1
|
Narayanaswamy S, Technau U. Self-organization of an organizer: Whole-body regeneration from reaggregated cells in cnidarians. Cells Dev 2025:204024. [PMID: 40180217 DOI: 10.1016/j.cdev.2025.204024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Cnidarians like the freshwater polyp Hydra and the sea anemone Nematostella, are famous for their enormous capacity to regenerate missing head or feet upon bisection. Classical transplantation experiments have demonstrated that the hypostome, the oral tip of the freshwater polyp Hydra, acts as an axial organizer. Likewise, transplantation of the blastopore lip of an early Nematostella gastrula stage embryo to an aboral position leads to ectopic head formation. Following molecular analyses have shown that Wnt signaling is the key component of this organizer activity. Moreover, when dissociated and reaggregated head (and foot) organizer centres are re-established by self-organization. Similarly, "gastruloids", i.e. aggregates of dissociated early gastrula stage embryos, are able to self-organize. Here, we review the past and recent molecular and theoretical work in the field to explain this phenomenon. While Turing-type reaction-diffusion models involving morphogens like Wnt dominated the field for many years, recent work emphasized the importance of biophysical cues in symmetry breaking and establishment of the organizers in aggregates. The comparison with Nematostella aggregates suggests that the principles of self-organization in cnidarians is not universal.
Collapse
Affiliation(s)
- Sanjay Narayanaswamy
- Dept. of Neurosciences and Developmental Biology, Research Platform "Single cell regulation of stem cells", Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ulrich Technau
- Dept. of Neurosciences and Developmental Biology, Research Platform "Single cell regulation of stem cells", Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
2
|
Leclère L, Sinigaglia C. In preprints: the ins and outs of Cnidaria germ layers. Development 2025; 152:dev204730. [PMID: 40106693 DOI: 10.1242/dev.204730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Affiliation(s)
- Lucas Leclère
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Chiara Sinigaglia
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| |
Collapse
|
3
|
Lebedeva T, Boström J, Kremnyov S, Mörsdorf D, Niedermoser I, Genikhovich E, Hejnol A, Adameyko I, Genikhovich G. β-catenin-driven endomesoderm specification is a Bilateria-specific novelty. Nat Commun 2025; 16:2476. [PMID: 40075083 PMCID: PMC11903683 DOI: 10.1038/s41467-025-57109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 02/08/2025] [Indexed: 03/14/2025] Open
Abstract
Endomesoderm specification by a maternal β-catenin signal and body axis patterning by interpreting a gradient of zygotic Wnt/β-catenin signalling was suggested to predate the split between Bilateria and their sister clade Cnidaria. However, in Cnidaria, the roles of β-catenin signalling in these processes have not been demonstrated directly. Here, by tagging the endogenous β-catenin in the cnidarian Nematostella vectensis, we confirm that its oral-aboral axis is indeed patterned by a gradient of β-catenin signalling. Strikingly, we show that, in contrast to bilaterians, Nematostella endomesoderm specification is repressed by β-catenin and takes place in the maternal nuclear β-catenin-negative part of the embryo. This completely changes the accepted paradigm and suggests that β-catenin-dependent endomesoderm specification was a bilaterian innovation linking endomesoderm specification to the subsequent posterior-anterior patterning.
Collapse
Affiliation(s)
- Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany
| | - Johan Boström
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stanislav Kremnyov
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany
| | - David Mörsdorf
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Isabell Niedermoser
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | | | - Andreas Hejnol
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Walters BM, Guttieres LJ, Goëb M, Marjenberg SJ, Martindale MQ, Wikramanayake AH. β-Catenin localization in the ctenophore Mnemiopsis leidyi suggests an ancestral role in cell adhesion and nuclear function. Dev Dyn 2025. [PMID: 39976308 DOI: 10.1002/dvdy.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The emergence of multicellularity in animals marks a pivotal evolutionary event, which was likely enabled by molecular innovations in the way cells adhere and communicate with one another. β-Catenin is significant to this transition due to its dual role as both a structural component in the cadherin-catenin complex and as a transcriptional coactivator involved in the Wnt/β-catenin signaling pathway. However, our knowledge of how this protein functions in ctenophores, one of the earliest diverging metazoans, is limited. RESULTS To study β-catenin function in the ctenophore Mnemiopsis leidyi, we generated affinity-purified polyclonal antibodies targeting Mlβ-catenin. We then used this tool to observe β-catenin protein localization in developing Mnemiopsis embryos. In this article, we provide evidence of consistent β-catenin protein enrichment at cell-cell interfaces in Mnemiopsis embryos. Additionally, we found β-catenin enrichment in some nuclei, particularly restricted to the oral pole around the time of gastrulation. The Mlβ-catenin affinity-purified antibodies now provide us with a powerful reagent to study the ancestral functions of β-catenin in cell adhesion and transcriptional regulation. CONCLUSIONS The localization pattern of embryonic Mlβ-catenin suggests that this protein had an ancestral role in cell adhesion and may have a nuclear function as well.
Collapse
Affiliation(s)
- Brian M Walters
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Lucas J Guttieres
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Saint Augustine, Florida, USA
| | - Mayline Goëb
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Saint Augustine, Florida, USA
| | | | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Saint Augustine, Florida, USA
| | | |
Collapse
|
5
|
Carvalho JE, Burtin M, Detournay O, Amiel AR, Röttinger E. Optimized husbandry and targeted gene-editing for the cnidarian Nematostella vectensis. Development 2025; 152:dev204387. [PMID: 39776154 DOI: 10.1242/dev.204387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Optimized laboratory conditions for research models are crucial for the success of scientific projects. This includes controlling the entire life cycle, having access to all developmental stages and maintaining stable physiological conditions. Reducing the life cycle of a research model can also enhance the access to biological material and speed up genetic tool development. Thus, we optimized the rearing conditions for the sea anemone Nematostella vectensis, a cnidarian research model, to study embryonic and post-metamorphic processes, such as regeneration. We adopted a semi-automated aquaculture system for N. vectensis and developed a dietary protocol optimized for the different life stages. Thereby, we increased spawning efficiencies, juvenile growth and survival rates, and considerably reduced the overall life cycle down to 2 months. To further improve the obtention of CRISPR-Cas9 mutants, we optimized the design of sgRNAs leading to full knockout animals in F0 polyps using a single sgRNA. Finally, we show that NHEJ-mediated transgene insertion is possible in N. vectensis. In summary, our study provides additional resources for the scientific community that uses or plans to use N. vectensis as a research model.
Collapse
Affiliation(s)
- João E Carvalho
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107France
- Université Côte d'Azur, Federative Research Institute - Marine Resources (IFR MARRES), 28 Avenue de Valrose, Nice, 06103France
| | - Maxence Burtin
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107France
- Université Côte d'Azur, Federative Research Institute - Marine Resources (IFR MARRES), 28 Avenue de Valrose, Nice, 06103France
| | | | - Aldine R Amiel
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107France
- Université Côte d'Azur, Federative Research Institute - Marine Resources (IFR MARRES), 28 Avenue de Valrose, Nice, 06103France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107France
- Université Côte d'Azur, Federative Research Institute - Marine Resources (IFR MARRES), 28 Avenue de Valrose, Nice, 06103France
| |
Collapse
|
6
|
Mbogo I, Kawano C, Nakamura R, Tsuchiya Y, Villar-Briones A, Hirao Y, Yasuoka Y, Hayakawa E, Tomii K, Watanabe H. A transphyletic study of metazoan β-catenin protein complexes. ZOOLOGICAL LETTERS 2024; 10:20. [PMID: 39623505 PMCID: PMC11613877 DOI: 10.1186/s40851-024-00243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024]
Abstract
Beta-catenin is essential for diverse biological processes, such as body axis determination and cell differentiation, during metazoan embryonic development. Beta-catenin is thought to exert such functions through complexes formed with various proteins. Although β-catenin complex proteins have been identified in several bilaterians, little is known about the structural and functional properties of β-catenin complexes in early metazoan evolution. In the present study, we performed a comparative analysis of β-catenin sequences in nonbilaterian lineages that diverged early in metazoan evolution. We also carried out transphyletic function experiments with β-catenin from nonbilaterian metazoans using developing Xenopus embryos, including secondary axis induction in embryos and proteomic analysis of β-catenin protein complexes. Comparative functional analysis of nonbilaterian β-catenins demonstrated sequence characteristics important for β-catenin functions, and the deep origin and evolutionary conservation of the cadherin-catenin complex. Proteins that co-immunoprecipitated with β-catenin included several proteins conserved among metazoans. These data provide new insights into the conserved repertoire of β-catenin complexes.
