1
|
Birtele M, Cerise M, Djenoune L, Kale G, Maniou E, Prahl LS, Schuster K, Villeneuve C. Pathway to independence: perspectives on the future. Development 2024; 151:dev204366. [PMID: 39369305 DOI: 10.1242/dev.204366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
In this Perspective, our 2024 Pathway to Independence Fellows provide their thoughts on the future of their field. Covering topics as diverse as plant development, tissue engineering and adaptation to climate change, and using a wide range of experimental organisms, these talented postdocs showcase some of the major open questions and key challenges across the spectrum of developmental biology research.
Collapse
Affiliation(s)
- Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, and Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Martina Cerise
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Lydia Djenoune
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Girish Kale
- Department of Zoology, University of Hohenheim, Stuttgart 70593, Germany
| | - Eirini Maniou
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Louis S Prahl
- Department of Bioengineering and the Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keaton Schuster
- Department of Biology, Division of Developmental Genetics, New York University, New York, NY 10010, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Clementine Villeneuve
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
2
|
Tanaka Y, Farkhondeh A, Yang W, Ueno H, Noda M, Hirokawa N. Kinesin-1 mediates proper ER folding of the Ca V1.2 channel and maintains mouse glucose homeostasis. EMBO Rep 2024:10.1038/s44319-024-00246-y. [PMID: 39322740 DOI: 10.1038/s44319-024-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells is a principal mechanism for systemic glucose homeostasis, of which regulatory mechanisms are still unclear. Here we show that kinesin molecular motor KIF5B is essential for GSIS through maintaining the voltage-gated calcium channel CaV1.2 levels, by facilitating an Hsp70-to-Hsp90 chaperone exchange to pass through the quality control in the endoplasmic reticulum (ER). Phenotypic analyses of KIF5B conditional knockout (cKO) mouse beta cells revealed significant abolishment of glucose-stimulated calcium transients, which altered the behaviors of insulin granules via abnormally stabilized cortical F-actin. KIF5B and Hsp90 colocalize to microdroplets on ER sheets, where CaV1.2 but not Kir6.2 is accumulated. In the absence of KIF5B, CaV1.2 fails to be transferred from Hsp70 to Hsp90 via STIP1, and is likely degraded via the proteasomal pathway. KIF5B and Hsc70 overexpression increased CaV1.2 expression via enhancing its chaperone binding. Thus, ER sheets may serve as the place of KIF5B- and Hsp90-dependent chaperone exchange, which predominantly facilitates CaV1.2 production in beta cells and properly enterprises GSIS against diabetes.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Atena Farkhondeh
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Wenxing Yang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Hitoshi Ueno
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Mitsuhiko Noda
- Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Chiba, 272-0827, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
- Department of Advanced Morphological Imaging, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
3
|
Niehrs C, Zapparoli E, Lee H. 'Three signals - three body axes' as patterning principle in bilaterians. Cells Dev 2024:203944. [PMID: 39121910 DOI: 10.1016/j.cdev.2024.203944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In vertebrates, the three orthogonal body axes, anteroposterior (AP), dorsoventral (DV) and left-right (LR) are determined at gastrula and neurula stages by the Spemann-Mangold organizer and its equivalents. A common feature of AP and DV axis formation is that an evolutionary conserved interplay between growth factors (Wnt, BMP) and their extracellular antagonists (e.g. Dkk1, Chordin) creates signaling gradients for axial patterning. Recent work showed that LR patterning in Xenopus follows the same principle, with R-spondin 2 (Rspo2) as an extracellular FGF antagonist, which creates a signaling gradient that determines the LR vector. That a triad of anti-FGF, anti-BMP, and anti-Wnt governs LR, DV, and AP axis formation reveals a unifying principle in animal development. We discuss how cross-talk between these three signals confers integrated AP-DV-LR body axis patterning underlying developmental robustness, size scaling, and harmonious regulation. We propose that Urbilateria featured three orthogonal body axes that were governed by a Cartesian coordinate system of orthogonal Wnt/AP, BMP/DV, and FGF/LR signaling gradients.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | | | - Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Juan T, Ebnicher G. In preprints: Shh signaling activity predicts cardiac laterality in Astyanax mexicanus populations. Development 2024; 151:dev202806. [PMID: 38451186 DOI: 10.1242/dev.202806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Affiliation(s)
