1
|
Ochiai E, Takahashi Y, Inokuchi S, Sumiya A, Hasegawa M. cDNA Display Selection of Interacting Peptide Ligands of the Guanylate Cyclase C Receptor. J Pept Sci 2025; 31:e3663. [PMID: 39658807 DOI: 10.1002/psc.3663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Guanylate cyclase C (GC-C), a receptor expressed on the apical membrane of intestinal mucosal cells, is activated by heat-stable enterotoxin (STa) produced by enterotoxigenic Escherichia coli, as well as the endogenous ligands guanylin and uroguanylin. In this study, novel peptides that interact with GC-C were generated using the cDNA display method, and their binding affinity and biological activity were evaluated. While the linear peptide library did not yield peptides with sufficient affinity for GC-C, three cyclic peptides (GCC-P1, GCC-P2, and GCC-P3), each containing two cysteine residues within a 15-residue sequence, were obtained from a cyclic peptide library containing nine-residue random sequences. GC-P2 exhibited significant binding affinity in Biacore assays, although the affinity was lower than those reported for known ligands. Notably, GCC-P2 and GCC-P3 demonstrated enhanced cGMP activity when used in combination with linaclotide. However, the agonist activity of these peptides was minimal, indicating that further modifications may be necessary to develop them for clinical applications. This study successfully extracted consensus sequences of peptide motifs that bind to GC-C from a highly diverse nine-residue random sequence library, which provides fundamental insights for the discovery and optimization of novel GC-C ligands.
Collapse
Affiliation(s)
- Eri Ochiai
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuki Takahashi
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Shota Inokuchi
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Akie Sumiya
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Makoto Hasegawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| |
Collapse
|
2
|
Wang L, Canoura J, Byrd C, Nguyen T, Alkhamis O, Ly P, Xiao Y. Examining the Relationship between Aptamer Complexity and Molecular Discrimination of a Low-Epitope Target. ACS CENTRAL SCIENCE 2024; 10:2213-2228. [PMID: 39735321 PMCID: PMC11672540 DOI: 10.1021/acscentsci.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Accepted: 10/30/2024] [Indexed: 12/31/2024]
Abstract
Aptamers are oligonucleotide-based affinity reagents that are increasingly being used in various applications. Systematic evolution of ligands by exponential enrichment (SELEX) has been widely used to isolate aptamers for small-molecule targets, but it remains challenging to generate aptamers with high affinity and specificity for targets with few functional groups. To address this challenge, we have systematically evaluated strategies for optimizing the isolation of aptamers for (+)-methamphetamine, a target for which previously reported aptamers have weak or no binding affinity. We perform four trials of library-immobilized SELEX against (+)-methamphetamine and demonstrate that N30 libraries do not yield high-quality aptamers. However, by using a more complex N40 library design, stringent counter-SELEX, and fine-tuned selection conditions, we identify aptamers with high affinity for (+)-methamphetamine and better selectivity relative to existing antibodies. Bioinformatic analysis from our selections reveals that high-quality aptamers contain long conserved motifs and are more informationally dense. Finally, we demonstrate that our best aptamer can rapidly detect (+)-methamphetamine at toxicologically relevant concentrations in saliva in a colorimetric dye-displacement assay. The insights provided here demonstrate the challenges in generating high-quality aptamers for low complexity small-molecule targets and will help guide the design of more efficient future selection efforts.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Caleb Byrd
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Thinh Nguyen
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Phuong Ly
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Xing H, Zhang Y, Li R, Ruzicka HM, Hain C, Andersson J, Bozdogan A, Henkel M, Knippschild U, Hasler R, Kleber C, Knoll W, Kissmann AK, Rosenau F. A Blautia producta specific gFET-based aptasensor for quantitative monitoring of microbiome quality. NANOSCALE HORIZONS 2024; 10:124-134. [PMID: 39420595 DOI: 10.1039/d4nh00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The use of health-relevant bacteria originating from human microbiomes for the control or therapy of diseases, including neurodegenerative disorders or diabetes, is currently gaining increasing importance in medicine. Directed and successful engineering of microbiomes via probiotic supplementation requires subtle, precise as well as, more importantly, easy, fast and convenient monitoring of its success, e.g., in patients' gut. Based on a previously described polyclonal SELEX aptamer library evolved against the human gut bacterium Blautia producta, we finally isolated three individual aptamers that proved their performance concerning affinity, specificity and robustness in reliably labeling the target bacterium and in combination with "contaminating" control bacteria. Using biofunctionalization molecules on gFETs, we could specifically quantify 101-106 cells per mL, retrace their number in mixtures and determine aptamer Kd-values around 2 nM. These measurements were possible even in the context of a real human stool sample. Our results qualify gFETs in combination with BL2, BL7 and BL8 aptamers as a promising foundation for the construction of respective sensing devices, which will open new avenues towards developing an intended monitoring technique for probiotic therapy and microbiome engineering approaches.
Collapse
Affiliation(s)
- Hu Xing
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Yiting Zhang
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Runliu Li
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Hans-Maximilian Ruzicka
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Christopher Hain
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Jakob Andersson
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Anil Bozdogan
- Division of Clinical Virology, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Roger Hasler
- Danube Private University, Faculty of Medicine and Dentistry, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Christoph Kleber
- Danube Private University, Faculty of Medicine and Dentistry, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Wolfgang Knoll
- Danube Private University, Faculty of Medicine and Dentistry, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
- Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
4
|
Ruiz-Ciancio D, Veeramani S, Singh R, Embree E, Ortman C, Thiel KW, Thiel WH. AptamerRunner: An accessible aptamer structure prediction and clustering algorithm for visualization of selected aptamers. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102358. [PMID: 39507401 PMCID: PMC11539416 DOI: 10.1016/j.omtn.2024.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Aptamers are short single-stranded DNA or RNA molecules with high affinity and specificity for targets and are generated using the iterative systematic evolution of ligands by exponential enrichment (SELEX) process. Next-generation sequencing (NGS) revolutionized aptamer selections by allowing a more comprehensive analysis of SELEX-enriched aptamers as compared to Sanger sequencing. The current challenge with aptamer NGS datasets is identifying a diverse cohort of candidate aptamers with the highest likelihood of successful experimental validation. Here we present AptamerRunner, an aptamer sequence and/or structure clustering algorithm that synergistically integrates computational analysis with visualization and expertise-directed decision making. The visual integration of networked aptamers with ranking data, such as fold enrichment or scoring algorithm results, represents a significant advancement over existing clustering tools by providing a natural context to depict groups of aptamers from which ranked or scored candidates can be chosen for experimental validation. The inherent flexibility, user-friendly design, and prospects for future enhancements with AptamerRunner have broad-reaching implications for aptamer researchers across a wide range of disciplines.
Collapse
Affiliation(s)
- Dario Ruiz-Ciancio
- Instituto de Ciencias Biomédicas (ICBM), Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia 5400, San Juan, Argentina
- National Council of Scientific and Technical Research (CONICET), Godoy Cruz 2290, C1425FQB Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Cancer Genome Engineering Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Suresh Veeramani
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Rahul Singh
- Department of Computer Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Eric Embree
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Chris Ortman
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA 52242, USA
| | - Kristina W. Thiel
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - William H. Thiel
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Kar RK. High-throughput and computational techniques for aptamer design. Expert Opin Drug Discov 2024; 19:1457-1469. [PMID: 39390781 DOI: 10.1080/17460441.2024.2412632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Aptamers refer to short ssDNA/RNA sequences that target small molecules, proteins, or cells. Aptamers have significantly advanced diagnostic applications, including biosensors for detecting specific biomarkers, state-of-the-art imaging, and point-of-care technology. Molecular computation helps identify aptamers with high-binding affinity, enabling high-throughput screening, predicting 3D structures, optimizing aptamers for improved stability, specificity, and complex target interactions. AREA COVERED Aptamers are versatile in the development of specific and sensitive diagnostics. However, there needs to be more understanding of the precise workflow that integrates sequence, structure, and interaction with the target. In this review, the author discusses how significant progress has been made in aptamer discovery using bioinformatics for sequence analysis, docking to model interactions, and MD simulations to account for dynamicity and predict free-energy. Furthermore, the author discusses how quantum chemical calculations are critical for modelling electronic structures and assignin spectroscopic signals. EXPERT OPINION Incorporating machine learning into the aptamer discovery brings a transformative advancement. With NGS datasets, SELEX, and experimental structures, the implementation of newer workflows yields aptamers with improved binding affinity. Leveraging transfer learning to models using experimental structures and aptamer sequences expands the aptamer design space significantly. As ML continues to evolve, it is poised to become central in accelerating aptamer discovery for biomedical applications in the next 5 years.
Collapse
Affiliation(s)
- Rajiv K Kar
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
6
|
Canoura J, Alkhamis O, Byrd C, Wang L, Bryant A, Xiao Y. Determining the Precision of High-Throughput Sequencing and Its Influence on Aptamer Selection. Anal Chem 2024; 96:17720-17729. [PMID: 39454074 DOI: 10.1021/acs.analchem.4c03972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
In vitro selection offers a means of discovering functional nucleic acids from randomized libraries, and high-throughput sequencing (HTS) is a powerful tool for monitoring the evolution of oligonucleotide pools over many cycles of enrichment. Many groups now use HTS-derived measures of sequence enrichment across different rounds of in vitro selection to identify promising candidate sequences. However, the precision of HTS in this context─and its impact on the success or failure of the resulting aptamer selection process─remain poorly understood. Here, we conduct multiple independent Illumina-based sequencing trials of in vitro selected pools and empirically determine the precision of the resulting sequence abundance measurements. We find that measurements for sequences with abundance ≥0.1% are generally reliable, with relative standard deviations of <25%. Below this abundance threshold, however, such measurements are highly irreproducible. We demonstrate the practical utility of our findings with several case studies in which HTS data is used to accurately predict the functional properties of oligonucleotides enriched via in vitro selection. Our findings show that the utility of enrichment-based metrics is strongly dependent on the precision of the HTS data used to derive those metrics. These insights will prove beneficial for practitioners using HTS in isolating and characterizing functional oligonucleotides.
