vivo spreading of exosomes and AAVs after intracerebral administration is poorly understood. This study provides an assessment and comparison of the spreading into the brain of exosome-enveloped AAVs (exo-AAVs) or unassociated AAVs (std-AAVs) through in vivo optical imaging techniques like probe-based confocal laser endomicroscopy (pCLE) and ex vivo fluorescence microscopy. The std-AAV serotypes (AAV6 and AAV9) encoding the GFP were enveloped in exosomes and injected into the ipsilateral hippocampus. At 3 months post-injection, pCLE detected enhanced GFP expression of both exo-AAV serotypes in contralateral hemispheres compared to std-AAVs. Although sparse GFP-positive astrocytes were observed using exo-AAVs, our results show that the enhancement of the transgene expression resulting from exo-AAVs was largely restricted to neurons and oligodendrocytes. Our results suggest (1) the possibility of combining gene therapy with an endoscopic approach to enable tracking of exo-AAV spread, and (2) exo-AAVs allow for widespread, long-term gene expression in the CNS, supporting the use of exo-AAVs as an efficient gene delivery tool.
Collapse
Affiliation(s)
- Nicola Salvatore Orefice
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay 94100, France.,CEA, Fundamental Research Division (DRF), Institut of Biology Francois Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses 92265, France
| | - Benoît Souchet
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay 94100, France.,CEA, Fundamental Research Division (DRF), Institut of Biology Francois Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses 92265, France
| | - Jérôme Braudeau
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay 94100, France.,CEA, Fundamental Research Division (DRF), Institut of Biology Francois Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses 92265, France
| | - Sandro Alves
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay 94100, France.,CEA, Fundamental Research Division (DRF), Institut of Biology Francois Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses 92265, France
| | - Françoise Piguet
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay 94100, France.,CEA, Fundamental Research Division (DRF), Institut of Biology Francois Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses 92265, France
| | - Fanny Collaud
- INTEGRARE, Genethon, INSERM, Université Evry, Université Paris-Saclay, Evry 91002, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, INSERM, Université Evry, Université Paris-Saclay, Evry 91002, France
| | - Satoru Tada
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay 94100, France.,CEA, Fundamental Research Division (DRF), Institut of Biology Francois Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses 92265, France
| | - Philippe Hantraye
- CEA, Fundamental Research Division (DRF), Institut of Biology Francois Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses 92265, France.,Neurodegenerative Diseases Laboratory, CNRS Laboratory of Neurodegenerative Diseases (UMR9199), Fontenay-aux-Roses 92265, France
| | - Federico Mingozzi
- INTEGRARE, Genethon, INSERM, Université Evry, Université Paris-Saclay, Evry 91002, France
| | - Frédéric Ducongé
- CEA, Fundamental Research Division (DRF), Institut of Biology Francois Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses 92265, France.,Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, Fontenay-aux-Roses 92265, France
| | - Nathalie Cartier
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay 94100, France.,CEA, Fundamental Research Division (DRF), Institut of Biology Francois Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses 92265, France
| |
Collapse
|
26
|
Gomez JA, Beitnere U, Segal DJ. Live-Animal Epigenome Editing: Convergence of Novel Techniques. Trends Genet 2019; 35:527-541. [PMID: 31128888 DOI: 10.1016/j.tig.2019.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022]
Abstract
Epigenome editing refers to the generation of precise chromatin alterations and their effects on gene expression and cell biology. Until recently, much of the efforts in epigenome editing were limited to tissue culture models of disease. However, the convergence of techniques from different fields including mammalian genetics, virology, and CRISPR engineering is advancing epigenome editing into a new era. Researchers are increasingly embracing the use of multicellular model organisms to test the role of specific chromatin alterations in development and disease. The challenge of successful live-animal epigenomic editing will depend on a well-informed foundation of the current methodologies for cell-specific delivery and editing accuracy. Here we review the opportunities for basic research and therapeutic applications.