- Thomas Juan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Greta Ebnicher
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| |
Collapse
|
5
|
Lee H, Camuto CM, Niehrs C. R-Spondin 2 governs Xenopus left-right body axis formation by establishing an FGF signaling gradient. Nat Commun 2024; 15:1003. [PMID: 38307837 PMCID: PMC10837206 DOI: 10.1038/s41467-024-44951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
Establishment of the left-right (LR, sinistral, dextral) body axis in many vertebrate embryos relies on cilia-driven leftward fluid flow within an LR organizer (LRO). A cardinal question is how leftward flow triggers symmetry breakage. The chemosensation model posits that ciliary flow enriches a signaling molecule on the left side of the LRO that promotes sinistral cell fate. However, the nature of this sinistralizing signal has remained elusive. In the Xenopus LRO, we identified the stem cell growth factor R-Spondin 2 (Rspo2) as a symmetrically expressed, sinistralizing signal. As predicted for a flow-mediated signal, Rspo2 operates downstream of leftward flow but upstream of the asymmetrically expressed gene dand5. Unexpectedly, in LR patterning, Rspo2 acts as an FGF receptor antagonist: Rspo2 via its TSP1 domain binds Fgfr4 and promotes its membrane clearance by Znrf3-mediated endocytosis. Concordantly, we find that at flow-stage, FGF signaling is dextralizing and forms a gradient across the LRO, high on the dextral- and low on the sinistral side. Rspo2 gain- and loss-of function equalize this FGF signaling gradient and sinistralize and dextralize development, respectively. We propose that leftward flow of Rspo2 produces an FGF signaling gradient that governs LR-symmetry breakage.
Collapse
Affiliation(s)
- Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Celine Marie Camuto
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
6
|
Minakawa T, Yamashita JK. Versatile extracellular vesicle-mediated information transfer: intercellular synchronization of differentiation and of cellular phenotypes, and future perspectives. Inflamm Regen 2024; 44:4. [PMID: 38225584 PMCID: PMC10789073 DOI: 10.1186/s41232-024-00318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
In recent years, extracellular vesicles (EVs) have attracted significant attention as carriers in intercellular communication. The vast array of information contained within EVs is critical for various cellular activities, such as proliferation and differentiation of multiple cell types. Moreover, EVs are being employed in disease diagnostics, implicated in disease etiology, and have shown promise in tissue repair. Recently, a phenomenon has been discovered in which cellular phenotypes, including the progression of differentiation, are synchronized among cells via EVs. This synchronization could be prevalent in widespread different situations in embryogenesis and tissue organization and maintenance. Given the increasing research on multi-cellular tissues and organoids, the role of EV-mediated intercellular communication has become increasingly crucial. This review begins with fundamental knowledge of EVs and then discusses recent findings, various modes of information transfer via EVs, and synchronization of cellular phenotypes.
Collapse
Affiliation(s)
- Tomohiro Minakawa
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Jun K Yamashita
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
7
|
Kulkarni PP, Ekhlak M, Dash D. Non-canonical non-genomic morphogen signaling in anucleate platelets: a critical determinant of prothrombotic function in circulation. Cell Commun Signal 2024; 22:13. [PMID: 38172855 PMCID: PMC10763172 DOI: 10.1186/s12964-023-01448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Circulating platelets derived from bone marrow megakaryocytes play a central role in thrombosis and hemostasis. Despite being anucleate, platelets express several proteins known to have nuclear niche. These include transcription factors and steroid receptors whose non-genomic functions are being elucidated in platelets. Quite remarkably, components of some of the best-studied morphogen pathways, namely Notch, Sonic Hedgehog (Shh), and Wnt have also been described in recent years in platelets, which regulate platelet function in the context of thrombosis as well as influence their survival. Shh and Notch pathways in stimulated platelets establish feed-forward loops of autocrine/juxtacrine/paracrine non-canonical signaling that helps perpetuate thrombosis. On the other hand, non-canonical Wnt signaling is part of a negative feedback loop for restricting platelet activation and possibly limiting thrombus growth. The present review will provide an overview of these signaling pathways in general. We will then briefly discuss the non-genomic roles of transcription factors and steroid receptors in platelet activation. This will be followed by an elaborate description of morphogen signaling in platelets with a focus on their bearing on platelet activation leading to hemostasis and thrombosis as well as their potential for therapeutic targeting in thrombotic disorders.