Collapse
Affiliation(s)
- Ivan Mbogo
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Sysmex Corporation, Ltd. 1-5-1, Chuo-ku, Kobe, 651-0073, Japan
| | - Chihiro Kawano
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ryotaro Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuko Tsuchiya
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Alejandro Villar-Briones
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Project Planning and Implementation Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yoshitoshi Hirao
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eisuke Hayakawa
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4, Kawazu, Iizuka, 820-8502, Fukuoka, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
7
|
Lhomond G, Schubert M, Croce J. Spatiotemporal requirements of nuclear β-catenin define early sea urchin embryogenesis. PLoS Biol 2024; 22:e3002880. [PMID: 39531468 DOI: 10.1371/journal.pbio.3002880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 12/20/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Establishment of the 3 primordial germ layers (ectoderm, endoderm, and mesoderm) during early animal development represents an essential prerequisite for the emergence of properly patterned embryos. β-catenin is an ancient protein that is known to play essential roles in this process. However, these roles have chiefly been established through inhibition of β-catenin translation or function at the time of fertilization. Comprehensive analyses reporting the totality of functions played by nuclear β-catenin during early embryogenesis of a given animal, i.e., at different developmental stages and in different germ layers, are thus still lacking. In this study, we used an inducible, conditional knockdown system in the sea urchin to characterize all possible requirements of β-catenin for germ layer establishment and patterning. By blocking β-catenin protein production starting at 7 different time points of early development, between fertilization and 12 h post fertilization, we established a clear correlation between the position of a germ layer along the primary embryonic axis (the animal-vegetal axis) and its dependence on nuclear β-catenin activity. For example, in the vegetal hemisphere, we determined that the 3 germ layers (skeletogenic mesoderm, non-skeletogenic mesoderm, and endoderm) require distinct and highly specific durations of β-catenin production for their respective specification, with the most vegetal germ layer, the skeletogenic mesoderm, requiring the shortest duration. Likewise, for the 2 animal territories (ectoderm and anterior neuroectoderm), we established that their restriction, along the animal-vegetal axis, relies on different durations of β-catenin production and that the longest duration is required for the most animal territory, the anterior neuroectoderm. Moreover, we found that 2 of the vegetal germ layers, the non-skeletogenic mesoderm and the endoderm, further require a prolonged period of nuclear β-catenin activity after their specification to maintain their respective germ layer identities through time. Finally, we determined that restriction of the anterior neuroectoderm territory depends on at least 2 nuclear β-catenin-dependent inputs and a nuclear β-catenin-independent mechanism. Taken together, this work is the first to comprehensively define the spatiotemporal requirements of β-catenin during the early embryogenesis of a single animal, the sea urchin Paracentrotus lividus, thereby providing new experimental evidence for a better understanding of the roles played by this evolutionary conserved protein during animal development.
Collapse
Affiliation(s)
- Guy Lhomond
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| | - Michael Schubert
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| | - Jenifer Croce
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| |
Collapse
|
8
|
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat Rev Genet 2024; 25:500-512. [PMID: 38374446 DOI: 10.1038/s41576-024-00699-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.
Collapse
Affiliation(s)
- Michaela Holzem
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany.
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Michael Boutros
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
9
|
Sun H, Shami Shah A, Chiu DC, Bonfini A, Buchon N, Baskin JM. Wnt/β-catenin signaling within multiple cell types dependent upon kramer regulates Drosophila intestinal stem cell proliferation. iScience 2024; 27:110113. [PMID: 38952681 PMCID: PMC11215309 DOI: 10.1016/j.isci.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/08/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
The gut epithelium is subject to constant renewal, a process reliant upon intestinal stem cell (ISC) proliferation that is driven by Wnt/β-catenin signaling. Despite the importance of Wnt signaling within ISCs, the relevance of Wnt signaling within other gut cell types and the underlying mechanisms that modulate Wnt signaling in these contexts remain incompletely understood. Using challenge of the Drosophila midgut with a non-lethal enteric pathogen, we examine the cellular determinants of ISC proliferation, harnessing kramer, a recently identified regulator of Wnt signaling pathways, as a mechanistic tool. We find that Wnt signaling within Prospero-positive cells supports ISC proliferation and that kramer regulates Wnt signaling in this context by antagonizing kelch, a Cullin-3 E3 ligase adaptor that mediates Dishevelled polyubiquitination. This work establishes kramer as a physiological regulator of Wnt/β-catenin signaling in vivo and suggests enteroendocrine cells as a new cell type that regulates ISC proliferation via Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hongyan Sun
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Adnan Shami Shah
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Din-Chi Chiu
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alessandro Bonfini
- Cornell Institute of Host Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, P.R. China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Nicolas Buchon
- Cornell Institute of Host Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M. Baskin
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Knabl P, Schauer A, Pomreinke AP, Zimmermann B, Rogers KW, Čapek D, Müller P, Genikhovich G. Analysis of SMAD1/5 target genes in a sea anemone reveals ZSWIM4-6 as a novel BMP signaling modulator. eLife 2024; 13:e80803. [PMID: 38323609 PMCID: PMC10849676 DOI: 10.7554/elife.80803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/28/2024] [Indexed: 02/08/2024] Open
Abstract
BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.
Collapse
Affiliation(s)
- Paul Knabl
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of ViennaViennaAustria
| | - Alexandra Schauer
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
- University of KonstanzKonstanzGermany
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| |
Collapse
|
11
|
Sun H, Shah AS, Bonfini A, Buchon NS, Baskin JM. Wnt/β-catenin signaling within multiple cell types dependent upon kramer regulates Drosophila intestinal stem cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529411. [PMID: 36865263 PMCID: PMC9980071 DOI: 10.1101/2023.02.21.529411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The gut epithelium is subject to constant renewal, a process reliant upon intestinal stem cell (ISC) proliferation that is driven by Wnt/β-catenin signaling. Despite the importance of Wnt signaling within ISCs, the relevance of Wnt signaling within other gut cell types and the underlying mechanisms that modulate Wnt signaling in these contexts remain incompletely understood. Using challenge of the Drosophila midgut with a non-lethal enteric pathogen, we examine the cellular determinants of ISC proliferation, harnessing kramer, a recently identified regulator of Wnt signaling pathways, as a mechanistic tool. We find that Wnt signaling within Prospero-positive cells supports ISC proliferation and that kramer regulates Wnt signaling in this context by antagonizing kelch, a Cullin-3 E3 ligase adaptor that mediates Dishevelled polyubiquitination. This work establishes kramer as a physiological regulator of Wnt/β-catenin signaling in vivo and suggests enteroendocrine cells as a new cell type that regulates ISC proliferation via Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hongyan Sun
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Adnan Shami Shah
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alessandro Bonfini
- Cornell Institute of Host Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Nicolas S. Buchon
- Cornell Institute of Host Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Jeremy M. Baskin
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
12
|
Liu DX, Hao SL, Yang WX. Crosstalk Between β-CATENIN-Mediated Cell Adhesion and the WNT Signaling Pathway. DNA Cell Biol 2023; 42:1-13. [PMID: 36399409 DOI: 10.1089/dna.2022.0424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion and stable signaling regulation are fundamental ways of maintaining homeostasis. Among them, the Wnt/β-CATENIN signaling plays a key role in embryonic development and maintenance of body dynamic homeostasis. At the same time, the key signaling molecule β-CATENIN in the Wnt signaling can also function as a cytoskeletal linker protein to regulate tissue barriers, cell migration, and morphogenesis. Dysregulation of the balance between Wnt signaling and adherens junctions can lead to disease. How β-CATENIN maintains the independence of these two functions, or mediates the interaction and balance of these two functions, has been explored and debated for a long time. In this study, we will focus on five aspects of β-CATENIN chaperone molecules, phosphorylation of β-CATENIN and related proteins, epithelial mesenchymal transition, β-CATENIN homolog protein γ-CATENIN and disease, thus deepening the understanding of the Wnt/β-CATENIN signaling and the homeostasis between cell adhesion and further addressing related disease problems.
Collapse
Affiliation(s)
- Ding-Xi Liu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Petersen CP. Wnt signaling in whole-body regeneration. Curr Top Dev Biol 2023; 153:347-380. [PMID: 36967200 DOI: 10.1016/bs.ctdb.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Regeneration abilities are widespread among animals and select species can restore any body parts removed by wounds that sever the major body axes. This capability of whole-body regeneration as exemplified in flatworm planarians, Acoels, and Cnidarians involves initial responses to injury, the assessment of wound site polarization, determination of missing tissue and programming of blastema fate, and patterned outgrowth to restore axis content and proportionality. Wnt signaling drives many shared and conserved aspects of the biology of whole-body regeneration in the planarian species Schmidtea mediterranea and Dugesia japonica, in the Acoel Hofstenia miamia, and in Cnidarians Hydra and Nematostella. These overlapping mechanisms suggest whole-body regeneration might be an ancestral property across diverse animal taxa.
Collapse
Affiliation(s)
- Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
14
|
Holstein TW. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev Biol 2022; 487:74-98. [DOI: 10.1016/j.ydbio.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
15
|
Schmidt-Ott U, Yoon Y. Evolution and loss of ß-catenin and TCF-dependent axis specification in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100877. [PMID: 35104659 PMCID: PMC9133022 DOI: 10.1016/j.cois.2022.100877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Mechanisms and evolution of primary axis specification in insects are discussed in the context of the roles of ß-catenin and TCF in polarizing metazoan embryos. Three hypotheses are presented. First, insects with sequential segmentation and posterior growth use cell-autonomous mechanisms for establishing embryo polarity via the nuclear ratio of ß-catenin and TCF. Second, TCF homologs establish competence for anterior specification. Third, the evolution of simultaneous segmentation mechanisms, also known as long-germ development, resulted in primary axis specification mechanisms that are independent of ß-catenin but reliant on TCF, a condition that preceded the frequent replacement of anterior determinants in long germ insects.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57th Street, Chicago, IL 60637, USA.
| | - Yoseop Yoon
- University of California, Irvine, Dept. of Microbiology and Molecular Genetics, School of Medicine, 811 Health Sciences Rd., Med Sci B262, CA 92617, USA
| |
Collapse
|
16
|
Houliston E, Leclère L, Munro C, Copley RR, Momose T. Past, present and future of Clytia hemisphaerica as a laboratory jellyfish. Curr Top Dev Biol 2022; 147:121-151. [PMID: 35337447 DOI: 10.1016/bs.ctdb.2021.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The hydrozoan species Clytia hemisphaerica was selected in the mid-2000s to address the cellular and molecular basis of body axis specification in a cnidarian, providing a reliable daily source of gametes and building on a rich foundation of experimental embryology. The many practical advantages of this species include genetic uniformity of laboratory jellyfish, derived clonally from easily-propagated polyp colonies. Phylogenetic distance from other laboratory models adds value in providing an evolutionary perspective on many biological questions. Here we outline the current state of the art regarding available experimental approaches and in silico resources, and illustrate the contributions of Clytia to understanding embryo patterning mechanisms, oogenesis and regeneration. Looking forward, the recent establishment of transgenesis methods is now allowing gene function and imaging studies at adult stages, making Clytia particularly attractive for whole organism biology studies across fields and extending its scientific impact far beyond the original question of interest.