Collapse
Affiliation(s)
- J Antonio Gomez
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Ulrika Beitnere
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - David J Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
27
|
Anderson HE, Schaller KL, Caldwell JH, Weir RFF. Intravascular injections of adenoassociated viral vector serotypes rh10 and PHP.B transduce murine sciatic nerve axons. Neurosci Lett 2019; 706:51-55. [PMID: 31078676 DOI: 10.1016/j.neulet.2019.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/03/2023]
Abstract
Adenoassociated viral vectors provide a safe and robust method for expression of transgenes in nondividing cells such as neurons. Intravenous injections of these vectors provide a means of transducing motoneurons of peripheral nerves. Previous research has demonstrated that serotypes 1, rh10 and PHP.B can transduce motor neuron cell bodies in the spinal cord, but has not quantified expression in the peripheral nerve axon. Axonal labeling is crucial for optogenetic stimulation and detection of action potentials in peripheral nerve. Therefore, in this study, serotypes 1, PHP.B, and rh10 were tested for their ability to label axons of the murine sciatic and tibial nerve following intravenous injection. Serotype rh10 elicits expression in 10% of acetylcholine transferase positive axons of the sciatic nerve in immunohistochemically-stained sections. Serotype rh10 transduces a variety of axon diameters from <1-12 μm, while PHP.B transduces larger axons of diameter (4-16 μm). Expression was not seen with serotype 1. These results show the potential of serotypes PHP.B and rh10 delivery of transgenic products to axons of the peripheral nerve.
Collapse
Affiliation(s)
- Hans E Anderson
- Department of Bioengineering, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA.
| | - Kristin L Schaller
- Department of Neurology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - John H Caldwell
- Department of Cell and Developmental Biology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Richard F Ff Weir
- Department of Bioengineering, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
28
|
Stanimirovic DB, Sandhu JK, Costain WJ. Emerging Technologies for Delivery of Biotherapeutics and Gene Therapy Across the Blood-Brain Barrier. BioDrugs 2019; 32:547-559. [PMID: 30306341 PMCID: PMC6290705 DOI: 10.1007/s40259-018-0309-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibody, immuno- and gene therapies developed for neurological indications face a delivery challenge posed by various anatomical and physiological barriers within the central nervous system (CNS); most notably, the blood–brain barrier (BBB). Emerging delivery technologies for biotherapeutics have focused on trans-cellular pathways across the BBB utilizing receptor-mediated transcytosis (RMT). ‘Traditionally’ targeted RMT receptors, transferrin receptor (TfR) and insulin receptor (IR), are ubiquitously expressed and pose numerous translational challenges during development, including species differences and safety risks. Recent advances in antibody engineering technologies and discoveries of RMT targets and BBB-crossing antibodies that are more BBB-selective have combined to create a new preclinical pipeline of BBB-crossing biotherapeutics with improved efficacy and safety. Novel BBB-selective RMT targets and carrier antibodies have exposed additional opportunities for re-targeting gene delivery vectors or nanocarriers for more efficient brain delivery. Emergence and refinement of core technologies of genetic engineering and editing as well as biomanufacturing of viral vectors and cell-derived products have de-risked the path to the development of systemic gene therapy approaches for the CNS. In particular, brain-tropic viral vectors and extracellular vesicles have recently expanded the repertoire of brain delivery strategies for biotherapeutics. Whereas protein biotherapeutics and bispecific antibodies enabled for BBB transcytosis are rapidly heading towards clinical trials, systemic gene therapy approaches for CNS will likely remain in research phase for the foreseeable future. The promise and limitations of these emerging cross-BBB delivery technologies are further discussed in this article.
Collapse
Affiliation(s)
- Danica B Stanimirovic
- Human Health Therapeutics Research Centre, Translational Bioscience, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada.