Collapse
Affiliation(s)
- Paresh P Kulkarni
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Mohammad Ekhlak
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
8
|
Gabriel GC, Lo CW. Molecular Pathways and Animal Models of Defects in Situs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:719-738. [PMID: 38884745 DOI: 10.1007/978-3-031-44087-8_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Left-right patterning is among the least well understood of the three axes defining the body plan, and yet it is no less important, with left-right patterning defects causing structural birth defects with high morbidity and mortality, such as complex congenital heart disease, biliary atresia, or intestinal malrotation. The cell signaling pathways governing left-right asymmetry are highly conserved and involve multiple components of the TGF-β superfamily of cell signaling molecules. Central to left-right patterning is the differential activation of Nodal on the left, and BMP signaling on the right. In addition, a plethora of other cell signaling pathways including Shh, FGF, and Notch also contribute to the regulation of left-right patterning. In vertebrate embryos such as the mouse, frog, or zebrafish, the specification of left-right identity requires the left-right organizer (LRO) containing cells with motile and primary cilia that mediate the left-sided propagation of Nodal signaling, followed by left-sided activation of Lefty and then Pitx2, a transcription factor that specifies visceral organ asymmetry. While this overall scheme is well conserved, there are striking species differences, including the finding that motile cilia do not play a role in left-right patterning in some vertebrates. Surprisingly, the direction of heart looping, one of the first signs of organ left-right asymmetry, was recently shown to be specified by intrinsic cell chirality, not Nodal signaling, possibly a reflection of the early origin of Nodal signaling in radially symmetric organisms. How this intrinsic chirality interacts with downstream molecular pathways regulating visceral organ asymmetry will need to be further investigated to elucidate how disturbance in left-right patterning may contribute to complex CHD.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Messmore M, Kassab AJ, Prather RO, Arceo DAC, DeCampli W. Cilia and Nodal Flow in Asymmetry: An Engineering Perspective. Crit Rev Biomed Eng 2024; 52:63-82. [PMID: 38523441 DOI: 10.1615/critrevbiomedeng.2024051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Over the past several years, cilia in the primitive node have become recognized more and more for their contribution to development, and more specifically, for their role in axis determination. Although many of the mechanisms behind their influence remain undocumented, it is known that their presence and motion in the primitive node of developing embryos is the determinant of the left-right axis. Studies on cilial mechanics and nodal fluid dynamics have provided clues as to how this asymmetry mechanism works, and more importantly, have shown that direct manipulation of the flow field in the node can directly influence physiology. Although relatively uncommon, cilial disorders have been shown to have a variety of impacts on individuals from chronic respiratory infections to infertility, as well as situs inversus which is linked to congenital heart disease. After first providing background information pertinent to understanding nodal flow and information on why this discussion is important, this paper aims to give a review of the history of nodal cilia investigations, an overview of cilia mechanics and nodal flow dynamics, as well as a review of research studies current and past that sought to understand the mechanisms behind nodal cilia's involvement in symmetry-breaking pathways through a biomedical engineering perspective. This discussion has the additional intention to compile interdisciplinary knowledge on asymmetry and development such that it may encourage more collaborative efforts between the sciences on this topic, as well as provide insight on potential paths forward in the field.
