1
|
Pattadkal JJ, O'Shea RT, Hansel D, Taillefumier T, Brager D, Priebe NJ. Synchrony dynamics underlie irregular neocortical spiking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618398. [PMID: 39464165 PMCID: PMC11507790 DOI: 10.1101/2024.10.15.618398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cortical neurons are characterized by their variable spiking patterns. We challenge prevalent theories for the origin of spiking variability. We examine the specific hypothesis that cortical synchrony drives spiking variability in vivo . Using dynamic clamp, we demonstrate that intrinsic neuronal properties do not contribute substantially to spiking variability, but rather spiking variability emerges from weakly synchronous network drive. With large-scale electrophysiology we quantify the degree of synchrony and its time scale in cortical networks in vivo . We demonstrate that physiological levels of synchrony are sufficient to generate irregular responses found in vivo . Further, this synchrony shifts over timescales ranging from 25 to 200 ms, depending on the presence of external sensory input. Such shifts occur when the network moves from spontaneous to driven modes, leading naturally to a decline in response variability as observed across cortical areas. Finally, while individual neurons exhibit reliable responses to physiological drive, different neurons respond in a distinct fashion according to their intrinsic properties, contributing to stable synchrony across the neural network.
Collapse
|
2
|
Rostami V, Rost T, Schmitt FJ, van Albada SJ, Riehle A, Nawrot MP. Spiking attractor model of motor cortex explains modulation of neural and behavioral variability by prior target information. Nat Commun 2024; 15:6304. [PMID: 39060243 PMCID: PMC11282312 DOI: 10.1038/s41467-024-49889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
When preparing a movement, we often rely on partial or incomplete information, which can decrement task performance. In behaving monkeys we show that the degree of cued target information is reflected in both, neural variability in motor cortex and behavioral reaction times. We study the underlying mechanisms in a spiking motor-cortical attractor model. By introducing a biologically realistic network topology where excitatory neuron clusters are locally balanced with inhibitory neuron clusters we robustly achieve metastable network activity across a wide range of network parameters. In application to the monkey task, the model performs target-specific action selection and accurately reproduces the task-epoch dependent reduction of trial-to-trial variability in vivo where the degree of reduction directly reflects the amount of processed target information, while spiking irregularity remained constant throughout the task. In the context of incomplete cue information, the increased target selection time of the model can explain increased behavioral reaction times. We conclude that context-dependent neural and behavioral variability is a signum of attractor computation in the motor cortex.
Collapse
Affiliation(s)
- Vahid Rostami
- Institute of Zoology, University of Cologne, Cologne, Germany
| | - Thomas Rost
- Institute of Zoology, University of Cologne, Cologne, Germany
| | | | - Sacha Jennifer van Albada
- Institute of Zoology, University of Cologne, Cologne, Germany
- Institute for Advanced Simulation (IAS-6), Jülich Research Center, Jülich, Germany
| | - Alexa Riehle
- Institute for Advanced Simulation (IAS-6), Jülich Research Center, Jülich, Germany
- UMR7289 Institut de Neurosciences de la Timone (INT), Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université (AMU), Marseille, France
| | | |
Collapse
|
3
|
Englitz B, Akram S, Elhilali M, Shamma S. Decoding contextual influences on auditory perception from primary auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573229. [PMID: 38187523 PMCID: PMC10769425 DOI: 10.1101/2023.12.24.573229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Perception can be highly dependent on stimulus context, but whether and how sensory areas encode the context remains uncertain. We used an ambiguous auditory stimulus - a tritone pair - to investigate the neural activity associated with a preceding contextual stimulus that strongly influenced the tritone pair's perception: either as an ascending or a descending step in pitch. We recorded single-unit responses from a population of auditory cortical cells in awake ferrets listening to the tritone pairs preceded by the contextual stimulus. We find that the responses adapt locally to the contextual stimulus, consistent with human MEG recordings from the auditory cortex under the same conditions. Decoding the population responses demonstrates that cells responding to pitch-class-changes are able to predict well the context-sensitive percept of the tritone pairs. Conversely, decoding the individual pitch-class representations and taking their distance in the circular Shepard tone space predicts the opposite of the percept. The various percepts can be readily captured and explained by a neural model of cortical activity based on populations of adapting, pitch-class and pitch-class-direction cells, aligned with the neurophysiological responses. Together, these decoding and model results suggest that contextual influences on perception may well be already encoded at the level of the primary sensory cortices, reflecting basic neural response properties commonly found in these areas.
Collapse
|
4
|
Wake N, Shiramatsu TI, Takahashi H. Map plasticity following noise exposure in auditory cortex of rats: implications for disentangling neural correlates of tinnitus and hyperacusis. Front Neurosci 2024; 18:1385942. [PMID: 38881748 PMCID: PMC11176560 DOI: 10.3389/fnins.2024.1385942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Both tinnitus and hyperacusis, likely triggered by hearing loss, can be attributed to maladaptive plasticity in auditory perception. However, owing to their co-occurrence, disentangling their neural mechanisms proves difficult. We hypothesized that the neural correlates of tinnitus are associated with neural activities triggered by low-intensity tones, while hyperacusis is linked to responses to moderate- and high-intensity tones. Methods To test these hypotheses, we conducted behavioral and electrophysiological experiments in rats 2 to 8 days after traumatic tone exposure. Results In the behavioral experiments, prepulse and gap inhibition tended to exhibit different frequency characteristics (although not reaching sufficient statistical levels), suggesting that exposure to traumatic tones led to acute symptoms of hyperacusis and tinnitus at different frequency ranges. When examining the auditory cortex at the thalamocortical recipient layer, we observed that tinnitus symptoms correlated with a disorganized tonotopic map, typically characterized by responses to low-intensity tones. Neural correlates of hyperacusis were found in the cortical recruitment function at the multi-unit activity (MUA) level, but not at the local field potential (LFP) level, in response to moderate- and high-intensity tones. This shift from LFP to MUA was associated with a loss of monotonicity, suggesting a crucial role for inhibitory synapses. Discussion Thus, in acute symptoms of traumatic tone exposure, our experiments successfully disentangled the neural correlates of tinnitus and hyperacusis at the thalamocortical recipient layer of the auditory cortex. They also suggested that tinnitus is linked to central noise, whereas hyperacusis is associated with aberrant gain control. Further interactions between animal experiments and clinical studies will offer insights into neural mechanisms, diagnosis and treatments of tinnitus and hyperacusis, specifically in terms of long-term plasticity of chronic symptoms.
Collapse
Affiliation(s)
- Naoki Wake
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoyo I Shiramatsu
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Takahashi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Pattadkal JJ, Zemelman BV, Fiete I, Priebe NJ. Primate neocortex performs balanced sensory amplification. Neuron 2024; 112:661-675.e7. [PMID: 38091984 PMCID: PMC10922204 DOI: 10.1016/j.neuron.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/08/2023] [Accepted: 11/07/2023] [Indexed: 01/25/2024]
Abstract
The sensory cortex amplifies relevant features of external stimuli. This sensitivity and selectivity arise through the transformation of inputs by cortical circuitry. We characterize the circuit mechanisms and dynamics of cortical amplification by making large-scale simultaneous measurements of single cells in awake primates and testing computational models. By comparing network activity in both driven and spontaneous states with models, we identify the circuit as operating in a regime of non-normal balanced amplification. Incoming inputs are strongly but transiently amplified by strong recurrent feedback from the disruption of excitatory-inhibitory balance in the network. Strong inhibition rapidly quenches responses, thereby permitting the tracking of time-varying stimuli.
Collapse
Affiliation(s)
- Jagruti J Pattadkal
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Boris V Zemelman
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ila Fiete
- Department of Brain and Cognitive Sciences, MIT, Boston, MA 02139, USA
| | - Nicholas J Priebe
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
6
|
Chen C, de Hoz L. The perceptual categorization of multidimensional stimuli is hierarchically organized. iScience 2023; 26:106941. [PMID: 37378341 PMCID: PMC10291468 DOI: 10.1016/j.isci.2023.106941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
As we interact with our surroundings, we encounter the same or similar objects from different perspectives and are compelled to generalize. For example, despite their variety we recognize dog barks as a distinct sound class. While we have some understanding of generalization along a single stimulus dimension (frequency, color), natural stimuli are identifiable by a combination of dimensions. Measuring their interaction is essential to understand perception. Using a 2-dimension discrimination task for mice and frequency or amplitude modulated sounds, we tested untrained generalization across pairs of auditory dimensions in an automatized behavioral paradigm. We uncovered a perceptual hierarchy over the tested dimensions that was dominated by the sound's spectral composition. Stimuli are thus not perceived as a whole, but as a combination of their features, each of which weights differently on the identification of the stimulus according to an established hierarchy, possibly paralleling their differential shaping of neuronal tuning.
Collapse
Affiliation(s)
- Chi Chen
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
- Göttingen Graduate School of Neurosciences and Molecular Biosciences, Göttingen, Germany
- Neuroscience Research Center, Charité Medical University, Berlin, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Neuroscience Research Center, Charité Medical University, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
7
|
Kline AM, Aponte DA, Kato HK. Distinct nonlinear spectrotemporal integration in primary and secondary auditory cortices. Sci Rep 2023; 13:7658. [PMID: 37169827 PMCID: PMC10175507 DOI: 10.1038/s41598-023-34731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Animals sense sounds through hierarchical neural pathways that ultimately reach higher-order cortices to extract complex acoustic features, such as vocalizations. Elucidating how spectrotemporal integration varies along the hierarchy from primary to higher-order auditory cortices is a crucial step in understanding this elaborate sensory computation. Here we used two-photon calcium imaging and two-tone stimuli with various frequency-timing combinations to compare spectrotemporal integration between primary (A1) and secondary (A2) auditory cortices in mice. Individual neurons showed mixed supralinear and sublinear integration in a frequency-timing combination-specific manner, and we found unique integration patterns in these two areas. Temporally asymmetric spectrotemporal integration in A1 neurons suggested their roles in discriminating frequency-modulated sweep directions. In contrast, temporally symmetric and coincidence-preferring integration in A2 neurons made them ideal spectral integrators of concurrent multifrequency sounds. Moreover, the ensemble neural activity in A2 was sensitive to two-tone timings, and coincident two-tones evoked distinct ensemble activity patterns from the linear sum of component tones. Together, these results demonstrate distinct roles of A1 and A2 in encoding complex acoustic features, potentially suggesting parallel rather than sequential information extraction between these regions.