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, Translational Bioscience, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada
| | - Will J Costain
- Human Health Therapeutics Research Centre, Translational Bioscience, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada
| |
Collapse
|
29
|
Hudry E, Vandenberghe LH. Therapeutic AAV Gene Transfer to the Nervous System: A Clinical Reality. Neuron 2019; 101:839-862. [DOI: 10.1016/j.neuron.2019.02.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
|
30
|
Anderson HE, Weir RFF. On the development of optical peripheral nerve interfaces. Neural Regen Res 2019; 14:425-436. [PMID: 30539808 PMCID: PMC6334609 DOI: 10.4103/1673-5374.245461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/19/2018] [Indexed: 11/04/2022] Open
Abstract
Limb loss and spinal cord injury are two debilitating conditions that continue to grow in prevalence. Prosthetic limbs and limb reanimation present two ways of providing affected individuals with means to interact in the world. These techniques are both dependent on a robust interface with the peripheral nerve. Current methods for interfacing with the peripheral nerve tend to suffer from low specificity, high latency and insufficient robustness for a chronic implant. An optical peripheral nerve interface may solve some of these problems by decreasing invasiveness and providing single axon specificity. In order to implement such an interface three elements are required: (1) a transducer capable of translating light into a neural stimulus or translating neural activity into changes in fluorescence, (2) a means for delivering said transducer and (3) a microscope for providing the stimulus light and detecting the fluorescence change. There are continued improvements in both genetically encoded calcium and voltage indicators as well as new optogenetic actuators for stimulation. Similarly, improvements in specificity of viral vectors continue to improve expression in the axons of the peripheral nerve. Our work has recently shown that it is possible to virally transduce axons of the peripheral nerve for recording from small fibers. The improvements of these components make an optical peripheral nerve interface a rapidly approaching alternative to current methods.
Collapse
Affiliation(s)
- Hans E. Anderson
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Richard F. ff. Weir
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
31
|
Hudry E, Andres-Mateos E, Lerner EP, Volak A, Cohen O, Hyman BT, Maguire CA, Vandenberghe LH. Efficient Gene Transfer to the Central Nervous System by Single-Stranded Anc80L65. Mol Ther Methods Clin Dev 2018; 10:197-209. [PMID: 30109242 PMCID: PMC6083902 DOI: 10.1016/j.omtm.2018.07.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
Adeno-associated viral vectors (AAVs) have demonstrated potential in applications for neurologic disorders, and the discovery that some AAVs can cross the blood-brain barrier (BBB) after intravenous injection has further expanded these opportunities for non-invasive brain delivery. Anc80L65, a novel AAV capsid designed from in silico reconstruction of the viral evolutionary lineage, has previously demonstrated robust transduction capabilities after local delivery in various tissues such as liver, retina, or cochlea, compared with conventional AAVs. Here, we compared the transduction efficacy of Anc80L65 with conventional AAV9 in the CNS after intravenous, intracerebroventricular (i.c.v.), or intraparenchymal injections. Anc80L65 was more potent at targeting the brain and spinal cord after intravenous injection than AAV9, and mostly transduced astrocytes and a wide range of neuronal subpopulations. Although the efficacy of Anc80L65 and AAV9 is similar after direct intraparenchymal injection in the striatum, Anc80L65's diffusion throughout the CNS was more extensive than AAV9 after i.c.v. infusion, leading to widespread EGFP expression in the cerebellum. These findings demonstrate that Anc80L65 is a highly efficient gene transfer vector for the murine CNS. Systemic injection of Anc80L65 leads to notable expression in the CNS that does not rely on a self-complementary genome. These data warrant further testing in larger animal models.
Collapse
Affiliation(s)
- Eloise Hudry
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Eli P. Lerner
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Adrienn Volak
- Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Olivia Cohen
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bradley T. Hyman
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Casey A. Maguire
- Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Luk H. Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
32
|
Volak A, LeRoy SG, Natasan JS, Park DJ, Cheah PS, Maus A, Fitzpatrick Z, Hudry E, Pinkham K, Gandhi S, Hyman BT, Mu D, GuhaSarkar D, Stemmer-Rachamimov AO, Sena-Esteves M, Badr CE, Maguire CA. Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery. J Neurooncol 2018; 139:293-305. [PMID: 29767307 PMCID: PMC6454875 DOI: 10.1007/s11060-018-2889-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Abstract
The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.