Collapse
Affiliation(s)
- Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Catriona Munro
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France; Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, Paris, France
| | - Richard R Copley
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Tsuyoshi Momose
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| |
Collapse
|
17
|
Martindale MQ. Emerging models: The "development" of the ctenophore Mnemiopsis leidyi and the cnidarian Nematostella vectensis as useful experimental models. Curr Top Dev Biol 2022; 147:93-120. [PMID: 35337468 DOI: 10.1016/bs.ctdb.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The goal of this chapter is to explain the reasoning for developing two understudied invertebrate animal species for asking specific biological questions. The first is the ctenophore (comb jelly) Mnemiopsis leidyi and the second is the anthozoan cnidarian (starlet sea anemone) Nematostella vectensis. Although these two taxa belong to some of the earliest branching extant metazoan clades, their developmental features could hardly be more different from one another. This should serve as a general warning to be careful when extrapolating comparisons of one species to another. Two-taxon comparisons are especially flawed; and to interpret features in a phylogenetic context one must sample carefully within a given taxon to determine how representative certain features are before comparing with other clades. The other benefit of this comparison is to identify key practical factors when attempting to develop new species for experimental investigation.
Collapse
Affiliation(s)
- Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL, United States.
| |
Collapse
|
18
|
Erofeeva TV, Grigorenko AP, Gusev FE, Kosevich IA, Rogaev EI. Studying of Molecular Regulation of Developmental Processes of Lower Metazoans Exemplified by Cnidaria Using High-Throughput Sequencing. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:269-293. [PMID: 35526848 DOI: 10.1134/s0006297922030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals. This review examines some modern approaches and advances in the reconstruction of the processes of ontogenesis of cnidarians by studying the regulatory signal transduction pathways and their interactions.
Collapse
Affiliation(s)
- Taisia V Erofeeva
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia P Grigorenko
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Fedor E Gusev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor A Kosevich
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Evgeny I Rogaev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
19
|
Klein S, Frazier V, Readdean T, Lucas E, Diaz-Jimenez EP, Sogin M, Ruff ES, Echeverri K. Common Environmental Pollutants Negatively Affect Development and Regeneration in the Sea Anemone Nematostella vectensis Holobiont. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.786037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The anthozoan sea anemone Nematostella vectensis belongs to the phylum of cnidarians which also includes jellyfish and corals. Nematostella are native to United States East Coast marsh lands, where they constantly adapt to changes in salinity, temperature, oxygen concentration and pH. Its natural ability to continually acclimate to changing environments coupled with its genetic tractability render Nematostella a powerful model organism in which to study the effects of common pollutants on the natural development of these animals. Potassium nitrate, commonly used in fertilizers, and Phthalates, a component of plastics are frequent environmental stressors found in coastal and marsh waters. Here we present data showing how early exposure to these pollutants lead to dramatic defects in development of the embryos and eventual mortality possibly due to defects in feeding ability. Additionally, we examined the microbiome of the animals and identified shifts in the microbial community that correlated with the type of water that was used to grow the animals, and with their exposure to pollutants.
Collapse
|
20
|
Swartz SZ, Tan TH, Perillo M, Fakhri N, Wessel GM, Wikramanayake AH, Cheeseman IM. Polarized Dishevelled dissolution and reassembly drives embryonic axis specification in sea star oocytes. Curr Biol 2021; 31:5633-5641.e4. [PMID: 34739818 PMCID: PMC8692449 DOI: 10.1016/j.cub.2021.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
The organismal body axes that are formed during embryogenesis are intimately linked to intrinsic asymmetries established at the cellular scale in oocytes.1 However, the mechanisms that generate cellular asymmetries within the oocyte and then transduce that polarity to organismal scale body axes are poorly understood outside of select model organisms. Here, we report an axis-defining event in meiotic oocytes of the sea star Patiria miniata. Dishevelled (Dvl) is a cytoplasmic Wnt pathway effector required for axis development in diverse species,2-4 but the mechanisms governing its function and distribution remain poorly defined. Using time-lapse imaging, we find that Dvl localizes uniformly to puncta throughout the cell cortex in Prophase I-arrested oocytes but becomes enriched at the vegetal pole following meiotic resumption through a dissolution-reassembly mechanism. This process is driven by an initial disassembly phase of Dvl puncta, followed by selective reformation of Dvl assemblies at the vegetal pole. Rather than being driven by Wnt signaling, this localization behavior is coupled to meiotic cell cycle progression and influenced by Lamp1+ endosome association and Frizzled receptors pre-localized within the oocyte cortex. Our results reveal a cell cycle-linked mechanism by which maternal cellular polarity is transduced to the embryo through spatially regulated Dvl dynamics.
Collapse
Affiliation(s)
- S Zachary Swartz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Embryology Course: Concepts and Techniques in Modern Developmental Biology, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Tzer Han Tan
- Massachusetts Institute of Technology, Department of Physics, Cambridge, MA 02142, USA
| | | | - Nikta Fakhri
- Massachusetts Institute of Technology, Department of Physics, Cambridge, MA 02142, USA
| | - Gary M Wessel
- MCB Department, Brown University, Providence, RI 02912, USA
| | - Athula H Wikramanayake
- Department of Biology, University of Miami, Coral Gables, FL 33134, USA; Embryology Course: Concepts and Techniques in Modern Developmental Biology, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
21
|
Vetrova AA, Lebedeva TS, Saidova AA, Kupaeva DM, Kraus YA, Kremnyov SV. From apolar gastrula to polarized larva: Embryonic development of a marine hydroid, Dynamena pumila. Dev Dyn 2021; 251:795-825. [PMID: 34787911 DOI: 10.1002/dvdy.439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In almost all metazoans examined to this respect, the axial patterning system based on canonical Wnt (cWnt) signaling operates throughout the course of development. In most metazoans, gastrulation is polar, and embryos develop morphological landmarks of axial polarity, such as blastopore under control/regulation from cWnt signaling. However, in many cnidarian species, gastrulation is morphologically apolar. The question remains whether сWnt signaling providing the establishment of a body axis controls morphogenetic processes involved in apolar gastrulation. RESULTS In this study, we focused on the embryonic development of Dynamena pumila, a cnidarian species with apolar gastrulation. We thoroughly described cell behavior, proliferation, and ultrastructure and examined axial patterning in the embryos of this species. We revealed that the first signs of morphological polarity appear only after the end of gastrulation, while molecular prepatterning of the embryo does exist during gastrulation. We have shown experimentally that in D. pumila, the direction of the oral-aboral axis is highly robust against perturbations in cWnt activity. CONCLUSIONS Our results suggest that morphogenetic processes are uncoupled from molecular axial patterning during gastrulation in D. pumila. Investigation of D. pumila might significantly expand our understanding of the ways in which morphological polarization and axial molecular patterning are linked in Metazoa.
Collapse
Affiliation(s)
- Alexandra A Vetrova
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Tatiana S Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Aleena A Saidova
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daria M Kupaeva
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Yulia A Kraus
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia.,Department of Evolutionary Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stanislav V Kremnyov
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia.,Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
22
|
Wijesena N, Sun H, Kumburegama S, Wikramanayake AH. Distinct Frizzled receptors independently mediate endomesoderm specification and primary archenteron invagination during gastrulation in Nematostella. Dev Biol 2021; 481:215-225. [PMID: 34767794 DOI: 10.1016/j.ydbio.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/03/2022]
Abstract
Endomesodermal cell fate specification and archenteron formation during gastrulation are tightly linked developmental processes in most metazoans. However, studies have shown that in the anthozoan cnidarian Nematostella vectensis, Wnt/β-catenin (cWnt) signalling-mediated endomesodermal cell fate specification can be experimentally uncoupled from Wnt/Planar Cell Polarity (PCP) signalling-mediated primary archenteron invagination. The upstream signalling mechanisms regulating cWnt signalling-dependent endomesoderm cell fate specification and Wnt/PCP signalling-mediated primary archenteron invagination in Nematostella embryos are not well understood. By screening for potential upstream mediators of cWnt and Wnt/PCP signalling, we identified two Nematostella Frizzled homologs that are expressed early in development. NvFzd1 is expressed maternally and in a broad pattern during early development while NvFzd10 is zygotically expressed at the animal pole in blastula stage embryos and is restricted to the invaginating cells of the presumptive endomesoderm. Molecular and morphological characterization of NvFzd1 and NvFzd10 knock-down phenotypes provide evidence for distinct regulatory roles for the two receptors in endomesoderm cell fate specification and primary archenteron invagination. These results provide further experimental evidence for the independent regulation of endomesodermal cell fate specification and primary archenteron invagination during gastrulation in Nematostella. Moreover, these results provide additional support for the previously proposed two-step model for the independent evolution of cWnt-mediated cell fate specification and Wnt/PCP-mediated primary archenteron invagination.