Collapse
Affiliation(s)
- Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Caleb Byrd
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Linlin Wang
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Alexandra Bryant
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| |
Collapse
|
7
|
Fallah A, Havaei SA, Sedighian H, Kachuei R, Fooladi AAI. Prediction of aptamer affinity using an artificial intelligence approach. J Mater Chem B 2024; 12:8825-8842. [PMID: 39158322 DOI: 10.1039/d4tb00909f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Aptamers are oligonucleotide sequences that can connect to particular target molecules, similar to monoclonal antibodies. They can be chosen by systematic evolution of ligands by exponential enrichment (SELEX), and are modifiable and can be synthesized. Even if the SELEX approach has been improved a lot, it is frequently challenging and time-consuming to identify aptamers experimentally. In particular, structure-based methods are the most used in computer-aided design and development of aptamers. For this purpose, numerous web-based platforms have been suggested for the purpose of forecasting the secondary structure and 3D configurations of RNAs and DNAs. Also, molecular docking and molecular dynamics (MD), which are commonly utilized in protein compound selection by structural information, are suitable for aptamer selection. On the other hand, from a large number of sequences, artificial intelligence (AI) may be able to quickly discover the possible aptamer candidates. Conversely, sophisticated machine and deep-learning (DL) models have demonstrated efficacy in forecasting the binding properties between ligands and targets during drug discovery; as such, they may provide a reliable and precise method for forecasting the binding of aptamers to targets. This research looks at advancements in AI pipelines and strategies for aptamer binding ability prediction, such as machine and deep learning, as well as structure-based approaches, molecular dynamics and molecular docking simulation methods.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Asghar Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Reza Kachuei
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
La V, Evans NM, Hong A, Tormann A, Shivers L, Dieckmann T. In Vitro Selection and Characterization of a Light-up DNA Aptamer for Thiazole Orange. Chembiochem 2024; 25:e202400444. [PMID: 38996191 DOI: 10.1002/cbic.202400444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
A new DNA aptamer that binds to the target Thiazole Orange-biotin (TO1-biotin) was isolated after nine rounds of in vitro selection. The selection was performed on streptavidin-coated beads with the target bound to the surface and with free dye in solution in higher selection rounds to select for slower off-rate binding. Using next-generation sequencing (NGS), the libraries after the 4th and 9th rounds of selection were sequenced to identify enriched sequences. Several sequence families emerged, showing superior fluorescence enhancement and high affinity for the target compared to the other families obtained by NGS analysis. These sequence families were further studied to understand the binding interactions better. Primary sequence and secondary structure analysis tools were used to identify a hypothetical three-tiered G-quadruplex motif for these families. This indicates that the TO1-biotin DNA aptamer identified here uses a similar ligand-binding topology to the original Mango RNA aptamer.
Collapse
Affiliation(s)
- Volition La
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Natasha M Evans
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Aiden Hong
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Alexandra Tormann
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Lindsey Shivers
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| |
Collapse
|
9
|
Gruenke P, Mayer MD, Aneja R, Schulze WJ, Song Z, Burke DH, Heng X, Lange MJ. A Branched SELEX Approach Identifies RNA Aptamers That Bind Distinct HIV-1 Capsid Structural Components. ACS Infect Dis 2024; 10:2637-2655. [PMID: 39016538 PMCID: PMC11320578 DOI: 10.1021/acsinfecdis.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
The HIV-1 capsid protein (CA) assumes distinct structural forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, functional contributions of individual CA structures remain unclear, as evaluation of CA presents several technical challenges. To address this knowledge gap, we identified CA-targeting aptamers with different structural specificities, which emerged through a branched SELEX approach using an aptamer library previously selected to bind the CA hexamer lattice. Subsets were either highly specific for the CA lattice or bound both the CA lattice and CA hexamer. We then evaluated four representatives to reveal aptamer regions required for binding, highlighting interesting structural features and challenges in aptamer structure determination. Further, we demonstrate binding to biologically relevant CA structural forms and aptamer-mediated affinity purification of CA from cell lysates without virus or host modification, supporting the development of structural form-specific aptamers as exciting new tools for the study of CA.
Collapse
Affiliation(s)
- Paige
R. Gruenke
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Miles D. Mayer
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Rachna Aneja
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
| | - William J. Schulze
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
| | - Zhenwei Song
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Donald H. Burke
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Margaret J. Lange
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
10
|
Wang L, Alkhamis O, Canoura J, Yu H, Xiao Y. Rapid Nuclease-Assisted Selection of High-Affinity Small-Molecule Aptamers. J Am Chem Soc 2024; 146:21296-21307. [PMID: 39042584 DOI: 10.1021/jacs.4c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Aptamers are nucleic acid bioreceptors that have been widely utilized for a variety of biosensing applications, including in vivo detection methods that would not be possible with antibody-based systems. However, it remains challenging to generate high-quality aptamers for small molecule targets, particularly for use under physiological conditions. We present a highly effective aptamer selection technology for small-molecule targets that utilizes the nuclease EcoRI to remove nonspecific or weakly binding sequences in solution phase, rapidly enriching high-affinity target binders within just a few rounds of selection. As proof-of-concept, we used our nuclease-assisted SELEX (NA-SELEX) method to isolate aptamers for a synthetic cannabinoid, AB-FUBINACA. Within five rounds, we identified two highly specific aptamers that exhibit nanomolar affinity at physiological temperature. We also demonstrate the robustness and reproducibility of NA-SELEX by performing the same selection experiment with fresh reagents and libraries, obtaining the same two aptamers as well as two other high-quality aptamer candidates. Finally, we compare NA-SELEX against a conventional library-immobilized SELEX screen for AB-FUBINACA using the same screening conditions, identifying aptamers with 25-100-fold weaker affinity after 11 rounds of selection. NA-SELEX therefore could be an effective selection method for the isolation of high-quality aptamers for small-molecule targets.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Haixiang Yu
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| |
Collapse
|
11
|
Canoura J, Nguyen T, Byrd C, Hill R, Liu Y, Xiao Y. Generation of High-Affinity Aptamers for Indazole Synthetic Cannabinoids. Anal Chem 2024; 96:11488-11497. [PMID: 38970811 DOI: 10.1021/acs.analchem.4c02151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Synthetic cannabinoids are a widely abused class of dangerous psychoactive substances, especially among youths and young adults. Dozens of such drugs have been identified to date, and new ones continue to emerge. The ability to detect these drugs is important for interdiction efforts and the diagnosis of drug overdose, but existing analytical methods lack broad cross-reactivity to diverse members of this drug family. Here, we have utilized library-immobilized SELEX to generate DNA aptamers that can broadly recognize various members of the indazole-3-carboxamide synthetic cannabinoid family. Using two representatives of this family, AB-FUBINACA and 5F-AMB, we identify two aptamers FUB4 and AMB2F with respective dissociation constants (KDs) of 138 ± 15 and 411 ± 20 nM for their targets. These aptamers can recognize many indazole-based synthetic cannabinoids with high affinity and excellent specificity against natural cannabinoids as well as other structurally similar interferents like serotonin and tryptophan. We use these two aptamers to develop fluorescence strand-displacement sensors that successfully detect these synthetic cannabinoids at concentrations as low as 50 nM in human serum. The sensors can also detect up to 14 different drugs from this family─a major improvement over the six recognized by an existing commercial immunoassay.