Collapse
Affiliation(s)
- Adrienn Volak
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Stanley G LeRoy
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Jeya Shree Natasan
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - David J Park
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Pike See Cheah
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Andreas Maus
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Fitzpatrick
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Eloise Hudry
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Kelsey Pinkham
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Sheetal Gandhi
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Dakai Mu
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Christian E Badr
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.
| | - Casey A Maguire
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Considerations for the use of virally delivered genetic tools for in-vivo circuit analysis and behavior in mutant mice: a practical guide to optogenetics. Behav Pharmacol 2018; 28:598-609. [PMID: 29099403 DOI: 10.1097/fbp.0000000000000361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optogenetics was the method of the year in 2010 according to Nature Neuroscience. Since then, this method has become widespread, the use of virally delivered genetic tools has extended to other fields such as pharmacogenetics, and optogenetic techniques have become frequently applied in genetically manipulated animals for in-vivo circuit analysis and behavioral studies. However, several issues should be taken into consideration when planning such experiments. We aimed to summarize the critical points concerning optogenetic manipulation of a specific brain area in mutant mice. First, the appropriate vector should be chosen to allow optimal optogenetic manipulation. Adeno-associated viral vectors are the most common carriers with different available serotypes. Light-sensitive channels are available in many forms, and the expression of the delivered genetic material can be influenced in many ways. Second, selecting the adequate stimulation protocol is also essential. The pattern, intensity, and timing could be determinative parameters. Third, the mutant strain might have a phenotype that influences the observed behavior. In conclusion, detailed preliminary experiments and numerous control groups are required to choose the best vector and stimulation protocol and to ensure that the mutant animals do not have a specific phenotype that can influence the examined behavior.
Collapse
|
34
|
He R, Huang W, Huang Y, Xu M, Song P, Huang Y, Xie H, Hu Y. Cdk5 Inhibitory Peptide Prevents Loss of Dopaminergic Neurons and Alleviates Behavioral Changes in an MPTP Induced Parkinson's Disease Mouse Model. Front Aging Neurosci 2018; 10:162. [PMID: 29910724 PMCID: PMC5992349 DOI: 10.3389/fnagi.2018.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/15/2018] [Indexed: 01/06/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most affected neurodegenerative diseases in the world. Deregulation of cyclin-dependent kinase 5 (Cdk5) is believed to play an important role in neurodegenerative diseases including PD. p25 is a cleavage peptide of p35, a physiologic activator of Cdk5. p25 combines to Cdk5 and leads to the hyperactivity of Cdk5, which in turn hyperphosphorylates downstream substrates and leads to neuroinflammation and apoptosis of neurons. Previously, we have demonstrated that adeno-associated virus serotype-9 (AAV9) mediated Cdk5 inhibitory peptide (CIP) inhibits the activity of Cdk5/p25 complex and alleviates pathologic and behavioral changes in Alzheimer’s disease mouse model. In this study, we evaluated whether AAV9-CIP protected dopaminergic (DA) neurons in 1-methyl-4-phe-nyl-1,2,3,6-tetrahydropyridine-probenecid (MPTP/p) induced PD mouse model. The data showed that administration of AAV9-CIP by intracerebroventricular injection 1 week before MPTP/p exposure protected loss of DA neurons in substantia nigra compact of the model mice. Importantly, AAV9-CIP also alleviated the motor and anxiety-like symptoms of the disease animals. In summary, AAV9 mediated CIP might be a potential intervention for PD.