Collapse
Affiliation(s)
- Amber M Kline
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Destinee A Aponte
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hiroyuki K Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
8
|
Guy J, Möck M, Staiger JF. Direction selectivity of inhibitory interneurons in mouse barrel cortex differs between interneuron subtypes. Cell Rep 2023; 42:111936. [PMID: 36640357 DOI: 10.1016/j.celrep.2022.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023] Open
Abstract
GABAergic interneurons represent ∼15% to 20% of all cortical neurons, but their diversity grants them unique roles in cortical circuits. In the barrel cortex, responses of excitatory neurons to stimulation of facial whiskers are direction selective, whereby excitation is maximized over a narrow range of angular deflections. Whether GABAergic interneurons are also direction selective is unclear. Here, we use two-photon-guided whole-cell recordings in the barrel cortex of anesthetized mice and control whisker stimulation to measure direction selectivity in defined interneuron subtypes. Selectivity is ubiquitous in interneurons, but tuning sharpness varies across populations. Vasoactive intestinal polypeptide (VIP) interneurons are as selective as pyramidal neurons, but parvalbumin (PV) interneurons are more broadly tuned. Furthermore, a majority (2/3) of somatostatin (SST) interneurons receive direction-selective inhibition, with the rest receiving direction-selective excitation. Sensory evoked activity in the barrel cortex is thus cell-type specific, suggesting that interneuron subtypes make distinct contributions to cortical representations of stimuli.
Collapse
Affiliation(s)
- Julien Guy
- Institute for Neuroanatomy, University Medical Center, 37075 Göttingen, Lower Saxony, Germany
| | - Martin Möck
- Institute for Neuroanatomy, University Medical Center, 37075 Göttingen, Lower Saxony, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, 37075 Göttingen, Lower Saxony, Germany.
| |
Collapse
|
9
|
Kline AM, Aponte DA, Kato HK. Distinct nonlinear spectrotemporal integration in primary and secondary auditory cortices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525588. [PMID: 36747812 PMCID: PMC9900815 DOI: 10.1101/2023.01.25.525588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Animals sense sounds through hierarchical neural pathways that ultimately reach higher-order cortices to extract complex acoustic features, such as vocalizations. Elucidating how spectrotemporal integration varies along the hierarchy from primary to higher-order auditory cortices is a crucial step in understanding this elaborate sensory computation. Here we used two-photon calcium imaging and two-tone stimuli with various frequency-timing combinations to compare spectrotemporal integration between primary (A1) and secondary (A2) auditory cortices in mice. Individual neurons showed mixed supralinear and sublinear integration in a frequency-timing combination-specific manner, and we found unique integration patterns in these two areas. Temporally asymmetric spectrotemporal integration in A1 neurons enabled their discrimination of frequency-modulated sweep directions. In contrast, temporally symmetric and coincidence-preferring integration in A2 neurons made them ideal spectral integrators of concurrent multifrequency sounds. Moreover, the ensemble neural activity in A2 was sensitive to two-tone timings, and coincident two-tones evoked distinct ensemble activity patterns from the linear sum of component tones. Together, these results demonstrate distinct roles of A1 and A2 in encoding complex acoustic features, potentially suggesting parallel rather than sequential information extraction between these regions.
Collapse
Affiliation(s)
- Amber M. Kline
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,These authors contributed equally
| | - Destinee A. Aponte
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,These authors contributed equally
| | - Hiroyuki K. Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Correspondence: Hiroyuki Kato, Mary Ellen Jones Building, Rm. 6212B, 116 Manning Dr., Chapel Hill, NC 27599-7250, USA, , 919-843-8764
| |
Collapse
|
10
|
Gilday OD, Praegel B, Maor I, Cohen T, Nelken I, Mizrahi A. Surround suppression in mouse auditory cortex underlies auditory edge detection. PLoS Comput Biol 2023; 19:e1010861. [PMID: 36656876 PMCID: PMC9888713 DOI: 10.1371/journal.pcbi.1010861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/31/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Surround suppression (SS) is a fundamental property of sensory processing throughout the brain. In the auditory system, the early processing stream encodes sounds using a one dimensional physical space-frequency. Previous studies in the auditory system have shown SS to manifest as bandwidth tuning around the preferred frequency. We asked whether bandwidth tuning can be found around frequencies away from the preferred frequency. We exploited the simplicity of spectral representation of sounds to study SS by manipulating both sound frequency and bandwidth. We recorded single unit spiking activity from the auditory cortex (ACx) of awake mice in response to an array of broadband stimuli with varying central frequencies and bandwidths. Our recordings revealed that a significant portion of neuronal response profiles had a preferred bandwidth that varied in a regular way with the sound's central frequency. To gain insight into the possible mechanism underlying these responses, we modelled neuronal activity using a variation of the "Mexican hat" function often used to model SS. The model accounted for response properties of single neurons with high accuracy. Our data and model show that these responses in ACx obey simple rules resulting from the presence of lateral inhibitory sidebands, mostly above the excitatory band of the neuron, that result in sensitivity to the location of top frequency edges, invariant to other spectral attributes. Our work offers a simple explanation for auditory edge detection and possibly other computations of spectral content in sounds.
Collapse
Affiliation(s)
- Omri David Gilday
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benedikt Praegel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ido Maor
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tav Cohen
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Israel Nelken
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
11
|
Mammalian octopus cells are direction selective to frequency sweeps by excitatory synaptic sequence detection. Proc Natl Acad Sci U S A 2022; 119:e2203748119. [PMID: 36279465 PMCID: PMC9636937 DOI: 10.1073/pnas.2203748119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Octopus cells are remarkable projection neurons of the mammalian cochlear nucleus, with extremely fast membranes and wide-frequency tuning. They are considered prime examples of coincidence detectors but are poorly characterized in vivo. We discover that octopus cells are selective to frequency sweep direction, a feature that is absent in their auditory nerve inputs. In vivo intracellular recordings reveal that direction selectivity does not derive from across-frequency coincidence detection but hinges on the amplitudes and activation sequence of auditory nerve inputs tuned to clusters of hot spot frequencies. A simple biophysical octopus cell model excited with real nerve spike trains recreates direction selectivity through interaction of intrinsic membrane conductances with the activation sequence of clustered excitatory inputs. We conclude that octopus cells are sequence detectors, sensitive to temporal patterns across cochlear frequency channels. The detection of sequences rather than coincidences is a much simpler but powerful operation to extract temporal information.
Collapse
|
12
|
Chew KCM, Kumar V, Tan AYY. Different Excitation-Inhibition Correlations Between Spontaneous and Tone-evoked Activity in Primary Auditory Cortex Neurons. Neuroscience 2022; 496:205-218. [PMID: 35728764 DOI: 10.1016/j.neuroscience.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Tone-evoked synaptic excitation and inhibition are highly correlated in many neurons with V-shaped tuning curves in the primary auditory cortex of pentobarbital-anesthetized rats. In contrast, there is less correlation between spontaneous excitation and inhibition in visual cortex neurons under the same anesthetic conditions. However, it was not known whether the primary auditory cortex resembles visual cortex in having spontaneous excitation and inhibition that is less correlated than tone-evoked excitation and inhibition. Here we report whole-cell voltage-clamp measurements of spontaneous excitation and inhibition in primary auditory cortex neurons of pentobarbital-anesthetized rats. Spontaneous excitatory and inhibitory currents appeared to mainly consist of distinct events, with the inhibitory event rate typically lower than the excitatory event rate. We use the ratio of the excitatory event rate to the inhibitory event rate, and the assumption that the excitatory and inhibitory synaptic currents can each be reasonably described as a filtered Poisson process, to estimate the maximum spontaneous excitatory-inhibitory correlation for each neuron. In a subset of neurons, we also measured tone-evoked excitation and inhibition. In neurons with V-shaped tuning curves, although tone-evoked excitation and inhibition were highly correlated, the spontaneous inhibitory event rate was typically sufficiently lower than the spontaneous excitatory event rate to indicate a lower excitatory-inhibitory correlation for spontaneous activity than for tone-evoked responses.
Collapse
Affiliation(s)
- Katherine C M Chew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Republic of Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Republic of Singapore; Cardiovascular Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Republic of Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Republic of Singapore.
| | - Vineet Kumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Republic of Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Republic of Singapore; Cardiovascular Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Republic of Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Republic of Singapore.
| | - Andrew Y Y Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Republic of Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Republic of Singapore; Cardiovascular Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Republic of Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Republic of Singapore.
| |
Collapse
|
13
|
Rupert DD, Shea SD. Parvalbumin-Positive Interneurons Regulate Cortical Sensory Plasticity in Adulthood and Development Through Shared Mechanisms. Front Neural Circuits 2022; 16:886629. [PMID: 35601529 PMCID: PMC9120417 DOI: 10.3389/fncir.2022.886629] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin-positive neurons are the largest class of GABAergic, inhibitory neurons in the central nervous system. In the cortex, these fast-spiking cells provide feedforward and feedback synaptic inhibition onto a diverse set of cell types, including pyramidal cells, other inhibitory interneurons, and themselves. Cortical inhibitory networks broadly, and cortical parvalbumin-expressing interneurons (cPVins) specifically, are crucial for regulating sensory plasticity during both development and adulthood. Here we review the functional properties of cPVins that enable plasticity in the cortex of adult mammals and the influence of cPVins on sensory activity at four spatiotemporal scales. First, cPVins regulate developmental critical periods and adult plasticity through molecular and structural interactions with the extracellular matrix. Second, they activate in precise sequence following feedforward excitation to enforce strict temporal limits in response to the presentation of sensory stimuli. Third, they implement gain control to normalize sensory inputs and compress the dynamic range of output. Fourth, they synchronize broad network activity patterns in response to behavioral events and state changes. Much of the evidence for the contribution of cPVins to plasticity comes from classic models that rely on sensory deprivation methods to probe experience-dependent changes in the brain. We support investigating naturally occurring, adaptive cortical plasticity to study cPVin circuits in an ethologically relevant framework, and discuss recent insights from our work on maternal experience-induced auditory cortical plasticity.