Collapse
Affiliation(s)
| | - Alain J Kassab
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, Florida, USA
| | - Ray O Prather
- Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA; University of Central Florida, Orlando, FL 32816, USA; The Heart Center at Orlando Health Arnold Palmer Hospital for Children, Orlando, FL 32806, USA
| | - David A Castillo Arceo
- College of Engineering and Computer Science (CECS), University of Central Florida, Orlando, FL, USA
| | - William DeCampli
- University of Central Florida, Orlando, FL, 32816, USA; The Heart Center, Arnold Palmer Hospital for Children, Orlando, FL, 32806, USA
| |
Collapse
|
10
|
Gabriel GC, Wu YL, Lo CW. Establishment of Cardiac Laterality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:167-183. [PMID: 38884711 DOI: 10.1007/978-3-031-44087-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Formation of the vertebrate heart with its complex arterial and venous connections is critically dependent on patterning of the left-right axis during early embryonic development. Abnormalities in left-right patterning can lead to a variety of complex life-threatening congenital heart defects. A highly conserved pathway responsible for left-right axis specification has been uncovered. This pathway involves initial asymmetric activation of a nodal signaling cascade at the embryonic node, followed by its propagation to the left lateral plate mesoderm and activation of left-sided expression of the Pitx2 transcription factor specifying visceral organ asymmetry. Intriguingly, recent work suggests that cardiac laterality is encoded by intrinsic cell and tissue chirality independent of Nodal signaling. Thus, Nodal signaling may be superimposed on this intrinsic chirality, providing additional instructive cues to pattern cardiac situs. The impact of intrinsic chirality and the perturbation of left-right patterning on myofiber organization and cardiac function warrants further investigation. We summarize recent insights gained from studies in animal models and also some human clinical studies in a brief overview of the complex processes regulating cardiac asymmetry and their impact on cardiac function and the pathogenesis of congenital heart defects.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yijen L Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Abdel-Razek O, Marzouk A, MacKinnon M, Guy ET, Pohar SA, Zhushma E, Liu J, Sia I, Gokey JJ, Tay HG, Amack JD. Calcium signaling mediates proliferation of the precursor cells that give rise to the ciliated left-right organizer in the zebrafish embryo. Front Mol Biosci 2023; 10:1292076. [PMID: 38152112 PMCID: PMC10751931 DOI: 10.3389/fmolb.2023.1292076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023] Open
Abstract
Several of our internal organs, including heart, lungs, stomach, and spleen, develop asymmetrically along the left-right (LR) body axis. Errors in establishing LR asymmetry, or laterality, of internal organs during early embryonic development can result in birth defects. In several vertebrates-including humans, mice, frogs, and fish-cilia play a central role in establishing organ laterality. Motile cilia in a transient embryonic structure called the "left-right organizer" (LRO) generate a directional fluid flow that has been proposed to be detected by mechanosensory cilia to trigger asymmetric signaling pathways that orient the LR axis. However, the mechanisms that control the form and function of the ciliated LRO remain poorly understood. In the zebrafish embryo, precursor cells called dorsal forerunner cells (DFCs) develop into a transient ciliated structure called Kupffer's vesicle (KV) that functions as the LRO. DFCs can be visualized and tracked in the embryo, thereby providing an opportunity to investigate mechanisms that control LRO development. Previous work revealed that proliferation of DFCs via mitosis is a critical step for developing a functional KV. Here, we conducted a targeted pharmacological screen to identify mechanisms that control DFC proliferation. Small molecule inhibitors of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) were found to reduce DFC mitosis. The SERCA pump is involved in regulating intracellular calcium ion (Ca2+) concentration. To visualize Ca2+ in living embryos, we generated transgenic zebrafish using the fluorescent Ca2+ biosensor GCaMP6f. Live imaging identified dynamic cytoplasmic Ca2+ transients ("flux") that occur unambiguously in DFCs. In addition, we report Ca2+ flux events that occur in the nucleus of DFCs. Nuclear Ca2+ flux occurred in DFCs that were about to undergo mitosis. We find that SERCA inhibitor treatments during DFC proliferation stages alters Ca2+ dynamics, reduces the number of ciliated cells in KV, and alters embryo laterality. Mechanistically, SERCA inhibitor treatments eliminated both cytoplasmic and nuclear Ca2+ flux events, and reduced progression of DFCs through the S/G2 phases of the cell cycle. These results identify SERCA-mediated Ca2+ signaling as a mitotic regulator of the precursor cells that give rise to the ciliated LRO.
