1
|
Szlanka T, Lukacsovich T, Bálint É, Virágh E, Szabó K, Hajdu I, Molnár E, Lin YH, Zvara Á, Kelemen-Valkony I, Méhi O, Török I, Hegedűs Z, Kiss B, Ramasz B, Magdalena LM, Puskás L, Mechler BM, Fónagy A, Asztalos Z, Steinbach G, Žurovec M, Boros I, Kiss I. Dominant suppressor genes of p53-induced apoptosis in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae149. [PMID: 38985658 PMCID: PMC11373661 DOI: 10.1093/g3journal/jkae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/06/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024]
Abstract
One of the major functions of programmed cell death (apoptosis) is the removal of cells that suffered oncogenic mutations, thereby preventing cancerous transformation. By making use of a Double-Headed-EP (DEP) transposon, a P element derivative made in our laboratory, we made an insertional mutagenesis screen in Drosophila melanogaster to identify genes that, when overexpressed, suppress the p53-activated apoptosis. The DEP element has Gal4-activatable, outward-directed UAS promoters at both ends, which can be deleted separately in vivo. In the DEP insertion mutants, we used the GMR-Gal4 driver to induce transcription from both UAS promoters and tested the suppression effect on the apoptotic rough eye phenotype generated by an activated UAS-p53 transgene. By DEP insertions, 7 genes were identified, which suppressed the p53-induced apoptosis. In 4 mutants, the suppression effect resulted from single genes activated by 1 UAS promoter (Pka-R2, Rga, crol, and Spt5). In the other 3 (Orct2, Polr2M, and stg), deleting either UAS promoter eliminated the suppression effect. In qPCR experiments, we found that the genes in the vicinity of the DEP insertion also showed an elevated expression level. This suggested an additive effect of the nearby genes on suppressing apoptosis. In the eukaryotic genomes, there are coexpressed gene clusters. Three of the DEP insertion mutants are included, and 2 are in close vicinity of separate coexpressed gene clusters. This raises the possibility that the activity of some of the genes in these clusters may help the suppression of the apoptotic cell death.
Collapse
Affiliation(s)
- Tamás Szlanka
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Tamás Lukacsovich
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Éva Bálint
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Erika Virágh
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Kornélia Szabó
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Department of Developmental Genetics, German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Ildikó Hajdu
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Enikő Molnár
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Yu-Hsien Lin
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Ágnes Zvara
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Ildikó Kelemen-Valkony
- Cellular Imaging Laboratory, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Orsolya Méhi
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - István Török
- Department of Developmental Genetics, German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Zoltán Hegedűs
- Bioinformatics Laboratory, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Brigitta Kiss
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Beáta Ramasz
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Laura M Magdalena
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - László Puskás
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Bernard M Mechler
- Department of Developmental Genetics, German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Adrien Fónagy
- Centre for Agricultural Sciences, Plant Protection Institute, 1022 Budapest, Hungary
| | - Zoltán Asztalos
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Aktogen Hungary Ltd., 6726 Szeged, Hungary
| | - Gábor Steinbach
- Cellular Imaging Laboratory, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Michal Žurovec
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Imre Boros
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - István Kiss
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
2
|
Pollex T, Marco-Ferreres R, Ciglar L, Ghavi-Helm Y, Rabinowitz A, Viales RR, Schaub C, Jankowski A, Girardot C, Furlong EEM. Chromatin gene-gene loops support the cross-regulation of genes with related function. Mol Cell 2024; 84:822-838.e8. [PMID: 38157845 DOI: 10.1016/j.molcel.2023.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Chromatin loops between gene pairs have been observed in diverse contexts in both flies and vertebrates. Combining high-resolution Capture-C, DNA fluorescence in situ hybridization, and genetic perturbations, we dissect the functional role of three loops between genes with related function during Drosophila embryogenesis. By mutating the loop anchor (but not the gene) or the gene (but not loop anchor), we disentangle loop formation and gene expression and show that the 3D proximity of paralogous gene loci supports their co-regulation. Breaking the loop leads to either an attenuation or enhancement of expression and perturbs their relative levels of expression and cross-regulation. Although many loops appear constitutive across embryogenesis, their function can change in different developmental contexts. Taken together, our results indicate that chromatin gene-gene loops act as architectural scaffolds that can be used in different ways in different contexts to fine-tune the coordinated expression of genes with related functions and sustain their cross-regulation.
Collapse
Affiliation(s)
- Tim Pollex
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Raquel Marco-Ferreres
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Lucia Ciglar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Yad Ghavi-Helm
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Adam Rabinowitz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | | | - Christoph Schaub
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Aleksander Jankowski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany.
| |
Collapse
|
3
|
Kimura A, Go AC, Markow T, Ranz JM. Evidence of Nonrandom Patterns of Functional Chromosome Organization in Danaus plexippus. Genome Biol Evol 2024; 16:evae054. [PMID: 38488057 PMCID: PMC10972686 DOI: 10.1093/gbe/evae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/01/2024] Open
Abstract
Our understanding on the interplay between gene functionality and gene arrangement at different chromosome scales relies on a few Diptera and the honeybee, species with quality reference genome assemblies, accurate gene annotations, and abundant transcriptome data. Using recently generated 'omic resources in the monarch butterfly Danaus plexippus, a species with many more and smaller chromosomes relative to Drosophila species and the honeybee, we examined the organization of genes preferentially expressed at broadly defined developmental stages (larva, pupa, adult males, and adult females) at both fine and whole-chromosome scales. We found that developmental stage-regulated genes do not form more clusters, but do form larger clusters, than expected by chance, a pattern consistent across the gene categories examined. Notably, out of the 30 chromosomes in the monarch genome, 12 of them, plus the fraction of the chromosome Z that corresponds to the ancestral Z in other Lepidoptera, were found enriched for developmental stage-regulated genes. These two levels of nonrandom gene organization are not independent as enriched chromosomes for developmental stage-regulated genes tend to harbor disproportionately large clusters of these genes. Further, although paralogous genes were overrepresented in gene clusters, their presence is not enough to explain two-thirds of the documented cases of whole-chromosome enrichment. The composition of the largest clusters often included paralogs from more than one multigene family as well as unrelated single-copy genes. Our results reveal intriguing patterns at the whole-chromosome scale in D. plexippus while shedding light on the interplay between gene expression and chromosome organization beyond Diptera and Hymenoptera.
Collapse
Affiliation(s)
- Ashlyn Kimura
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92647, USA
| | - Alwyn C Go
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Therese Markow
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato, GTO 36824, México
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92647, USA
| |
Collapse
|
4
|
Du J, Sudlow LC, Biswas H, Mitchell JD, Mollah S, Berezin MY. Identification Drug Targets for Oxaliplatin-Induced Cardiotoxicity without Affecting Cancer Treatment through Inter Variability Cross-Correlation Analysis (IVCCA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579390. [PMID: 38405766 PMCID: PMC10888841 DOI: 10.1101/2024.02.11.579390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The successful treatment of side effects of chemotherapy faces two major limitations: the need to avoid interfering with pathways essential for the cancer-destroying effects of the chemotherapy drug, and the need to avoid helping tumor progression through cancer promoting cellular pathways. To address these questions and identify new pathways and targets that satisfy these limitations, we have developed the bioinformatics tool Inter Variability Cross-Correlation Analysis (IVCCA). This tool calculates the cross-correlation of differentially expressed genes, analyzes their clusters, and compares them across a vast number of known pathways to identify the most relevant target(s). To demonstrate the utility of IVCCA, we applied this platform to RNA-seq data obtained from the hearts of the animal models with oxaliplatin-induced CTX. RNA-seq of the heart tissue from oxaliplatin treated mice identified 1744 differentially expressed genes with False Discovery Rate (FDR) less than 0.05 and fold change above 1.5 across nine samples. We compared the results against traditional gene enrichment analysis methods, revealing that IVCCA identified additional pathways potentially involved in CTX beyond those detected by conventional approaches. The newly identified pathways such as energy metabolism and several others represent promising target for therapeutic intervention against CTX, while preserving the efficacy of the chemotherapy treatment and avoiding tumor proliferation. Targeting these pathways is expected to mitigate the damaging effects of chemotherapy on cardiac tissues and improve patient outcomes by reducing the incidence of heart failure and other cardiovascular complications, ultimately enabling patients to complete their full course of chemotherapy with improved quality of life and survival rates.
Collapse
Affiliation(s)
- Junwei Du
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering, Washington University, St. Louis, MO 63130, USA
| | - Leland C. Sudlow
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Hridoy Biswas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Joshua D. Mitchell
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamim Mollah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Mikhail Y. Berezin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
5
|
Shu S, Jiang M, Deng X, Yue W, Cao X, Zhang K, Wang Z, He H, Cui J, Wang Q, Qu K, Fang Y. Heterochromatic silencing of immune-related genes in glia is required for BBB integrity and normal lifespan in drosophila. Aging Cell 2023; 22:e13947. [PMID: 37594178 PMCID: PMC10577565 DOI: 10.1111/acel.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023] Open
Abstract
Glia and neurons face different challenges in aging and may engage different mechanisms to maintain their morphology and functionality. Here, we report that adult-onset downregulation of a Drosophila gene CG32529/GLAD led to shortened lifespan and age-dependent brain degeneration. This regulation exhibited cell type and subtype-specificity, involving mainly surface glia (comprising the BBB) and cortex glia (wrapping neuronal soma) in flies. In accordance, pan-glial knockdown of GLAD disrupted BBB integrity and the glial meshwork. GLAD expression in fly heads decreased with age, and the RNA-seq analysis revealed that the most affected transcriptional changes by RNAi-GLAD were associated with upregulation of immune-related genes. Furthermore, we conducted a series of lifespan rescue experiments and the results indicated that the profound upregulation of immune and related pathways was not the consequence but cause of the degenerative phenotypes of the RNAi-GLAD flies. Finally, we showed that GLAD encoded a heterochromatin-associating protein that bound to the promoters of an array of immune-related genes and kept them silenced during the cell cycle. Together, our findings demonstrate a previously unappreciated role of heterochromatic gene silencing in repressing immunity in fly glia, which is required for maintaining BBB and brain integrity as well as normal lifespan.