Collapse
Affiliation(s)
- Deborah D. Rupert
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Medical Scientist Training Program, Stony Brook University, Stony Brook, NY, United States
| | - Stephen D. Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| |
Collapse
|
14
|
Degraded cortical temporal processing in the valproic acid-induced rat model of autism. Neuropharmacology 2022; 209:109000. [PMID: 35182575 DOI: 10.1016/j.neuropharm.2022.109000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/12/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
Hearing disorders, such as abnormal speech perception, are frequently reported in individuals with autism. However, the mechanisms underlying these auditory-associated signature deficits in autism remain largely unknown. In this study, we documented significant behavioral impairments in the sound temporal rate discrimination task for rats prenatally exposed to valproic acid (VPA), a well-validated animal model for studying the pathology of autism. In parallel, there was a large-scale degradation in temporal information-processing in their primary auditory cortices (A1) at both levels of spiking outputs and synaptic inputs. Substantially increased spine density of excitatory neurons and decreased numbers of parvalbumin- and somatostatin-labeled inhibitory inter-neurons were also recorded in the A1 after VPA exposure. Given the fact that cortical temporal processing of sound is associated with speech perception in humans, these results in the animal model of VPA exposure provide insight into a possible neurological mechanism underlying auditory and language-related deficits in individuals with autism.
Collapse
|
15
|
Auerbach BD, Gritton HJ. Hearing in Complex Environments: Auditory Gain Control, Attention, and Hearing Loss. Front Neurosci 2022; 16:799787. [PMID: 35221899 PMCID: PMC8866963 DOI: 10.3389/fnins.2022.799787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Listening in noisy or complex sound environments is difficult for individuals with normal hearing and can be a debilitating impairment for those with hearing loss. Extracting meaningful information from a complex acoustic environment requires the ability to accurately encode specific sound features under highly variable listening conditions and segregate distinct sound streams from multiple overlapping sources. The auditory system employs a variety of mechanisms to achieve this auditory scene analysis. First, neurons across levels of the auditory system exhibit compensatory adaptations to their gain and dynamic range in response to prevailing sound stimulus statistics in the environment. These adaptations allow for robust representations of sound features that are to a large degree invariant to the level of background noise. Second, listeners can selectively attend to a desired sound target in an environment with multiple sound sources. This selective auditory attention is another form of sensory gain control, enhancing the representation of an attended sound source while suppressing responses to unattended sounds. This review will examine both “bottom-up” gain alterations in response to changes in environmental sound statistics as well as “top-down” mechanisms that allow for selective extraction of specific sound features in a complex auditory scene. Finally, we will discuss how hearing loss interacts with these gain control mechanisms, and the adaptive and/or maladaptive perceptual consequences of this plasticity.
Collapse
Affiliation(s)
- Benjamin D. Auerbach
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach,
| | - Howard J. Gritton
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
16
|
Partouche E, Adenis V, Gnansia D, Stahl P, Edeline JM. Increased Threshold and Reduced Firing Rate of Auditory Cortex Neurons after Cochlear Implant Insertion. Brain Sci 2022; 12:brainsci12020205. [PMID: 35203968 PMCID: PMC8870646 DOI: 10.3390/brainsci12020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
The cochlear implant (CI) is the most successful neuroprosthesis allowing thousands of patients with profound hearing loss to recover speech understanding. Recently, cochlear implants have been proposed to subjects with residual hearing and, in these cases, shorter CIs were implanted. To be successful, it is crucial to preserve the patient’s remaining hearing abilities after the implantation. Here, we quantified the effects of CI insertion on the responses of auditory cortex neurons in anesthetized guinea pigs. The responses of auditory cortex neurons were determined before and after the insertion of a 300 µm diameter CI (six stimulating electrodes, length 6 mm). Immediately after CI insertion there was a 5 to 15 dB increase in the threshold for cortical neurons from the middle to the high frequencies, accompanied by a decrease in the evoked firing rate. Analyzing the characteristic frequency (CF) values revealed that in large number of cases, the CFs obtained after insertion were lower than before. These effects were not detected in the control animals. These results indicate that there is a small but immediate cortical hearing loss after CI insertion, even with short length CIs. Therefore, efforts should be made to minimize the damages during CI insertion to preserve the cortical responses to acoustic stimuli.
Collapse
Affiliation(s)
- Elie Partouche
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, 91400 Saclay, France; (E.P.); (V.A.)
| | - Victor Adenis
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, 91400 Saclay, France; (E.P.); (V.A.)
| | - Dan Gnansia
- Department of Scientific and Clinical Research, Oticon Medical, 06224 Vallauris, France; (D.G.); (P.S.)
| | - Pierre Stahl
- Department of Scientific and Clinical Research, Oticon Medical, 06224 Vallauris, France; (D.G.); (P.S.)
| | - Jean-Marc Edeline
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, 91400 Saclay, France; (E.P.); (V.A.)
- Correspondence:
| |
Collapse
|
17
|
Ruthig P, Schönwiesner M. Common principles in the lateralisation of auditory cortex structure and function for vocal communication in primates and rodents. Eur J Neurosci 2022; 55:827-845. [PMID: 34984748 DOI: 10.1111/ejn.15590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022]
Abstract
This review summarises recent findings on the lateralisation of communicative sound processing in the auditory cortex (AC) of humans, non-human primates, and rodents. Functional imaging in humans has demonstrated a left hemispheric preference for some acoustic features of speech, but it is unclear to which degree this is caused by bottom-up acoustic feature selectivity or top-down modulation from language areas. Although non-human primates show a less pronounced functional lateralisation in AC, the properties of AC fields and behavioral asymmetries are qualitatively similar. Rodent studies demonstrate microstructural circuits that might underlie bottom-up acoustic feature selectivity in both hemispheres. Functionally, the left AC in the mouse appears to be specifically tuned to communication calls, whereas the right AC may have a more 'generalist' role. Rodents also show anatomical AC lateralisation, such as differences in size and connectivity. Several of these functional and anatomical characteristics are also lateralized in human AC. Thus, complex vocal communication processing shares common features among rodents and primates. We argue that a synthesis of results from humans, non-human primates, and rodents is necessary to identify the neural circuitry of vocal communication processing. However, data from different species and methods are often difficult to compare. Recent advances may enable better integration of methods across species. Efforts to standardise data formats and analysis tools would benefit comparative research and enable synergies between psychological and biological research in the area of vocal communication processing.
Collapse
Affiliation(s)
- Philip Ruthig
- Faculty of Life Sciences, Leipzig University, Leipzig, Sachsen.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig
| | | |
Collapse
|
18
|
Zeng HH, Huang JF, Li JR, Shen Z, Gong N, Wen YQ, Wang L, Poo MM. Distinct neuron populations for simple and compound calls in the primary auditory cortex of awake marmosets. Natl Sci Rev 2021; 8:nwab126. [PMID: 34876995 PMCID: PMC8645005 DOI: 10.1093/nsr/nwab126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 11/12/2022] Open
Abstract
Marmosets are highly social non-human primates that live in families. They exhibit rich vocalization, but the neural basis underlying this complex vocal communication is largely unknown. Here we report the existence of specific neuron populations in marmoset A1 that respond selectively to distinct simple or compound calls made by conspecific marmosets. These neurons were spatially dispersed within A1 but distinct from those responsive to pure tones. Call-selective responses were markedly diminished when individual domains of the call were deleted or the domain sequence was altered, indicating the importance of the global rather than local spectral-temporal properties of the sound. Compound call-selective responses also disappeared when the sequence of the two simple-call components was reversed or their interval was extended beyond 1 s. Light anesthesia largely abolished call-selective responses. Our findings demonstrate extensive inhibitory and facilitatory interactions among call-evoked responses, and provide the basis for further study of circuit mechanisms underlying vocal communication in awake non-human primates.
Collapse
Affiliation(s)
- Huan-huan Zeng
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Jun-feng Huang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100086, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Jun-ru Li
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Zhiming Shen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Neng Gong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Yun-qing Wen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | | | | |
Collapse
|
19
|
Is human face recognition lateralized to the right hemisphere due to neural competition with left-lateralized visual word recognition? A critical review. Brain Struct Funct 2021; 227:599-629. [PMID: 34731327 DOI: 10.1007/s00429-021-02370-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
The right hemispheric lateralization of face recognition, which is well documented and appears to be specific to the human species, remains a scientific mystery. According to a long-standing view, the evolution of language, which is typically substantiated in the left hemisphere, competes with the cortical space in that hemisphere available for visuospatial processes, including face recognition. Over the last decade, a specific hypothesis derived from this view according to which neural competition in the left ventral occipito-temporal cortex with selective representations of letter strings causes right hemispheric lateralization of face recognition, has generated considerable interest and research in the scientific community. Here, a systematic review of studies performed in various populations (infants, children, literate and illiterate adults, left-handed adults) and methodologies (behavior, lesion studies, (intra)electroencephalography, neuroimaging) offers little if any support for this reading lateralized neural competition hypothesis. Specifically, right-lateralized face-selective neural activity already emerges at a few months of age, well before reading acquisition. Moreover, consistent evidence of face recognition performance and its right hemispheric lateralization being modulated by literacy level during development or at adulthood is lacking. Given the absence of solid alternative hypotheses and the key role of neural competition in the sensory-motor cortices for selectivity of representations, learning, and plasticity, a revised language-related neural competition hypothesis for the right hemispheric lateralization of face recognition should be further explored in future research, albeit with substantial conceptual clarification and advances in methodological rigor.
Collapse
|
20
|
Relationship between objective measures of hearing discrimination elicited by non-linguistic stimuli and speech perception in adults. Sci Rep 2021; 11:19554. [PMID: 34599244 PMCID: PMC8486784 DOI: 10.1038/s41598-021-98950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/14/2021] [Indexed: 11/08/2022] Open
Abstract
Some people using hearing aids have difficulty discriminating between sounds even though the sounds are audible. As such, cochlear implants may provide greater benefits for speech perception. One method to identify people with auditory discrimination deficits is to measure discrimination thresholds using spectral ripple noise (SRN). Previous studies have shown that behavioral discrimination of SRN was associated with speech perception, and behavioral discrimination was also related to cortical responses to acoustic change or ACCs. We hypothesized that cortical ACCs could be directly related to speech perception. In this study, we investigated the relationship between subjective speech perception and objective ACC responses measured using SRNs. We tested 13 normal-hearing and 10 hearing-impaired adults using hearing aids. Our results showed that behavioral SRN discrimination was correlated with speech perception in quiet and in noise. Furthermore, cortical ACC responses to phase changes in the SRN were significantly correlated with speech perception. Audibility was a major predictor of discrimination and speech perception, but direct measures of auditory discrimination could contribute information about a listener’s sensitivity to acoustic cues that underpin speech perception. The findings lend support for potential application of measuring ACC responses to SRNs for identifying people who may benefit from cochlear implants.