Collapse
Affiliation(s)
- Osama Abdel-Razek
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Amanda Marzouk
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Madison MacKinnon
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Edward T. Guy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Emily Zhushma
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Junjie Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Isabel Sia
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jason J. Gokey
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Hwee Goon Tay
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
12
|
Nauryzgaliyeva Z, Goux Corredera I, Garreta E, Montserrat N. Harnessing mechanobiology for kidney organoid research. Front Cell Dev Biol 2023; 11:1273923. [PMID: 38077999 PMCID: PMC10704179 DOI: 10.3389/fcell.2023.1273923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 10/16/2024] Open
Abstract
Recently, organoids have emerged as revolutionizing tools with the unprecedented potential to recreate organ-specific microanatomy in vitro. Upon their derivation from human pluripotent stem cells (hPSCs), organoids reveal the blueprints of human organogenesis, further allowing the faithful recapitulation of their physiology. Nevertheless, along with the evolution of this field, advanced research exposed the organoids' shortcomings, particularly regarding poor reproducibility rates and overall immatureness. To resolve these challenges, many studies have started to underscore the relevance of mechanical cues as a relevant source to induce and externally control hPSCs differentiation. Indeed, established organoid generation protocols from hPSCs have mainly relyed on the biochemical induction of fundamental signalling pathways present during kidney formation in mammals, whereas mechanical cues have largely been unexplored. This review aims to discuss the pertinence of (bio) physical cues within hPSCs-derived organoid cultures, while deciphering their effect on morphogenesis. Moreover, we will explore state-of-the-art mechanobiology techniques as revolutionizing means for understanding the underlying role of mechanical forces in biological processes in organoid model systems.
Collapse
Affiliation(s)
- Zarina Nauryzgaliyeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Iphigénie Goux Corredera
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
13
|
Lea WA, Winklhofer T, Zelenchuk L, Sharma M, Rossol-Allison J, Fields TA, Reif G, Calvet JP, Bakeberg JL, Wallace DP, Ward CJ. Polycystin-1 Interacting Protein-1 (CU062) Interacts with the Ectodomain of Polycystin-1 (PC1). Cells 2023; 12:2166. [PMID: 37681898 PMCID: PMC10487028 DOI: 10.3390/cells12172166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The PKD1 gene, encoding protein polycystin-1 (PC1), is responsible for 85% of cases of autosomal dominant polycystic kidney disease (ADPKD). PC1 has been shown to be present in urinary exosome-like vesicles (PKD-ELVs) and lowered in individuals with germline PKD1 mutations. A label-free mass spectrometry comparison of urinary PKD-ELVs from normal individuals and those with PKD1 mutations showed that several proteins were reduced to a degree that matched the decrease observed in PC1 levels. Some of these proteins, such as polycystin-2 (PC2), may be present in a higher-order multi-protein assembly with PC1-the polycystin complex (PCC). CU062 (Q9NYP8) is decreased in ADPKD PKD-ELVs and, thus, is a candidate PCC component. CU062 is a small glycoprotein with a signal peptide but no transmembrane domain and can oligomerize with itself and interact with PC1. We investigated the localization of CU062 together with PC1 and PC2 using immunofluorescence (IF). In nonconfluent cells, all three proteins were localized in close proximity to focal adhesions (FAs), retraction fibers (RFs), and RF-associated extracellular vesicles (migrasomes). In confluent cells, primary cilia had PC1/PC2/CU062 + extracellular vesicles adherent to their plasma membrane. In cells exposed to mitochondrion-decoupling agents, we detected the development of novel PC1/CU062 + ring-like structures that entrained swollen mitochondria. In contact-inhibited cells under mitochondrial stress, PC1, PC2, and CU062 were observed on large, apically budding extracellular vesicles, where the proteins formed a reticular network on the membrane. CU062 interacts with PC1 and may have a role in the identification of senescent mitochondria and their extrusion in extracellular vesicles.