Collapse
Affiliation(s)
- Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr. ,Raleigh ,North Carolina 27695, United States
| | - Thinh Nguyen
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr. ,Raleigh ,North Carolina 27695, United States
| | - Caleb Byrd
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr. ,Raleigh ,North Carolina 27695, United States
| | - Ransom Hill
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr. ,Raleigh ,North Carolina 27695, United States
| | - Yingzhu Liu
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr. ,Raleigh ,North Carolina 27695, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr. ,Raleigh ,North Carolina 27695, United States
| |
Collapse
|
12
|
Alkhamis O, Canoura J, Wang L, Xiao Y. Nuclease-assisted selection of slow-off rate aptamers. SCIENCE ADVANCES 2024; 10:eadl3426. [PMID: 38865469 PMCID: PMC11168469 DOI: 10.1126/sciadv.adl3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Conventional directed evolution methods offer the ability to select bioreceptors with high binding affinity for a specific target in terms of thermodynamic properties. However, there is a lack of analogous approaches for kinetic selection, which could yield affinity reagents that exhibit slow off-rates and thus remain tightly bound to targets for extended periods. Here, we describe an in vitro directed evolution methodology that uses the nuclease flap endonuclease 1 to achieve the efficient discovery of aptamers that have slow dissociation rates. Our nuclease-assisted selection strategy can yield specific aptamers for both small molecules and proteins with off-rates that are an order of magnitude slower relative to those obtained with conventional selection methods while still retaining excellent overall target affinity in terms of thermodynamics. This new methodology provides a generalizable approach for generating slow off-rate aptamers for diverse targets, which could, in turn, prove valuable for applications including molecular devices, bioimaging, and therapy.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | - Juan Canoura
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | - Linlin Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | | |
Collapse
|
13
|
Flynn CD, Chang D. Artificial Intelligence in Point-of-Care Biosensing: Challenges and Opportunities. Diagnostics (Basel) 2024; 14:1100. [PMID: 38893627 PMCID: PMC11172335 DOI: 10.3390/diagnostics14111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The integration of artificial intelligence (AI) into point-of-care (POC) biosensing has the potential to revolutionize diagnostic methodologies by offering rapid, accurate, and accessible health assessment directly at the patient level. This review paper explores the transformative impact of AI technologies on POC biosensing, emphasizing recent computational advancements, ongoing challenges, and future prospects in the field. We provide an overview of core biosensing technologies and their use at the POC, highlighting ongoing issues and challenges that may be solved with AI. We follow with an overview of AI methodologies that can be applied to biosensing, including machine learning algorithms, neural networks, and data processing frameworks that facilitate real-time analytical decision-making. We explore the applications of AI at each stage of the biosensor development process, highlighting the diverse opportunities beyond simple data analysis procedures. We include a thorough analysis of outstanding challenges in the field of AI-assisted biosensing, focusing on the technical and ethical challenges regarding the widespread adoption of these technologies, such as data security, algorithmic bias, and regulatory compliance. Through this review, we aim to emphasize the role of AI in advancing POC biosensing and inform researchers, clinicians, and policymakers about the potential of these technologies in reshaping global healthcare landscapes.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Dingran Chang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
14
|
Schulze WJ, Gregory DA, Johnson MC, Lange MJ. Genome-wide CRISPR/Cas9 screen reveals JunB downmodulation of HIV co-receptor CXCR4. Front Microbiol 2024; 15:1342444. [PMID: 38835488 PMCID: PMC11149427 DOI: 10.3389/fmicb.2024.1342444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/24/2024] [Indexed: 06/06/2024] Open
Abstract
HIV-1 relies extensively on host cell machinery for replication. Identification and characterization of these host-virus interactions is vital to our understanding of viral replication and the consequences of infection in cells. Several prior screens have identified host factors important for HIV replication but with limited replication of findings, likely due to differences in experimental design and conditions. Thus, unidentified factors likely exist. To identify novel host factors required for HIV-1 infection, we performed a genome-wide CRISPR/Cas9 screen using HIV-induced cell death as a partitioning method. We created a gene knockout library in TZM-GFP reporter cells using GeCKOv2, which targets 19,050 genes, and infected the library with a lethal dose of HIV-1NL4-3. We hypothesized that cells with a knockout of a gene critical for HIV infection would survive while cells with a knockout of a non-consequential gene would undergo HIV-induced death and be lost from the population. Surviving cells were analyzed by high throughput sequencing of the integrated CRISPR/Cas9 cassette to identify the gene knockout. Of the gene targets, an overwhelming majority of the surviving cells harbored the guide sequence for the AP-1 transcription factor family protein, JunB. Upon the generation of a clonal JunB knockout cell line, we found that HIV-1NL4-3 infection was blocked in the absence of JunB. The phenotype resulted from downregulation of CXCR4, as infection levels were recovered by reintroduction of CXCR4 in JunB KO cells. Thus, JunB downmodulates CXCR4 expression in TZM-GFP cells, reducing CXCR4-tropic HIV infection.
Collapse
Affiliation(s)
| | | | | | - Margaret J. Lange
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
Canoura J, Alkhamis O, Venzke M, Ly PT, Xiao Y. Developing Aptamer-Based Colorimetric Opioid Tests. JACS AU 2024; 4:1059-1072. [PMID: 38559723 PMCID: PMC10976566 DOI: 10.1021/jacsau.3c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Opioids collectively cause over 80,000 deaths in the United States annually. The ability to rapidly identify these compounds in seized drug samples on-site will be essential for curtailing trafficking and distribution. Chemical reagent-based tests are fast and simple but also notorious for giving false results due to poor specificity, whereas portable Raman spectrometers have excellent selectivity but often face interference challenges with impure drug samples. In this work, we develop on-site sensors for morphine and structurally related opioid compounds based on in vitro-selected oligonucleotide affinity reagents known as aptamers. We employ a parallel-and-serial selection strategy to isolate aptamers that recognize heroin, morphine, codeine, hydrocodone, and hydromorphone, along with a toggle-selection approach to isolate aptamers that bind oxycodone and oxymorphone. We then utilize a new high-throughput sequencing-based approach to examine aptamer growth patterns over the course of selection and a high-throughput exonuclease-based screening assay to identify optimal aptamer candidates. Finally, we use two high-performance aptamers with KD of ∼1 μM to develop colorimetric dye-displacement assays that can specifically detect opioids like heroin and oxycodone at concentrations as low as 0.5 μM with a linear range of 0-16 μM. Importantly, our assays can detect opioids in complex chemical matrices, including pharmaceutical tablets and drug mixtures; in contrast, the conventional Marquis test completely fails in this context. These aptamer-based colorimetric assays enable the naked-eye identification of specific opioids within seconds and will play an important role in combatting opioid abuse.
Collapse
Affiliation(s)
- Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Matthew Venzke
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Phuong T. Ly
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| |
Collapse
|
16
|
Mahmoudian F, Ahmari A, Shabani S, Sadeghi B, Fahimirad S, Fattahi F. Aptamers as an approach to targeted cancer therapy. Cancer Cell Int 2024; 24:108. [PMID: 38493153 PMCID: PMC10943855 DOI: 10.1186/s12935-024-03295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Conventional cancer treatments can cause serious side effects because they are not specific to cancer cells and can damage healthy cells. Aptamers often are single-stranded oligonucleotides arranged in a unique architecture, allowing them to bind specifically to target sites. This feature makes them an ideal choice for targeted therapeutics. They are typically produced through the systematic evolution of ligands by exponential enrichment (SELEX) and undergo extensive pharmacological revision to modify their affinity, specificity, and therapeutic half-life. Aptamers can act as drugs themselves, directly inhibiting tumor cells. Alternatively, they can be used in targeted drug delivery systems to transport drugs directly to tumor cells, minimizing toxicity to healthy cells. In this review, we will discuss the latest and most advanced approaches to using aptamers for cancer treatment, particularly targeted therapy overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azin Ahmari
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Radiation Oncology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shiva Shabani
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Infectious Diseases, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Bahman Sadeghi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Fahimeh Fattahi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Alkhamis O, Canoura J, Wu Y, Emmons NA, Wang Y, Honeywell KM, Plaxco KW, Kippin TE, Xiao Y. High-Affinity Aptamers for In Vitro and In Vivo Cocaine Sensing. J Am Chem Soc 2024; 146:3230-3240. [PMID: 38277259 DOI: 10.1021/jacs.3c11350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The ability to quantify cocaine in biological fluids is crucial for both the diagnosis of intoxication and overdose in the clinic as well as investigation of the drug's pharmacological and toxicological effects in the laboratory. To this end, we have performed high-stringency in vitro selection to generate DNA aptamers that bind cocaine with nanomolar affinity and clinically relevant specificity, thus representing a dramatic improvement over the current-generation, micromolar-affinity, low-specificity cocaine aptamers. Using these novel aptamers, we then developed two sensors for cocaine detection. The first, an in vitro fluorescent sensor, successfully detects cocaine at clinically relevant levels in 50% human serum without responding significantly to other drugs of abuse, endogenous substances, or a diverse range of therapeutic agents. The second, an electrochemical aptamer-based sensor, supports the real-time, seconds-resolved measurement of cocaine concentrations in vivo in the circulation of live animals. We believe the aptamers and sensors developed here could prove valuable for both point-of-care and on-site clinical cocaine detection as well as fundamental studies of cocaine neuropharmacology.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Juan Canoura
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Yuyang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Nicole A Emmons
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, United States
| | - Yuting Wang
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, United States
| | - Kevin M Honeywell
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| |
Collapse
|
18
|
Di Mauro V, Lauta FC, Modica J, Appleton SL, De Franciscis V, Catalucci D. Diagnostic and Therapeutic Aptamers: A Promising Pathway to Improved Cardiovascular Disease Management. JACC Basic Transl Sci 2024; 9:260-277. [PMID: 38510714 PMCID: PMC10950404 DOI: 10.1016/j.jacbts.2023.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 03/22/2024]
Abstract
Despite advances in care, cardiovascular diseases remain the leading cause of death worldwide. As a result, identifying suitable biomarkers for early diagnosis and improving therapeutic and diagnostic strategies is crucial. Because of their significant advantages over other therapeutic approaches, nucleic-based therapies, particularly aptamers, are gaining increased attention. Aptamers are innovative synthetic polymers or oligomers of single-stranded DNA (ssDNA) or RNA molecules that can form 3-dimensional structures and thus interact with their targets with high specificity and affinity. Furthermore, they outperform classical protein-based antibodies in terms of in vitro selection, production, ease of modification and conjugation, high stability, low immunogenicity, and suitability for nanoparticle functionalization for targeted drug delivery. This work aims to review the advances made in the aptamers' field in biomarker detection, diagnosis, imaging, and targeted therapy, which highlight their huge potential in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- Veneto Institute of Molecular Medicine, Padua, Italy
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Jessica Modica
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Silvia Lucia Appleton
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Daniele Catalucci
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
19
|
Nishikawa S, Watanabe H, Terasaka N, Katoh T, Fujishima K. De Novo Single-Stranded RNA-Binding Peptides Discovered by Codon-Restricted mRNA Display. Biomacromolecules 2024; 25:355-365. [PMID: 38051119 PMCID: PMC10777347 DOI: 10.1021/acs.biomac.3c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
RNA-binding proteins participate in diverse cellular processes, including DNA repair, post-transcriptional modification, and cancer progression through their interactions with RNAs, making them attractive for biotechnological applications. While nature provides an array of naturally occurring RNA-binding proteins, developing de novo RNA-binding peptides remains challenging. In particular, tailoring peptides to target single-stranded RNA with low complexity is difficult due to the inherent structural flexibility of RNA molecules. Here, we developed a codon-restricted mRNA display and identified multiple de novo peptides from a peptide library that bind to poly(C) and poly(A) RNA with KDs ranging from micromolar to submicromolar concentrations. One of the newly identified peptides is capable of binding to the cytosine-rich sequences of the oncogenic Cdk6 3'UTR RNA and MYU lncRNA, with affinity comparable to that of the endogenous binding protein. Hence, we present a novel platform for discovering de novo single-stranded RNA-binding peptides that offer promising avenues for regulating RNA functions.