Collapse
Affiliation(s)
- Shunpan Shu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mingsheng Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xue Deng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenkai Yue
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xu Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zeqing Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jihong Cui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Qiangqiang Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Kun Qu
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Piya AA, DeGiorgio M, Assis R. Predicting gene expression divergence between single-copy orthologs in two species. Genome Biol Evol 2023; 15:evad078. [PMID: 37170892 PMCID: PMC10220509 DOI: 10.1093/gbe/evad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
Predicting gene expression divergence is integral to understanding the emergence of new biological functions and associated traits. Whereas several sophisticated methods have been developed for this task, their applications are either limited to duplicate genes or require expression data from more than two species. Thus, here we present PiXi, the first machine learning framework for predicting gene expression divergence between single-copy orthologs in two species. PiXi models gene expression evolution as an Ornstein-Uhlenbeck process, and overlays this model with multi-layer neural network, random forest, and support vector machine architectures for making predictions. It outputs the predicted class "conserved" or "diverged" for each pair of orthologs, as well as their predicted expression optima in the two species. We show that PiXi has high power and accuracy in predicting gene expression divergence between single-copy orthologs, as well as high accuracy and precision in estimating their expression optima in the two species, across a wide range of evolutionary scenarios, with the globally best performance achieved by a multi-layer neural network. Moreover, application of our best performing PiXi predictor to empirical gene expression data from single-copy orthologs residing at different loci in two species of Drosophila reveals that approximately 23% underwent expression divergence after positional relocation. Further analysis shows that several of these "diverged" genes are involved in the electron transport chain of the mitochondrial membrane, suggesting that new chromatin environments may impact energy production in Drosophila. Thus, by providing a toolkit for predicting gene expression divergence between single-copy orthologs in two species, PiXi can shed light on the origins of novel phenotypes across diverse biological processes and study systems.
Collapse
Affiliation(s)
- Antara Anika Piya
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FloridaUSA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FloridaUSA
| | - Raquel Assis
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FloridaUSA
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Boca Raton, FloridaUSA
| |
Collapse
|
7
|
Baltoumas FA, Karatzas E, Paez-Espino D, Venetsianou NK, Aplakidou E, Oulas A, Finn RD, Ovchinnikov S, Pafilis E, Kyrpides NC, Pavlopoulos GA. Exploring microbial functional biodiversity at the protein family level-From metagenomic sequence reads to annotated protein clusters. FRONTIERS IN BIOINFORMATICS 2023; 3:1157956. [PMID: 36959975 PMCID: PMC10029925 DOI: 10.3389/fbinf.2023.1157956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Metagenomics has enabled accessing the genetic repertoire of natural microbial communities. Metagenome shotgun sequencing has become the method of choice for studying and classifying microorganisms from various environments. To this end, several methods have been developed to process and analyze the sequence data from raw reads to end-products such as predicted protein sequences or families. In this article, we provide a thorough review to simplify such processes and discuss the alternative methodologies that can be followed in order to explore biodiversity at the protein family level. We provide details for analysis tools and we comment on their scalability as well as their advantages and disadvantages. Finally, we report the available data repositories and recommend various approaches for protein family annotation related to phylogenetic distribution, structure prediction and metadata enrichment.
Collapse
Affiliation(s)
- Fotis A. Baltoumas
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari, Greece
| | - Evangelos Karatzas
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari, Greece
| | - David Paez-Espino
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States
| | - Nefeli K. Venetsianou
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari, Greece
| | - Eleni Aplakidou
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari, Greece
| | - Anastasis Oulas
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Robert D. Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, United States
| | - Evangelos Pafilis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece
| | - Nikos C. Kyrpides
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States
| | - Georgios A. Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari, Greece
- Center of New Biotechnologies and Precision Medicine, Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Hellenic Army Academy, Vari, Greece
| |
Collapse
|
8
|
Vargas RA, Soto-Aguilera S, Parra M, Herrera S, Santibañez A, Kossack C, Saavedra CP, Mora O, Pineda M, Gonzalez O, Gonzalez A, Maisey K, Torres-Maravilla E, Bermúdez-Humarán LG, Suárez-Villota EY, Tello M. Analysis of microbiota-host communication mediated by butyrate in Atlantic Salmon. Comput Struct Biotechnol J 2023; 21:2558-2578. [PMID: 37122632 PMCID: PMC10130356 DOI: 10.1016/j.csbj.2023.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Butyrate is a microbiota-produced metabolite, sensed by host short-chain fatty acid receptors FFAR2 (Gpr43), FFAR3 (Gpr41), HCAR2 (Gpr109A), and Histone deacetylase (HDAC) that promotes microbiota-host crosstalk. Butyrate influences energy uptake, developmental and immune response in mammals. This microbial metabolite is produced by around 79 anaerobic genera present in the mammalian gut, yet little is known about the role of butyrate in the host-microbiota interaction in salmonid fish. To further our knowledge of this interaction, we analyzed the intestinal microbiota and genome of Atlantic salmon (Salmo salar), searching for butyrate-producing genera and host butyrate receptors. We identified Firmicutes, Proteobacteria, and Actinobacteria as the main butyrate-producing bacteria in the salmon gut microbiota. In the Atlantic salmon genome, we identified an expansion of genes orthologous to FFAR2 and HCAR2 receptors, and class I and IIa HDACs that are sensitive to butyrate. In addition, we determined the expression levels of orthologous of HCAR2 in the gut, spleen, and head-kidney, and FFAR2 in RTgutGC cells. The effect of butyrate on the Atlantic salmon immune response was evaluated by analyzing the pro and anti-inflammatory cytokines response in vitro in SHK-1 cells by RT-qPCR. Butyrate decreased the expression of the pro-inflammatory cytokine IL-1β and increased anti-inflammatory IL-10 and TGF-β cytokines. Butyrate also reduced the expression of interferon-alpha, Mx, and PKR, and decreased the viral load at a higher concentration (4 mM) in cells treated with this molecule before the infection with Infectious Pancreatic Necrosis Virus (IPNV) by mechanisms independent of FFAR2, FFAR3 and HCAR2 expression that probably inhibit HDAC. Moreover, butyrate modified phosphorylation of cytoplasmic proteins in RTgutGC cells. Our data allow us to infer that Atlantic salmon have the ability to sense butyrate produced by their gut microbiota via different specific targets, through which butyrate modulates the immune response of pro and anti-inflammatory cytokines and the antiviral response.
Collapse
|
9
|
Pazos Obregón F, Silvera D, Soto P, Yankilevich P, Guerberoff G, Cantera R. Gene function prediction in five model eukaryotes exclusively based on gene relative location through machine learning. Sci Rep 2022; 12:11655. [PMID: 35803984 PMCID: PMC9270439 DOI: 10.1038/s41598-022-15329-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/22/2022] [Indexed: 12/13/2022] Open
Abstract
The function of most genes is unknown. The best results in automated function prediction are obtained with machine learning-based methods that combine multiple data sources, typically sequence derived features, protein structure and interaction data. Even though there is ample evidence showing that a gene's function is not independent of its location, the few available examples of gene function prediction based on gene location rely on sequence identity between genes of different organisms and are thus subjected to the limitations of the relationship between sequence and function. Here we predict thousands of gene functions in five model eukaryotes (Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus and Homo sapiens) using machine learning models exclusively trained with features derived from the location of genes in the genomes to which they belong. Our aim was not to obtain the best performing method to automated function prediction but to explore the extent to which a gene's location can predict its function in eukaryotes. We found that our models outperform BLAST when predicting terms from Biological Process and Cellular Component Ontologies, showing that, at least in some cases, gene location alone can be more useful than sequence to infer gene function.
Collapse
Affiliation(s)
- Flavio Pazos Obregón
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay. .,Unidad de Bioquímica y Proteómica Analíticas, Instituto Pasteur de Montevideo, Montevideo, Uruguay.
| | - Diego Silvera
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay
| | - Pablo Soto
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay
| | - Patricio Yankilevich
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Gustavo Guerberoff
- Instituto de Matemática y Estadística "Prof. Ing. Rafael Laguardia", Facultad de Ingeniería, UDELAR, Montevideo, Uruguay
| | - Rafael Cantera
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay
| |
Collapse
|
10
|
Lensch S, Herschl MH, Ludwig CH, Sinha J, Hinks MM, Mukund A, Fujimori T, Bintu L. Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. eLife 2022; 11:e75115. [PMID: 35678392 PMCID: PMC9183234 DOI: 10.7554/elife.75115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/23/2022] [Indexed: 12/02/2022] Open
Abstract
In mammalian cells genes that are in close proximity can be transcriptionally coupled: silencing or activating one gene can affect its neighbors. Understanding these dynamics is important for natural processes, such as heterochromatin spreading during development and aging, and when designing synthetic gene regulation circuits. Here, we systematically dissect this process in single cells by recruiting and releasing repressive chromatin regulators at dual-gene synthetic reporters, and measuring how fast gene silencing and reactivation spread as a function of intergenic distance and configuration of insulator elements. We find that silencing by KRAB, associated with histone methylation, spreads between two genes within hours, with a time delay that increases with distance. This fast KRAB-mediated spreading is not blocked by the classical cHS4 insulators. Silencing by histone deacetylase HDAC4 of the upstream gene can also facilitate background silencing of the downstream gene by PRC2, but with a days-long delay that does not change with distance. This slower silencing can sometimes be stopped by insulators. Gene reactivation of neighboring genes is also coupled, with strong promoters and insulators determining the order of reactivation. Our data can be described by a model of multi-gene regulation that builds upon previous knowledge of heterochromatin spreading, where both gene silencing and gene reactivation can act at a distance, allowing for coordinated dynamics via chromatin regulator recruitment.