Collapse
Affiliation(s)
- Naveen Wijesena
- Department of Biology, University of Miami, Coral Gables, FL33146, USA; Department of Biology, University of Bergen, Bergen, Norway
| | - Hongyan Sun
- Department of Biology, University of Miami, Coral Gables, FL33146, USA
| | - Shalika Kumburegama
- Department of Biology, University of Miami, Coral Gables, FL33146, USA; Department of Zoology, University of Peradeniya, Peradeniya, Sri Lanka
| | | |
Collapse
|
23
|
Nematostella vectensis, an Emerging Model for Deciphering the Molecular and Cellular Mechanisms Underlying Whole-Body Regeneration. Cells 2021; 10:cells10102692. [PMID: 34685672 PMCID: PMC8534814 DOI: 10.3390/cells10102692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
The capacity to regenerate lost or injured body parts is a widespread feature within metazoans and has intrigued scientists for centuries. One of the most extreme types of regeneration is the so-called whole body regenerative capacity, which enables regeneration of fully functional organisms from isolated body parts. While not exclusive to this habitat, whole body regeneration is widespread in aquatic/marine invertebrates. Over the past decade, new whole-body research models have emerged that complement the historical models Hydra and planarians. Among these, the sea anemone Nematostella vectensis has attracted increasing interest in regard to deciphering the cellular and molecular mechanisms underlying the whole-body regeneration process. This manuscript will present an overview of the biological features of this anthozoan cnidarian as well as the available tools and resources that have been developed by the scientific community studying Nematostella. I will further review our current understanding of the cellular and molecular mechanisms underlying whole-body regeneration in this marine organism, with emphasis on how comparing embryonic development and regeneration in the same organism provides insight into regeneration specific elements.
Collapse
|
24
|
Nishiya N, Yonezawa H. Domestication of chemicals attacking metazoan embryogenesis: identification of safe natural products modifying developmental signaling pathways in human. J Antibiot (Tokyo) 2021; 74:651-659. [PMID: 34381189 DOI: 10.1038/s41429-021-00461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Soil microorganisms are rich sources of bioactive natural products. Interspecies interactions are the cues of their production and refine biological activities. These interactions in natural environments include the interplay between microorganisms and Metazoans (animals), such as nematodes, insects, and ticks. Chemical intercellular communication modulators could exert ideal Metazoan-selective toxicity for defending microorganisms. Developmental signaling pathways, such as the Notch, TGF-beta, and Wnt pathways, are intercellular communication networks that contribute to the reproducible formation of complex higher-order Metazoan body structures. Natural modifiers of the developmental signaling pathway are attractive therapeutic seeds for carcinoma and sarcoma treatment. However, these fundamental signaling pathways also play indispensable physiological roles and their perturbation could lead to toxicity, such as defects in stem cell physiology and tissue regeneration processes. In this review, we introduce a screening system that selects developmental signaling inhibitors with wide therapeutic windows using zebrafish embryonic phenotypes and provide examples of microorganism-derived Wnt pathway inhibitors. Moreover, we discuss safety prospects of the developmental signaling inhibitors.
Collapse
Affiliation(s)
- Naoyuki Nishiya
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan.
| | - Honami Yonezawa
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan
| |
Collapse
|
25
|
The Tentacular Spectacular: Evolution of Regeneration in Sea Anemones. Genes (Basel) 2021; 12:genes12071072. [PMID: 34356088 PMCID: PMC8306839 DOI: 10.3390/genes12071072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Sea anemones vary immensely in life history strategies, environmental niches and their ability to regenerate. While the sea anemone Nematostella vectensis is the starlet of many key regeneration studies, recent work is emerging on the diverse regeneration strategies employed by other sea anemones. This manuscript will explore current molecular mechanisms of regeneration employed by non-model sea anemones Exaiptasia diaphana (an emerging model species for coral symbiosis studies) and Calliactis polypus (a less well-studied species) and examine how these species compare to the model sea anemone N. vectensis. We summarize the field of regeneration within sea anemones, within the greater context of phylum Cnidaria and in other invertebrate models of regeneration. We also address the current knowledge on two key systems that may be implemented in regeneration: the innate immune system and developmental pathways, including future aspects of work and current limitations.
Collapse
|
26
|
Lebedeva T, Aman AJ, Graf T, Niedermoser I, Zimmermann B, Kraus Y, Schatka M, Demilly A, Technau U, Genikhovich G. Cnidarian-bilaterian comparison reveals the ancestral regulatory logic of the β-catenin dependent axial patterning. Nat Commun 2021; 12:4032. [PMID: 34188050 PMCID: PMC8241978 DOI: 10.1038/s41467-021-24346-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/30/2021] [Indexed: 11/09/2022] Open
Abstract
In animals, body axis patterning is based on the concentration-dependent interpretation of graded morphogen signals, which enables correct positioning of the anatomical structures. The most ancient axis patterning system acting across animal phyla relies on β-catenin signaling, which directs gastrulation, and patterns the main body axis. However, within Bilateria, the patterning logic varies significantly between protostomes and deuterostomes. To deduce the ancestral principles of β-catenin-dependent axial patterning, we investigate the oral–aboral axis patterning in the sea anemone Nematostella—a member of the bilaterian sister group Cnidaria. Here we elucidate the regulatory logic by which more orally expressed β-catenin targets repress more aborally expressed β-catenin targets, and progressively restrict the initially global, maternally provided aboral identity. Similar regulatory logic of β-catenin-dependent patterning in Nematostella and deuterostomes suggests a common evolutionary origin of these processes and the equivalence of the cnidarian oral–aboral and the bilaterian posterior–anterior body axes. The authors show in Nematostella that the more orally expressed β-catenin targets repress the more aborally expressed β-catenin targets, thus patterning the oral-aboral axis. This likely represents the common mechanism of β-catenin-dependent axial patterning shared by Cnidaria and Bilateria.
Collapse
Affiliation(s)
- Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Andrew J Aman
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Thomas Graf
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Isabell Niedermoser
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Yulia Kraus
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria.,Department of Evolutionary Biology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye gory 1/12, Moscow, Russia
| | - Magdalena Schatka
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Adrien Demilly
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria.
| |
Collapse
|
27
|
Amiel AR, Michel V, Carvalho JE, Shkreli M, Petit C, Röttinger E. [The sea anemone Nematostella vectensis, an emerging model for biomedical research: Mechano-sensitivity, extreme regeneration and longevity]. Med Sci (Paris) 2021; 37:167-177. [PMID: 33591260 DOI: 10.1051/medsci/2020282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nematostella has fascinating features such as whole-body regeneration, the absence of signs of aging and importantly, the absence of age-related diseases. Easy to culture and spawn, this little sea anemone in spite of its "simple" aspect, displays interesting morphological characteristics similar to vertebrates and an unexpected similarity in gene content/genome organization. Importantly, the scientific community working on Nematostella is developing a variety of functional genomics tools that enable scientists to use this anemone in the field of regenerative medicine, longevity and mecano-sensory diseases. As a complementary research model to vertebrates, this marine invertebrate is emerging and promising to dig deeper into those fields of research in an integrative manner (entire organism) and provides new opportunities for scientists to lift specific barriers that can be encountered with other commonly used animal models.
Collapse
Affiliation(s)
- Aldine R Amiel
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| | - Vincent Michel
- Institut de l'audition, Institut Pasteur, Inserm UMRS 1120, 75012 Paris, France
| | - João E Carvalho
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| | - Marina Shkreli
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France
| | - Christine Petit
- Institut de l'audition, Institut Pasteur, Inserm UMRS 1120, 75012 Paris, France - Collège de France, 75005 Paris, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| |
Collapse
|
28
|
Abstract
Hemichordates, along with echinoderms and chordates, belong to the lineage of bilaterians called the deuterostomes. Their phylogenetic position as an outgroup to chordates provides an opportunity to investigate the evolutionary origins of the chordate body plan and reconstruct ancestral deuterostome characters. The body plans of the hemichordates and chordates are organizationally divergent making anatomical comparisons very challenging. The developmental underpinnings of animal body plans are often more conservative than the body plans they regulate, and offer a novel data set for making comparisons between morphologically divergent body architectures. Here I review the hemichordate developmental data generated over the past 20 years that further test hypotheses of proposed morphological affinities between the two taxa, but also compare the conserved anteroposterior, dorsoventral axial patterning programs and germ layer specification programs. These data provide an opportunity to determine which developmental programs are ancestral deuterostome or bilaterian innovations, and which ones occurred in stem chordates or vertebrates representing developmental novelties of the chordate body plan.