Collapse
Affiliation(s)
- Shota Nishikawa
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- School
of Life Science and Technology, Tokyo Institute
of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hidenori Watanabe
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Naohiro Terasaka
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takayuki Katoh
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kosuke Fujishima
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate
School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
20
|
Silva JM, Pinho AJ, Pratas D. AltaiR: a C toolkit for alignment-free and temporal analysis of multi-FASTA data. Gigascience 2024; 13:giae086. [PMID: 39589438 PMCID: PMC11590114 DOI: 10.1093/gigascience/giae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/18/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Most viral genome sequences generated during the latest pandemic have presented new challenges for computational analysis. Analyzing millions of viral genomes in multi-FASTA format is computationally demanding, especially when using alignment-based methods. Most existing methods are not designed to handle such large datasets, often requiring the analysis to be divided into smaller parts to obtain results using available computational resources. FINDINGS We introduce AltaiR, a toolkit for analyzing multiple sequences in multi-FASTA format using exclusively alignment-free methodologies. AltaiR enables the identification of singularity and similarity patterns within sequences and computes static and temporal dynamics without restrictions on the number or size of input sequences. It automatically filters low-quality, biased, or deviant data. We demonstrate AltaiR's capabilities by analyzing more than 1.5 million full severe acute respiratory virus coronavirus 2 sequences, revealing interesting observations regarding viral genome characteristics over time, such as shifts in nucleotide composition, decreases in average Kolmogorov sequence complexity, and the evolution of the smallest sequences not found in the human host. CONCLUSIONS AltaiR can identify temporal characteristics and trends in large numbers of sequences, making it ideal for scenarios involving endemic or epidemic outbreaks with vast amounts of available sequence data. Implemented in C with multithreading and methodological optimizations, AltaiR is computationally efficient, flexible, and dependency-free. It accepts any sequence in FASTA format, including amino acid sequences. The complete toolkit is freely available at https://github.com/cobilab/altair.
Collapse
Affiliation(s)
- Jorge M Silva
- IEETA/LASI, Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Aveiro, Portugal
- DETI, Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal
| | - Armando J Pinho
- IEETA/LASI, Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Aveiro, Portugal
- DETI, Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal
| | - Diogo Pratas
- IEETA/LASI, Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Aveiro, Portugal
- DETI, Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal
- DoV, Department of Virology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Sapkota K, Lucas JK, Faulkner JW, Lichte MF, Guo YL, Burke DH, Huang F. Post-transcriptional capping generates coenzyme A-linked RNA. RNA Biol 2024; 21:1-12. [PMID: 38032240 PMCID: PMC10761072 DOI: 10.1080/15476286.2023.2288740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
NAD can be inserted co-transcriptionally via non-canonical initiation to form NAD-RNA. However, that mechanism is unlikely for CoA-linked RNAs due to low intracellular concentration of the required initiator nucleotide, 3'-dephospho-CoA (dpCoA). We report here that phosphopantetheine adenylyltransferase (PPAT), an enzyme of CoA biosynthetic pathway, accepts RNA transcripts as its acceptor substrate and transfers 4'-phosphopantetheine to yield CoA-RNA post-transcriptionally. Synthetic natural (RNAI) and small artificial RNAs were used to identify the features of RNA that are needed for it to serve as PPAT substrate. RNAs with 4-10 unpaired nucleotides at the 5' terminus served as PPAT substrates, but RNAs having <4 unpaired nucleotides did not undergo capping. No capping was observed when the +1A was changed to G or when 5' triphosphate was removed by RNA pyrophosphohydrolase (RppH), suggesting the enzyme recognizes pppA-RNA as an ATP analog. PPAT binding affinities were equivalent for transcripts with +1A, +1 G, or 5'OH (+1A), indicating that productive enzymatic recognition is driven more by local positioning effects than by overall binding affinity. Capping rates were independent of the number of unpaired nucleotides in the range of 4-10 nucleotides. Capping was strongly inhibited by ATP, reducing CoA-RNA production ~70% when equimolar ATP and substrate RNA were present. Dual bacterial expression of candidate RNAs with different 5' structures followed by CoA-RNA CaptureSeq revealed 12-fold enrichment of the better PPAT substrate, consistent with in vivo CoA-capping of RNA transcripts by PPAT. These results suggest post-transcriptional RNA capping as a possible mechanism for the biogenesis of CoA-RNAs in bacteria.
Collapse
Affiliation(s)
- Krishna Sapkota
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Jordyn K. Lucas
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jarrett W. Faulkner
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Matt F. Lichte
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Yan-Lin Guo
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Donald H. Burke
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO, USA
| | - Faqing Huang
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
22
|
Liu Y, Lu X, Chen M, Wei Z, Peng G, Yang J, Tang C, Yu P. Advances in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. Biofactors 2024; 50:33-57. [PMID: 37646383 DOI: 10.1002/biof.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Peptides and peptide aptamers have emerged as promising molecules for a wide range of biomedical applications due to their unique properties and versatile functionalities. The screening strategies for identifying peptides and peptide aptamers with desired properties are discussed, including high-throughput screening, display screening technology, and in silico design approaches. The synthesis methods for the efficient production of peptides and peptide aptamers, such as solid-phase peptide synthesis and biosynthesis technology, are described, along with their advantages and limitations. Moreover, various modification techniques are explored to enhance the stability, specificity, and pharmacokinetic properties of peptides and peptide aptamers. This includes chemical modifications, enzymatic modifications, biomodifications, genetic engineering modifications, and physical modifications. Furthermore, the review highlights the diverse biomedical applications of peptides and peptide aptamers, including targeted drug delivery, diagnostics, and therapeutic. This review provides valuable insights into the advancements in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. A comprehensive understanding of these aspects will aid researchers in the development of novel peptide-based therapeutics and diagnostic tools for various biomedical challenges.
Collapse
Affiliation(s)
- Yijie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaoling Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Meilun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zheng Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Guangnan Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Chunhua Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Peng Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
23
|
Zhu Y, Shigeyoshi K, Hayakawa Y, Fujiwara S, Kishida M, Ohki H, Horibe T, Shionyu M, Mizukami T, Hasegawa M. Acceleration of Protein Degradation by 20S Proteasome-Binding Peptides Generated by In Vitro Artificial Evolution. Int J Mol Sci 2023; 24:17486. [PMID: 38139315 PMCID: PMC10743564 DOI: 10.3390/ijms242417486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Although the 20S core particle (CP) of the proteasome is an important component of the 26S holoenzyme, the stand-alone 20S CP acts directly on intrinsically disordered and oxidized/damaged proteins to degrade them in a ubiquitin-independent manner. It has been postulated that some structural features of substrate proteins are recognized by the 20S CP to promote substrate uptake, but the mechanism of substrate recognition has not been fully elucidated. In this study, we screened peptides that bind to the 20S CP from a random eight-residue pool of amino acid sequences using complementary DNA display an in vitro molecular evolution technique. The identified 20S CP-binding amino acid sequence was chemically synthesized and its effects on the 20S CP were investigated. The 20S CP-binding peptide stimulated the proteolytic activity of the inactive form of 20S CP. The peptide bound directly to one of the α-subunits, opening a gate for substrate entry on the α-ring. Furthermore, the attachment of this peptide sequence to α-synuclein enhanced its degradation by the 20S CP in vitro. In addition to these results, docking simulations indicated that this peptide binds to the top surface of the α-ring. These peptides could function as a key to control the opening of the α-ring gate.
Collapse
Affiliation(s)
- Yunhao Zhu
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Kaishin Shigeyoshi
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Yumiko Hayakawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Sae Fujiwara
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Masamichi Kishida
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hitoshi Ohki
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomohisa Horibe
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Masafumi Shionyu
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Tamio Mizukami
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
- Frontier Pharma Inc., 1281-8 Tamura, Nagahama 526-0829, Japan
| | - Makoto Hasegawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| |
Collapse
|
24
|
Gruenke PR, Mayer MD, Aneja R, Song Z, Burke DH, Heng X, Lange MJ. Differentiation SELEX approach identifies RNA aptamers with different specificities for HIV-1 capsid assembly forms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571135. [PMID: 38168417 PMCID: PMC10760009 DOI: 10.1101/2023.12.11.571135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The HIV-1 capsid protein (CA) assumes distinct assembly forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, contributions of individual CA assemblies remain unclear, as the evaluation of CA in cells presents several technical challenges. To address this need, we sought to identify CA assembly form-specific aptamers. Aptamer subsets with different specificities emerged from within a highly converged, pre-enriched aptamer library previously selected to bind the CA hexamer lattice. Subsets were either highly specific for CA lattice or bound both CA lattice and CA hexamer. We further evaluated four representatives to reveal aptamer structural features required for binding, highlighting interesting features and challenges in aptamer structure determination. Importantly, our aptamers bind biologically relevant forms of CA and we demonstrate aptamer-mediated affinity purification of CA from cell lysates without virus or host modification. Thus, we have identified CA assembly form-specific aptamers that represent exciting new tools for the study of CA.