Collapse
Affiliation(s)
- Wendy A. Lea
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - Thomas Winklhofer
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - Lesya Zelenchuk
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - Madhulika Sharma
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | | | - Timothy A. Fields
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop 3062, Kansas City, KS 66160, USA
| | - Gail Reif
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - James P. Calvet
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - Jason L. Bakeberg
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - Darren P. Wallace
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - Christopher J. Ward
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| |
Collapse
|
14
|
Tanaka Y, Morozumi A, Hirokawa N. Nodal flow transfers polycystin to determine mouse left-right asymmetry. Dev Cell 2023; 58:1447-1461.e6. [PMID: 37413993 DOI: 10.1016/j.devcel.2023.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/30/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Left-dominant [Ca2+]i elevation on the left margin of the ventral node furnishes the initial laterality of mouse embryos. It depends on extracellular leftward fluid flow (nodal flow), fibroblast growth factor receptor (FGFR)/sonic hedgehog (Shh) signaling, and the PKD1L1 polycystin subunit, of which interrelationship is still elusive. Here, we show that leftward nodal flow directs PKD1L1-containing fibrous strands and facilitates Nodal-mediated [Ca2+]i elevation on the left margin. We generate KikGR-PKD1L1 knockin mice in order to monitor protein dynamics with a photoconvertible fluorescence protein tag. By imaging those embryos, we have identified fragile meshwork being gradually transferred leftward involving pleiomorphic extracellular events. A portion of the meshwork finally bridges over the left nodal crown cells in an FGFR/Shh-dependent manner. As PKD1L1 N-term is predominantly associated with Nodal on the left margin and that PKD1L1/PKD2 overexpression significantly augments cellular Nodal sensitivity, we propose that leftward transfer of polycystin-containing fibrous strands determines left-right asymmetry in developing embryos.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ai Morozumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo Advanced Research Institute for Health Science, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
15
|
Tran U, Wessely O. Traveling to the left: A story of PKD1L1-containing vesicles. Dev Cell 2023; 58:1445-1446. [PMID: 37607472 DOI: 10.1016/j.devcel.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
The establishment of the left-right asymmetry in vertebrate animals is orchestrated by a series of tightly regulated events. In this issue of Developmental Cell, Tanaka et al. provide a tantalizing model to show how fluid flow in the mouse ventral node becomes integrated in a molecular cellular signature of asymmetry.
Collapse
Affiliation(s)
- Uyen Tran
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Oliver Wessely
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
16
|
Onodera S, Azuma T. Hedgehog-Related Mutation Causes Bone Malformations with or without Hereditary Gene Mutations. Int J Mol Sci 2023; 24:12903. [PMID: 37629084 PMCID: PMC10454035 DOI: 10.3390/ijms241612903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The hedgehog (Hh) family consists of numerous signaling mediators that play important roles at various stages of development. Thus, the Hh pathway is essential for bone tissue development and tumorigenesis. Gorlin syndrome is a skeletal and tumorigenic disorder caused by gain-of-function mutations in Hh signaling. In this review, we first present the phenotype of Gorlin syndrome and the relationship between genotype and phenotype in bone and craniofacial tissues, including the causative gene as well as other Hh-related genes. Next, the importance of new diagnostic methods using next-generation sequencing and multiple gene panels will be discussed. We summarize Hh-related genetic disorders, including cilia disease, and the genetics of Hh-related bone diseases.