Collapse
|
29
|
Reverse Genetic Approaches to Investigate the Neurobiology of the Cnidarian Sea Anemone Nematostella vectensis. Methods Mol Biol 2020; 2047:25-43. [PMID: 31552647 DOI: 10.1007/978-1-4939-9732-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cnidarian sea anemone Nematostella vectensis has grown in popularity as a model system to complement the ongoing work in traditional bilaterian model species (e.g. Drosophila, C. elegans, vertebrate). The driving force behind developing cnidarian model systems is the potential of this group of animals to impact EvoDevo studies aimed at better determining the origin and evolution of bilaterian traits, such as centralized nervous systems. However, it is becoming apparent that cnidarians have the potential to impact our understanding of regenerative neurogenesis and systems neuroscience. Next-generation sequencing and the development of reverse genetic approaches led to functional genetics becoming routine in the Nematostella system. As a result, researchers are beginning to understand how cnidarian nerve nets are related to the bilaterian nervous systems. This chapter describes the methods for morpholino and mRNA injections to knockdown or overexpress genes of interest, respectively. Carrying out these techniques in Nematostella requires obtaining and preparing embryos for microinjection, designing and generating effective morpholino and mRNA molecules with controls for injection, and optimizing injection conditions.
Collapse
|
30
|
Reddy PC, Gungi A, Ubhe S, Galande S. Epigenomic landscape of enhancer elements during Hydra head organizer formation. Epigenetics Chromatin 2020; 13:43. [PMID: 33046126 PMCID: PMC7552563 DOI: 10.1186/s13072-020-00364-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Axis patterning during development is accompanied by large-scale gene expression changes. These are brought about by changes in the histone modifications leading to dynamic alterations in chromatin architecture. The cis regulatory DNA elements also play an important role towards modulating gene expression in a context-dependent manner. Hydra belongs to the phylum Cnidaria where the first asymmetry in the body plan was observed and the oral-aboral axis originated. Wnt signaling has been shown to determine the head organizer function in the basal metazoan Hydra. RESULTS To gain insights into the evolution of cis regulatory elements and associated chromatin signatures, we ectopically activated the Wnt signaling pathway in Hydra and monitored the genome-wide alterations in key histone modifications. Motif analysis of putative intergenic enhancer elements from Hydra revealed the conservation of bilaterian cis regulatory elements that play critical roles in development. Differentially regulated enhancer elements were identified upon ectopic activation of Wnt signaling and found to regulate many head organizer specific genes. Enhancer activity of many of the identified cis regulatory elements was confirmed by luciferase reporter assay. Quantitative chromatin immunoprecipitation analysis upon activation of Wnt signaling further confirmed the enrichment of H3K27ac on the enhancer elements of Hv_Wnt5a, Hv_Wnt11 and head organizer genes Hv_Bra1, CnGsc and Hv_Pitx1. Additionally, perturbation of the putative H3K27me3 eraser activity using a specific inhibitor affected the ectopic activation of Wnt signaling indicating the importance of the dynamic changes in the H3K27 modifications towards regulation of the genes involved in the head organizer activity. CONCLUSIONS The activation-associated histone marks H3K4me3, H3K27ac and H3K9ac mark chromatin in a similar manner as seen in bilaterians. We identified intergenic cis regulatory elements which harbor sites for key transcription factors involved in developmental processes. Differentially regulated enhancers exhibited motifs for many zinc-finger, T-box and ETS related TFs whose homologs have a head specific expression in Hydra and could be a part of the pioneer TF network in the patterning of the head. The ability to differentially modify the H3K27 residue is critical for the patterning of Hydra axis revealing a dynamic acetylation/methylation switch to regulate gene expression and chromatin architecture.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Akhila Gungi
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Suyog Ubhe
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
31
|
Salinas-Saavedra M, Martindale MQ. Par protein localization during the early development of Mnemiopsis leidyi suggests different modes of epithelial organization in the metazoa. eLife 2020; 9:54927. [PMID: 32716297 PMCID: PMC7441587 DOI: 10.7554/elife.54927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
In bilaterians and cnidarians, epithelial cell-polarity is regulated by the interactions between Par proteins, Wnt/PCP signaling pathway, and cell-cell adhesion. Par proteins are highly conserved across Metazoa, including ctenophores. But strikingly, ctenophore genomes lack components of the Wnt/PCP pathway and cell-cell adhesion complexes raising the question if ctenophore cells are polarized by mechanisms involving Par proteins. Here, by using immunohistochemistry and live-cell imaging of specific mRNAs, we describe for the first time the subcellular localization of selected Par proteins in blastomeres and epithelial cells during the embryogenesis of the ctenophore Mnemiopsis leidyi. We show that these proteins distribute differently compared to what has been described for other animals, even though they segregate in a host-specific fashion when expressed in cnidarian embryos. This differential localization might be related to the emergence of different junctional complexes during metazoan evolution.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| |
Collapse
|
32
|
Technau U. Gastrulation and germ layer formation in the sea anemone Nematostella vectensis and other cnidarians. Mech Dev 2020; 163:103628. [PMID: 32603823 DOI: 10.1016/j.mod.2020.103628] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023]
Abstract
Among the basally branching metazoans, cnidarians display well-defined gastrulation processes leading to a diploblastic body plan, consisting of an endodermal and an ectodermal cell layer. As the outgroup to all Bilateria, cnidarians are an interesting group to investigate ancestral developmental mechanisms. Interestingly, all known gastrulation mechanisms known in Bilateria are already found in different species of Cnidaria. Here I review the morphogenetic processes found in different Cnidaria and focus on the investigation of the cellular and molecular mechanisms in the sea anemone Nematostella vectensis, which has been a major model organism among cnidarians for evolutionary developmental biology. Many of the genes involved in germ layer specification and morphogenetic processes in Bilateria are also found active during gastrulation of Nematostella and other cnidarians, suggesting an ancestral role of this process. The molecular analyses indicate a tight link between gastrulation and axis patterning processes by Wnt and FGF signaling. Interestingly, the endodermal layer displays many features of the mesodermal layer in Bilateria, while the pharyngeal ectoderm has an endodermal expression profile. Comparative analyses as well as experimental studies using embryonic aggregates suggest that minor differences in the gene regulatory networks allow the embryo to transition relatively easily from one mode of gastrulation to another.
Collapse
Affiliation(s)
- Ulrich Technau
- University of Vienna, Dept. of Neurosciences and Developmental Biology, Althanstrasse 14, 1090 Wien, Austria.
| |
Collapse
|
33
|
Ashwood LM, Norton RS, Undheim EAB, Hurwood DA, Prentis PJ. Characterising Functional Venom Profiles of Anthozoans and Medusozoans within Their Ecological Context. Mar Drugs 2020; 18:E202. [PMID: 32283847 PMCID: PMC7230708 DOI: 10.3390/md18040202] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
This review examines the current state of knowledge regarding toxins from anthozoans (sea anemones, coral, zoanthids, corallimorphs, sea pens and tube anemones). We provide an overview of venom from phylum Cnidaria and review the diversity of venom composition between the two major clades (Medusozoa and Anthozoa). We highlight that the functional and ecological context of venom has implications for the temporal and spatial expression of protein and peptide toxins within class Anthozoa. Understanding the nuances in the regulation of venom arsenals has been made possible by recent advances in analytical technologies that allow characterisation of the spatial distributions of toxins. Furthermore, anthozoans are unique in that ecological roles can be assigned using tissue expression data, thereby circumventing some of the challenges related to pharmacological screening.
Collapse
Affiliation(s)
- Lauren M. Ashwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Eivind A. B. Undheim
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
| | - David A. Hurwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Peter J. Prentis
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
34
|
Martínez-Bartolomé M, Range RC. A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo. Development 2019; 146:dev168799. [PMID: 31822478 PMCID: PMC6955209 DOI: 10.1242/dev.168799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
Abstract
A Wnt signaling network governs early anterior-posterior (AP) specification and patterning of the deuterostome sea urchin embryo. We have previously shown that non-canonical Fzl1/2/7 signaling antagonizes the progressive posterior-to-anterior downregulation of the anterior neuroectoderm (ANE) gene regulatory network (GRN) by canonical Wnt/β-catenin and non-canonical Wnt1/Wnt8-Fzl5/8-JNK signaling. This study focuses on the non-canonical function of the Wnt16 ligand during early AP specification and patterning. Maternally supplied wnt16 is expressed ubiquitously during cleavage and zygotic wnt16 expression is concentrated in the endoderm/mesoderm beginning at mid-blastula stage. Wnt16 antagonizes the ANE restriction mechanism and this activity depends on a functional Fzl1/2/7 receptor. Our results also show that zygotic wnt16 expression depends on both Fzl5/8 and Wnt/β-catenin signaling. Furthermore, Wnt16 is necessary for the activation and/or maintenance of key regulatory endoderm/mesoderm genes and is essential for gastrulation. Together, our data show that Wnt16 has two functions during early AP specification and patterning: (1) an initial role activating the Fzl1/2/7 pathway that antagonizes the ANE restriction mechanism; and (2) a subsequent function in activating key endoderm GRN factors and the morphogenetic movements of gastrulation.