Collapse
|
25
|
Canoura J, Liu Y, Alkhamis O, Xiao Y. Aptamer-Based Fentanyl Detection in Biological Fluids. Anal Chem 2023; 95:18258-18267. [PMID: 38033203 DOI: 10.1021/acs.analchem.3c04104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Fentanyl is a widely abused analgesic and anesthetic drug with a narrow therapeutic window that creates easy opportunities for overdose and death. Rapid, accurate, and sensitive fentanyl detection in biosamples is crucial for therapeutic drug monitoring and overdose diagnosis. Unfortunately, current methods are limited to either sophisticated laboratory-based tests or antibody-based immunoassays, which are prone to false results and are mainly used with urine samples. Here, we have utilized library-immobilized SELEX to isolate new aptamers─nucleic acid-based bioreceptors that are well-suited for biosensing─that can specifically bind fentanyl under physiological conditions. We isolated multiple aptamers with nanomolar affinity and excellent specificity against dozens of interferents and incorporated one of these into an electrochemical aptamer-based sensor that can rapidly detect fentanyl at clinically relevant concentrations in 50% diluted serum, urine, and saliva. Given the excellent performance of these sensors, we believe that they could serve as the basis for point-of-care devices for monitoring fentanyl during medical procedures and determining fentanyl overdose.
Collapse
Affiliation(s)
- Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina , 27607, United States
| | - Yingzhu Liu
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina , 27607, United States
| | - Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina , 27607, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina , 27607, United States
| |
Collapse
|
26
|
Morales-Velásquez M, Barón-Vera JP, Pulgarín-Osorio MI, Sánchez-Jiménez MM, Ospina-Villa JD. Identification of the ATPase alpha subunit of Trypanosoma cruzi as a potential biomarker for the diagnosis of Chagas disease. Biomarkers 2023; 28:599-607. [PMID: 37667642 DOI: 10.1080/1354750x.2023.2255756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Chagas disease (CD) is considered by the World Health Organisation (WHO) a neglected disease endemic to the Americas, but it has spread throughout the world due to migrations. The disease is almost 100% curable if detected in time. Still, the lack of rapid diagnostic tests with sufficient sensitivity and specificity leads to a chronic phase with a mortality of about 50,000 people worldwide per year. METHODS Using the total proteins extracted from serum samples of patients confirmed with chronic phase CD; we performed the Bio-SELEX strategy. The best aptamers were selected using next-generation sequencing (NGS) based on their most abundant sequences (reads and rpm). Then, selected aptamers were used to isolate potential biomarkers directly from serum samples of patients with chronic phase CD using pull-down and mass spectrometry experiments. RESULTS CH1 aptamer was the aptamer selected after the NGS results analysis. The pull-down and mass spectrometry experiments identified the presence of the ATPase alpha subunit of T. cruzi circulating in serum samples of patients with chronic phase CD. CONCLUSIONS We report the ATPase alpha subunit of T. cruzi as a potential biomarker for chronic phase CD and CH1 aptamer as a potential tool for diagnosing CD.
Collapse
Affiliation(s)
- M Morales-Velásquez
- Tropical Medicine, Instituto Colombiano de Medicina Tropical - ICMT, Universidad CES, Medellin, Colombia
| | - J P Barón-Vera
- Tropical Medicine, Instituto Colombiano de Medicina Tropical - ICMT, Universidad CES, Medellin, Colombia
| | - M I Pulgarín-Osorio
- Tropical Medicine, Instituto Colombiano de Medicina Tropical - ICMT, Universidad CES, Medellin, Colombia
| | - M M Sánchez-Jiménez
- Tropical Medicine, Instituto Colombiano de Medicina Tropical - ICMT, Universidad CES, Medellin, Colombia
| | - J D Ospina-Villa
- Tropical Medicine, Instituto Colombiano de Medicina Tropical - ICMT, Universidad CES, Medellin, Colombia
| |
Collapse
|
27
|
Ruiz-Ciancio D, Veeramani S, Embree E, Ortman C, Thiel KW, Thiel WH. AptamerRunner: An accessible aptamer structure prediction and clustering algorithm for visualization of selected aptamers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566453. [PMID: 38014343 PMCID: PMC10680646 DOI: 10.1101/2023.11.13.566453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Aptamers are short single-stranded DNA or RNA molecules with high affinity and specificity for targets and are generated using the iterative Systematic Evolution of Ligands by EXponential enrichment (SELEX) process. Next-generation sequencing (NGS) revolutionized aptamer selections by allowing a more comprehensive analysis of SELEX-enriched aptamers as compared to Sanger sequencing. The current challenge with aptamer NGS datasets is identifying a diverse cohort of candidate aptamers with the highest likelihood of successful experimental validation. Herein we present AptamerRunner, an aptamer clustering algorithm that generates visual networks of aptamers that are related by sequence and/or structure. These networks can then be overlayed with ranking data, such as fold enrichment or data from scoring algorithms. The ability to visually integrate data using AptamerRunner represents a significant advancement over existing clustering tools by providing a natural context to depict groups of aptamers from which ranked or scored candidates can be chosen for experimental validation. The inherent flexibility, user-friendly design, and prospects for future enhancements with AptamerRunner has broad-reaching implications for aptamer researchers across a wide range of disciplines.
Collapse
Affiliation(s)
- Dario Ruiz-Ciancio
- Instituto de Ciencias Biomédicas (ICBM), Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, 5400, San Juan, Argentina
- National Council of Scientific and Technical Research (CONICET), Godoy Cruz 2290, C1425FQB Ciudad Autónoma de Buenos Aires Argentina
- Cancer Genome Engineering Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Suresh Veeramani
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Eric Embree
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Chris Ortman
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA 52242, USA
| | - Kristina W. Thiel
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - William H Thiel
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
28
|
Ospina-Villa JD, Restrepo-Cano V, Sánchez-Jiménez MM. Bio-SELEX: A Strategy for Biomarkers Isolation Directly from Biological Samples. Methods Protoc 2023; 6:109. [PMID: 37987356 PMCID: PMC10660531 DOI: 10.3390/mps6060109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Bio-SELEX is a revolutionary method for the discovery of novel biomarkers within biological samples, offering profound insights into diagnosing both infectious and non-infectious diseases. This innovative strategy involves three crucial steps: Traditional SELEX, Pull Down, and mass spectrometry. Firstly, Traditional SELEX involves the systematic selection of specific nucleic acid sequences (aptamers) that bind to the target molecules of interest. These aptamers are generated through iterative rounds of selection, amplification, and enrichment, ultimately yielding highly selective ligands. Secondly, the Pull-Down phase employs these aptamers to capture and isolate the target biomarkers from complex biological samples. This step ensures the specificity of the selected aptamers in binding to their intended targets. Lastly, mass spectrometry is utilized to identify and quantify the captured biomarkers, providing precise information about their presence and concentration in the sample. These quantitative data are invaluable in disease diagnosis and monitoring. Bio-SELEX's significance lies in its ability to discover biomarkers for a wide range of diseases, spanning infectious and non-infectious conditions. This approach holds great promise for early disease detection, personalized medicine, and the development of targeted therapies. By harnessing the power of aptamers and mass spectrometry, Bio-SELEX advances our understanding of disease biology and opens new avenues for improved healthcare.
Collapse
Affiliation(s)
- Juan David Ospina-Villa
- Instituto Colombiano de Medicina Tropical-ICMT, Universidad CES, Sabaneta 055450, Colombia; (V.R.-C.); (M.M.S.-J.)
| | | | | |
Collapse
|
29
|
Ji D, Feng H, Liew SW, Kwok CK. Modified nucleic acid aptamers: development, characterization, and biological applications. Trends Biotechnol 2023; 41:1360-1384. [PMID: 37302912 DOI: 10.1016/j.tibtech.2023.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Aptamers are single-stranded oligonucleotides that bind to their targets via specific structural interactions. To improve the properties and performance of aptamers, modified nucleotides are incorporated during or after a selection process such as systematic evolution of ligands by exponential enrichment (SELEX). We summarize the latest modified nucleotides and strategies used in modified (mod)-SELEX and post-SELEX to develop modified aptamers, highlight the methods used to characterize aptamer-target interactions, and present recent progress in modified aptamers that recognize different targets. We discuss the challenges and perspectives in further advancing the methodologies and toolsets to accelerate the discovery of modified aptamers, improve the throughput of aptamer-target characterization, and expand the functional diversity and complexity of modified aptamers.