Collapse
Affiliation(s)
- Sarah Lensch
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Michael H Herschl
- University of California, Berkeley—University of California, San Francisco Graduate Program in BioengineeringBerkeleyUnited States
| | - Connor H Ludwig
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Michaela M Hinks
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Adi Mukund
- Biophysics Program, Stanford UniversityStanfordUnited States
| | - Taihei Fujimori
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| |
Collapse
|
11
|
Chen Z, Huang X, Fu R, Zhan A. Neighbours matter: Effects of genomic organization on gene expression plasticity in response to environmental stresses during biological invasions. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100992. [PMID: 35504120 DOI: 10.1016/j.cbd.2022.100992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Gene expression regulation has been widely recognized as an important molecular mechanism underlying phenotypic plasticity in environmental adaptation. However, it remains largely unexplored on the effects of genomic organization on gene expression plasticity under environmental stresses during biological invasions. Here, we use an invasive model ascidian, Ciona robusta, to investigate how genomic organization affects gene expression in response to salinity stresses during range expansions. Our study showed that neighboring genes were co-expressed and approximately 30% of stress responsive genes were physically clustered on chromosomes. Such coordinated expression was substantially affected by the physical distance and orientation of genes. Interestingly, the overall expression correlation of neighboring genes was significantly decreased under high salinity stresses, illustrating that the co-expression regulation could be disrupted by salinity challenges. Furthermore, the clustering of genes was associated with their function constraints and expression patterns - operon genes enriched in gene expression machinery had the highest transcriptional activity and expression stability. Notably, our analyses showed that the tail-to-tail genes, mainly involved in biological functions related to phosphorylation, homeostatic process, and ion transport, exhibited higher intrinsic expression variability and greater response to salinity challenges. Altogether, the results obtained here provide new insights into the effects of gene organization on gene expression plasticity under environmental challenges, hence improving our knowledge on mechanisms of rapid environmental adaptation during biological invasions.
Collapse
Affiliation(s)
- Zaohuang Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
12
|
Brooks AN, Hughes AL, Clauder-Münster S, Mitchell LA, Boeke JD, Steinmetz LM. Transcriptional neighborhoods regulate transcript isoform lengths and expression levels. Science 2022; 375:1000-1005. [PMID: 35239377 DOI: 10.1126/science.abg0162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sequence features of genes and their flanking regulatory regions are determinants of RNA transcript isoform expression and have been used as context-independent plug-and-play modules in synthetic biology. However, genetic context-including the adjacent transcriptional environment-also influences transcript isoform expression levels and boundaries. We used synthetic yeast strains with stochastically repositioned genes to systematically disentangle the effects of sequence and context. Profiling 120 million full-length transcript molecules across 612 genomic perturbations, we observed sequence-independent alterations to gene expression levels and transcript isoform boundaries that were influenced by neighboring transcription. We identified features of transcriptional context that could predict these alterations and used these features to engineer a synthetic circuit where transcript length was controlled by neighboring transcription. This demonstrates how positional context can be leveraged in synthetic genome engineering.
Collapse
Affiliation(s)
- Aaron N Brooks
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Amanda L Hughes
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Sandra Clauder-Münster
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA.,Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Cridland JM, Majane AC, Zhao L, Begun DJ. Population biology of accessory gland-expressed de novo genes in Drosophila melanogaster. Genetics 2022; 220:iyab207. [PMID: 34791207 PMCID: PMC8733444 DOI: 10.1093/genetics/iyab207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Early work on de novo gene discovery in Drosophila was consistent with the idea that many such genes have male-biased patterns of expression, including a large number expressed in the testis. However, there has been little formal analysis of variation in the abundance and properties of de novo genes expressed in different tissues. Here, we investigate the population biology of recently evolved de novo genes expressed in the Drosophila melanogaster accessory gland, a somatic male tissue that plays an important role in male and female fertility and the post mating response of females, using the same collection of inbred lines used previously to identify testis-expressed de novo genes, thus allowing for direct cross tissue comparisons of these genes in two tissues of male reproduction. Using RNA-seq data, we identify candidate de novo genes located in annotated intergenic and intronic sequence and determine the properties of these genes including chromosomal location, expression, abundance, and coding capacity. Generally, we find major differences between the tissues in terms of gene abundance and expression, though other properties such as transcript length and chromosomal distribution are more similar. We also explore differences between regulatory mechanisms of de novo genes in the two tissues and how such differences may interact with selection to produce differences in D. melanogaster de novo genes expressed in the two tissues.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Alex C Majane
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
14
|
Ilyin AA, Kononkova AD, Golova AV, Shloma VV, Olenkina O, Nenasheva V, Abramov Y, Kotov AA, Maksimov D, Laktionov P, Pindyurin A, Galitsyna A, Ulianov S, Khrameeva E, Gelfand M, Belyakin S, Razin S, Shevelyov Y. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3203-3225. [PMID: 35166842 PMCID: PMC8989536 DOI: 10.1093/nar/gkac109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis – in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs). We found that initiation of SpC-specific transcription correlates with promoters’ detachment from the NL and with local spatial insulation of adjacent regions. However, this insulation does not result in the partitioning of inactive TADs into sub-TADs. We also revealed an increased contact frequency between SpC-specific genes in SpCs implying their de novo gathering into transcription factories. In addition, we uncovered the specific X chromosome organization in the male germline. In SpG and SpCs, a single X chromosome is stronger associated with the NL than autosomes. Nevertheless, active chromatin regions in the X chromosome interact with each other more frequently than in autosomes. Moreover, despite the absence of dosage compensation complex in the male germline, randomly inserted SpG-specific reporter is expressed higher in the X chromosome than in autosomes, thus evidencing that non-canonical dosage compensation operates in SpG.
Collapse
Affiliation(s)
| | | | | | | | | | - Valentina V Nenasheva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Yuri A Abramov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Alexei A Kotov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Petr P Laktionov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey V Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ekaterina E Khrameeva
- Correspondence may also be addressed to Ekaterina Khrameeva. Tel: +7 495 2801481; Fax: +7 495 2801481;
| | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Stepan N Belyakin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Yuri Y Shevelyov
- To whom correspondence should be addressed. Tel: +7 499 1960809; Fax: +7 499 1960221;
| |
Collapse
|
15
|
Nagel JH, Wingfield MJ, Slippers B. Next-generation sequencing provides important insights into the biology and evolution of the Botryosphaeriaceae. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Dechaud C, Miyake S, Martinez-Bengochea A, Schartl M, Volff JN, Naville M. Clustering of Sex-Biased Genes and Transposable Elements in the Genome of the Medaka Fish Oryzias latipes. Genome Biol Evol 2021; 13:6384576. [PMID: 34623422 PMCID: PMC8633743 DOI: 10.1093/gbe/evab230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Although genes with similar expression patterns are sometimes found in the same genomic regions, almost nothing is known about the relative organization in genomes of genes and transposable elements (TEs), which might influence each other at the regulatory level. In this study, we used transcriptomic data from male and female gonads of the Japanese medaka Oryzias latipes to define sexually biased genes and TEs and analyze their relative genomic localization. We identified 20,588 genes expressed in the adult gonads of O. latipes. Around 39% of these genes are differentially expressed between male and female gonads. We further analyzed the expression of TEs using the program SQuIRE and showed that more TE copies are overexpressed in testis than in ovaries (36% vs. 10%, respectively). We then developed a method to detect genomic regions enriched in testis- or ovary-biased genes. This revealed that sex-biased genes and TEs are not randomly distributed in the genome and a part of them form clusters with the same expression bias. We also found a correlation of expression between TE copies and their closest genes, which increases with decreasing intervening distance. Such a genomic organization suggests either that TEs hijack the regulatory sequences of neighboring sexual genes, allowing their expression in germ line cells and consequently new insertions to be transmitted to the next generation, or that TEs are involved in the regulation of sexual genes, and might therefore through their mobility participate in the rewiring of sex regulatory networks.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | - Sho Miyake
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | | | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany.,Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
17
|
Darbani B. Genome Evolutionary Dynamics Meets Functional Genomics: A Case Story on the Identification of SLC25A44. Int J Mol Sci 2021; 22:ijms22115669. [PMID: 34073512 PMCID: PMC8199184 DOI: 10.3390/ijms22115669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/09/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gene clusters are becoming promising tools for gene identification. The study reveals the purposive genomic distribution of genes toward higher inheritance rates of intact metabolic pathways/phenotypes and, thereby, higher fitness. The co-localization of co-expressed, co-interacting, and functionally related genes was found as genome-wide trends in humans, mouse, golden eagle, rice fish, Drosophila, peanut, and Arabidopsis. As anticipated, the analyses verified the co-segregation of co-localized events. A negative correlation was notable between the likelihood of co-localization events and the inter-loci distances. The evolution of genomic blocks was also found convergent and uniform along the chromosomal arms. Calling a genomic block responsible for adjacent metabolic reactions is therefore recommended for identification of candidate genes and interpretation of cellular functions. As a case story, a function in the metabolism of energy and secondary metabolites was proposed for Slc25A44, based on its genomic local information. Slc25A44 was further characterized as an essential housekeeping gene which has been under evolutionary purifying pressure and belongs to the phylogenetic ETC-clade of SLC25s. Pathway enrichment mapped the Slc25A44s to the energy metabolism. The expression of peanut and human Slc25A44s in oocytes and Saccharomyces cerevisiae strains confirmed the transport of common precursors for secondary metabolites and ubiquinone. These results suggest that SLC25A44 is a mitochondrion-ER-nucleus zone transporter with biotechnological applications. Finally, a conserved three-amino acid signature on the cytosolic face of transport cavity was found important for rational engineering of SLC25s.