Collapse
|
21
|
Sparse Coding in Temporal Association Cortex Improves Complex Sound Discriminability. J Neurosci 2021; 41:7048-7064. [PMID: 34244361 DOI: 10.1523/jneurosci.3167-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/05/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
The mouse auditory cortex is comprised of several auditory fields spanning the dorsoventral axis of the temporal lobe. The ventral most auditory field is the temporal association cortex (TeA), which remains largely unstudied. Using Neuropixels probes, we simultaneously recorded from primary auditory cortex (AUDp), secondary auditory cortex (AUDv), and TeA, characterizing neuronal responses to pure tones and frequency modulated (FM) sweeps in awake head-restrained female mice. As compared with AUDp and AUDv, single-unit (SU) responses to pure tones in TeA were sparser, delayed, and prolonged. Responses to FMs were also sparser. Population analysis showed that the sparser responses in TeA render it less sensitive to pure tones, yet more sensitive to FMs. When characterizing responses to pure tones under anesthesia, the distinct signature of TeA was changed considerably as compared with that in awake mice, implying that responses in TeA are strongly modulated by non-feedforward connections. Together, these findings provide a basic electrophysiological description of TeA as an integral part of sound processing along the cortical hierarchy.SIGNIFICANCE STATEMENT This is the first comprehensive characterization of the auditory responses in the awake mouse auditory temporal association cortex (TeA). The study provides the foundations for further investigation of TeA and its involvement in auditory learning, plasticity, auditory driven behaviors etc. The study was conducted using state of the art data collection tools, allowing for simultaneous recording from multiple cortical regions and numerous neurons.
Collapse
|
22
|
Bhumika S, Nakamura M, Valerio P, Solyga M, Lindén H, Barkat TR. A Late Critical Period for Frequency Modulated Sweeps in the Mouse Auditory System. Cereb Cortex 2021; 30:2586-2599. [PMID: 31800018 PMCID: PMC7174992 DOI: 10.1093/cercor/bhz262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 01/24/2023] Open
Abstract
Neuronal circuits are shaped by experience during time windows of increased plasticity in postnatal development. In the auditory system, the critical period for the simplest sounds-pure frequency tones-is well defined. Critical periods for more complex sounds remain to be elucidated. We used in vivo electrophysiological recordings in the mouse auditory cortex to demonstrate that passive exposure to frequency modulated sweeps (FMS) from postnatal day 31 to 38 leads to long-term changes in the temporal representation of sweep directions. Immunohistochemical analysis revealed a decreased percentage of layer 4 parvalbumin-positive (PV+) cells during this critical period, paralleled with a transient increase in responses to FMS, but not to pure tones. Preventing the PV+ cell decrease with continuous white noise exposure delayed the critical period onset, suggesting a reduction in inhibition as a mechanism for this plasticity. Our findings shed new light on the dependence of plastic windows on stimulus complexity that persistently sculpt the functional organization of the auditory cortex.
Collapse
Affiliation(s)
| | - Mari Nakamura
- Department of Biomedicine, Basel University, 4056 Basel, Switzerland
| | - Patricia Valerio
- Department of Biomedicine, Basel University, 4056 Basel, Switzerland
| | - Magdalena Solyga
- Department of Biomedicine, Basel University, 4056 Basel, Switzerland
| | - Henrik Lindén
- Department of Neuroscience, Copenhagen University, 2200 Copenhagen, Denmark
| | - Tania R Barkat
- Department of Biomedicine, Basel University, 4056 Basel, Switzerland
| |
Collapse
|
23
|
Li H, Wang J, Liu G, Xu J, Huang W, Song C, Wang D, Tao HW, Zhang LI, Liang F. Phasic Off responses of auditory cortex underlie perception of sound duration. Cell Rep 2021; 35:109003. [PMID: 33882311 PMCID: PMC8154544 DOI: 10.1016/j.celrep.2021.109003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
It has been proposed that sound information is separately streamed into onset and offset pathways for parallel processing. However, how offset responses contribute to auditory perception remains unclear. Here, loose-patch and whole-cell recordings in awake mouse primary auditory cortex (A1) reveal that a subset of pyramidal neurons exhibit a transient "Off" response, with its onset tightly time-locked to the sound termination and its frequency tuning similar to that of the transient "On" response. Both responses are characterized by excitation briefly followed by inhibition, with the latter mediated by parvalbumin (PV) inhibitory neurons. Optogenetically manipulating sound-evoked A1 responses at different temporal phases or artificially creating phantom sounds in A1 further reveals that the A1 phasic On and Off responses are critical for perceptual discrimination of sound duration. Our results suggest that perception of sound duration is dependent on precisely encoding its onset and offset timings by phasic On and Off responses.
Collapse
Affiliation(s)
- Haifu Li
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Jian Wang
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Guilong Liu
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Jinfeng Xu
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Weilong Huang
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Changbao Song
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Dijia Wang
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Huizhong W Tao
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Feixue Liang
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China.
| |
Collapse
|
24
|
Tabas A, von Kriegstein K. Neural modelling of the encoding of fast frequency modulation. PLoS Comput Biol 2021; 17:e1008787. [PMID: 33657098 PMCID: PMC7959405 DOI: 10.1371/journal.pcbi.1008787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/15/2021] [Accepted: 02/12/2021] [Indexed: 11/19/2022] Open
Abstract
Frequency modulation (FM) is a basic constituent of vocalisation in many animals as well as in humans. In human speech, short rising and falling FM-sweeps of around 50 ms duration, called formant transitions, characterise individual speech sounds. There are two representations of FM in the ascending auditory pathway: a spectral representation, holding the instantaneous frequency of the stimuli; and a sweep representation, consisting of neurons that respond selectively to FM direction. To-date computational models use feedforward mechanisms to explain FM encoding. However, from neuroanatomy we know that there are massive feedback projections in the auditory pathway. Here, we found that a classical FM-sweep perceptual effect, the sweep pitch shift, cannot be explained by standard feedforward processing models. We hypothesised that the sweep pitch shift is caused by a predictive feedback mechanism. To test this hypothesis, we developed a novel model of FM encoding incorporating a predictive interaction between the sweep and the spectral representation. The model was designed to encode sweeps of the duration, modulation rate, and modulation shape of formant transitions. It fully accounted for experimental data that we acquired in a perceptual experiment with human participants as well as previously published experimental results. We also designed a new class of stimuli for a second perceptual experiment to further validate the model. Combined, our results indicate that predictive interaction between the frequency encoding and direction encoding neural representations plays an important role in the neural processing of FM. In the brain, this mechanism is likely to occur at early stages of the processing hierarchy.
Collapse
Affiliation(s)
- Alejandro Tabas
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Saxony, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany
| | - Katharina von Kriegstein
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Saxony, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany
| |
Collapse
|
25
|
Aponte DA, Handy G, Kline AM, Tsukano H, Doiron B, Kato HK. Recurrent network dynamics shape direction selectivity in primary auditory cortex. Nat Commun 2021; 12:314. [PMID: 33436635 PMCID: PMC7804939 DOI: 10.1038/s41467-020-20590-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/11/2020] [Indexed: 02/03/2023] Open
Abstract
Detecting the direction of frequency modulation (FM) is essential for vocal communication in both animals and humans. Direction-selective firing of neurons in the primary auditory cortex (A1) has been classically attributed to temporal offsets between feedforward excitatory and inhibitory inputs. However, it remains unclear how cortical recurrent circuitry contributes to this computation. Here, we used two-photon calcium imaging and whole-cell recordings in awake mice to demonstrate that direction selectivity is not caused by temporal offsets between synaptic currents, but by an asymmetry in total synaptic charge between preferred and non-preferred directions. Inactivation of cortical somatostatin-expressing interneurons (SOM cells) reduced direction selectivity, revealing its cortical contribution. Our theoretical models showed that charge asymmetry arises due to broad spatial topography of SOM cell-mediated inhibition which regulates signal amplification in strongly recurrent circuitry. Together, our findings reveal a major contribution of recurrent network dynamics in shaping cortical tuning to behaviorally relevant complex sounds.
Collapse
Affiliation(s)
- Destinee A Aponte
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gregory Handy
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA
- Department of Mathematics, University of Pittsburgh, Pittsburgh, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Amber M Kline
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hiroaki Tsukano
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brent Doiron
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA
- Department of Mathematics, University of Pittsburgh, Pittsburgh, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Hiroyuki K Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
26
|
Andermann M, Günther M, Patterson RD, Rupp A. Early cortical processing of pitch height and the role of adaptation and musicality. Neuroimage 2020; 225:117501. [PMID: 33169697 DOI: 10.1016/j.neuroimage.2020.117501] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pitch is an important perceptual feature; however, it is poorly understood how its cortical correlates are shaped by absolute vs relative fundamental frequency (f0), and by neural adaptation. In this study, we assessed transient and sustained auditory evoked fields (AEFs) at the onset, progression, and offset of short pitch height sequences, taking into account the listener's musicality. We show that neuromagnetic activity reflects absolute f0 at pitch onset and offset, and relative f0 at transitions within pitch sequences; further, sequences with fixed f0 lead to larger response suppression than sequences with variable f0 contour, and to enhanced offset activity. Musical listeners exhibit stronger f0-related AEFs and larger differences between their responses to fixed vs variable sequences, both within sequences and at pitch offset. The results resemble prominent psychoacoustic phenomena in the perception of pitch contours; moreover, they suggest a strong influence of adaptive mechanisms on cortical pitch processing which, in turn, might be modulated by a listener's musical expertise.