Collapse
Affiliation(s)
- Rongni He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Huang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yaowei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaojing Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pingping Song
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinwei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huifang Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Naso MF, Tomkowicz B, Perry WL, Strohl WR. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2018; 31:317-334. [PMID: 28669112 PMCID: PMC5548848 DOI: 10.1007/s40259-017-0234-5] [Citation(s) in RCA: 773] [Impact Index Per Article: 110.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been a resurgence in gene therapy efforts that is partly fueled by the identification and understanding of new gene delivery vectors. Adeno-associated virus (AAV) is a non-enveloped virus that can be engineered to deliver DNA to target cells, and has attracted a significant amount of attention in the field, especially in clinical-stage experimental therapeutic strategies. The ability to generate recombinant AAV particles lacking any viral genes and containing DNA sequences of interest for various therapeutic applications has thus far proven to be one of the safest strategies for gene therapies. This review will provide an overview of some important factors to consider in the use of AAV as a vector for gene therapy.
Collapse
Affiliation(s)
- Michael F Naso
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA.
| | - Brian Tomkowicz
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA
| | - William L Perry
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA
| | | |
Collapse
|
36
|
Nakamura S, Muramatsu SI, Takino N, Ito M, Jimbo EF, Shimazaki K, Onaka T, Ohtsuki S, Terasaki T, Yamagata T, Osaka H. Gene therapy for Glut1
-deficient mouse using an adeno-associated virus vector with the human intrinsic GLUT1 promoter. J Gene Med 2018; 20:e3013. [DOI: 10.1002/jgm.3013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/06/2018] [Accepted: 02/17/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sachie Nakamura
- Department of Pediatrics; Jichi Medical University; Tochigi Japan
| | - Shin-ichi Muramatsu
- Division of Neurology; Jichi Medical University; Tochigi Japan
- Center for Gene and Cell Therapy, The Institute of Medical Science; The University of Tokyo; Japan
| | - Naomi Takino
- Division of Neurology; Jichi Medical University; Tochigi Japan
| | - Mika Ito
- Division of Neurology; Jichi Medical University; Tochigi Japan
| | - Eriko F. Jimbo
- Department of Pediatrics; Jichi Medical University; Tochigi Japan
| | - Kuniko Shimazaki
- Department of Neurosurgery; Jichi Medical University; Tochigi Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology; Jichi Medical University; Tochigi Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences; Kumamoto University; Kumamoto Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences; Tohoku University; Sendai Japan
| | | | - Hitoshi Osaka
- Department of Pediatrics; Jichi Medical University; Tochigi Japan
| |
Collapse
|
37
|
Rincon MY, de Vin F, Duqué SI, Fripont S, Castaldo SA, Bouhuijzen-Wenger J, Holt MG. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector. Gene Ther 2018. [PMID: 29523880 DOI: 10.1038/s41434-018-0005-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.
Collapse
Affiliation(s)
- Melvin Y Rincon
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Filip de Vin
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Sandra I Duqué
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Shelly Fripont
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Stephanie A Castaldo
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,KU Leuven, Department of Oncology, Leuven, Belgium
| | - Jessica Bouhuijzen-Wenger
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Matthew G Holt
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium. .,KU Leuven, Department of Neuroscience, Leuven, Belgium.