Collapse
Affiliation(s)
- Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; or ; Tel.: +45-(53)-578055
- Research Center Flakkebjerg, Department of Agroecology, Aarhus University, 4200 Slagelse, Denmark
| |
Collapse
|
18
|
Toubiana W, Armisén D, Dechaud C, Arbore R, Khila A. Impact of male trait exaggeration on sex-biased gene expression and genome architecture in a water strider. BMC Biol 2021; 19:89. [PMID: 33931057 PMCID: PMC8088084 DOI: 10.1186/s12915-021-01021-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/01/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Exaggerated secondary sexual traits are widespread in nature and often evolve under strong directional sexual selection. Although heavily studied from both theoretical and empirical viewpoints, we have little understanding of how sexual selection influences sex-biased gene regulation during the development of exaggerated secondary sexual phenotypes, and how these changes are reflected in genomic architecture. This is primarily due to the limited availability of representative genomes and associated tissue and sex transcriptomes to study the development of these traits. Here we present the genome and developmental transcriptomes, focused on the legs, of the water strider Microvelia longipes, a species where males exhibit strikingly long third legs compared to females, which they use as weapons. RESULTS We generated a high-quality genome assembly with 90% of the sequence captured in 13 scaffolds. The most exaggerated legs in males were particularly enriched in both sex-biased and leg-biased genes, indicating a specific signature of gene expression in association with trait exaggeration. We also found that male-biased genes showed patterns of fast evolution compared to non-biased and female-biased genes, indicative of directional or relaxed purifying selection. By contrast to male-biased genes, female-biased genes that are expressed in the third legs, but not the other legs, are over-represented in the X chromosome compared to the autosomes. An enrichment analysis for sex-biased genes along the chromosomes revealed also that they arrange in large genomic regions or in small clusters of two to four consecutive genes. The number and expression of these enriched regions were often associated with the exaggerated legs of males, suggesting a pattern of common regulation through genomic proximity in association with trait exaggeration. CONCLUSION Our findings indicate how directional sexual selection may drive sex-biased gene expression and genome architecture along the path to trait exaggeration and sexual dimorphism.
Collapse
Affiliation(s)
- William Toubiana
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France
- Present address: Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France
| | - Roberto Arbore
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France
- Present address: Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France.
| |
Collapse
|
19
|
Duncan EJ, Leask MP, Dearden PK. Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera). Mol Biol Evol 2021; 37:1964-1978. [PMID: 32134461 PMCID: PMC7306700 DOI: 10.1093/molbev/msaa057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand.,School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Megan P Leask
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Yan Y, Li Z, Li Y, Wu Z, Yang R. Correlated Evolution of Large DNA Fragments in the 3D Genome of Arabidopsis thaliana. Mol Biol Evol 2021; 37:1621-1636. [PMID: 32044988 DOI: 10.1093/molbev/msaa031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In eukaryotes, the three-dimensional (3D) conformation of the genome is far from random, and this nonrandom chromatin organization is strongly correlated with gene expression and protein function, which are two critical determinants of the selective constraints and evolutionary rates of genes. However, whether genes and other elements that are located close to each other in the 3D genome evolve in a coordinated way has not been investigated in any organism. To address this question, we constructed chromatin interaction networks (CINs) in Arabidopsis thaliana based on high-throughput chromosome conformation capture data and demonstrated that adjacent large DNA fragments in the CIN indeed exhibit more similar levels of polymorphism and evolutionary rates than random fragment pairs. Using simulations that account for the linear distance between fragments, we proved that the 3D chromosomal organization plays a role in the observed correlated evolution. Spatially interacting fragments also exhibit more similar mutation rates and functional constraints in both coding and noncoding regions than the random expectations, indicating that the correlated evolution between 3D neighbors is a result of combined evolutionary forces. A collection of 39 genomic and epigenomic features can explain much of the variance in genetic diversity and evolutionary rates across the genome. Moreover, features that have a greater effect on the evolution of regional sequences tend to show higher similarity between neighboring fragments in the CIN, suggesting a pivotal role of epigenetic modifications and chromatin organization in determining the correlated evolution of large DNA fragments in the 3D genome.
Collapse
Affiliation(s)
- Yubin Yan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaohong Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ye Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zefeng Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruolin Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
May CM, Van den Akker EB, Zwaan BJ. The Transcriptome in Transition: Global Gene Expression Profiles of Young Adult Fruit Flies Depend More Strongly on Developmental Than Adult Diet. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developmental diet is known to exert long-term effects on adult phenotypes in many animal species as well as disease risk in humans, purportedly mediated through long-term changes in gene expression. However, there are few studies linking developmental diet to adult gene expression. Here, we use a full-factorial design to address how three different larval and adult diets interact to affect gene expression in 1-day-old adult fruit flies (Drosophila melanogaster) of both sexes. We found that the largest contributor to transcriptional variation in young adult flies is larval, and not adult diet, particularly in females. We further characterized gene expression variation by applying weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. In adult female flies, the caloric content of the larval diet associated with two strongly negatively correlated modules, one of which was highly enriched for reproduction-related processes. This suggests that gene expression in young adult female flies is in large part related to investment into reproduction-related processes, and that the level of expression is affected by dietary conditions during development. In males, most modules had expression patterns independent of developmental or adult diet. However, the modules that did correlate with larval and/or adult dietary regimes related primarily to nutrient sensing and metabolic functions, and contained genes highly expressed in the gut and fat body. The gut and fat body are among the most important nutrient sensing tissues, and are also the only tissues known to avoid histolysis during pupation. This suggests that correlations between larval diet and gene expression in male flies may be mediated by the carry-over of these tissues into young adulthood. Our results show that developmental diet can have profound effects on gene expression in early life and warrant future research into how they correlate with actual fitness related traits in early adulthood.
Collapse
|
22
|
Xie X, Spiteller D, Huhn T, Schink B, Müller N. Desulfatiglans anilini Initiates Degradation of Aniline With the Production of Phenylphosphoamidate and 4-Aminobenzoate as Intermediates Through Synthases and Carboxylases From Different Gene Clusters. Front Microbiol 2020; 11:2064. [PMID: 33013754 PMCID: PMC7500099 DOI: 10.3389/fmicb.2020.02064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/05/2020] [Indexed: 01/22/2023] Open
Abstract
The anaerobic degradation of aniline was studied in the sulfate-reducing bacterium Desulfatiglans anilini. Our aim was to identify the genes and their proteins that are required for the initial activation of aniline as well as to characterize intermediates of this reaction. Aniline-induced genes were revealed by comparison of the proteomes of D. anilini grown with different substrates (aniline, 4-aminobenzoate, phenol, and benzoate). Most genes encoding proteins that were highly abundant in aniline- or 4-aminobenzoate-grown D. anilini cells but not in phenol- or benzoate-grown cells were located in the putative gene clusters ani (aniline degradation), hcr (4-hydroxybenzoyl-CoA reductase) and phe (phenol degradation). Of these putative gene clusters, only the phe gene cluster has been studied previously. Based on the differential proteome analysis, four candidate genes coding for kinase subunits and carboxylase subunits were suspected to be responsible for the initial conversion of aniline to 4-aminobenzoate. These genes were cloned and overproduced in E. coli. The recombinant proteins were obtained in inclusion bodies but could be refolded successfully. Two subunits of phenylphosphoamidate synthase and two carboxylase subunits converted aniline to 4-aminobenzoate with phenylphosphoamidate as intermediate under consumption of ATP. Only when both carboxylase subunits, one from gene cluster ani and the other from gene cluster phe, were combined, phenylphosphoamidate was converted to 4-aminobenzoate in vitro, with Mn2+, K+, and FMN as co-factors. Thus, aniline is degraded by the anaerobic bacterium D. anilini only by recruiting genes for the enzymatic machinery from different gene clusters. We conclude, that D. anilini carboxylates aniline to 4-aminobenzoate via phenylphosphoamidate as an energy rich intermediate analogous to the degradation of phenol to 4-hydroxybenzoate via phenylphosphate.
Collapse
Affiliation(s)
- Xiaoman Xie
- Department of Biology, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Konstanz, Germany
| | - Dieter Spiteller
- Department of Biology, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Konstanz, Germany
| | - Thomas Huhn
- Konstanz Research School Chemical Biology, Konstanz, Germany.,Department of Chemistry, Universität Konstanz, Konstanz, Germany
| | - Bernhard Schink
- Department of Biology, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Konstanz, Germany
| | - Nicolai Müller
- Department of Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
23
|
Marcet-Houben M, Gabaldón T. EvolClust: automated inference of evolutionary conserved gene clusters in eukaryotes. Bioinformatics 2020; 36:1265-1266. [PMID: 31560365 PMCID: PMC7703780 DOI: 10.1093/bioinformatics/btz706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/30/2019] [Accepted: 09/25/2019] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The evolution and role of gene clusters in eukaryotes is poorly understood. Currently, most studies and computational prediction programs limit their focus to specific types of clusters, such as those involved in secondary metabolism. RESULTS We present EvolClust, a python-based tool for the inference of evolutionary conserved gene clusters from genome comparisons, independently of the function or gene composition of the cluster. EvolClust predicts conserved gene clusters from pairwise genome comparisons and infers families of related clusters from multiple (all versus all) genome comparisons. AVAILABILITY AND IMPLEMENTATION https://github.com/Gabaldonlab/EvolClust/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), Bioinformatics and Genomics department, The Barcelona Institute of Science and Technology, Barcelona 08003, Spain.,Health and Experimental Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Bioinformatics and Genomics department, The Barcelona Institute of Science and Technology, Barcelona 08003, Spain.,Health and Experimental Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,ICREA, Barcelona 08010, Spain
| |
Collapse
|
24
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
25
|
Dai Z. Gene Repositioning Is Under Constraints After Evolutionary Conserved Gene Neighborhood Separate. Front Genet 2019; 10:1030. [PMID: 31632448 PMCID: PMC6785632 DOI: 10.3389/fgene.2019.01030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/25/2019] [Indexed: 11/13/2022] Open
Abstract
Genes are not randomly distributed on eukaryotic chromosomes. Some neighboring genes show order conservation among species, while some neighboring genes separate during evolution even though their neighborhoods are conserved in some species. Here, I investigated whether after-separation gene repositioning is under natural selection for evolutionary conserved gene neighborhoods compared with nonconserved neighborhoods. After separation, genes with conserved neighborhoods show low-expression divergence between the after-separation species and the before-separation species. After genes separate from their conserved gene neighbors, their after-separation gene neighbors tend to show coexpression and coprotein complex with their before-separation gene neighbors. These results indicate evolutionary constraints on the selection of neighboring genes after evolutionary conserved gene neighborhoods separate.