Collapse
Affiliation(s)
- Martin Andermann
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Melanie Günther
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Roy D Patterson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - André Rupp
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Liang F, Li H, Chou XL, Zhou M, Zhang NK, Xiao Z, Zhang KK, Tao HW, Zhang LI. Sparse Representation in Awake Auditory Cortex: Cell-type Dependence, Synaptic Mechanisms, Developmental Emergence, and Modulation. Cereb Cortex 2020; 29:3796-3812. [PMID: 30307493 DOI: 10.1093/cercor/bhy260] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/29/2018] [Accepted: 09/19/2018] [Indexed: 01/25/2023] Open
Abstract
Sparse representation is considered an important coding strategy for cortical processing in various sensory modalities. It remains unclear how cortical sparseness arises and is being regulated. Here, unbiased recordings from primary auditory cortex of awake adult mice revealed salient sparseness in layer (L)2/3, with a majority of excitatory neurons exhibiting no increased spiking in response to each of sound types tested. Sparse representation was not observed in parvalbumin (PV) inhibitory neurons. The nonresponding neurons did receive auditory-evoked synaptic inputs, marked by weaker excitation and lower excitation/inhibition (E/I) ratios than responding cells. Sparse representation arises during development in an experience-dependent manner, accompanied by differential changes of excitatory input strength and a transition from unimodal to bimodal distribution of E/I ratios. Sparseness level could be reduced by suppressing PV or L1 inhibitory neurons. Thus, sparse representation may be dynamically regulated via modulating E/I balance, optimizing cortical representation of the external sensory world.
Collapse
Affiliation(s)
- Feixue Liang
- Department of Medical Engineering, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Haifu Li
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiao-Lin Chou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Mu Zhou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Nicole K Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ke K Zhang
- Department of Pathology, the University of North Dakota, Grand Forks, ND, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Li H, Liang F, Zhong W, Yan L, Mesik L, Xiao Z, Tao HW, Zhang LI. Synaptic Mechanisms for Bandwidth Tuning in Awake Mouse Primary Auditory Cortex. Cereb Cortex 2020; 29:2998-3009. [PMID: 30010857 DOI: 10.1093/cercor/bhy165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/08/2018] [Indexed: 11/12/2022] Open
Abstract
Spatial size tuning in the visual cortex has been considered as an important neuronal functional property for sensory perception. However, an analogous mechanism in the auditory system has remained controversial. In the present study, cell-attached recordings in the primary auditory cortex (A1) of awake mice revealed that excitatory neurons can be categorized into three types according to their bandwidth tuning profiles in response to band-passed noise (BPN) stimuli: nonmonotonic (NM), flat, and monotonic, with the latter two considered as non-tuned for bandwidth. The prevalence of bandwidth-tuned (i.e., NM) neurons increases significantly from layer 4 to layer 2/3. With sequential cell-attached and whole-cell voltage-clamp recordings from the same neurons, we found that the bandwidth preference of excitatory neurons is largely determined by the excitatory synaptic input they receive, and that the bandwidth selectivity is further enhanced by flatly tuned inhibition observed in all cells. The latter can be attributed at least partially to the flat tuning of parvalbumin inhibitory neurons. The tuning of auditory cortical neurons for bandwidth of BPN may contribute to the processing of complex sounds.
Collapse
Affiliation(s)
- Haifu Li
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Feixue Liang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Medical Engineering, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wen Zhong
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linqing Yan
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lucas Mesik
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Abstract
Being able to pick out particular sounds, such as speech, against a background of other sounds represents one of the key tasks performed by the auditory system. Understanding how this happens is important because speech recognition in noise is particularly challenging for older listeners and for people with hearing impairments. Central to this ability is the capacity of neurons to adapt to the statistics of sounds reaching the ears, which helps to generate noise-tolerant representations of sounds in the brain. In more complex auditory scenes, such as a cocktail party — where the background noise comprises other voices, sound features associated with each source have to be grouped together and segregated from those belonging to other sources. This depends on precise temporal coding and modulation of cortical response properties when attending to a particular speaker in a multi-talker environment. Furthermore, the neural processing underlying auditory scene analysis is shaped by experience over multiple timescales.
Collapse
|
30
|
Yan L, Fang Q, Zhang X, Huang B. Optimal Pipette Resistance, Seal Resistance, and Zero-Current Membrane Potential for Loose Patch or Breakthrough Whole-Cell Recording in vivo. Front Neural Circuits 2020; 14:34. [PMID: 32714153 PMCID: PMC7344171 DOI: 10.3389/fncir.2020.00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/11/2020] [Indexed: 11/21/2022] Open
Abstract
In vivo loose patch and breakthrough whole-cell recordings are useful tools for investigating the intrinsic and synaptic properties of neurons. However, the correlation among pipette resistance, seal condition, and recording time is not thoroughly clear. Presently, we investigated the recording time of different pipette resistances and seal conditions in loose patch and breakthrough whole-cell recordings. The recording time did not change with pipette resistance for loose patch recording (Rp-loose) and first increased and then decreased as seal resistance for loose patch recording (Rs-loose) increased. For a high probability of a recording time ≥30 min, the low and high cutoff values of Rs-loose were 21.5 and 36 MΩ, respectively. For neurons with Rs-loose values of 21.5–36 MΩ, the action potential (AP) amplitudes changed slightly 30 min after the seal. The recording time increased as seal resistance for whole-cell recording (Rs-tight) increased and the zero-current membrane potential for breakthrough whole-cell recording (MPzero-current) decreased. For a high probability of a recording time ≥30 min, the cutoff values of Rs-tight and MPzero-current were 2.35 GΩ and −53.5 mV, respectively. The area under the curve (AUC) of the MPzero-current receiver operating characteristic (ROC) curve was larger than that of the Rs-tight ROC curve. For neurons with MPzero-current values ≤ −53.5 mV, the inhibitory or excitatory postsynaptic current amplitudes did not show significant changes 30 min after the seal. In neurons with Rs-tight values ≥2.35 GΩ, the recording time gradually increased and then decreased as the pipette resistance for whole-cell recording (Rp-tight) increased. For the high probability of a recording time ≥30 min, the low and high cutoff values of Rp-tight were 6.15 and 6.45 MΩ, respectively. Together, we concluded that the optimal Rs-loose range is 21.5–36 MΩ, the optimal Rp-tight range is 6.15–6.45 MΩ, and the optimal Rs-tight and MPzero-current values are ≥2.35 GΩ and ≤ −53.5 mV, respectively. Compared with Rs-tight, the MPzero-current value can more accurately discriminate recording times ≥30 min and <30 min.
Collapse
Affiliation(s)
- Linqing Yan
- Mental Health Center of Shantou University, Shantou, China
| | - Qi Fang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xingui Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bowan Huang
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| |
Collapse
|
31
|
Kang S, Hayashi Y, Bruyns-Haylett M, Delivopoulos E, Zheng Y. Model-Predicted Balance Between Neural Excitation and Inhibition Was Maintained Despite of Age-Related Decline in Sensory Evoked Local Field Potential in Rat Barrel Cortex. Front Syst Neurosci 2020; 14:24. [PMID: 32528256 PMCID: PMC7247833 DOI: 10.3389/fnsys.2020.00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/08/2020] [Indexed: 11/25/2022] Open
Abstract
The balance between neural excitation and inhibition has been shown to be crucial for normal brain function. However, it is unclear whether this balance is maintained through healthy aging. This study investigated the effect of aging on the temporal dynamics of the somatosensory evoked local field potential (LFP) in rats and tested the hypothesis that excitatory and inhibitory post-synaptic activities remain balanced during the aging process. The LFP signal was obtained from the barrel cortex of three different age groups of anesthetized rats (pre-adolescence: 4–6 weeks, young adult: 2–3 months, middle-aged adult: 10–20 months) under whisker pad stimulation. To confirm our previous finding that the initial segment of the evoked LFP was solely associated with excitatory post-synaptic activity, we micro-injected gabazine into the barrel cortex to block inhibition while LFP was collected continuously under the same stimulus condition. As expected, the initial slope of the evoked LFP in the granular layer was unaffected by gabazine injection. We subsequently estimated the excitatory and inhibitory post-synaptic activities through a balanced model of the LFP with delayed inhibition as an explicit constraint, and calculated the amplitude ratio of inhibition to excitation. We found an age-dependent slowing of the temporal dynamics in the somatosensory-evoked post-synaptic activity, as well as a significant age-related decrease in the amplitude of the excitatory component and a decreasing trend in the amplitude of the inhibitory component. Furthermore, the delay of inhibition with respect to excitation was significantly increased with age, but the amplitude ratio was maintained. Our findings suggest that aging reduces the amplitude of neural responses, but the balance between sensory evoked excitatory and inhibitory post-synaptic activities is maintained to support normal brain function during healthy aging. Further whole cell patch clamp experiments will be needed to confirm or refute these findings by measuring sensory evoked synaptic excitatory and inhibitory activities in vivo during the normal aging process.
Collapse
Affiliation(s)
- Sungmin Kang
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, United Kingdom
| | - Yurie Hayashi
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Michael Bruyns-Haylett
- Department of Bioengineering, Imperial College, South Kensington Campus, London, United Kingdom
| | - Evangelos Delivopoulos
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, United Kingdom
| | - Ying Zheng
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, United Kingdom
| |
Collapse
|
32
|
Gao L, Wang X. Subthreshold Activity Underlying the Diversity and Selectivity of the Primary Auditory Cortex Studied by Intracellular Recordings in Awake Marmosets. Cereb Cortex 2020; 29:994-1005. [PMID: 29377991 DOI: 10.1093/cercor/bhy006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Indexed: 11/14/2022] Open
Abstract
Extracellular recording studies have revealed diverse and selective neural responses in the primary auditory cortex (A1) of awake animals. However, we have limited knowledge on subthreshold events that give rise to these responses, especially in non-human primates, as intracellular recordings in awake animals pose substantial technical challenges. We developed a novel intracellular recording technique in awake marmosets to systematically study subthreshold activity of A1 neurons that underlies their diverse and selective spiking responses. Our findings showed that in contrast to predominantly transient depolarization observed in A1 of anesthetized animals, both transient and sustained depolarization (during or beyond the stimulus period) were observed. Comparing with spiking responses, subthreshold responses were often longer lasting in duration and more broadly tuned in frequency, and showed narrower intensity tuning in non-monotonic neurons and lower response threshold in monotonic neurons. These observations demonstrated the enhancement of stimulus selectivity from subthreshold to spiking responses in individual A1 neurons. Furthermore, A1 neurons classified as regular- or fast-spiking subpopulation based on their spike shapes exhibited distinct response properties in frequency and intensity domains. These findings provide valuable insights into cortical integration and transformation of auditory information at the cellular level in auditory cortex of awake non-human primates.