Collapse
Affiliation(s)
- Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
17
|
Dong Y, Zhang K, Yao H, Jia T, Wang J, Zhu D, Xu F, Cheng M, Zhao S, Shi X. Clinical and genetic characteristics of 36 children with Joubert syndrome. Front Pediatr 2023; 11:1102639. [PMID: 37547106 PMCID: PMC10401045 DOI: 10.3389/fped.2023.1102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Background and aims Joubert syndrome (JBTS, OMIM # 213300) is a group of ciliopathies characterized by mid-hindbrain malformation, developmental delay, hypotonia, oculomotor apraxia, and breathing abnormalities. Molar tooth sign in brain imaging is the hallmark for diagnosing JBTS. It is a clinically and genetically heterogeneous disorder involving mutations in more than 40 ciliopathy-related genes. However, long-term follow-up data are scarce, and further research is needed to determine the abundant phenotypes and genetics of this disorder. The study aimed to summarize clinical manifestations, particular appearance on cranial imaging, genetic data, and prognostic features of patients with JBTS. Methods A retrospective case review of 36 cases of JBTS from May 1986 to December 2021 was performed. Clinical data of JBTS patients with development retardation and molar tooth sign on cranial imaging as the main features were analyzed. Genetic testing was performed according to consent obtained from patients and their families. The Gesell Developmental Scale was used to evaluate the intelligence level before and after treatment. The children were divided into a purely neurological JBTS (pure JBTS) group and JBTS with multi-organ system involvement group and then followed up every 3-6 months. Results We enrolled 18 males and 18 females. Thirty-four (94.44%) cases had developmental delay, one patient (2.78%) had strabismus, and one patient (2.78%) had intermittent dizziness. There was one case co-morbid with Lesch-Nyhan syndrome. Three-quarters of cases had one or more other organ or system involvement, with a greater predilection for vision and hearing impairment. JBTS could also involve the skin. Thirty-one cases (86.11%) showed a typical molar tooth sign, and five cases showed a bat wing sign on cranial imaging. Abnormal video electroencephalogram (VEEG) result was obtained in 7.69% of cases. We found six JBTS-related novel gene loci variants: CPLANE1: c.4189 + 1G > A, c.3101T > C(p.Ile1034Thr), c.3733T > C (p.Cys1245Arg), c.4080G > A(p.Lys1360=); RPGRIP1l: c.1351-11A > G; CEP120: c.214 C > T(p.Arg72Cys). The CHD7 gene may be potentially related to the occurrence of JBTS. Analysis showed that the prognosis of pure JBTS was better than that of JBTS with neurological and non-neurological involvement after the formal rehabilitation treatment (P < 0.05). Of the three children with seizures, two cases had epilepsy with a poor prognosis, and another case had breath-holding spells. Conclusion Our findings indicate that early cranial imaging is helpful for the etiological diagnosis of children with unexplained developmental delay and multiple malformations. Patients with JBTS may have coexisting skin abnormalities. The novel gene loci of CPLANE1, RPGRIP1l, and CEP120 were associated with JBTS in our study and provided significant information to enrich the related genetic data. Future works investigating several aspects of the association between CHD7 gene and JBTS merit further investigation. The prognosis of children with pure JBTS is better than that of children with JBTS with non-neurological involvement.
Collapse
Affiliation(s)
- Yan Dong
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Zhang
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - He Yao
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tianming Jia
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Wang
- Department of Children Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Department of Children Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Falin Xu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meiying Cheng
- Department of Radiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shichao Zhao
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyi Shi
- Department of Pediatric Development and Behavior, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Bellchambers HM, Phatak AR, Nenni MJ, Padua MB, Gao H, Liu Y, Ware SM. Single cell RNA analysis of the left-right organizer transcriptome reveals potential novel heterotaxy genes. Sci Rep 2023; 13:10688. [PMID: 37393374 PMCID: PMC10314903 DOI: 10.1038/s41598-023-36862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
The establishment of left-right patterning in mice occurs at a transient structure called the embryonic node or left-right organizer (LRO). Previous analysis of the LRO has proven challenging due to the small cell number and transient nature of this structure. Here, we seek to overcome these difficulties to define the transcriptome of the LRO. Specifically, we used single cell RNA sequencing of 0-1 somite embryos to identify LRO enriched genes which were compared to bulk RNA sequencing of LRO cells isolated by fluorescent activated cell sorting. Gene ontology analysis indicated an enrichment of genes associated with cilia and laterality terms. Furthermore, comparison to previously identified LRO genes identified 127 novel LRO genes, including Ttll3, Syne1 and Sparcl1, for which the expression patterns were validated using whole mount in situ hybridization. This list of novel LRO genes will be a useful resource for further studies on LRO morphogenesis, the establishment of laterality and the genetic causes of heterotaxy.