| |
Collapse
|
38
|
He Y, Pan S, Xu M, He R, Huang W, Song P, Huang J, Zhang H, Hu Y. Adeno‐associated virus 9–mediated Cdk5 inhibitory peptide reverses pathologic changes and behavioral deficits in the Alzheimer's disease mouse model. FASEB J 2017; 31:3383-3392. [PMID: 28420695 DOI: 10.1096/fj.201700064r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/05/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Yong He
- Department of NeurologyNanfang HospitalSouthern Medical University Guangzhou China
- Department of NeurologyFirst People's Hospital of Chenzhou Chenzhou China
| | - Suyue Pan
- Department of NeurologyNanfang HospitalSouthern Medical University Guangzhou China
| | - Miaojing Xu
- Department of NeurologyNanfang HospitalSouthern Medical University Guangzhou China
| | - Rongni He
- Department of NeurologyZhujiang HospitalSouthern Medical University Guangzhou China
| | - Wei Huang
- Department of NeurologyZhujiang HospitalSouthern Medical University Guangzhou China
| | - Pingping Song
- Department of NeurologyNanfang HospitalSouthern Medical University Guangzhou China
| | - Jianou Huang
- Department of Neurology421 Hospital Guangzhou China
| | - Han‐Ting Zhang
- Department of Behavioral Medicine and PsychiatryWest Virginia University Health Sciences Center Morgantown West Virginia USA
- Department of Physiology and PharmacologyWest Virginia University Health Sciences Center Morgantown West Virginia USA
| | - Yafang Hu
- Department of NeurologyNanfang HospitalSouthern Medical University Guangzhou China
| |
Collapse
|
39
|
Bennett A, Patel S, Mietzsch M, Jose A, Lins-Austin B, Yu JC, Bothner B, McKenna R, Agbandje-McKenna M. Thermal Stability as a Determinant of AAV Serotype Identity. Mol Ther Methods Clin Dev 2017; 6:171-182. [PMID: 28828392 PMCID: PMC5552060 DOI: 10.1016/j.omtm.2017.07.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022]
Abstract
Currently, there are over 150 ongoing clinical trials utilizing adeno-associated viruses (AAVs) to target various genetic diseases, including hemophilia (AAV2 and AAV8), congenital heart failure (AAV1 and AAV6), cystic fibrosis (AAV2), rheumatoid arthritis (AAV2), and Batten disease (AAVrh.10). Prior to patient administration, AAV vectors must have their serotype, concentration, purity, and stability confirmed. Here, we report the application of differential scanning fluorimetry (DSF) as a good manufacturing practice (GMP) capable of determining the melting temperature (Tm) for AAV serotype identification. This is a simple, rapid, cost effective, and robust method utilizing small amounts of purified AAV capsids (∼25 μL of ∼1011 particles). AAV1-9 and AAVrh.10 exhibit specific Tms in buffer formulations commonly used in clinical trials. Notably, AAV2 and AAV3, which are the least stable, have varied Tms, whereas AAV5, the most stable, has a narrow Tm range in the different buffers, respectively. Vector stability was dictated by VP3 only, specifically, the ratio of basic/acidic amino acids, and was independent of VP1 and VP2 content or the genome packaged. Furthermore, stability of recombinant AAVs differing by a single basic or acidic amino acid residue are distinguishable. Hence, AAV DSF profiles can serve as a robust method for serotype identification of clinical vectors.
Collapse
Affiliation(s)
- Antonette Bennett
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Saajan Patel
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ariana Jose
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bridget Lins-Austin
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jennifer C. Yu
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
40
|
György B, Maguire CA. Extracellular vesicles: nature's nanoparticles for improving gene transfer with adeno-associated virus vectors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1488. [PMID: 28799250 DOI: 10.1002/wnan.1488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/23/2017] [Accepted: 07/15/2017] [Indexed: 12/14/2022]
Abstract
Gene therapy, the ability to treat a disease at the level of nucleic acid, has journeyed from science fiction, to hard lessons learned from early clinical trials, to improved technologies with efficacy in patients for several diseases. Adeno-associated virus (AAV) vectors are currently a leader for direct in vivo gene therapy. To date, AAV is safe in patients, with clinical benefit in trials to treat blindness, hemophilia, and a lipid disorder, with many more trials underway. Despite this remarkable progress, barriers exist for AAV vectors to be effective gene transfer vehicles in all organ/cell targets, as well as patient subpopulations. Extracellular vesicles (EVs, e.g., exosomes, microvesicles) are natural lipid particles released by many cell types. They have been reported to mediate cell to cell communication via transferred contents including proteins, nucleic acids, and metabolites. These properties of EV attracted our attention to help solve certain gene transfer issues encountered by AAV vectors. We made the initial discovery that a subpopulation of AAV vectors isolated from media directly interacted with EVs [referred to as exosome-associated AAV (exo-AAV)]. In following reports, we have demonstrated that exo-AAV has advantages over the conventional AAV vector in areas such as anti-AAV antibody evasion and transduction of cells of the eye and cochlea in preclinical models. The work of others using EVs as therapeutics as well as our continued development of the exo-AAV platform may advance the field towards useful clinical applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Bence György