Collapse
Affiliation(s)
- Zhiming Dai
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Big Data Analysis and Processing, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
26
|
Marcet-Houben M, Gabaldón T. Evolutionary and functional patterns of shared gene neighbourhood in fungi. Nat Microbiol 2019; 4:2383-2392. [PMID: 31527797 DOI: 10.1038/s41564-019-0552-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/29/2019] [Indexed: 11/09/2022]
Abstract
Gene clusters comprise genomically co-localized and potentially co-regulated genes that tend to be conserved across species. In eukaryotes, multiple examples of metabolic gene clusters are known, particularly among fungi and plants. However, little is known about how gene clustering patterns vary among taxa or with respect to functional roles. Furthermore, mechanisms of the formation, maintenance and evolution of gene clusters remain unknown. We surveyed 341 fungal genomes to discover gene clusters shared by different species, independently of their functions. We inferred 12,120 cluster families, which comprised roughly one third of the gene space and were enriched in genes associated with diverse cellular functions. Additionally, most clusters did not encode transcription factors, suggesting that they are regulated distally. We used phylogenomics to characterize the evolutionary history of these clusters. We found that most clusters originated once and were transmitted vertically, coupled to differential loss. However, convergent evolution-that is, independent appearance of the same cluster-was more prevalent than anticipated. Finally, horizontal gene transfer of entire clusters was somewhat restricted, with the exception of those associated with secondary metabolism. Altogether, our results provide insights on the evolution of gene clustering as well as a broad catalogue of evolutionarily conserved gene clusters whose function remains to be elucidated.
Collapse
Affiliation(s)
- Marina Marcet-Houben
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Barcelona Supercomputing Centre (BSC-CNS), Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain. .,ICREA, Barcelona, Spain. .,Barcelona Supercomputing Centre (BSC-CNS), Institute for Research in Biomedicine (IRB), Barcelona, Spain.
| |
Collapse
|
27
|
Vizcaya-Molina E, Klein CC, Serras F, Mishra RK, Guigó R, Corominas M. Damage-responsive elements in Drosophila regeneration. Genome Res 2018; 28:1852-1866. [PMID: 30459214 PMCID: PMC6280756 DOI: 10.1101/gr.233098.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
One of the most important questions in regenerative biology is to unveil how and when genes change expression and trigger regeneration programs. The resetting of gene expression patterns during response to injury is governed by coordinated actions of genomic regions that control the activity of multiple sequence-specific DNA binding proteins. Using genome-wide approaches to interrogate chromatin function, we here identify the elements that regulate tissue recovery in Drosophila imaginal discs, which show a high regenerative capacity after genetically induced cell death. Our findings indicate there is global coregulation of gene expression as well as a regeneration program driven by different types of regulatory elements. Novel enhancers acting exclusively within damaged tissue cooperate with enhancers co-opted from other tissues and other developmental stages, as well as with endogenous enhancers that show increased activity after injury. Together, these enhancers host binding sites for regulatory proteins that include a core set of conserved transcription factors that control regeneration across metazoans.
Collapse
Affiliation(s)
- Elena Vizcaya-Molina
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| | - Cecilia C Klein
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| | - Rakesh K Mishra
- The Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
28
|
Yang YF, Cao W, Wu S, Qian W. Genetic Interaction Network as an Important Determinant of Gene Order in Genome Evolution. Mol Biol Evol 2018; 34:3254-3266. [PMID: 29029158 PMCID: PMC5850728 DOI: 10.1093/molbev/msx264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although it is generally accepted that eukaryotic gene order is not random, the basic principles of gene arrangement on a chromosome remain poorly understood. Here, we extended existing population genetics theories that were based on two-locus models and proposed a hypothesis that genetic interaction networks drive the evolution of eukaryotic gene order. We predicted that genes with positive epistasis would move toward each other in evolution, during which a negative correlation between epistasis and gene distance formed. We tested and confirmed our prediction with computational simulations and empirical data analyses. Importantly, we demonstrated that gene order in the budding yeast could be successfully predicted from the genetic interaction network. Taken together, our study reveals the role of the genetic interaction network in the evolution of gene order, extends our understanding of the encoding principles in genomes, and potentially offers new strategies to improve synthetic biology.
Collapse
Affiliation(s)
- Yu-Fei Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenqing Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shaohuan Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Spermiogenesis and Male Fertility Require the Function of Suppressor of Hairy-Wing in Somatic Cyst Cells of Drosophila. Genetics 2018; 209:757-772. [PMID: 29739818 DOI: 10.1534/genetics.118.301088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila Suppressor of Hairy-wing [Su(Hw)] protein is an example of a multivalent transcription factor. Although best known for its role in establishing the chromatin insulator of the gypsy retrotransposon, Su(Hw) functions as an activator and repressor at non-gypsy genomic sites. It remains unclear how the different regulatory activities of Su(Hw) are utilized during development. Motivated from observations of spatially restricted expression of Su(Hw) in the testis, we investigated the role of Su(Hw) in spermatogenesis to advance an understanding of its developmental contributions as an insulator, repressor, and activator protein. We discovered that Su(Hw) is required for sustained male fertility. Although dynamics of Su(Hw) expression coincide with changes in nuclear architecture and activation of coregulated testis-specific gene clusters, we show that loss of Su(Hw) does not disrupt meiotic chromosome pairing or transcription of testis-specific genes, suggesting that Su(Hw) has minor architectural or insulator functions in the testis. Instead, Su(Hw) has a prominent role as a repressor of neuronal genes, consistent with suggestions that Su(Hw) is a functional homolog of mammalian REST, a repressor of neuronal genes in non-neuronal tissues. We show that Su(Hw) regulates transcription in both germline and somatic cells. Surprisingly, the essential spermatogenesis function of Su(Hw) resides in somatic cyst cells, implying context-specific consequences due to loss of this transcription factor. Together, our studies highlight that Su(Hw) has a major developmental function as a transcriptional repressor, with the effect of its loss dependent upon the cell-specific factors.
Collapse
|
30
|
Ow MC, Borziak K, Nichitean AM, Dorus S, Hall SE. Early experiences mediate distinct adult gene expression and reproductive programs in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007219. [PMID: 29447162 PMCID: PMC5831748 DOI: 10.1371/journal.pgen.1007219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 02/28/2018] [Accepted: 01/24/2018] [Indexed: 01/16/2023] Open
Abstract
Environmental stress during early development in animals can have profound effects on adult phenotypes via programmed changes in gene expression. Using the nematode C. elegans, we demonstrated previously that adults retain a cellular memory of their developmental experience that is manifested by differences in gene expression and life history traits; however, the sophistication of this system in response to different environmental stresses, and how it dictates phenotypic plasticity in adults that contribute to increased fitness in response to distinct environmental challenges, was unknown. Using transcriptional profiling, we show here that C. elegans adults indeed retain distinct cellular memories of different environmental conditions. We identified approximately 500 genes in adults that entered dauer due to starvation that exhibit significant opposite (“seesaw”) transcriptional phenotypes compared to adults that entered dauer due to crowding, and are distinct from animals that bypassed dauer. Moreover, we show that two-thirds of the genes in the genome experience a 2-fold or greater seesaw trend in gene expression, and based upon the direction of change, are enriched in large, tightly linked regions on different chromosomes. Importantly, these transcriptional programs correspond to significant changes in brood size depending on the experienced stress. In addition, we demonstrate that while the observed seesaw gene expression changes occur in both somatic and germline tissue, only starvation-induced changes require a functional GLP-4 protein necessary for germline development, and both programs require the Argonaute CSR-1. Thus, our results suggest that signaling between the soma and the germ line can generate phenotypic plasticity as a result of early environmental experience, and likely contribute to increased fitness in adverse conditions and the evolution of the C. elegans genome. Environmental stress during early development in animals can have profound effects on adult behavior and physiology due to programmed changes in gene expression. However, whether different stresses result in distinct changes in traits that allow stressed animals to better survive and reproduce in future adverse conditions is largely unknown. Using the animal model system, C. elegans, we show that adults that experienced starvation exhibit opposite (“seesaw”) genome-wide gene expression changes compared to adults that experienced crowding, and are distinct from animals that experienced favorable conditions. Genes that are similarly up- or downregulated due to either starvation or crowding are located in clusters on the same chromosomes. Importantly, these gene expression changes of differently-stressed animals result in corresponding changes in progeny number, a life history trait of evolutionary significance. These distinct gene expression programs require different signaling pathways that communicate across somatic and germline tissue types. Thus, different environmental stresses experienced early in development induce distinct signaling mechanisms to result in changes in gene expression and reproduction in adults, and likely contribute to increased survival in future adverse conditions.
Collapse
Affiliation(s)
- Maria C. Ow
- Department of Biology, Syracuse University, Syracuse, NY, United States of America
| | - Kirill Borziak
- Department of Biology, Syracuse University, Syracuse, NY, United States of America
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, United States of America
| | | | - Steve Dorus
- Department of Biology, Syracuse University, Syracuse, NY, United States of America
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, United States of America
| | - Sarah E. Hall
- Department of Biology, Syracuse University, Syracuse, NY, United States of America
- * E-mail:
| |
Collapse
|
31
|
Lehmann M. Endocrine and physiological regulation of neutral fat storage in Drosophila. Mol Cell Endocrinol 2018; 461:165-177. [PMID: 28893568 PMCID: PMC5756521 DOI: 10.1016/j.mce.2017.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
After having revolutionized our understanding of the mechanisms of animal development, Drosophila melanogaster has more recently emerged as an equally valid genetic model in the field of animal metabolism. An increasing number of studies have revealed that many signaling pathways that control metabolism in mammals, including pathways controlled by nutrients (insulin, TOR), steroid hormone, glucagon, and hedgehog, are functionally conserved between mammals and Drosophila. In fact, genetic screens and analyses in Drosophila have identified new players and filled in gaps in the signaling networks that control metabolism. This review focuses on data that show how these networks control the formation and breakdown of triacylglycerol energy stores in the fat tissue of Drosophila.