Collapse
Affiliation(s)
- Lixia Gao
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Kim KX, Atencio CA, Schreiner CE. Stimulus dependent transformations between synaptic and spiking receptive fields in auditory cortex. Nat Commun 2020; 11:1102. [PMID: 32107370 PMCID: PMC7046699 DOI: 10.1038/s41467-020-14835-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/06/2020] [Indexed: 11/09/2022] Open
Abstract
Auditory cortex neurons nonlinearly integrate synaptic inputs from the thalamus and cortex, and generate spiking outputs for simple and complex sounds. Directly comparing synaptic and spiking activity can determine whether this input-output transformation is stimulus-dependent. We employ in vivo whole-cell recordings in the mouse primary auditory cortex, using pure tones and broadband dynamic moving ripple stimuli, to examine properties of functional integration in tonal (TRFs) and spectrotemporal (STRFs) receptive fields. Spectral tuning in STRFs derived from synaptic, subthreshold and spiking responses proves to be substantially more selective than for TRFs. We describe diverse spectral and temporal modulation preferences and distinct nonlinearities, and their modifications between the input and output stages of neural processing. These results characterize specific processing differences at the level of synaptic convergence, integration and spike generation resulting in stimulus-dependent transformation patterns in the primary auditory cortex.
Collapse
Affiliation(s)
- Kyunghee X Kim
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, USA.
| | - Craig A Atencio
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, USA
| | - Christoph E Schreiner
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, USA
- Center for Integrative Neuroscience, University of California San Francisco, San Francisco, USA
| |
Collapse
|
34
|
Kouvaros S, Kumar M, Tzounopoulos T. Synaptic Zinc Enhances Inhibition Mediated by Somatostatin, but not Parvalbumin, Cells in Mouse Auditory Cortex. Cereb Cortex 2020; 30:3895-3909. [PMID: 32090251 DOI: 10.1093/cercor/bhaa005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 11/13/2022] Open
Abstract
Cortical inhibition is essential for brain activity and behavior. Yet, the mechanisms that modulate cortical inhibition and their impact on sensory processing remain less understood. Synaptically released zinc, a neuromodulator released by cortical glutamatergic synaptic vesicles, has emerged as a powerful modulator of sensory processing and behavior. Despite the puzzling finding that the vesicular zinc transporter (ZnT3) mRNA is expressed in cortical inhibitory interneurons, the actions of synaptic zinc in cortical inhibitory neurotransmission remain unknown. Using in vitro electrophysiology and optogenetics in mouse brain slices containing the layer 2/3 (L2/3) of auditory cortex, we discovered that synaptic zinc increases the quantal size of inhibitory GABAergic neurotransmission mediated by somatostatin (SOM)- but not parvalbumin (PV)-expressing neurons. Using two-photon imaging in awake mice, we showed that synaptic zinc is required for the effects of SOM- but not PV-mediated inhibition on frequency tuning of principal neurons. Thus, cell-specific zinc modulation of cortical inhibition regulates frequency tuning.
Collapse
Affiliation(s)
- Stylianos Kouvaros
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Manoj Kumar
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
35
|
Macias S, Bakshi K, Smotherman M. Functional organization of the primary auditory cortex of the free-tailed bat Tadarida brasiliensis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:429-440. [PMID: 32036404 DOI: 10.1007/s00359-020-01406-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
The Mexican free-tailed bat, Tadarida brasiliensis, is a fast-flying bat that hunts by biosonar at high altitudes in open space. The auditory periphery and ascending auditory pathways have been described in great detail for this species, but nothing is yet known about its auditory cortex. Here we describe the topographical organization of response properties in the primary auditory cortex (AC) of the Mexican free-tailed bat with emphasis on the sensitivity for FM sweeps and echo-delay tuning. Responses of 716 units to pure tones and of 373 units to FM sweeps and FM-FM pairs were recorded extracellularly using multielectrode arrays in anesthetized bats. A general tonotopy was confirmed with low frequencies represented caudally and high frequencies represented rostrally. Characteristic frequencies (CF) ranged from 15 to 70 kHz, and fifty percent of CFs fell between 20 and 30 kHz, reflecting a hyper-representation of a bandwidth corresponding to search-phase echolocation pulses. Most units showed a stronger response to downward rather than upward FM sweeps and forty percent of the neurons interspersed throughout AC (150/371) showed echo-delay sensitivity to FM-FM pairs. Overall, the results illustrate that the free-tailed bat auditory cortex is organized similarly to that of other FM-type insectivorous bats.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| | - Kushal Bakshi
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
36
|
Neophytou D, Oviedo HV. Using Neural Circuit Interrogation in Rodents to Unravel Human Speech Decoding. Front Neural Circuits 2020; 14:2. [PMID: 32116569 PMCID: PMC7009302 DOI: 10.3389/fncir.2020.00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/09/2020] [Indexed: 01/21/2023] Open
Abstract
The neural circuits responsible for social communication are among the least understood in the brain. Human studies have made great progress in advancing our understanding of the global computations required for processing speech, and animal models offer the opportunity to discover evolutionarily conserved mechanisms for decoding these signals. In this review article, we describe some of the most well-established speech decoding computations from human studies and describe animal research designed to reveal potential circuit mechanisms underlying these processes. Human and animal brains must perform the challenging tasks of rapidly recognizing, categorizing, and assigning communicative importance to sounds in a noisy environment. The instructions to these functions are found in the precise connections neurons make with one another. Therefore, identifying circuit-motifs in the auditory cortices and linking them to communicative functions is pivotal. We review recent advances in human recordings that have revealed the most basic unit of speech decoded by neurons is a phoneme, and consider circuit-mapping studies in rodents that have shown potential connectivity schemes to achieve this. Finally, we discuss other potentially important processing features in humans like lateralization, sensitivity to fine temporal features, and hierarchical processing. The goal is for animal studies to investigate neurophysiological and anatomical pathways responsible for establishing behavioral phenotypes that are shared between humans and animals. This can be accomplished by establishing cell types, connectivity patterns, genetic pathways and critical periods that are relevant in the development and function of social communication.
Collapse
Affiliation(s)
- Demetrios Neophytou
- Biology Department, The City College of New York, New York, NY, United States
| | - Hysell V Oviedo
- Biology Department, The City College of New York, New York, NY, United States.,CUNY Graduate Center, New York, NY, United States
| |
Collapse
|
37
|
Macias S, Bakshi K, Smotherman M. Laminar Organization of FM Direction Selectivity in the Primary Auditory Cortex of the Free-Tailed Bat. Front Neural Circuits 2019; 13:76. [PMID: 31827425 PMCID: PMC6890848 DOI: 10.3389/fncir.2019.00076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/13/2019] [Indexed: 01/18/2023] Open
Abstract
We studied the columnar and layer-specific response properties of neurons in the primary auditory cortex (A1) of six (four females, two males) anesthetized free-tailed bats, Tadarida brasiliensis, in response to pure tones and down and upward frequency modulated (FM; 50 kHz bandwidth) sweeps. In addition, we calculated current source density (CSD) to test whether lateral intracortical projections facilitate neuronal activation in response to FM echoes containing spectrally distant frequencies from the excitatory frequency response area (FRA). Auditory responses to a set of stimuli changing in frequency and level were recorded along 64 penetrations in the left A1 of six free-tailed bats. FRA shapes were consistent across the cortical depth within a column and there were no obvious differences in tuning properties. Generally, response latencies were shorter (<10 ms) for cortical depths between 500 and 600 μm, which might correspond to thalamocortical input layers IIIb-IV. Most units showed a stronger response to downward FM sweeps, and direction selectivity did not vary across cortical depth. CSD profiles calculated in response to the CF showed a current sink located at depths between 500 and 600 μm. Frequencies lower than the frequency range eliciting a spike response failed to evoke any visible current sink. Frequencies higher than the frequency range producing a spike response evoked layer IV sinks at longer latencies that increased with spectral distance. These data support the hypothesis that a progressive downward relay of spectral information spreads along the tonotopic axis of A1 via lateral connections, contributing to the neural processing of FM down sweeps used in biosonar.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Kushal Bakshi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
38
|
Abstract
OBJECTIVES The objectives of this study were to measure the effects of level and vowel contrast on the latencies and amplitudes of acoustic change complex (ACC) in the mature auditory system. This was done to establish how the ACC in healthy young adults is affected by these stimulus parameters that could then be used to inform translation of the ACC into a clinical measure for the pediatric population. Another aim was to demonstrate that a normalized amplitude metric, calculated by dividing the ACC amplitude in the vowel contrast condition by the ACC amplitude obtained in a control condition (no vowel change) would demonstrate good sensitivity with respect to perceptual measures of vowel-contrast detection. The premises underlying this research were that: (1) ACC latencies and amplitudes would vary with level, in keeping with principles of an increase in neural synchrony and activity that takes place as a function of increasing stimulus level; (2) ACC latencies and amplitudes would vary with vowel contrast, because cortical auditory evoked potentials are known to be sensitive to the spectro-temporal characteristics of speech. DESIGN Nineteen adults, 14 of them female, with a mean age of 24.2 years (range 20 to 38 years) participated in this study. All had normal-hearing thresholds. Cortical auditory evoked potentials were obtained from all participants in response to synthesized vowel tokens (/a/, /i/, /o/, /u/), presented in a quasi-steady state fashion at a rate of 2/sec in an oddball stimulus paradigm, with a 25% probability of the deviant stimulus. The ACC was obtained in response to the deviant stimulus. All combinations of vowel tokens were tested at 2 stimulus levels: 40 and 70 dBA. In addition, listeners were tested for their ability to detect the vowel contrasts using behavioral methods. RESULTS ACC amplitude varied systematically with level, and test condition (control versus contrast) and vowel token, but ACC latency did not. ACC amplitudes were significantly larger when tested at 70 dBA compared with 40 dBA and for contrast trials compared with control trials at both levels. Amplitude ratios (normalized amplitudes) were largest for contrast pairs in which /a/ was the standard token. The amplitude ratio metric at the individual level demonstrated up to 97% sensitivity with respect to perceptual measures of discrimination. CONCLUSIONS The present study establishes the effects of stimulus level and vowel type on the latency and amplitude of the ACC in the young adult auditory system and supports the amplitude ratio as a sensitive metric for cortical acoustic salience of vowel spectral features. Next steps are to evaluate these methods in infants and children with hearing loss with the long-term goal of its translation into a clinical method for estimating speech feature discrimination.