Collapse
Affiliation(s)
| | - Ryan C Range
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
35
|
Reddy PC, Gungi A, Ubhe S, Pradhan SJ, Kolte A, Galande S. Molecular signature of an ancient organizer regulated by Wnt/β-catenin signalling during primary body axis patterning in Hydra. Commun Biol 2019; 2:434. [PMID: 31799436 PMCID: PMC6879750 DOI: 10.1038/s42003-019-0680-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/06/2019] [Indexed: 11/20/2022] Open
Abstract
Wnt/β-catenin signalling has been shown to play a critical role during head organizer formation in Hydra. Here, we characterized the Wnt signalling regulatory network involved in formation of the head organizer. We found that Wnt signalling regulates genes that are important in tissue morphogenesis. We identified that majority of transcription factors (TFs) regulated by Wnt/β-catenin signalling belong to the homeodomain and forkhead families. Silencing of Margin, one of the Wnt regulated homeodomain TFs, results in loss of the ectopic tentacle phenotype typically seen upon activation of Wnt signalling. Furthermore, we show that the Margin promoter is directly bound and regulated by β-catenin. Ectopic expression of Margin in zebrafish embryos results in body axis abnormalities suggesting that Margin plays a role in axis patterning. Our findings suggest that homeobox TFs came under the regulatory umbrella of Wnt/β-catenin signalling presumably resulting in the evolution of primary body axis in animal phyla.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Akhila Gungi
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Suyog Ubhe
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Saurabh J. Pradhan
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Amol Kolte
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| |
Collapse
|
36
|
Abstract
Tunicates are a diverse group of invertebrate marine chordates that includes the larvaceans, thaliaceans, and ascidians. Because of their unique evolutionary position as the sister group of the vertebrates, tunicates are invaluable as a comparative model and hold the promise of revealing both conserved and derived features of chordate gastrulation. Descriptive studies in a broad range of tunicates have revealed several important unifying traits that make them unique among the chordates, including invariant cell lineages through gastrula stages and an overall morphological simplicity. Gastrulation has only been studied in detail in ascidians such as Ciona and Phallusia, where it involves a simple cup-shaped gastrula driven primarily by endoderm invagination. This appears to differ significantly from vertebrate models, such as Xenopus, in which mesoderm convergent extension and epidermal epiboly are major contributors to involution. These differences may reflect the cellular simplicity of the ascidian embryo.
Collapse
Affiliation(s)
- Konner M Winkley
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Matthew J Kourakis
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States
| | - Anthony W DeTomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States
| | - Michael T Veeman
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
37
|
Preisler L, Ben-Yosef D, Mayshar Y. Adenomatous Polyposis Coli as a Major Regulator of Human Embryonic Stem Cells Self-Renewal. Stem Cells 2019; 37:1505-1515. [PMID: 31461190 DOI: 10.1002/stem.3084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/22/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
Human embryonic stem cells (hESCs) provide an essential tool to investigate early human development, study disease pathogenesis, and examine therapeutic interventions. Adenomatous polyposis coli (APC) is a negative regulator of Wnt/β-catenin signaling, implicated in the majority of sporadic colorectal cancers and in the autosomal dominant inherited syndrome familial adenomatous polyposis (FAP). Studies into the role of Wnt/β-catenin signaling in hESCs arrived at conflicting results, due at least in part to variations in culture conditions and the use of external inhibitors and agonists. Here, we directly targeted APC in hESCs carrying a germline APC mutation, derived from affected blastocysts following preimplantation genetic diagnosis (PGD) for FAP, in order to answer open questions regarding the role of APC in regulating pluripotency and differentiation potential of hESCs. Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9), we generated second hit APC mutations in FAP-hESCs. Despite high CRISPR/Cas9 targeting efficiency and the successful isolation of many clones, none of the isolated clones carried a loss of function mutation in the wild-type (WT) APC allele. Using a fluorescent β-catenin reporter and analysis of mutated-allele frequencies in the APC locus, we show that APC double mutant hESCs robustly activate Wnt/β-catenin signaling that results in rapid differentiation to endodermal and mesodermal lineages. Here, we provide direct evidence for a strict requirement for constant β-catenin degradation through the APC destruction complex in order to maintain pluripotency, highlighting a fundamental role for APC in self-renewal of hESCs. Stem Cells 2019;37:1505-1515.
Collapse
Affiliation(s)
- Livia Preisler
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoav Mayshar
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| |
Collapse
|
38
|
сWnt signaling modulation results in a change of the colony architecture in a hydrozoan. Dev Biol 2019; 456:145-153. [PMID: 31473187 DOI: 10.1016/j.ydbio.2019.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/11/2019] [Accepted: 08/28/2019] [Indexed: 01/11/2023]
Abstract
At the polyp stage, most hydrozoan cnidarians form highly elaborate colonies with a variety of branching patterns, which makes them excellent models for studying the evolutionary mechanisms of body plan diversification. At the same time, molecular mechanisms underlying the robust patterning of the architecturally complex hydrozoan colonies remain unexplored. Using non-model hydrozoan Dynamena pumila we showed that the key components of the Wnt/β-catenin (cWnt) pathway (β-catenin, TCF) and the cWnt-responsive gene, brachyury 2, are involved in specification and patterning of the developing colony shoots. Strikingly, pharmacological modulation of the cWnt pathway leads to radical modification of the monopodially branching colony of Dynamena which acquire branching patterns typical for colonies of other hydrozoan species. Our results suggest that modulation of the cWnt signaling is the driving force promoting the evolution of the vast variety of the body plans in hydrozoan colonies and offer an intriguing possibility that the involvement of the cWnt pathway in the regulation of branching morphogenesis might represent an ancestral feature predating the cnidarian-bilaterian split.
Collapse
|
39
|
Antero-posterior ectoderm patterning by canonical Wnt signaling during ascidian development. PLoS Genet 2019; 15:e1008054. [PMID: 30925162 PMCID: PMC6457572 DOI: 10.1371/journal.pgen.1008054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/10/2019] [Accepted: 02/28/2019] [Indexed: 01/21/2023] Open
Abstract
Wnt/β-catenin signaling is an ancient pathway in metazoans and controls various developmental processes, in particular the establishment and patterning of the embryonic primary axis. In vertebrates, a graded Wnt activity from posterior to anterior endows cells with positional information in the central nervous system. Recent studies in hemichordates support a conserved role for Wnt/β-catenin in ectoderm antero-posterior patterning at the base of the deuterostomes. Ascidians are marine invertebrates and the closest relatives of vertebrates. By combining gain- and loss-of-function approaches, we have determined the role of Wnt/β-catenin in patterning the three ectoderm derivatives of the ascidian Ciona intestinalis, central nervous system, peripheral nervous system and epidermis. Activating Wnt/β-catenin signaling from gastrulation led to a dramatic transformation of the ectoderm with a loss of anterior identities and a reciprocal anterior extension of posterior identities, consistent with studies in other metazoans. Surprisingly, inhibiting Wnt signaling did not produce a reciprocal anteriorization of the embryo with a loss of more posterior identities like in vertebrates and hemichordate. Epidermis patterning was overall unchanged. Only the identity of two discrete regions of the central nervous system, the anteriormost and the posteriormost regions, were under the control of Wnt. Finally, the caudal peripheral nervous system, while being initially Wnt dependent, formed normally. Our results show that the Ciona embryonic ectoderm responds to Wnt activation in a manner that is compatible with the proposed function for this pathway at the base of the deuterostomes. However, possibly because of its fast and divergent mode of development that includes extensive use of maternal determinants, the overall antero-posterior patterning of the Ciona ectoderm is Wnt independent, and Wnt/β-catenin signaling controls the formation of some sub-domains. Our results thus indicate that there has likely been a drift in the developmental systems controlling ectoderm patterning in the lineage leading to ascidians. The Wnt/β-catenin pathway is a system of cell-cell communication. It has an ancient origin in animals and plays multiple roles during embryogenesis and adult life. In particular, it is involved in determining, in the vertebrate embryo, the identity of the different parts of the body and their relative positions along the antero-posterior axis. We have investigated in an ascidian (or sea squirt) species, a marine invertebrate that is closely related to vertebrates, whether this pathway had a similar role. Like in vertebrates, activating Wnt/β-catenin led to a posteriorization of the embryo with a loss of anterior structures. By contrast, unlike vertebrates, ascidian embryos formed rather normally following Wnt/β-catenin inactivation. Since hemichordates (or acorn worms), earlier divergent invertebrates, use Wnt/β-catenin in a manner comparable to vertebrates, it is in the ascidian lineage that changes have occurred. Consequently, ascidians build an antero-posterior axis, very similarly organized to that of vertebrates, but in a different way.
Collapse
|
40
|
Schippers KJ, Nichols SA. Evidence of Signaling and Adhesion Roles for β-Catenin in the Sponge Ephydatia muelleri. Mol Biol Evol 2019. [PMID: 29522209 DOI: 10.1093/molbev/msy033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
β-Catenin acts as a transcriptional coactivator in the Wnt/β-catenin signaling pathway and a cytoplasmic effector in cadherin-based cell adhesion. These functions are ancient within animals, but the earliest steps in β-catenin evolution remain unresolved due to limited data from key lineages-sponges, ctenophores, and placozoans. Previous studies in sponges have characterized β-catenin expression dynamics and used GSK3B antagonists to ectopically activate the Wnt/β-catenin pathway; both approaches rely upon untested assumptions about the conservation of β-catenin function and regulation in sponges. Here, we test these assumptions using an antibody raised against β-catenin from the sponge Ephydatia muelleri. We find that cadherin-complex genes coprecipitate with endogenous Em β-catenin from cell lysates, but that Wnt pathway components do not. However, through immunostaining we detect both cell boundary and nuclear populations, and we find evidence that Em β-catenin is a conserved substrate of GSK3B. Collectively, these data support conserved roles for Em β-catenin in both cell adhesion and Wnt signaling. Additionally, we find evidence for an Em β-catenin population associated with the distal ends of F-actin stress fibers in apparent cell-substrate adhesion structures that resemble focal adhesions. This finding suggests a fundamental difference in the adhesion properties of sponge tissues relative to other animals, in which the adhesion functions of β-catenin are typically restricted to cell-cell adhesions.