Collapse
Affiliation(s)
- Michael Lehmann
- Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
32
|
Smith CR, Morandin C, Noureddine M, Pant S. Conserved roles of Osiris genes in insect development, polymorphism and protection. J Evol Biol 2018; 31:516-529. [PMID: 29322640 DOI: 10.1111/jeb.13238] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022]
Abstract
Much of the variation among insects is derived from the different ways that chitin has been moulded to form rigid structures, both internal and external. In this study, we identify a highly conserved expression pattern in an insect-only gene family, the Osiris genes, that is essential for development, but also plays a significant role in phenotypic plasticity and in immunity/toxicity responses. The majority of Osiris genes exist in a highly syntenic cluster, and the cluster itself appears to have arisen very early in the evolution of insects. We used developmental gene expression in the fruit fly, Drosophila melanogaster, the bumble bee, Bombus terrestris, the harvester ant, Pogonomyrmex barbatus, and the wood ant, Formica exsecta, to compare patterns of Osiris gene expression both during development and between alternate caste phenotypes in the polymorphic social insects. Developmental gene expression of Osiris genes is highly conserved across species and correlated with gene location and evolutionary history. The social insect castes are highly divergent in pupal Osiris gene expression. Sets of co-expressed genes that include Osiris genes are enriched in gene ontology terms related to chitin/cuticle and peptidase activity. Osiris genes are essential for cuticle formation in both embryos and pupae, and genes co-expressed with Osiris genes affect wing development. Additionally, Osiris genes and those co-expressed seem to play a conserved role in insect toxicology defences and digestion. Given their role in development, plasticity, and protection, we propose that the Osiris genes play a central role in insect adaptive evolution.
Collapse
Affiliation(s)
- C R Smith
- Department of Biology, Earlham College, Richmond, IN, USA
| | - C Morandin
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - M Noureddine
- Department of Biology, Earlham College, Richmond, IN, USA
| | - S Pant
- Department of Biology, Earlham College, Richmond, IN, USA
| |
Collapse
|
33
|
QTL analysis of cocoon shell weight identifies BmRPL18 associated with silk protein synthesis in silkworm by pooling sequencing. Sci Rep 2017; 7:17985. [PMID: 29269837 PMCID: PMC5740181 DOI: 10.1038/s41598-017-18277-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/07/2017] [Indexed: 01/17/2023] Open
Abstract
Mechanisms that regulate silk protein synthesis provide the basis for silkworm variety breeding and silk gland bioreactor optimization. Here, using the pooling sequencing-based methodology, we deciphered the genetic basis for the varied silk production in different silkworm strains. We identified 8 SNPs, with 6 on chromosome 11 and 1 each on chromosomes 22 and 23, that were linked with silk production. After conducting an association analysis between gene expression pattern, silk gland development and cocoon shell weight (CSW), BMGN011620 was found to be regulating silk production. BMGN011620 encodes the 60S ribosomal protein, L18, which is an indispensable component of the 60S ribosomal subunit; therefore we named it BmRPL18. Moreover, the clustering of linked SNPs on chromosome 11 and the analysis of differentially expressed genes reported in previous Omics studies indicated that the genes regulating silk protein synthesis may exhibit a clustering distribution in the silkworm genome. These results collectively advance our understanding of the regulation of silk production, including the role of ribosomal proteins and the clustered distribution of genes involved in silk protein synthesis.
Collapse
|
34
|
The New RNA World: Growing Evidence for Long Noncoding RNA Functionality. Trends Genet 2017; 33:665-676. [DOI: 10.1016/j.tig.2017.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
|
35
|
Soler-Oliva ME, Guerrero-Martínez JA, Bachetti V, Reyes JC. Analysis of the relationship between coexpression domains and chromatin 3D organization. PLoS Comput Biol 2017; 13:e1005708. [PMID: 28902867 PMCID: PMC5612749 DOI: 10.1371/journal.pcbi.1005708] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/25/2017] [Accepted: 08/03/2017] [Indexed: 01/08/2023] Open
Abstract
Gene order is not random in eukaryotic chromosomes, and co-regulated genes tend to be clustered. The mechanisms that determine co-regulation of large regions of the genome and its connection with chromatin three-dimensional (3D) organization are still unclear however. Here we have adapted a recently described method for identifying chromatin topologically associating domains (TADs) to identify coexpression domains (which we term “CODs”). Using human normal breast and breast cancer RNA-seq data, we have identified approximately 500 CODs. CODs in the normal and breast cancer genomes share similar characteristics but differ in their gene composition. COD genes have a greater tendency to be coexpressed with genes that reside in other CODs than with non-COD genes. Such inter-COD coexpression is maintained over large chromosomal distances in the normal genome but is partially lost in the cancer genome. Analyzing the relationship between CODs and chromatin 3D organization using Hi-C contact data, we find that CODs do not correspond to TADs. In fact, intra-TAD gene coexpression is the same as random for most chromosomes. However, the contact profile is similar between gene pairs that reside either in the same COD or in coexpressed CODs. These data indicate that co-regulated genes in the genome present similar patterns of contacts irrespective of the frequency of physical chromatin contacts between them. Prokaryotic operons normally comprise functionally related genes whose expression is coordinated. Even though operons do not exist in most eukaryotes, results from the last fifteen years indicate that gene order is nonetheless not random in eukaryotes, and that coexpressed genes tend to be grouped in the genome. We identify here about 500 coexpression domain (CODs) in normal breast tissue. Interestingly, we find that genes within CODs often are coexpressed with other genes that reside in other CODs placed very far away in the same chromosome, which is indicative of long-range inter-COD co-regulation. Furthermore, we find that coexpressed genes within CODs or within co-regulated CODs display similar three-dimensional chromatin contacts, suggesting a spatial coordination of CODs.
Collapse
Affiliation(s)
- María E. Soler-Oliva
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Sevilla, Spain
| | - José A. Guerrero-Martínez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Sevilla, Spain
| | - Valentina Bachetti
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Sevilla, Spain
| | - José C. Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Sevilla, Spain
- * E-mail:
| |
Collapse
|
36
|
Yu W, He C, Cai Z, Xu F, Wei L, Chen J, Jiang Q, Wei N, Li Z, Guo W, Wang X. A Preliminary Study on the Pattern, the Physiological Bases and the Molecular Mechanism of the Adductor Muscle Scar Pigmentation in Pacific Oyster Crassostrea gigas. Front Physiol 2017; 8:699. [PMID: 28955252 PMCID: PMC5600958 DOI: 10.3389/fphys.2017.00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/30/2017] [Indexed: 12/25/2022] Open
Abstract
The melanin pigmentation of the adductor muscle scar and the outer surface of the shell are among attractive features and their pigmentation patterns and mechanism still remains unknown in the Pacific oyster Crassostrea gigas. To study these pigmentation patterns, the colors of the adductor muscle scar vs. the outer surface of the shell on the same side were compared. No relevance was found between the colors of the adductor muscle scars and the corresponding outer surface of the shells, suggesting that their pigmentation processes were independent. Interestingly, a relationship between the color of the adductor muscle scars and the dried soft-body weight of Pacific oysters was found, which could be explained by the high hydroxyl free radical scavenging capacity of the muscle attached to the black adductor muscle scar. After the transcriptomes of pigmented and unpigmented adductor muscles and mantles were studied by RNAseq and compared, it was found that the retinol metabolism pathway were likely to be involved in melanin deposition on the adductor muscle scar and the outer surface of the shell, and that the different members of the tyrosinase or Cytochrome P450 gene families could play a role in the independent pigmentation of different organs.
Collapse
Affiliation(s)
- Wenchao Yu
- School of Agriculture, Ludong UniversityYantai, China
| | - Cheng He
- School of Agriculture, Ludong UniversityYantai, China
| | - Zhongqiang Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery SciencesChangdao, China
| | - Fei Xu
- Institute of Oceanology, Chinese Academy of SciencesQingdao, China
| | - Lei Wei
- School of Agriculture, Ludong UniversityYantai, China
| | - Jun Chen
- School of Agriculture, Ludong UniversityYantai, China
| | - Qiuyun Jiang
- School of Agriculture, Ludong UniversityYantai, China
| | - Na Wei
- School of Agriculture, Ludong UniversityYantai, China
| | - Zhuang Li
- School of Agriculture, Ludong UniversityYantai, China
| | - Wen Guo
- Research Center of Marine Molluscs, Marine Biology Institute of Shandong ProvinceQingdao, China
| | - Xiaotong Wang
- School of Agriculture, Ludong UniversityYantai, China
| |
Collapse
|
37
|
Quintero-Cadena P, Sternberg PW. Enhancer Sharing Promotes Neighborhoods of Transcriptional Regulation Across Eukaryotes. G3 (BETHESDA, MD.) 2016; 6:4167-4174. [PMID: 27799341 PMCID: PMC5144984 DOI: 10.1534/g3.116.036228] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/15/2016] [Indexed: 01/08/2023]
Abstract
Enhancers physically interact with transcriptional promoters, looping over distances that can span multiple regulatory elements. Given that enhancer-promoter (EP) interactions generally occur via common protein complexes, it is unclear whether EP pairing is predominantly deterministic or proximity guided. Here, we present cross-organismic evidence suggesting that most EP pairs are compatible, largely determined by physical proximity rather than specific interactions. By reanalyzing transcriptome datasets, we find that the transcription of gene neighbors is correlated over distances that scale with genome size. We experimentally show that nonspecific EP interactions can explain such correlation, and that EP distance acts as a scaling factor for the transcriptional influence of an enhancer. We propose that enhancer sharing is commonplace among eukaryotes, and that EP distance is an important layer of information in gene regulation.