Collapse
|
39
|
Li YT, Fang Q, Zhang LI, Tao HW. Spatial Asymmetry and Short-Term Suppression Underlie Direction Selectivity of Synaptic Excitation in the Mouse Visual Cortex. Cereb Cortex 2019; 28:2059-2070. [PMID: 28498898 DOI: 10.1093/cercor/bhx111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/20/2017] [Indexed: 01/24/2023] Open
Abstract
Direction selectivity (DS) of neuronal responses is fundamental for motion detection. With in vivo whole-cell voltage-clamp recordings from layer (L)4 neurons in the mouse visual cortex, we observed a strong correlation between DS and spatial asymmetry in the distribution of excitatory input strengths. This raises an interesting possibility that the latter may contribute to DS. The preferred direction of excitatory input was found from the stronger to weaker side of its spatial receptive field. A simple linear summation of asymmetrically distributed excitatory responses to stationary flash stimuli however failed to predict the correct directionality: it at best resulted in weak DS with preferred direction opposite to what was observed experimentally. Further studies with sequential 2 flash-bar stimulation revealed a short-term suppression of excitatory input evoked by the late bar. More importantly, the level of the suppression positively correlated with the relative amplitude of the early-bar response. Implementing this amplitude-dependent suppressive interaction can successfully predict DS of excitatory input. Our results suggest that via nonlinear temporal interactions, the spatial asymmetry can be transformed into differential temporal integration of inputs under opposite directional movements. This mechanism may contribute to the DS of excitatory inputs to L4 neurons.
Collapse
Affiliation(s)
- Ya-Tang Li
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Graduate Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Qi Fang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Graduate Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Department of Cell and Neurobiolog, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
40
|
Differential Inhibitory Configurations Segregate Frequency Selectivity in the Mouse Inferior Colliculus. J Neurosci 2019; 39:6905-6921. [PMID: 31270159 DOI: 10.1523/jneurosci.0659-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/20/2019] [Accepted: 06/30/2019] [Indexed: 11/21/2022] Open
Abstract
Receptive fields and tuning curves of sensory neurons represent the neural substrates that allow animals to efficiently detect and distinguish external stimuli. They are progressively refined to create diverse sensitivity and selectivity for neurons along ascending central pathways. However, the neural circuitry mechanisms have not been directly determined for such fundamental qualities in relation to sensory neurons' functional organizations, because of the technical difficulty of correlating neurons' input and output. Here, we obtained spike outputs and synaptic inputs from the same neurons within characteristically defined neural ensembles, to determine the synaptic mechanisms driving their diverse frequency selectivity in the mouse inferior colliculus. We find that the synaptic strength and timing of excitatory and inhibitory inputs are configured differently and independently within individual neurons' receptive fields, which segregate sensitive and selective neurons and endow neural populations with broad receptive fields and sharp frequency tuning. By computationally modeling spike outputs from integrating synaptic inputs and comparing them with real spike responses of the same neurons, we show that space-clamping errors did not qualitatively affect the estimation of spike responses derived from synaptic currents in in vivo voltage-clamp recordings. These data suggest that heterogeneous inhibitory circuits coexist locally for a parallel but differentiated representation of incoming signals.SIGNIFICANCE STATEMENT Sensitivity and selectivity are functional qualities of sensory systems to facilitate animals' survival. There is little direct evidence for the synaptic basis of neurons' functional variance within neural ensembles. Here we adopted a novel framework to fill such a long-standing gap by uniting population activities with single cells' spike outputs and their synaptic inputs. Furthermore, the effects of space-clamping errors on subcortical synaptic currents were evaluated in vivo, by comparing recorded spike responses and simulated spike outputs from computationally integrating synaptic inputs. Our study illustrated that the synaptic strength and timing of inhibition relative to excitation can be configured differently for neurons within a defined neural ensemble, to segregate their selectivity. It provides new insights into coexisting heterogeneous local circuits.
Collapse
|
41
|
Crommett LE, Madala D, Yau JM. Multisensory perceptual interactions between higher-order temporal frequency signals. J Exp Psychol Gen 2019; 148:1124-1137. [PMID: 30335446 PMCID: PMC6472995 DOI: 10.1037/xge0000513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Naturally occurring signals in audition and touch can be complex and marked by temporal variations in frequency and amplitude. Auditory frequency sweep processing has been studied extensively; however, much less is known about sweep processing in touch because studies have primarily focused on the perception of simple sinusoidal vibrations. Given the extensive interactions between audition and touch in the frequency processing of pure tone signals, we reasoned that these senses might also interact in the processing of higher-order frequency representations like sweeps. In a series of psychophysical experiments, we characterized the influence of auditory distractors on the ability of participants to discriminate tactile frequency sweeps. Auditory frequency sweeps systematically biased the tactile perception of sweep direction. Importantly, auditory cues exerted little influence on tactile sweep direction perception when the sounds and vibrations occupied different absolute frequency ranges or when the sounds consisted of intensity sweeps. Thus, audition and touch interact in frequency sweep perception in a frequency- and feature-specific manner. Our results demonstrate that audio-tactile interactions are not constrained to the processing of simple sinusoids. Because higher-order frequency representations may be synthesized from simpler representations, our findings imply that multisensory interactions in the temporal frequency domain span multiple hierarchical levels in sensory processing. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Lexi E. Crommett
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | - Jeffrey M. Yau
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
42
|
Levy RB, Marquarding T, Reid AP, Pun CM, Renier N, Oviedo HV. Circuit asymmetries underlie functional lateralization in the mouse auditory cortex. Nat Commun 2019; 10:2783. [PMID: 31239458 PMCID: PMC6592910 DOI: 10.1038/s41467-019-10690-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/24/2019] [Indexed: 11/29/2022] Open
Abstract
The left hemisphere's dominance in processing social communication has been known for over a century, but the mechanisms underlying this lateralized cortical function are poorly understood. Here, we compare the structure, function, and development of each auditory cortex (ACx) in the mouse to look for specializations that may underlie lateralization. Using Fos brain volume imaging, we found greater activation in the left ACx in response to vocalizations, while the right ACx responded more to frequency sweeps. In vivo recordings identified hemispheric differences in spectrotemporal selectivity, reinforcing their functional differences. We then compared the synaptic connectivity within each hemisphere and discovered lateralized circuit-motifs that are hearing experience-dependent. Our results suggest a specialist role for the left ACx, focused on facilitating the detection of specific vocalization features, while the right ACx is a generalist with the ability to integrate spectrotemporal features more broadly.
Collapse
Affiliation(s)
- Robert B Levy
- Biology Department, The City College of New York, New York, NY, 10031, USA
| | - Tiemo Marquarding
- Biology Department, The City College of New York, New York, NY, 10031, USA
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Ashlan P Reid
- Biology Department, The City College of New York, New York, NY, 10031, USA
| | - Christopher M Pun
- The City College of New York, Macaulay Honors College, New York, NY, 10031, USA
| | - Nicolas Renier
- Institut du Cerveau et de la Moelle Epinière, Paris, 75013, France
| | - Hysell V Oviedo
- Biology Department, The City College of New York, New York, NY, 10031, USA.
- CUNY Graduate Center, New York, NY, 10016, USA.
| |
Collapse
|
43
|
Bhatia A, Moza S, Bhalla US. Precise excitation-inhibition balance controls gain and timing in the hippocampus. eLife 2019; 8:43415. [PMID: 31021319 PMCID: PMC6517031 DOI: 10.7554/elife.43415] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/10/2019] [Indexed: 12/19/2022] Open
Abstract
Excitation-inhibition (EI) balance controls excitability, dynamic range, and input gating in many brain circuits. Subsets of synaptic input can be selected or 'gated' by precise modulation of finely tuned EI balance, but assessing the granularity of EI balance requires combinatorial analysis of excitatory and inhibitory inputs. Using patterned optogenetic stimulation of mouse hippocampal CA3 neurons, we show that hundreds of unique CA3 input combinations recruit excitation and inhibition with a nearly identical ratio, demonstrating precise EI balance at the hippocampus. Crucially, the delay between excitation and inhibition decreases as excitatory input increases from a few synapses to tens of synapses. This creates a dynamic millisecond-range window for postsynaptic excitation, controlling membrane depolarization amplitude and timing via subthreshold divisive normalization. We suggest that this combination of precise EI balance and dynamic EI delays forms a general mechanism for millisecond-range input gating and subthreshold gain control in feedforward networks.
Collapse
Affiliation(s)
- Aanchal Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sahil Moza
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Upinder Singh Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
44
|
Herfurth T, Tchumatchenko T. Information transmission of mean and variance coding in integrate-and-fire neurons. Phys Rev E 2019; 99:032420. [PMID: 30999481 DOI: 10.1103/physreve.99.032420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 11/07/2022]
Abstract
Neurons process information by translating continuous signals into patterns of discrete spike times. An open question is how much information these spike times contain about signals which modulate either the mean or the variance of the somatic currents in neurons, as is observed experimentally. Here we calculate the exact information contained in discrete spike times about a continuous signal in both encoding strategies. We show that the information content about mean modulating signals is generally substantially larger than about variance modulating signals for biological parameters. Our analysis further reveals that higher information transmission is associated with a larger proportion of nonlinear signal encoding. Our study measures the complete information content of mean and variance coding and provides a method to determine what fraction of the total information is linearly decodable.
Collapse
Affiliation(s)
- Tim Herfurth
- Max Planck Institute for Brain Research, Theory of Neural Dynamics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany
| | - Tatjana Tchumatchenko
- Max Planck Institute for Brain Research, Theory of Neural Dynamics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany
| |
Collapse
|
45
|
Li S, Liu N, Yao L, Zhang X, Zhou D, Cai D. Determination of effective synaptic conductances using somatic voltage clamp. PLoS Comput Biol 2019; 15:e1006871. [PMID: 30835719 PMCID: PMC6420044 DOI: 10.1371/journal.pcbi.1006871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/15/2019] [Accepted: 02/14/2019] [Indexed: 11/20/2022] Open
Abstract
The interplay between excitatory and inhibitory neurons imparts rich functions of the brain. To understand the synaptic mechanisms underlying neuronal computations, a fundamental approach is to study the dynamics of excitatory and inhibitory synaptic inputs of each neuron. The traditional method of determining input conductance, which has been applied for decades, employs the synaptic current-voltage (I-V) relation obtained via voltage clamp. Due to the space clamp effect, the measured conductance is different from the local conductance on the dendrites. Therefore, the interpretation of the measured conductance remains to be clarified. Using theoretical analysis, electrophysiological experiments, and realistic neuron simulations, here we demonstrate that there does not exist a transform between the local conductance and the conductance measured by the traditional method, due to the neglect of a nonlinear interaction between the clamp current and the synaptic current in the traditional method. Consequently, the conductance determined by the traditional method may not correlate with the local conductance on the dendrites, and its value could be unphysically negative as observed in experiment. To circumvent the challenge of the space clamp effect and elucidate synaptic impact on neuronal information processing, we propose the concept of effective conductance which is proportional to the local conductance on the dendrite and reflects directly the functional influence of synaptic inputs on somatic membrane potential dynamics, and we further develop a framework to determine the effective conductance accurately. Our work suggests re-examination of previous studies involving conductance measurement and provides a reliable approach to assess synaptic influence on neuronal computation. To understand synaptic mechanisms underlying neuronal computations, a fundamental approach is to use voltage clamp to measure the dynamics of excitatory and inhibitory input conductances. Due to the space clamp effect, the measured conductance in general deviates from the local input conductance on the dendrites, hence its biological interpretation is questionable, as we demonstrate in this work. We further propose the concept of effective conductance that is proportional to the local input conductance on the dendrites and reflects directly the synaptic impact on spike generation, and develop a framework to determine the effective conductance reliably. Our work provides a biologically plausible metric for elucidating synaptic influence on neuronal computation under the constraint of the space clamp effect.