Collapse
Affiliation(s)
- Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Hengxin Feng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Shiau Wei Liew
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
30
|
Ayass MA, Griko N, Pashkov V, Tripathi T, Zhang J, Ramankutty Nair R, Okyay T, Zhu K, Abi-Mosleh L. New High-Affinity Thrombin Aptamers for Advancing Coagulation Therapy: Balancing Thrombin Inhibition for Clot Prevention and Effective Bleeding Management with Antidote. Cells 2023; 12:2230. [PMID: 37759453 PMCID: PMC10526462 DOI: 10.3390/cells12182230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Thrombin is a key enzyme involved in blood clotting, and its dysregulation can lead to thrombotic diseases such as stroke, myocardial infarction, and deep vein thrombosis. Thrombin aptamers have the potential to be used as therapeutic agents to prevent or treat thrombotic diseases. Thrombin DNA aptamers developed in our laboratory exhibit high affinity and specificity to thrombin. In vitro assays have demonstrated their efficacy by significantly decreasing Factor II activity and increasing PT and APTT times in both plasma and whole blood. Aptamers AYA1809002 and AYA1809004, the two most potent aptamers, exhibit high affinity for their target, with affinity constants (Kd) of 10 nM and 13 nM, respectively. Furthermore, the in vitro activity of these aptamers displays dose-dependent behavior, highlighting their efficacy in a concentration-dependent manner. In vitro stability assessments reveal that the aptamers remain stable in plasma and whole blood for up to 24 h. This finding is crucial for their potential application in clinical settings. Importantly, the thrombin inhibitory activity of the aptamers can be reversed by employing reverse complement sequences, providing a mechanism to counteract their anticoagulant effects when necessary to avoid excessive bleeding. These thrombin aptamers have been determined to be safe, with no observed mutagenic or immunogenic effects. Overall, these findings highlight the promising characteristics of these newly developed thrombin DNA aptamers, emphasizing their potential for therapeutic applications in the field of anticoagulation therapy. Moreover, the inclusion of an antidote in the coagulation therapy regimen can improve patient safety, ensure greater therapeutic efficacy, and minimize risk during emergency situations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lina Abi-Mosleh
- Ayass Bioscience LLC, 8501 Wade Blvd, Building 9, Frisco, TX 75034, USA
| |
Collapse
|
31
|
Bush K, Corsi GI, Yan AC, Haynes K, Layzer JM, Zhou JH, Llanga T, Gorodkin J, Sullenger BA. Utilizing directed evolution to interrogate and optimize CRISPR/Cas guide RNA scaffolds. Cell Chem Biol 2023; 30:879-892.e5. [PMID: 37390831 PMCID: PMC10529641 DOI: 10.1016/j.chembiol.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023]
Abstract
CRISPR-based editing has revolutionized genome engineering despite the observation that many DNA sequences remain challenging to target. Unproductive interactions formed between the single guide RNA's (sgRNA) Cas9-binding scaffold domain and DNA-binding antisense domain are often responsible for such limited editing resolution. To bypass this limitation, we develop a functional SELEX (systematic evolution of ligands by exponential enrichment) approach, termed BLADE (binding and ligand activated directed evolution), to identify numerous, diverse sgRNA variants that bind Streptococcus pyogenes Cas9 and support DNA cleavage. These variants demonstrate surprising malleability in sgRNA sequence. We also observe that particular variants partner more effectively with specific DNA-binding antisense domains, yielding combinations with enhanced editing efficiencies at various target sites. Using molecular evolution, CRISPR-based systems could be created to efficiently edit even challenging DNA sequences making the genome more tractable to engineering. This selection approach will be valuable for generating sgRNAs with a range of useful activities.
Collapse
Affiliation(s)
- Korie Bush
- Department of Surgery, Duke University, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA; Moderna Genomics, Cambridge, MA 02139, USA
| | - Giulia I Corsi
- Center for non-Coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; Tessera Therapeutics, Somerville, MA 02143, USA
| | - Amy C Yan
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Keith Haynes
- Department of Information Technology, Midlands Technical College, Columbia, SC 29202, USA
| | | | - Jonathan H Zhou
- Department of Surgery, Duke University, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Telmo Llanga
- Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jan Gorodkin
- Center for non-Coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Bruce A Sullenger
- Department of Surgery, Duke University, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
32
|
DeRosa M, Lin A, Mallikaratchy P, McConnell E, McKeague M, Patel R, Shigdar S. In vitro selection of aptamers and their applications. NATURE REVIEWS. METHODS PRIMERS 2023; 3:55. [PMID: 37969927 PMCID: PMC10647184 DOI: 10.1038/s43586-023-00247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The introduction of the in-vitro evolution method known as SELEX (Systematic Evolution of Ligands by Exponential enrichment) more than 30 years ago led to the conception of versatile synthetic receptors known as aptamers. Offering many benefits such as low cost, high stability and flexibility, aptamers have sparked innovation in molecular diagnostics, enabled advances in synthetic biology and have facilitated new therapeutic approaches. The SELEX method itself is inherently adaptable and offers near limitless possibilities in yielding functional nucleic acid ligands. This Primer serves to provide guidance on experimental design and highlight new growth areas for this impactful technology.
Collapse
Affiliation(s)
- M.C. DeRosa
- Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1T2S2
| | - A. Lin
- Department of Chemistry, Faculty of Sciences, McGill University, Montreal, QC, Canada, H3A 0B8
| | - P. Mallikaratchy
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA
- Ph.D. Programs in Chemistry and Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program in Molecular, Cellular and Developmental Biology, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - E.M. McConnell
- Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1T2S2
| | - M. McKeague
- Department of Chemistry, Faculty of Sciences, McGill University, Montreal, QC, Canada, H3A 0B8
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - R. Patel
- Ph.D. Programs in Chemistry and Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - S. Shigdar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
33
|
Newman SS, Wilson BD, Mamerow D, Wollant BC, Nyein H, Rosenberg-Hasson Y, Maecker HT, Eisenstein M, Soh HT. Extending the dynamic range of biomarker quantification through molecular equalization. Nat Commun 2023; 14:4192. [PMID: 37443317 PMCID: PMC10344875 DOI: 10.1038/s41467-023-39772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Precision medicine requires highly scalable methods of multiplexed biomarker quantification that can accurately describe patient physiology. Unfortunately, contemporary molecular detection methods are generally limited to a dynamic range of sensitivity spanning just 3-4 orders of magnitude, whereas the actual physiological dynamic range of the human plasma proteome spans more than 10 orders of magnitude. Current methods rely on sample splitting and differential dilution to compensate for this mismatch, but such measures greatly limit the reproducibility and scalability that can be achieved-in particular, the effects of non-linear dilution can greatly confound the analysis of multiplexed assays. We describe here a two-pronged strategy for equalizing the signal generated by each analyte in a multiplexed panel, thereby enabling simultaneous quantification of targets spanning a wide range of concentrations. We apply our 'EVROS' strategy to a proximity ligation assay and demonstrate simultaneous quantification of four analytes present at concentrations spanning from low femtomolar to mid-nanomolar levels. In this initial demonstration, we achieve a dynamic range spanning seven orders of magnitude in a single 5 µl sample of undiluted human serum, highlighting the opportunity to achieve sensitive, accurate detection of diverse analytes in a highly multiplexed fashion.
Collapse
Affiliation(s)
- Sharon S Newman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Brandon D Wilson
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Daniel Mamerow
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Benjamin C Wollant
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hnin Nyein
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Yael Rosenberg-Hasson
- Institute for Immunity, Transplantation, and Infection, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation, and Infection, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
34
|
Andress C, Kappel K, Villena ME, Cuperlovic-Culf M, Yan H, Li Y. DAPTEV: Deep aptamer evolutionary modelling for COVID-19 drug design. PLoS Comput Biol 2023; 19:e1010774. [PMID: 37406007 DOI: 10.1371/journal.pcbi.1010774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
Typical drug discovery and development processes are costly, time consuming and often biased by expert opinion. Aptamers are short, single-stranded oligonucleotides (RNA/DNA) that bind to target proteins and other types of biomolecules. Compared with small-molecule drugs, aptamers can bind to their targets with high affinity (binding strength) and specificity (uniquely interacting with the target only). The conventional development process for aptamers utilizes a manual process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX), which is costly, slow, dependent on library choice and often produces aptamers that are not optimized. To address these challenges, in this research, we create an intelligent approach, named DAPTEV, for generating and evolving aptamer sequences to support aptamer-based drug discovery and development. Using the COVID-19 spike protein as a target, our computational results suggest that DAPTEV is able to produce structurally complex aptamers with strong binding affinities.
Collapse
Affiliation(s)
- Cameron Andress
- Department of Computer Science, Brock University, St. Catharines, Canada
| | - Kalli Kappel
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | | | - Hongbin Yan
- Department of Chemistry, Brock University, St. Catharines, Canada
| | - Yifeng Li
- Department of Computer Science, Brock University, St. Catharines, Canada
- Department of Biological Sciences, Brock University, St. Catharines, Canada
| |
Collapse
|
35
|
Yang LF, Ling M, Kacherovsky N, Pun SH. Aptamers 101: aptamer discovery and in vitro applications in biosensors and separations. Chem Sci 2023; 14:4961-4978. [PMID: 37206388 PMCID: PMC10189874 DOI: 10.1039/d3sc00439b] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Aptamers are single-stranded nucleic acids that bind and recognize targets much like antibodies. Recently, aptamers have garnered increased interest due to their unique properties, including inexpensive production, simple chemical modification, and long-term stability. At the same time, aptamers possess similar binding affinity and specificity as their protein counterpart. In this review, we discuss the aptamer discovery process as well as aptamer applications to biosensors and separations. In the discovery section, we describe the major steps of the library selection process for aptamers, called systematic evolution of ligands by exponential enrichment (SELEX). We highlight common approaches and emerging strategies in SELEX, from starting library selection to aptamer-target binding characterization. In the applications section, we first evaluate recently developed aptamer biosensors for SARS-CoV-2 virus detection, including electrochemical aptamer-based sensors and lateral flow assays. Then we discuss aptamer-based separations for partitioning different molecules or cell types, especially for purifying T cell subsets for therapeutic applications. Overall, aptamers are promising biomolecular tools and the aptamer field is primed for expansion in biosensing and cell separation.