Collapse
Affiliation(s)
- Porfirio Quintero-Cadena
- Division of Biology and Biological Engineering, California Institute of Technology, Howard Hughes Medical Institute, Pasadena, California 91125
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Howard Hughes Medical Institute, Pasadena, California 91125
| |
Collapse
|
38
|
Assis R. Transcriptional Interference Promotes Rapid Expression Divergence of Drosophila Nested Genes. Genome Biol Evol 2016; 8:3149-3158. [PMID: 27664180 PMCID: PMC5174743 DOI: 10.1093/gbe/evw237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nested genes are the most common form of protein-coding overlap in eukaryotic genomes. Previous studies have shown that nested genes accumulate rapidly over evolutionary time, typically via the insertion of short young duplicate genes into long introns. However, the evolutionary relationship between nested genes remains unclear. Here, I compare RNA-seq expression profiles of nested, proximal intra-chromosomal, intermediate intra-chromosomal, distant intra-chromosomal, and inter-chromosomal gene pairs in two Drosophila species. I find that expression profiles of nested genes are more divergent than those of any other class of genes, supporting the hypothesis that concurrent expression of nested genes is deleterious due to transcriptional interference. Further analysis reveals that expression profiles of derived nested genes are more divergent than those of their ancestral un-nested orthologs, which are more divergent than those of un-nested genes with similar genomic features. Thus, gene expression divergence between nested genes is likely caused by selection against nesting of genes with insufficiently divergent expression profiles, as well as by continued expression divergence after nesting. Moreover, expression divergence and sequence evolutionary rates are elevated in young nested genes and reduced in old nested genes, indicating that a burst of rapid evolution occurs after nesting. Together, these findings suggest that similarity between expression profiles of nested genes is deleterious due to transcriptional interference, and that natural selection addresses this problem both by eradicating highly deleterious nestings and by enabling rapid expression divergence of surviving nested genes, thereby quickly limiting or abolishing transcriptional interference.
Collapse
Affiliation(s)
- Raquel Assis
- Department of Biology, Pennsylvania State University, University Park
| |
Collapse
|
39
|
Fang Y, Wang L, Wang X, You Q, Pan X, Xiao J, Wang XE, Wu Y, Su Z, Zhang W. Histone modifications facilitate the coexpression of bidirectional promoters in rice. BMC Genomics 2016; 17:768. [PMID: 27716056 PMCID: PMC5045660 DOI: 10.1186/s12864-016-3125-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
Background Bidirectional gene pairs are highly abundant and mostly co-regulated in eukaryotic genomes. The structural features of bidirectional promoters (BDPs) have been well studied in yeast, humans and plants. However, the underlying mechanisms responsible for the coexpression of BDPs remain understudied, especially in plants. Results Here, we characterized chromatin features associated with rice BDPs. Several unique chromatin features were present in rice BDPs but were missing from unidirectional promoters (UDPs), including overrepresented active histone marks, canonical nucleosomes and underrepresented H3K27me3. In particular, overrepresented active marks (H3K4ac, H4K12ac, H4K16ac, H3K4me2 and H3K36me3) were truly overrepresented in type I BDPs but not in the other two BDPs, based on a Kolmogorov-Smirnov test. Conclusions Our analyses indicate that active marks (H3K4ac, H4K12ac, H4K16ac, H3K4me3, H3K9ac and H3K27ac) may coordinate with repressive marks (H3K27me3 and H3K9me1/3) to build a unique chromatin structure that favors the coregulation of bidirectional gene pairs. Thus, our findings help to enhance the understanding of unique epigenetic mechanisms that regulate bidirectional gene pairs and may improve the manipulation of gene pairs for crop bioengineering. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3125-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Lei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Ximeng Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Qi You
- State Key Laboratory of Plant Physiology and Biochemistry, CBS, China Agricultural University, Beijing, 100193, China
| | - Xiucai Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Jin Xiao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Xiu-E Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, CBS, China Agricultural University, Beijing, 100193, China.
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China. .,JiangSu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
40
|
Ibn-Salem J, Muro EM, Andrade-Navarro MA. Co-regulation of paralog genes in the three-dimensional chromatin architecture. Nucleic Acids Res 2016; 45:81-91. [PMID: 27634932 PMCID: PMC5224500 DOI: 10.1093/nar/gkw813] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 12/20/2022] Open
Abstract
Paralog genes arise from gene duplication events during evolution, which often lead to similar proteins that cooperate in common pathways and in protein complexes. Consequently, paralogs show correlation in gene expression whereby the mechanisms of co-regulation remain unclear. In eukaryotes, genes are regulated in part by distal enhancer elements through looping interactions with gene promoters. These looping interactions can be measured by genome-wide chromatin conformation capture (Hi-C) experiments, which revealed self-interacting regions called topologically associating domains (TADs). We hypothesize that paralogs share common regulatory mechanisms to enable coordinated expression according to TADs. To test this hypothesis, we integrated paralogy annotations with human gene expression data in diverse tissues, genome-wide enhancer-promoter associations and Hi-C experiments in human, mouse and dog genomes. We show that paralog gene pairs are enriched for co-localization in the same TAD, share more often common enhancer elements than expected and have increased contact frequencies over large genomic distances. Combined, our results indicate that paralogs share common regulatory mechanisms and cluster not only in the linear genome but also in the three-dimensional chromatin architecture. This enables concerted expression of paralogs over diverse cell-types and indicate evolutionary constraints in functional genome organization.
Collapse
Affiliation(s)
- Jonas Ibn-Salem
- Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany.,Institute of Molecular Biology, 55128 Mainz, Germany
| | - Enrique M Muro
- Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany.,Institute of Molecular Biology, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany .,Institute of Molecular Biology, 55128 Mainz, Germany
| |
Collapse
|
41
|
Nützmann HW, Huang A, Osbourn A. Plant metabolic clusters - from genetics to genomics. THE NEW PHYTOLOGIST 2016; 211:771-89. [PMID: 27112429 PMCID: PMC5449196 DOI: 10.1111/nph.13981] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Contents 771 I. 771 II. 772 III. 780 IV. 781 V. 786 786 References 786 SUMMARY: Plant natural products are of great value for agriculture, medicine and a wide range of other industrial applications. The discovery of new plant natural product pathways is currently being revolutionized by two key developments. First, breakthroughs in sequencing technology and reduced cost of sequencing are accelerating the ability to find enzymes and pathways for the biosynthesis of new natural products by identifying the underlying genes. Second, there are now multiple examples in which the genes encoding certain natural product pathways have been found to be grouped together in biosynthetic gene clusters within plant genomes. These advances are now making it possible to develop strategies for systematically mining multiple plant genomes for the discovery of new enzymes, pathways and chemistries. Increased knowledge of the features of plant metabolic gene clusters - architecture, regulation and assembly - will be instrumental in expediting natural product discovery. This review summarizes progress in this area.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ancheng Huang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
42
|
Khoroshko VA, Levitsky VG, Zykova TY, Antonenko OV, Belyaeva ES, Zhimulev IF. Chromatin Heterogeneity and Distribution of Regulatory Elements in the Late-Replicating Intercalary Heterochromatin Domains of Drosophila melanogaster Chromosomes. PLoS One 2016; 11:e0157147. [PMID: 27300486 PMCID: PMC4907538 DOI: 10.1371/journal.pone.0157147] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022] Open
Abstract
Late-replicating domains (intercalary heterochromatin) in the Drosophila genome display a number of features suggesting their organization is quite unique. Typically, they are quite large and encompass clusters of functionally unrelated tissue-specific genes. They correspond to the topologically associating domains and conserved microsynteny blocks. Our study aims at exploring further details of molecular organization of intercalary heterochromatin and has uncovered surprising heterogeneity of chromatin composition in these regions. Using the 4HMM model developed in our group earlier, intercalary heterochromatin regions were found to host chromatin fragments with a particular epigenetic profile. Aquamarine chromatin fragments (spanning 0.67% of late-replicating regions) are characterized as a class of sequences that appear heterogeneous in terms of their decompactization. These fragments are enriched with enhancer sequences and binding sites for insulator proteins. They likely mark the chromatin state that is related to the binding of cis-regulatory proteins. Malachite chromatin fragments (11% of late-replicating regions) appear to function as universal transitional regions between two contrasting chromatin states. Namely, they invariably delimit intercalary heterochromatin regions from the adjacent active chromatin of interbands. Malachite fragments also flank aquamarine fragments embedded in the repressed chromatin of late-replicating regions. Significant enrichment of insulator proteins CP190, SU(HW), and MOD2.2 was observed in malachite chromatin. Neither aquamarine nor malachite chromatin types appear to correlate with the positions of highly conserved non-coding elements (HCNE) that are typically replete in intercalary heterochromatin. Malachite chromatin found on the flanks of intercalary heterochromatin regions tends to replicate earlier than the malachite chromatin embedded in intercalary heterochromatin. In other words, there exists a gradient of replication progressing from the flanks of intercalary heterochromatin regions center-wise. The peculiar organization and features of replication in large late-replicating regions are discussed as possible factors shaping the evolutionary stability of intercalary heterochromatin.