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Casey A Maguire
- Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Morabito G, Giannelli SG, Ordazzo G, Bido S, Castoldi V, Indrigo M, Cabassi T, Cattaneo S, Luoni M, Cancellieri C, Sessa A, Bacigaluppi M, Taverna S, Leocani L, Lanciego JL, Broccoli V. AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy. Mol Ther 2017; 25:2727-2742. [PMID: 28882452 DOI: 10.1016/j.ymthe.2017.08.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023] Open
Abstract
The lack of technology for direct global-scale targeting of the adult mouse nervous system has hindered research on brain processing and dysfunctions. Currently, gene transfer is normally achieved by intraparenchymal viral injections, but these injections target a restricted brain area. Herein, we demonstrated that intravenous delivery of adeno-associated virus (AAV)-PHP.B viral particles permeated and diffused throughout the neural parenchyma, targeting both the central and the peripheral nervous system in a global pattern. We then established multiple procedures of viral transduction to control gene expression or inactivate gene function exclusively in the adult nervous system and assessed the underlying behavioral effects. Building on these results, we established an effective gene therapy strategy to counteract the widespread accumulation of α-synuclein deposits throughout the forebrain in a mouse model of synucleinopathy. Transduction of A53T-SCNA transgenic mice with AAV-PHP.B-GBA1 restored physiological levels of the enzyme, reduced α-synuclein pathology, and produced significant behavioral recovery. Finally, we provided evidence that AAV-PHP.B brain penetration does not lead to evident dysfunctions in blood-brain barrier integrity or permeability. Altogether, the AAV-PHP.B viral platform enables non-invasive, widespread, and long-lasting global neural expression of therapeutic genes, such as GBA1, providing an invaluable approach to treat neurodegenerative diseases with diffuse brain pathology such as synucleinopathies.
Collapse
Affiliation(s)
- Giuseppe Morabito
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; University of Milano-Bicocca, 20126 Milan, Italy
| | - Serena G Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gabriele Ordazzo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Marzia Indrigo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Tommaso Cabassi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Cattaneo
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Cinzia Cancellieri
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Taverna
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - José L Lanciego
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CiberNed), Pamplona, Spain
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; National Research Council (CNR), Institute of Neuroscience, 20129 Milan, Italy.
| |
Collapse
|
42
|
Masgrau R, Guaza C, Ransohoff RM, Galea E. Should We Stop Saying 'Glia' and 'Neuroinflammation'? Trends Mol Med 2017; 23:486-500. [PMID: 28499701 DOI: 10.1016/j.molmed.2017.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
Central nervous system (CNS) therapeutics based on the theoretical framework of neuroinflammation have only barely succeeded. We argue that a problem may be the wrong use of the term 'neuroinflammation' as a distinct nosological entity when, based on recent evidence, it may not explain CNS disease pathology. Indeed, the terms 'neuroinflammation' and 'glia' could be obsolete. First, unbiased molecular profiling of CNS cell populations and individual cells reveals striking phenotypic heterogeneity in health and disease. Second, astrocytes, microglia, oligodendrocytes, and NG2 cells may contribute to higher-brain functions by performing actions beyond housekeeping. We propose that CNS diseases be viewed as failed circuits caused in part by disease-specific dysfunction of cells traditionally called 'glia', and hence, favor therapies promoting their functional recovery.
Collapse
Affiliation(s)
- Roser Masgrau
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Carmen Guaza
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, Agencia Estatal del Consejo Superior de Investigaciones Científicas, Madrid, España; Spanish Network of Multiple Sclerosis, RETICS, Instituto de Salud Carlos III, Madrid, España
| | | | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|