Collapse
Affiliation(s)
- Lucy F Yang
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Melissa Ling
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Nataly Kacherovsky
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| |
Collapse
|
36
|
Poolsup S, Zaripov E, Hüttmann N, Minic Z, Artyushenko PV, Shchugoreva IA, Tomilin FN, Kichkailo AS, Berezovski MV. Discovery of DNA aptamers targeting SARS-CoV-2 nucleocapsid protein and protein-binding epitopes for label-free COVID-19 diagnostics. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:731-743. [PMID: 36816615 PMCID: PMC9927813 DOI: 10.1016/j.omtn.2023.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The spread of COVID-19 has affected billions of people across the globe, and the diagnosis of viral infection still needs improvement. Because of high immunogenicity and abundant expression during viral infection, SARS-CoV-2 nucleocapsid (N) protein could be an important diagnostic marker. This study aimed to develop a label-free optical aptasensor fabricated with a novel single-stranded DNA aptamer to detect the N protein. The N-binding aptamers selected using asymmetric-emulsion PCR-SELEX and their binding affinity and cross-reactivity were characterized by biolayer interferometry. The tNSP3 aptamer (44 nt) was identified to bind the N protein of wild type and Delta and Omicron variants with high affinity (KD in the range of 0.6-3.5 nM). Utilizing tNSP3 to detect the N protein spiked in human saliva evinced the potential of this aptamer with a limit of detection of 4.5 nM. Mass spectrometry analysis was performed along with molecular dynamics simulation to obtain an insight into how tNSP3 binds to the N protein. The identified epitope peptides are localized within the RNA-binding domain and C terminus of the N protein. Hence, we confirmed the performance of this aptamer as an analytical tool for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Suttinee Poolsup
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Emil Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Polina V Artyushenko
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia.,Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia.,Department of Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Irina A Shchugoreva
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia.,Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia.,Department of Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Felix N Tomilin
- Department of Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia.,Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, Krasnoyarsk 660036, Russia
| | - Anna S Kichkailo
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia.,Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
37
|
Canoura J, Alkhamis O, Liu Y, Willis C, Xiao Y. High-throughput quantitative binding analysis of DNA aptamers using exonucleases. Nucleic Acids Res 2023; 51:e19. [PMID: 36583362 PMCID: PMC9976898 DOI: 10.1093/nar/gkac1210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Aptamers are nucleic acid bioreceptors that have been used in various applications including medical diagnostics and as therapeutic agents. Identifying the most optimal aptamer for a particular application is very challenging. Here, we for the first time have developed a high-throughput method for accurately quantifying aptamer binding affinity, specificity, and cross-reactivity via the kinetics of aptamer digestion by exonucleases. We demonstrate the utility of this approach by isolating a set of new aptamers for fentanyl and its analogs, and then characterizing the binding properties of 655 aptamer-ligand pairs using our exonuclease digestion assay and validating the results with gold-standard methodologies. These data were used to select optimal aptamers for the development of new sensors that detect fentanyl and its analogs in different analytical contexts. Our approach dramatically accelerates the aptamer characterization process and streamlines sensor development, and if coupled with robotics, could enable high-throughput quantitative analysis of thousands of aptamer-ligand pairs.
Collapse
Affiliation(s)
- Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA.,Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA
| | - Yingzhu Liu
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA
| | - Connor Willis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA.,Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
38
|
Hmila I, Marnissi B, Kamali-Moghaddam M, Ghram A. Aptamer-Assisted Proximity Ligation Assay for Sensitive Detection of Infectious Bronchitis Coronavirus. Microbiol Spectr 2023; 11:e0208122. [PMID: 36651727 PMCID: PMC9927260 DOI: 10.1128/spectrum.02081-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Infectious bronchitis virus (IBV) is a coronavirus responsible for major health problems in the poultry industry. New virus strains continue to appear, causing large economic losses. To develop a rapid and accurate new quantitative assay for diagnosis of the virus without DNA extraction, we selected highly specific single-stranded DNA (ssDNA) aptamers with a high affinity to IBV, using the systematic evolution of ligands by exponential enrichment (SELEX) technology for aptamer screening, followed by high-throughput sequencing technology. Two of these aptamers, AptIBV5 and AptIBV2, were used to establish homogenous and solid-phase proximity ligation assays (PLAs). The developed assays were evaluated for their sensitivity and specificity using collected field samples and then compared to the newly developed sandwich enzyme-linked aptamer assay (ELAA) and reverse transcription-quantitative PCR (qRT-PCR), as the gold-standard method. The solid-phase PLA showed a lower limit of detection and a broader dynamic range than the two other assays. The developed technique may serve as an alternative assay for the diagnosis of IBV, with the potential to be extended to the detection of other important animal or human viruses. IMPORTANCE Infectious bronchitis virus (IBV) causes high morbidity and mortality and large economic losses in the poultry industry. The virus has the ability to genetically mutate into new IBV strains, causing devastating disease and outbreaks. To better monitor the emergence of this virus, the development of a rapid and highly sensitive diagnostic method should be implemented. For this, we generated aptamers with high affinity and specificity to the IBV in an ssDNA library. Using two high-affinity aptamers, we developed a sandwich ELAA and a very sensitive aptamer-based proximity ligation assay (PLA). The new assay showed high sensitivity and specificity and was used to detect IBV in farm samples. The PLA was compared to the newly developed sandwich ELAA and qRT-PCR, as the gold-standard technique.
Collapse
Affiliation(s)
- Issam Hmila
- Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Boutheina Marnissi
- Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
39
|
Lee SJ, Cho J, Lee BH, Hwang D, Park JW. Design and Prediction of Aptamers Assisted by In Silico Methods. Biomedicines 2023; 11:356. [PMID: 36830893 PMCID: PMC9953197 DOI: 10.3390/biomedicines11020356] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
An aptamer is a single-stranded DNA or RNA that binds to a specific target with high binding affinity. Aptamers are developed through the process of systematic evolution of ligands by exponential enrichment (SELEX), which is repeated to increase the binding power and specificity. However, the SELEX process is time-consuming, and the characterization of aptamer candidates selected through it requires additional effort. Here, we describe in silico methods in order to suggest the most efficient way to develop aptamers and minimize the laborious effort required to screen and optimise aptamers. We investigated several methods for the estimation of aptamer-target molecule binding through conformational structure prediction, molecular docking, and molecular dynamic simulation. In addition, examples of machine learning and deep learning technologies used to predict the binding of targets and ligands in the development of new drugs are introduced. This review will be helpful in the development and application of in silico aptamer screening and characterization.
Collapse
Affiliation(s)
- Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Junmin Cho
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Byung-Hoon Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Donghwan Hwang
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
40
|
Mohsen MG, Midy MK, Balaji A, Breaker R. Exploiting natural riboswitches for aptamer engineering and validation. Nucleic Acids Res 2023; 51:966-981. [PMID: 36617976 PMCID: PMC9881172 DOI: 10.1093/nar/gkac1218] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Over the past three decades, researchers have found that some engineered aptamers can be made to work well in test tubes but that these same aptamers might fail to function in cells. To help address this problem, we developed the 'Graftamer' approach, an experimental platform that exploits the architecture of a natural riboswitch to enhance in vitro aptamer selection and accelerate in vivo testing. Starting with combinatorial RNA pools that contain structural features of a guanine riboswitch aptamer interspersed with regions of random sequence, we performed multiplexed in vitro selection with a collection of small molecules. This effort yielded aptamers for quinine, guanine, and caffeine that appear to maintain structural features of the natural guanine riboswitch aptamer. Quinine and caffeine aptamers were each grafted onto a natural guanine riboswitch expression platform and reporter gene expression was monitored to determine that these aptamers function in cells. Additionally, we determined the secondary structure features and survival mechanism of a class of RNA sequences that evade the intended selection strategy, providing insight into improving this approach for future efforts. These results demonstrate that the Graftamer strategy described herein represents a convenient and straightforward approach to develop aptamers and validate their in vivo function.
Collapse
Affiliation(s)
- Michael G Mohsen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
| | - Matthew K Midy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Aparaajita Balaji
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
41
|
Zhu Y, Hart GW. Dual-specificity RNA aptamers enable manipulation of target-specific O-GlcNAcylation and unveil functions of O-GlcNAc on β-catenin. Cell 2023; 186:428-445.e27. [PMID: 36626902 PMCID: PMC9868088 DOI: 10.1016/j.cell.2022.12.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
O-GlcNAc is a dynamic post-translational modification (PTM) that regulates protein functions. In studying the regulatory roles of O-GlcNAc, a major roadblock is the inability to change O-GlcNAcylation on a single protein at a time. Herein, we developed a dual RNA-aptamer-based approach that simultaneously targeted O-GlcNAc transferase (OGT) and β-catenin, the key transcription factor of the Wnt signaling pathway, to selectively increase O-GlcNAcylation of the latter without affecting other OGT substrates. Using the OGT/β-catenin dual-specificity aptamers, we found that O-GlcNAcylation of β-catenin stabilizes the protein by inhibiting its interaction with β-TrCP. O-GlcNAc also increases β-catenin's interaction with EZH2, recruits EZH2 to promoters, and dramatically alters the transcriptome. Further, by coupling riboswitches or an inducible expression system to aptamers, we enabled inducible regulation of protein-specific O-GlcNAcylation. Together, our findings demonstrate the efficacy and versatility of dual-specificity aptamers for regulating O-GlcNAcylation on individual proteins.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| | - Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
42
|
Alkhamis O, Xiao Y. Systematic Study of in Vitro Selection Stringency Reveals How To Enrich High-Affinity Aptamers. J Am Chem Soc 2023; 145:194-206. [PMID: 36574475 DOI: 10.1021/jacs.2c09522] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aptamers are oligonucleotide receptors with great potential for sensing and therapeutic applications. They are isolated from random libraries through an in vitro method termed systematic evolution of ligands by exponential enrichment (SELEX). Although SELEX-based methods have been widely employed over several decades, many aspects of the experimental process remain poorly understood in terms of how to adjust the selection conditions to obtain aptamers with the desired set of binding characteristics. As a result, SELEX is often performed with arbitrary parameters that tend to produce aptamers with insufficient affinity and/or specificity. Having a better understanding of these basic principles could increase the likelihood of obtaining high-quality aptamers. Here, we have systematically investigated how altering the selection stringency in terms of target concentration─which is essentially the root source of selection pressure for aptamer isolation─affects the outcome of SELEX. By performing four separate trials of SELEX for the same small-molecule target, we experimentally prove that the use of excessively high target concentrations promotes enrichment of low-affinity binders while also suppressing the enrichment of high-affinity aptamers. These findings should be broadly applicable across SELEX methods, given that they share the same core operating principle, and will be crucial for guiding selections to obtain high-quality aptamers in the future.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina27695, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina27695, United States
| |
Collapse
|
43
|
Singh S, Chowdhury P, Ghosh A, Nara S. Virtual screening of truncated single stranded DNA aptamers for Staphylococcal enterotoxin type A. J Biomol Struct Dyn 2023; 41:11862-11871. [PMID: 36597903 DOI: 10.1080/07391102.2022.2164057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Single stranded DNA (ssDNA)/RNA aptamers, are screened through the labor intensive, iterative Systematic Evolution of Ligand by Exponential Enrichment process (SELEX) method. Complete sequence of screened aptamers never interacts with target or participates in final structure. Hence, in silico tools can be used to redesign a short length aptamer from previously reported aptamers which can have high affinity and specificity to the target. This approach is fast, cost effective, and less laborious than in vitro SELEX towards finding an aptamer sequence with better affinity with the target. Here, Staphylococcal enterotoxin type A (SEA) was used as target. A total of nine aptamers reported for different Staphylococcal food poisoning (SFP) enterotoxins were used as a starting pool. The aptamers were variously truncations and thoroughly analyzed through in silico methods. Three truncated aptamers namely AptSEA1.4, AptSEA2.4 and AptSEA8.4 were found to show higher affinity with target SEA. The computational data was also validated with DOT BLOT assay complemented with image analysis. These results also confirmed that the % specific binding and the dissociation constant (Kd) of truncated aptamers AptSEA1.4, AptSEA2.4 and AptSEA8.4 was better than their original counterparts. The truncated aptamers showed great promise to be used as a capture reagent in developing a sensitive assay for detection of SEA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Smriti Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Papia Chowdhury
- Department of Physics and Material Science, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Guwahati University, Guwahati, Assam, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
44
|
Williams N, Patel R, Mallikaratchy P. Discovery of Aptamers Against Cell Surface Markers Using Ligand-Guided Selection. Methods Mol Biol 2023; 2570:13-38. [PMID: 36156771 DOI: 10.1007/978-1-0716-2695-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Oligonucleotide ligands (DNA, RNA, or XNA), also known as aptamers, are selected against various target molecules using an iterative, evolutionary process called systematic evolution of ligands by exponential enrichment (SELEX). To select aptamers against complex cell surface proteins in their native state, a variant of SELEX termed ligand-guided selection (LIGS) was recently introduced. The significance of LIGS is rooted in its strategy of exploiting the selection step in SELEX to identify highly specific aptamers against known cell surface markers. Thus, in LIGS, a higher-affinity secondary ligand, such as a monoclonal antibody (mAb) to a whole-cell bound to an evolved SELEX library, is introduced to outcompete sequences against the mAb targeting cell surface protein or induce a conformational switch to destabilize the aptamer-surface cell surface protein resulting in elution of the sequences. Here, we describe the detailed method of LIGS utilized in identifying aptamers against T-cell receptor cluster of differentiation three complex (TCR-CD3) expressed in human T-cells and T-cell leukemia.