Collapse
Affiliation(s)
- Songting Li
- School of Mathematical Sciences, MOE-LSC, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- * E-mail: (XZ); (DZ)
| | - Douglas Zhou
- School of Mathematical Sciences, MOE-LSC, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (XZ); (DZ)
| | - David Cai
- School of Mathematical Sciences, MOE-LSC, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- Courant Institute of Mathematical Sciences and Center for Neural Science, New York University, New York, New York, United States of America
- NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
46
|
Butman JA, Suga N. Inhibitory mechanisms shaping delay-tuned combination-sensitivity in the auditory cortex and thalamus of the mustached bat. Hear Res 2019; 373:71-84. [PMID: 30612026 DOI: 10.1016/j.heares.2018.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Delay-tuned auditory neurons of the mustached bat show facilitative responses to a combination of signal elements of a biosonar pulse-echo pair with a specific echo delay. The subcollicular nuclei produce latency-constant phasic on-responding neurons, and the inferior colliculus produces delay-tuned combination-sensitive neurons, designated "FM-FM" neurons. The combination-sensitivity is a facilitated response to the coincidence of the excitatory rebound following glycinergic inhibition to the pulse (1st harmonic) and the short-latency response to the echo (2nd-4th harmonics). The facilitative response of thalamic FM-FM neurons is mediated by glutamate receptors (NMDA and non-NMDA receptors). Different from collicular FM-FM neurons, thalamic ones respond more selectively to pulse-echo pairs than individual signal elements. A number of differences in response properties between collicular and thalamic or cortical FM-FM neurons have been reported. However, differences between thalamic and cortical FM-FM neurons have remained to be studied. Here, we report that GABAergic inhibition controls the duration of burst of spikes of facilitative responses of thalamic FM-FM neurons and sharpens the delay tuning of cortical ones. That is, intra-cortical inhibition sharpens the delay tuning of cortical FM-FM neurons that is potentially broad because of divergent/convergent thalamo-cortical projections. Compared with thalamic neurons, cortical ones tend to show sharper delay tuning, longer response duration, and larger facilitation index. However, those differences are statistically insignificant.
Collapse
Affiliation(s)
- John A Butman
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| | - Nobuo Suga
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
47
|
Hanson L, Sethuramanujam S, deRosenroll G, Jain V, Awatramani GB. Retinal direction selectivity in the absence of asymmetric starburst amacrine cell responses. eLife 2019; 8:42392. [PMID: 30714905 PMCID: PMC6377229 DOI: 10.7554/elife.42392] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/01/2019] [Indexed: 01/18/2023] Open
Abstract
In the mammalian retina, direction-selectivity is thought to originate in the dendrites of GABAergic/cholinergic starburst amacrine cells, where it is first observed. However, here we demonstrate that direction selectivity in downstream ganglion cells remains remarkably unaffected when starburst dendrites are rendered non-directional, using a novel strategy combining a conditional GABAA α2 receptor knockout mouse with optogenetics. We show that temporal asymmetries between excitation/inhibition, arising from the differential connectivity patterns of starburst cholinergic and GABAergic synapses to ganglion cells, form the basis for a parallel mechanism generating direction selectivity. We further demonstrate that these distinct mechanisms work in a coordinated way to refine direction selectivity as the stimulus crosses the ganglion cell’s receptive field. Thus, precise spatiotemporal patterns of inhibition and excitation that determine directional responses in ganglion cells are shaped by two ‘core’ mechanisms, both arising from distinct specializations of the starburst network.
Collapse
Affiliation(s)
- Laura Hanson
- Department of Biology, University of Victoria, Victoria, Canada
| | | | | | - Varsha Jain
- Department of Biology, University of Victoria, Victoria, Canada
| | | |
Collapse
|
48
|
Fine Control of Sound Frequency Tuning and Frequency Discrimination Acuity by Synaptic Zinc Signaling in Mouse Auditory Cortex. J Neurosci 2018; 39:854-865. [PMID: 30504277 DOI: 10.1523/jneurosci.1339-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/16/2018] [Accepted: 11/16/2018] [Indexed: 11/21/2022] Open
Abstract
Neurons in the auditory cortex are tuned to specific ranges of sound frequencies. Although the cellular and network mechanisms underlying neuronal sound frequency selectivity are well studied and reflect the interplay of thalamocortical and intracortical excitatory inputs and further refinement by cortical inhibition, the precise synaptic signaling mechanisms remain less understood. To gain further understanding on these mechanisms and their effects on sound-driven behavior, we used in vivo imaging as well as behavioral approaches in awake and behaving female and male mice. We discovered that synaptic zinc, a modulator of neurotransmission and responsiveness to sound, sharpened the sound frequency tuning of principal and parvalbumin-expressing neurons and widened the sound frequency tuning of somatostatin-expressing inhibitory neurons in layer 2/3 of the primary auditory cortex. In the absence of cortical synaptic zinc, mice exhibited reduced acuity for detecting changes in sound frequencies. Together, our results reveal that cell-type-specific effects of zinc contribute to cortical sound frequency tuning and enhance acuity for sound frequency discrimination.SIGNIFICANCE STATEMENT Neuronal tuning to specific features of sensory stimuli is a fundamental property of cortical sensory processing that advantageously supports behavior. Despite the established roles of synaptic thalamocortical and intracortical excitation and inhibition in cortical tuning, the precise synaptic signaling mechanisms remain unknown. Here, we investigated these mechanisms in the mouse auditory cortex. We discovered a previously unknown signaling mechanism linking synaptic zinc signaling with cell-specific cortical tuning and enhancement in sound frequency discrimination acuity. Given the abundance of synaptic zinc in all sensory cortices, this newly discovered interaction between synaptic zinc and cortical tuning can provide a general mechanism for modulating neuronal stimulus specificity and sensory-driven behavior.
Collapse
|
49
|
Mattingly MM, Donell BM, Rosen MJ. Late maturation of backward masking in auditory cortex. J Neurophysiol 2018; 120:1558-1571. [PMID: 29995598 DOI: 10.1152/jn.00114.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Speech perception relies on the accurate resolution of brief, successive sounds that change rapidly over time. Deficits in the perception of such sounds, indicated by a reduced ability to detect signals during auditory backward masking, strongly relate to language processing difficulties in children. Backward masking during normal development has a longer maturational trajectory than many other auditory percepts, implicating the involvement of central auditory neural mechanisms with protracted developmental time courses. Despite the importance of this percept, its neural correlates are not well described at any developmental stage. We therefore measured auditory cortical responses to masked signals in juvenile and adult Mongolian gerbils and quantified the detection ability of individual neurons and neural populations in a manner comparable with psychoacoustic measurements. Perceptually, auditory backward masking manifests as higher thresholds for detection of a short signal followed by a masker than for the same signal in silence. Cortical masking was driven by a combination of suppressed responses to the signal and a reduced dynamic range available for signal detection in the presence of the masker. Both coding elements contributed to greater masked threshold shifts in juveniles compared with adults, but signal-evoked firing suppression was more pronounced in juveniles. Neural threshold shifts were a better match to human psychophysical threshold shifts when quantified with a longer temporal window that included the response to the delayed masker, suggesting that temporally selective listening may contribute to age-related differences in backward masking. NEW & NOTEWORTHY In children, auditory detection of backward masked signals is immature well into adolescence, and detection deficits correlate with problems in speech processing. Our auditory cortical recordings reveal immature backward masking in adolescent animals that mirrors the prolonged development seen in children. This is driven by both signal-evoked suppression and dynamic range reduction. An extended window of analysis suggests that differences in temporally focused listening may contribute to late maturing thresholds for backward masked signals.
Collapse
Affiliation(s)
- Michelle M Mattingly
- Department of Anatomy & Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | - Brittany M Donell
- Department of Anatomy & Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | - Merri J Rosen
- Department of Anatomy & Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
50
|
Azarfar A, Calcini N, Huang C, Zeldenrust F, Celikel T. Neural coding: A single neuron's perspective. Neurosci Biobehav Rev 2018; 94:238-247. [PMID: 30227142 DOI: 10.1016/j.neubiorev.2018.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
What any sensory neuron knows about the world is one of the cardinal questions in Neuroscience. Information from the sensory periphery travels across synaptically coupled neurons as each neuron encodes information by varying the rate and timing of its action potentials (spikes). Spatiotemporally correlated changes in this spiking regimen across neuronal populations are the neural basis of sensory representations. In the somatosensory cortex, however, spiking of individual (or pairs of) cortical neurons is only minimally informative about the world. Recent studies showed that one solution neurons implement to counteract this information loss is adapting their rate of information transfer to the ongoing synaptic activity by changing the membrane potential at which spike is generated. Here we first introduce the principles of information flow from the sensory periphery to the primary sensory cortex in a model sensory (whisker) system, and subsequently discuss how the adaptive spike threshold gates the intracellular information transfer from the somatic post-synaptic potential to action potentials, controlling the information content of communication across somatosensory cortical neurons.
Collapse
Affiliation(s)
- Alireza Azarfar
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour Radboud University, the Netherlands
| | - Niccoló Calcini
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour Radboud University, the Netherlands
| | - Chao Huang
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour Radboud University, the Netherlands
| | - Fleur Zeldenrust
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour Radboud University, the Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour Radboud University, the Netherlands.
| |
Collapse
|