Collapse
Affiliation(s)
| | - Scott A Nichols
- Department of Biological Sciences, University of Denver, Denver, CO
| |
Collapse
|
41
|
Nathaniel Clarke D, Lowe CJ, James Nelson W. The cadherin-catenin complex is necessary for cell adhesion and embryogenesis in Nematostella vectensis. Dev Biol 2019; 447:170-181. [PMID: 30629955 PMCID: PMC6433513 DOI: 10.1016/j.ydbio.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 01/22/2023]
Abstract
The cadherin-catenin complex is a conserved, calcium-dependent cell-cell adhesion module that is necessary for normal development and the maintenance of tissue integrity in bilaterian animals. Despite longstanding evidence of a deep ancestry of calcium-dependent cell adhesion in animals, the requirement of the cadherin-catenin complex to coordinate cell-cell adhesion has not been tested directly in a non-bilaterian organism. Here, we provide the first analysis of classical cadherins and catenins in the Starlet Sea Anemone, Nematostella vectensis. Gene expression, protein localization, siRNA-mediated knockdown of α-catenin, and calcium-dependent cell aggregation assays provide evidence that a bonafide cadherin-catenin complex is present in the early embryo, and that α-catenin is required for normal embryonic development and the formation of cell-cell adhesions between cells dissociated from whole embryos. Together these results support the hypothesis that the cadherin-catenin complex was likely a complete and functional cell-cell adhesion module in the last common cnidarian-bilaterian ancestor. SUMMARY STATEMENT: Embryonic manipulations and ex vivo adhesion assays in the sea anemone, Nematostella vectensis, indicate that the necessity of the cadherin-catenin complex for mediating cell-cell adhesion is deeply conserved in animal evolution.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Stanford University, Stanford CA 94305, United States.
| | - Christopher J Lowe
- Department of Biology, Stanford University, Stanford CA 94305, United States.
| | - W James Nelson
- Department of Biology, Stanford University, Stanford CA 94305, United States; Department of Molecular and Cellular Physiology, Stanford University, Stanford CA 94305, United States.
| |
Collapse
|
42
|
Abstract
One challenge in biology is to make sense of the complexity of biological networks. A good system to approach this is signaling pathways, whose well-characterized molecular details allow us to relate the internal processes of each pathway to their input-output behavior. In this study, we analyzed mathematical models of three metazoan signaling pathways: the canonical Wnt, MAPK/ERK, and Tgfβ pathways. We find an unexpected convergence: the three pathways behave in some physiological contexts as linear signal transmitters. Testing the results experimentally, we present direct measurements of linear input-output behavior in the Wnt and ERK pathways. Analytics from each model further reveal that linearity arises through different means in each pathway, which we tested experimentally in the Wnt and ERK pathways. Linearity is a desired property in engineering where it facilitates fidelity and superposition in signal transmission. Our findings illustrate how cells tune different complex networks to converge on the same behavior.
Collapse
Affiliation(s)
- Harry Nunns
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Lea Goentoro
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| |
Collapse
|
43
|
Salinas-Saavedra M, Rock AQ, Martindale MQ. Germ layer-specific regulation of cell polarity and adhesion gives insight into the evolution of mesoderm. eLife 2018; 7:e36740. [PMID: 30063005 PMCID: PMC6067901 DOI: 10.7554/elife.36740] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022] Open
Abstract
In triploblastic animals, Par-proteins regulate cell-polarity and adherens junctions of both ectodermal and endodermal epithelia. But, in embryos of the diploblastic cnidarian Nematostella vectensis, Par-proteins are degraded in all cells in the bifunctional gastrodermal epithelium. Using immunohistochemistry, CRISPR/Cas9 mutagenesis, and mRNA overexpression, we describe the functional association between Par-proteins, ß-catenin, and snail transcription factor genes in N. vectensis embryos. We demonstrate that the aPKC/Par complex regulates the localization of ß-catenin in the ectoderm by stabilizing its role in cell-adhesion, and that endomesodermal epithelial cells are organized by a different cell-adhesion system than overlying ectoderm. We also show that ectopic expression of snail genes, which are expressed in mesodermal derivatives in bilaterians, is sufficient to downregulate Par-proteins and translocate ß-catenin from the junctions to the cytoplasm in ectodermal cells. These data provide molecular insight into the evolution of epithelial structure and distinct cell behaviors in metazoan embryos.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
- Department of
BiologyUniversity of
FloridaFloridaUnited
States
| | - Amber Q Rock
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
| | - Mark Q Martindale
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
- Department of
BiologyUniversity of
FloridaFloridaUnited
States
| |
Collapse
|
44
|
Hosoda K, Motoishi M, Kunimoto T, Nishimura O, Hwang B, Kobayashi S, Yazawa S, Mochii M, Agata K, Umesono Y. Role of MEKK1 in the anterior-posterior patterning during planarian regeneration. Dev Growth Differ 2018; 60:341-353. [PMID: 29900546 DOI: 10.1111/dgd.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 11/29/2022]
Abstract
Planarians have established a unique body pattern along the anterior-posterior (AP) axis, which consists of at least four distinct body regions arranged in an anterior to posterior sequence: head, prepharyngeal, pharyngeal (containing a pharynx), and tail regions, and possess high regenerative ability. How they reconstruct the regional continuity in a head-to-tail sequence after amputation still remains unknown. We use as a model planarian Dugesia japonica head regeneration from tail fragments, which involves dynamic rearrangement of the body regionality of preexisting tail tissues along the AP axis, and show here that RNA interference of the gene D. japonica mek kinase 1 (Djmekk1) caused a significant anterior shift in the position of pharynx regeneration at the expense of the prepharyngeal region, while keeping the head region relatively constant in size, and accordingly led to development of a relatively longer tail region. Our data suggest that DjMEKK1 regulates anterior extracellular signal-regulated kinase (ERK) and posterior β-catenin signaling pathways in a positive and negative manner, respectively, to establish a proper balance resulting in the regeneration of planarian's scale-invariant trunk-to-tail patterns across individuals. Furthermore, we demonstrated that DjMEKK1 negatively modulates planarian β-catenin activity via its serine/threonine kinase domain, but not its PHD/RING finger domain, by testing secondary axis formation in Xenopus embryos. The data suggest that Djmekk1 plays an instructive role in the coordination between the establishment of the prepharyngeal region and posteriorizing of pharynx formation by balancing the two opposing morphogenetic signals along the AP axis during planarian regeneration.
Collapse
Affiliation(s)
- Kazutaka Hosoda
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Minako Motoishi
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Takuya Kunimoto
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Osamu Nishimura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Byulnim Hwang
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Sumire Kobayashi
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Shigenobu Yazawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Makoto Mochii
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Department of Life Science, Faculty of Science Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Yoshihiko Umesono
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| |
Collapse
|
45
|
Hox and Wnt pattern the primary body axis of an anthozoan cnidarian before gastrulation. Nat Commun 2018; 9:2007. [PMID: 29789526 PMCID: PMC5964151 DOI: 10.1038/s41467-018-04184-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/06/2018] [Indexed: 11/17/2022] Open
Abstract
Hox gene transcription factors are important regulators of positional identity along the anterior–posterior axis in bilaterian animals. Cnidarians (e.g., sea anemones, corals, and hydroids) are the sister group to the Bilateria and possess genes related to both anterior and central/posterior class Hox genes. Here we report a previously unrecognized domain of Hox expression in the starlet sea anemone, Nematostella vectensis, beginning at early blastula stages. We explore the relationship of two opposing Hox genes (NvAx6/NvAx1) expressed on each side of the blastula during early development. Functional perturbation reveals that NvAx6 and NvAx1 not only regulate their respective expression domains, but also interact with Wnt genes to pattern the entire oral–aboral axis. These findings suggest an ancient link between Hox/Wnt patterning during axis formation and indicate that oral–aboral domains are likely established during blastula formation in anthozoan cnidarians. Hox genes regulate anterior–posterior axis formation but their role in cnidarians is unclear. Here, the authors disrupt Hox genes NvAx1 and NvAx6 in the starlet sea anemone, Nematostella vectensis, showing antagonist function in patterning the oral–aboral axis and a link to Wnt signaling.
Collapse
|
46
|
β-Catenin-dependent mechanotransduction dates back to the common ancestor of Cnidaria and Bilateria. Proc Natl Acad Sci U S A 2018; 115:6231-6236. [PMID: 29784822 PMCID: PMC6004442 DOI: 10.1073/pnas.1713682115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Besides genetic regulation, mechanical forces have been identified as important cues in numerous developmental processes. Mechanical forces can activate biochemical cascades in a process called mechanotransduction. Recent studies in vertebrates and flies elucidated the role of mechanical forces for mesodermal gene expression. However, it remains unclear whether mechanotransduction is a universal regulatory mechanism throughout Metazoa. Here, we show in the sea anemone Nematostella vectensis that mechanical pressure can ectopically activate or restore brachyury expression. This mechanotransduction is dependent on β-catenin, similar to vertebrates. We propose that a regulatory feedback loop between genetic and mechanical gene activation exists during gastrulation and the β-catenin–dependent mechanotransduction is an ancient regulatory mechanism, which was present in the common ancestor of cnidarians and bilaterians. Although the genetic regulation of cellular differentiation processes is well established, recent studies have revealed the role of mechanotransduction on a variety of biological processes, including regulation of gene expression. However, it remains unclear how universal and widespread mechanotransduction is in embryonic development of animals. Here, we investigate mechanosensitive gene expression during gastrulation of the starlet sea anemone Nematostella vectensis, a cnidarian model organism. We show that the blastoporal marker gene brachyury is down-regulated by blocking myosin II-dependent gastrulation movements. Brachyury expression can be restored by applying external mechanical force. Using CRISPR/Cas9 and morpholino antisense technology, we also show that mechanotransduction leading to brachyury expression is β-catenin dependent, similar to recent findings in fish and Drosophila [Brunet T, et al. (2013) Nat Commun 4:1–15]. Finally, we demonstrate that prolonged application of mechanical stress on the embryo leads to ectopic brachyury expression. Thus, our data indicate that β-catenin–dependent mechanotransduction is an ancient gene regulatory mechanism, which was present in the common ancestor of cnidarians and bilaterians, at least 600 million years ago.