Collapse
Affiliation(s)
- Nicole Williams
- Ph.D. Program in Molecular, Cellular and Developmental Biology, The Graduate Center of the City University of New York, New York, NY, USA
| | - Rutika Patel
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Prabodhika Mallikaratchy
- Ph.D. Program in Molecular, Cellular and Developmental Biology, The Graduate Center of the City University of New York, New York, NY, USA.
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA.
- Department of Chemistry, Lehman College, The City University of New York, Bronx, NY, USA.
| |
Collapse
|
45
|
Cutts ZW, Hong JM, Shao S, Tran A, Dimon M, Berndl M, Wu D, Pawlosky A. Target-switch SELEX: Screening with alternating targets to generate aptamers to conserved terminal dipeptides. STAR Protoc 2022; 3:101724. [PMID: 36208449 PMCID: PMC9557731 DOI: 10.1016/j.xpro.2022.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022] Open
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) encompasses a wide variety of high-throughput screening techniques for producing nucleic acid binders to molecular targets through directed evolution. We describe here the design and selection steps for discovery of DNA aptamers with specificity for the two consecutive N-terminal amino acids (AAs) of a small peptide (8-10 amino acids). This bead-based method may be adapted for applications requiring binders which recognize a specific portion of the desired target. For complete details on the use and execution of this protocol, please refer to Hong et al. (2022).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diana Wu
- Google, LLC, Mountain View, CA 94043, USA.
| | | |
Collapse
|
46
|
Hmila I, Sudhakaran IP, Ghanem SS, Vaikath NN, Poggiolini I, Abdesselem H, El-Agnaf OMA. Inhibition of α-Synuclein Seeding-Dependent Aggregation by ssDNA Aptamers Specific to C-Terminally Truncated α-Synuclein Fibrils. ACS Chem Neurosci 2022; 13:3330-3341. [PMID: 36348612 DOI: 10.1021/acschemneuro.2c00362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Neuropathologically, Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by the accumulation of insoluble aggregates of α-synuclein (α-syn) in the Lewy bodies (LBs). In addition to full-length α-syn fibrils, C-terminally truncated α-syn is also abundant in the LBs that acts as seeds and facilitates the aggregation of the full-length α-syn in vitro and in vivo and induces toxicity. Hence, identifying molecules that can inhibit the seeding activity of these truncated forms is of great importance. Here, we report the first in vitro selection of aptamers targeting the fibrillar forms of different C-terminally truncated α-syn using systematic evolution by an exponential enrichment method followed by quantitative high-throughput DNA sequencing. We identify a panel of aptamers that bound with high specificity to different truncated forms of α-syn fibrils with no cross-reactivity toward other amyloid fibrils. Interestingly, two of the aptamers (named Apt11 and Apt15) show higher affinity to most C-terminally truncated forms of α-syn fibrils with an evident inhibition of α-syn-seeded aggregation in vitro by Apt11. This inhibition is further confirmed by circular dichroism, Congo red binding assay, and electronic microscopy. Moreover, Apt11 is also found to reduce the insoluble phosphorylated form of α-syn at Ser-129 (pS129-α-syn) in the cell model and also can inhibit α-syn aggregation using RT-QuIC reactions seeded with brain homogenates extracted from patients affected by PD. The aptamers discovered in this study represent potential useful tools for research and diagnostics or therapy toward PD and DLB.
Collapse
Affiliation(s)
- Issam Hmila
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Indulekha P Sudhakaran
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Simona S Ghanem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Nishant N Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Ilaria Poggiolini
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Houari Abdesselem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Omar M A El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
47
|
Sun D, Sun M, Zhang J, Lin X, Zhang Y, Lin F, Zhang P, Yang C, Song J. Computational tools for aptamer identification and optimization. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Parallel screening and cheminformatics modeling of flavonoid activated aptasensors. Synth Syst Biotechnol 2022; 7:1148-1158. [PMID: 36101898 PMCID: PMC9445297 DOI: 10.1016/j.synbio.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
|
49
|
Hasanzadeh A, Hamblin MR, Kiani J, Noori H, Hardie JM, Karimi M, Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? NANO TODAY 2022; 47:101665. [PMID: 37034382 PMCID: PMC10081506 DOI: 10.1016/j.nantod.2022.101665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gene therapy enables the introduction of nucleic acids like DNA and RNA into host cells, and is expected to revolutionize the treatment of a wide range of diseases. This growth has been further accelerated by the discovery of CRISPR/Cas technology, which allows accurate genomic editing in a broad range of cells and organisms in vitro and in vivo. Despite many advances in gene delivery and the development of various viral and non-viral gene delivery vectors, the lack of highly efficient non-viral systems with low cellular toxicity remains a challenge. The application of cutting-edge technologies such as artificial intelligence (AI) has great potential to find new paradigms to solve this issue. Herein, we review AI and its major subfields including machine learning (ML), neural networks (NNs), expert systems, deep learning (DL), computer vision and robotics. We discuss the potential of AI-based models and algorithms in the design of targeted gene delivery vehicles capable of crossing extracellular and intracellular barriers by viral mimicry strategies. We finally discuss the role of AI in improving the function of CRISPR/Cas systems, developing novel nanobots, and mRNA vaccine carriers.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Joseph M. Hardie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| |
Collapse
|
50
|
Kohlberger M, Gadermaier G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol Appl Biochem 2022; 69:1771-1792. [PMID: 34427974 PMCID: PMC9788027 DOI: 10.1002/bab.2244] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/22/2021] [Indexed: 12/30/2022]
Abstract
Within the last decade, the application range of aptamers in biochemistry and medicine has expanded rapidly. More than just a replacement for antibodies, these intrinsically structured RNA- or DNA-oligonucleotides show great potential for utilization in diagnostics, specific drug delivery, and treatment of certain medical conditions. However, what is analyzed less frequently is the process of aptamer identification known as systematic evolution of ligands by exponential enrichment (SELEX) and the functional mechanisms that lie at its core. SELEX involves numerous singular processes, each of which contributes to the success or failure of aptamer generation. In this review, critical steps during aptamer selection are discussed in-depth, and specific problems are presented along with potential solutions. The discussed aspects include the size and molecule type of the selected target, the nature and stringency of the selection process, the amplification step with its possible PCR bias, the efficient regeneration of RNA or single-stranded DNA, and the different sequencing procedures and screening assays currently available. Finally, useful quality control steps and their role within SELEX are presented. By understanding the mechanisms through which aptamer selection is influenced, the design of more efficient SELEX procedures leading to a higher success rate in aptamer identification is enabled.
Collapse
Affiliation(s)
- Michael Kohlberger
- Department of BiosciencesParis Lodron University SalzburgSalzburgAustria,Christian Doppler Laboratory for Biosimilar CharacterizationParis Lodron University SalzburgSalzburgAustria
| | - Gabriele Gadermaier
- Department of BiosciencesParis Lodron University SalzburgSalzburgAustria,Christian Doppler Laboratory for Biosimilar CharacterizationParis Lodron University SalzburgSalzburgAustria
| |
Collapse
|