Collapse
Affiliation(s)
| | - Viktor G. Levitsky
- Novosibirsk State University, Novosibirsk, Russia
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Tatyana Yu. Zykova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | | | - Elena S. Belyaeva
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
43
|
3D genomics imposes evolution of the domain model of eukaryotic genome organization. Chromosoma 2016; 126:59-69. [DOI: 10.1007/s00412-016-0604-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
44
|
Zhao X, Bergland AO, Behrman EL, Gregory BD, Petrov DA, Schmidt PS. Global Transcriptional Profiling of Diapause and Climatic Adaptation in Drosophila melanogaster. Mol Biol Evol 2016; 33:707-20. [PMID: 26568616 PMCID: PMC5009998 DOI: 10.1093/molbev/msv263] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Wild populations of the model organism Drosophila melanogaster experience highly heterogeneous environments over broad geographical ranges as well as over seasonal and annual timescales. Diapause is a primary adaptation to environmental heterogeneity, and in D. melanogaster the propensity to enter diapause varies predictably with latitude and season. Here we performed global transcriptomic profiling of naturally occurring variation in diapause expression elicited by short day photoperiod and moderately low temperature in two tissue types associated with neuroendocrine and endocrine signaling, heads, and ovaries. We show that diapause in D. melanogaster is an actively regulated phenotype at the transcriptional level, suggesting that diapause is not a simple physiological or reproductive quiescence. Differentially expressed genes and pathways are highly distinct in heads and ovaries, demonstrating that the diapause response is not uniform throughout the soma and suggesting that it may be comprised of functional modules associated with specific tissues. Genes downregulated in heads of diapausing flies are significantly enriched for clinally varying single nucleotide polymorphism (SNPs) and seasonally oscillating SNPs, consistent with the hypothesis that diapause is a driving phenotype of climatic adaptation. We also show that chromosome location-based coregulation of gene expression is present in the transcriptional regulation of diapause. Taken together, these results demonstrate that diapause is a complex phenotype actively regulated in multiple tissues, and support the hypothesis that natural variation in diapause propensity underlies adaptation to spatially and temporally varying selective pressures.
Collapse
Affiliation(s)
- Xiaqing Zhao
- Department of Biology, University of Pennsylvania
| | | | | | | | | | | |
Collapse
|
45
|
Naseeb S, Carter Z, Minnis D, Donaldson I, Zeef L, Delneri D. Widespread Impact of Chromosomal Inversions on Gene Expression Uncovers Robustness via Phenotypic Buffering. Mol Biol Evol 2016; 33:1679-96. [PMID: 26929245 PMCID: PMC4915352 DOI: 10.1093/molbev/msw045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nonrandom gene organization in eukaryotes plays a significant role in genome evolution and function. Chromosomal structural changes impact meiotic fitness and, in several organisms, are associated with speciation and rapid adaptation to different environments. Small sized chromosomal inversions, encompassing few genes, are pervasive in Saccharomyces “sensu stricto” species, while larger inversions are less common in yeasts compared with higher eukaryotes. To explore the effect of gene order on phenotype, reproductive isolation, and gene expression, we engineered 16 Saccharomyces cerevisiae strains carrying all possible paracentric and pericentric inversions between Ty1 elements, a natural substrate for rearrangements. We found that 4 inversions were lethal, while the other 12 did not show any fitness advantage or disadvantage in rich and minimal media. At meiosis, only a weak negative correlation with fitness was seen with the size of the inverted region. However, significantly lower fertility was seen in heterozygote invertant strains carrying recombination hotspots within the breakpoints. Altered transcription was observed throughout the genome rather than being overrepresented within the inversions. In spite of the large difference in gene expression in the inverted strains, mitotic fitness was not impaired in the majority of the 94 conditions tested, indicating that the robustness of the expression network buffers the deleterious effects of structural changes in several environments. Overall, our results support the notion that transcriptional changes may compensate for Ty-mediated rearrangements resulting in the maintenance of a constant phenotype, and suggest that large inversions in yeast are unlikely to be a selectable trait during vegetative growth.
Collapse
Affiliation(s)
- Samina Naseeb
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Zorana Carter
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David Minnis
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian Donaldson
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Leo Zeef
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
46
|
An Organizational Hub of Developmentally Regulated Chromatin Loops in the Drosophila Antennapedia Complex. Mol Cell Biol 2015; 35:4018-29. [PMID: 26391952 DOI: 10.1128/mcb.00663-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022] Open
Abstract
Chromatin boundary elements (CBEs) are widely distributed in the genome and mediate formation of chromatin loops, but their roles in gene regulation remain poorly understood. The complex expression pattern of the Drosophila homeotic gene Sex combs reduced (Scr) is directed by an unusually long regulatory sequence harboring diverse cis elements and an intervening neighbor gene fushi tarazu (ftz). Here we report the presence of a multitude of CBEs in the Scr regulatory region. Selective and dynamic pairing among these CBEs mediates developmentally regulated chromatin loops. In particular, the SF1 boundary plays a central role in organizing two subsets of chromatin loops: one subset encloses ftz, limiting its access by the surrounding Scr enhancers and compartmentalizing distinct histone modifications, and the other subset subdivides the Scr regulatory sequences into independent enhancer access domains. We show that these CBEs exhibit diverse enhancer-blocking activities that vary in strength and tissue distribution. Tandem pairing of SF1 and SF2, two strong CBEs that flank the ftz domain, allows the distal enhancers to bypass their block in transgenic Drosophila, providing a mechanism for the endogenous Scr enhancer to circumvent the ftz domain. Our study demonstrates how an endogenous CBE network, centrally orchestrated by SF1, could remodel the genomic environment to facilitate gene regulation during development.
Collapse
|
47
|
Li W, Freudenberg J, Oswald M. Principles for the organization of gene-sets. Comput Biol Chem 2015; 59 Pt B:139-49. [PMID: 26188561 DOI: 10.1016/j.compbiolchem.2015.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/08/2015] [Indexed: 12/23/2022]
Abstract
A gene-set, an important concept in microarray expression analysis and systems biology, is a collection of genes and/or their products (i.e. proteins) that have some features in common. There are many different ways to construct gene-sets, but a systematic organization of these ways is lacking. Gene-sets are mainly organized ad hoc in current public-domain databases, with group header names often determined by practical reasons (such as the types of technology in obtaining the gene-sets or a balanced number of gene-sets under a header). Here we aim at providing a gene-set organization principle according to the level at which genes are connected: homology, physical map proximity, chemical interaction, biological, and phenotypic-medical levels. We also distinguish two types of connections between genes: actual connection versus sharing of a label. Actual connections denote direct biological interactions, whereas shared label connection denotes shared membership in a group. Some extensions of the framework are also addressed such as overlapping of gene-sets, modules, and the incorporation of other non-protein-coding entities such as microRNAs.
Collapse
Affiliation(s)
- Wentian Li
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, North Shore LIJ Health System, Manhasset, NY, USA.
| | - Jan Freudenberg
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, North Shore LIJ Health System, Manhasset, NY, USA
| | - Michaela Oswald
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, North Shore LIJ Health System, Manhasset, NY, USA
| |
Collapse
|
48
|
Abstract
When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking.
Collapse
Affiliation(s)
- Avazeh T Ghanbarian
- Department of Biology and Biochemisty, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- Department of Biology and Biochemisty, University of Bath, Bath, United Kingdom
| |
Collapse
|
49
|
Milon B, Sun Y, Chang W, Creasy T, Mahurkar A, Shetty A, Nurminsky D, Nurminskaya M. Map of open and closed chromatin domains in Drosophila genome. BMC Genomics 2014; 15:988. [PMID: 25407537 PMCID: PMC4289254 DOI: 10.1186/1471-2164-15-988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chromatin compactness has been considered a major determinant of gene activity and has been associated with specific chromatin modifications in studies on a few individual genetic loci. At the same time, genome-wide patterns of open and closed chromatin have been understudied, and are at present largely predicted from chromatin modification and gene expression data. However the universal applicability of such predictions is not self-evident, and requires experimental verification. RESULTS We developed and implemented a high-throughput analysis for general chromatin sensitivity to DNase I which provides a comprehensive epigenomic assessment in a single assay. Contiguous domains of open and closed chromatin were identified by computational analysis of the data, and correlated to other genome annotations including predicted chromatin "states", individual chromatin modifications, nuclear lamina interactions, and gene expression. While showing that the widely trusted predictions of chromatin structure are correct in the majority of cases, we detected diverse "exceptions" from the conventional rules. We found a profound paucity of chromatin modifications in a major fraction of closed chromatin, and identified a number of loci where chromatin configuration is opposite to that expected from modification and gene expression patterns. Further, we observed that chromatin of large introns tends to be closed even when the genes are expressed, and that a significant proportion of active genes including their promoters are located in closed chromatin. CONCLUSIONS These findings reveal limitations of the existing predictive models, indicate novel mechanisms of epigenetic regulation, and provide important insights into genome organization and function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dmitry Nurminsky
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 108 N, Greene St,, Baltimore, MD 21201, USA.
| | | |
Collapse
|
50
|
Librado P, Rozas J. Uncovering the functional constraints underlying the genomic organization of the odorant-binding protein genes. Genome Biol Evol 2014; 5:2096-108. [PMID: 24148943 PMCID: PMC3845639 DOI: 10.1093/gbe/evt158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Animal olfactory systems have a critical role for the survival and reproduction of individuals. In insects, the odorant-binding proteins (OBPs) are encoded by a moderately sized gene family, and mediate the first steps of the olfactory processing. Most OBPs are organized in clusters of a few paralogs, which are conserved over time. Currently, the biological mechanism explaining the close physical proximity among OBPs is not yet established. Here, we conducted a comprehensive study aiming to gain insights into the mechanisms underlying the OBP genomic organization. We found that the OBP clusters are embedded within large conserved arrangements. These organizations also include other non-OBP genes, which often encode proteins integral to plasma membrane. Moreover, the conservation degree of such large clusters is related to the following: 1) the promoter architecture of the confined genes, 2) a characteristic transcriptional environment, and 3) the chromatin conformation of the chromosomal region. Our results suggest that chromatin domains may restrict the location of OBP genes to regions having the appropriate transcriptional environment, leading to the OBP cluster structure. However, the appropriate transcriptional environment for OBP and the other neighbor genes is not dominated by reduced levels of expression noise. Indeed, the stochastic fluctuations in the OBP transcript abundance may have a critical role in the combinatorial nature of the olfactory coding process.
Collapse
Affiliation(s)
- Pablo Librado
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|