Collapse
|
47
|
Warner JF, Guerlais V, Amiel AR, Johnston H, Nedoncelle K, Röttinger E. NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis. Development 2018; 145:dev.162867. [PMID: 29739837 DOI: 10.1242/dev.162867] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/25/2018] [Indexed: 01/28/2023]
Abstract
For over a century, researchers have been comparing embryogenesis and regeneration hoping that lessons learned from embryonic development will unlock hidden regenerative potential. This problem has historically been a difficult one to investigate because the best regenerative model systems are poor embryonic models and vice versa. Recently, however, there has been renewed interest in this question, as emerging models have allowed researchers to investigate these processes in the same organism. This interest has been further fueled by the advent of high-throughput transcriptomic analyses that provide virtual mountains of data. Here, we present Nematostella vectensis Embryogenesis and Regeneration Transcriptomics (NvERTx), a platform for comparing gene expression during embryogenesis and regeneration. NvERTx consists of close to 50 transcriptomic data sets spanning embryogenesis and regeneration in Nematostella These data were used to perform a robust de novo transcriptome assembly, with which users can search, conduct BLAST analyses, and plot the expression of multiple genes during these two developmental processes. The site is also home to the results of gene clustering analyses, to further mine the data and identify groups of co-expressed genes. The site can be accessed at http://nvertx.kahikai.org.
Collapse
Affiliation(s)
- Jacob F Warner
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Vincent Guerlais
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Aldine R Amiel
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Hereroa Johnston
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Karine Nedoncelle
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| |
Collapse
|
48
|
Niwa A, Kuwano S, Tomita H, Kimura K, Orihara Y, Kanayama T, Noguchi K, Hisamatsu K, Nakashima T, Hatano Y, Hirata A, Miyazaki T, Kaneko K, Tanaka T, Hara A. The different pathogeneses of sporadic adenoma and adenocarcinoma in non-ampullary lesions of the proximal and distal duodenum. Oncotarget 2018; 8:41078-41090. [PMID: 28467793 PMCID: PMC5522249 DOI: 10.18632/oncotarget.17051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/27/2017] [Indexed: 12/11/2022] Open
Abstract
Non-ampullary duodenal adenoma with activation of Wnt/β-catenin signalling is common in familial adenomatous polyposis (FAP) patients, whereas sporadic non-ampullary adenoma is uncommon. The adenoma-carcinoma sequence similar to colon cancer is associated with duodenal tumors in FAP, but not always in sporadic tumors. We obtained 37 non-ampullary duodenal tumors, including 25 adenomas and 12 adenocarcinomas, were obtained from biopsies and endoscopic resections. We performed immunohistochemistry for β-catenin, the hallmark of Wnt activation, and aldehyde dehydrogenase 1 (ALDH1), a putative cancer stem cell marker. In non-ampullary lesions, abnormal nuclear localization of β-catenin was observed in 21 (84.0%) of 25 adenomas and 4 (33.3%) of 12 adenocarcinomas. In the proximal duodenum, nuclear β-catenin was less frequent in both adenomas and adenocarcinomas. Gastric duodenal metaplasia (GDM) was observed only in the proximal duodenum. All adenomas with GDM were the gastric foveolar and pyloric gland types, and showed only membranous β-catenin. The intestinal-type adenomas had nuclear β-catenin in the proximal and distal duodenum. ALDH1-positive cells were more frequent in adenocarcinomas than adenomas. Nuclear β-catenin accumulation frequently occurred in ALDH1-positive cells in adenoma, but not in adenocarcinoma. In the non-ampullary proximal duodenum, Wnt/β-catenin pathway activation was more closely associated with adenomas than adenocarcinomas, and while it might cooperate with ALDH1 in adenoma, it does not in adenocarcinoma. The pathogenesis thus may differ between sporadic adenoma and adenocarcinoma of non-ampullary duodenal lesions, especially in the proximal and distal duodenum.
Collapse
Affiliation(s)
- Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Seiya Kuwano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keita Kimura
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukiya Orihara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kei Noguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kenji Hisamatsu
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takayuki Nakashima
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akihiro Hirata
- Division of Animal Experiment, Life Science Research Center, Gifu University, Gifu, Japan
| | | | - Kazuhiro Kaneko
- Department of Gastroenterology, Endoscopy Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
49
|
Kirillova A, Genikhovich G, Pukhlyakova E, Demilly A, Kraus Y, Technau U. Germ-layer commitment and axis formation in sea anemone embryonic cell aggregates. Proc Natl Acad Sci U S A 2018; 115:1813-1818. [PMID: 29440382 PMCID: PMC5828576 DOI: 10.1073/pnas.1711516115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Robust morphogenetic events are pivotal for animal embryogenesis. However, comparison of the modes of development of different members of a phylum suggests that the spectrum of developmental trajectories accessible for a species might be far broader than can be concluded from the observation of normal development. Here, by using a combination of microsurgery and transgenic reporter gene expression, we show that, facing a new developmental context, the aggregates of dissociated embryonic cells of the sea anemone Nematostella vectensis take an alternative developmental trajectory. The self-organizing aggregates rely on Wnt signals produced by the cells of the original blastopore lip organizer to form body axes but employ morphogenetic events typical for normal development of distantly related cnidarians to re-establish the germ layers. The reaggregated cells show enormous plasticity including the capacity of the ectodermal cells to convert into endoderm. Our results suggest that new developmental trajectories may evolve relatively easily when highly plastic embryonic cells face new constraints.
Collapse
Affiliation(s)
- Anastasia Kirillova
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
- Department of Evolutionary Biology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Grigory Genikhovich
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria;
| | - Ekaterina Pukhlyakova
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Adrien Demilly
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Yulia Kraus
- Department of Evolutionary Biology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria;
| |
Collapse
|
50
|
Columbus-Shenkar YY, Sachkova MY, Macrander J, Fridrich A, Modepalli V, Reitzel AM, Sunagar K, Moran Y. Dynamics of venom composition across a complex life cycle. eLife 2018; 7:35014. [PMID: 29424690 PMCID: PMC5832418 DOI: 10.7554/elife.35014] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/08/2018] [Indexed: 12/16/2022] Open
Abstract
Little is known about venom in young developmental stages of animals. The appearance of toxins and stinging cells during early embryonic stages in the sea anemone Nematostella vectensis suggests that venom is already expressed in eggs and larvae of this species. Here, we harness transcriptomic, biochemical and transgenic tools to study venom production dynamics in Nematostella. We find that venom composition and arsenal of toxin-producing cells change dramatically between developmental stages of this species. These findings can be explained by the vastly different interspecific interactions of each life stage, as individuals develop from a miniature non-feeding mobile planula to a larger sessile polyp that predates on other animals and interact differently with predators. Indeed, behavioral assays involving prey, predators and Nematostella are consistent with this hypothesis. Further, the results of this work suggest a much wider and dynamic venom landscape than initially appreciated in animals with a complex life cycle. Some animals produce a mixture of toxins, commonly known as venom, to protect themselves from predators and catch prey. Cnidarians – a group of animals that includes sea anemones, jellyfish and corals – have stinging cells on their tentacles that inject venom into the animals they touch. The sea anemone Nematostella goes through a complex life cycle. Nematostella start out life in eggs. They then become swimming larvae, barely visible to the naked eye, that do not feed. Adult Nematostella are cylindrical, stationary ‘polyps’ that are several inches long. They use tentacles at the end of their tube-like bodies to capture small aquatic animals. Sea anemones therefore change how they interact with predators and prey at different stages of their life. Most research on venomous animals focuses on adults, so until now it was not clear whether the venom changes along their maturation. Columbus-Shenkar, Sachkova et al. genetically modified Nematostella so that the cells that produce distinct venom components were labeled with different fluorescent markers. The composition of the venom could then be linked to how the anemones interacted with their fish and shrimp predators at each life stage. The results of the experiments showed that Nematostella mothers pass on a toxin to their eggs that makes them unpalatable to predators. Larvae then produce high levels of other toxins that allow them to incapacitate or kill potential predators. Adults have a different mix of toxins that likely help them capture prey. Venom is often studied because the compounds it contains have the potential to be developed into new drugs. The jellyfish and coral relatives of Nematostella may also produce different venoms at different life stages. This means that there are likely to be many toxins that we have not yet identified in these animals. As some jellyfish venoms are very active on humans and reef corals have a pivotal role in ocean ecology, further research into the venoms produced at different life stages could help us to understand and preserve marine ecosystems, as well as having medical benefits.
Collapse
Affiliation(s)
- Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Y Sachkova
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, United States
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, United States
| | - Kartik Sunagar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|