Collapse
Affiliation(s)
- Helen M Bellchambers
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Amruta R Phatak
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Mardi J Nenni
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maria B Padua
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Stephanie M Ware
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
19
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
20
|
Nishie T, Ohta Y, Shirai E, Higaki S, Shimozawa N, Narita K, Kawaguchi K, Tanaka H, Mori C, Tanaka T, Hirabayashi M, Suemori H, Kurisaki A, Tooyama I, Asano S, Takeda S, Takada T. Identification of TEKTIN1-expressing multiciliated cells during spontaneous differentiation of non-human primate embryonic stem cells. Genes Cells 2023. [PMID: 37186436 DOI: 10.1111/gtc.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Tektins are a group of microtubule-stabilizing proteins necessary for cilia and flagella assembly. TEKTIN1 (TEKT1) is used as a sperm marker for monitoring germ cell differentiation in embryonic stem (ES) and induced pluripotent stem (iPS) cells. Although upregulation of TEKT1 has been reported during spontaneous differentiation of ES and iPS cells, it is unclear which cells express TEKT1. To identify TEKT1-expressing cells, we established an ES cell line derived from cynomolgus monkeys (Macaca fascicularis), which expresses Venus controlled by the TEKT1 promoter. Venus expression was detected at 5 weeks of differentiation on the surface of the embryoid body (EB), and it gradually increased with the concomitant formation of a leash-like structure at the EB periphery. Motile cilia were observed on the surface of the Venus-positive leash-like structure after 8 weeks of differentiation. The expression of cilia markers as well as TEKT1-5 and 9 + 2 microtubule structures, which are characteristic of motile cilia, were detected in Venus-positive cells. These results demonstrated that TEKT1-expressing cells are multiciliated epithelial-like cells that form a leash-like structure during the spontaneous differentiation of ES and iPS cells. These findings will provide a new research strategy for studying cilia biology, including ciliogenesis and ciliopathies.
Collapse
Affiliation(s)
- Tomomi Nishie
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yoshio Ohta
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Emi Shirai
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shogo Higaki
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Nobuhiro Shimozawa
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba-shi, Ibaraki, Japan
| | - Keishi Narita
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hideyuki Tanaka
- Department of Anatomy, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Chika Mori
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Taiga Tanaka
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hirofumi Suemori
- Center for Human ES Cell Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akira Kurisaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center and Medical Innovation Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Sén Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School, University of Yamanashi, Chuo, Yamanashi, Japan
- Department of Anatomy, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Tatsuyuki Takada
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
21
|
Abstract
Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.
Collapse
Affiliation(s)
- Orhi Esarte Palomero
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Megan Larmore
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
22
|
Bissler JJ, Batchelor D, Kingswood JC. Progress in Tuberous Sclerosis Complex Renal Disease. Crit Rev Oncog 2023; 27:35-49. [PMID: 36734871 DOI: 10.1615/critrevoncog.2022042857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that affects both fetal development and postnatal tissue growth, resulting in altered brain structures and a tumor predisposition syndrome. Although every organ system is affected by the disease, kidney involvement is a leading cause of death in adults with TSC. Over the past decade, significant progress has been made in understanding the renal disease. This review focuses on the cystic and solid renal lesions in TSC, including their pathobiology and treatment.
Collapse
Affiliation(s)
- John J Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105; Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105; Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Dinah Batchelor
- Johns Hopkins All Children's Hospital, St. Petersburg, FL 33702
| | - J Christopher Kingswood
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Centre, St. Georges University of London, London, United Kingdom
| |
Collapse
|
23
|
Djenoune L, Mahamdeh M, Truong TV, Nguyen CT, Fraser SE, Brueckner M, Howard J, Yuan S. Cilia function as calcium-mediated mechanosensors that instruct left-right asymmetry. Science 2023; 379:71-78. [PMID: 36603098 PMCID: PMC9939240 DOI: 10.1126/science.abq7317] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The breaking of bilateral symmetry in most vertebrates is critically dependent upon the motile cilia of the embryonic left-right organizer (LRO), which generate a directional fluid flow; however, it remains unclear how this flow is sensed. Here, we demonstrated that immotile LRO cilia are mechanosensors for shear force using a methodological pipeline that combines optical tweezers, light sheet microscopy, and deep learning to permit in vivo analyses in zebrafish. Mechanical manipulation of immotile LRO cilia activated intraciliary calcium transients that required the cation channel Polycystin-2. Furthermore, mechanical force applied to LRO cilia was sufficient to rescue and reverse cardiac situs in zebrafish that lack motile cilia. Thus, LRO cilia are mechanosensitive cellular levers that convert biomechanical forces into calcium signals to instruct left-right asymmetry.
Collapse
Affiliation(s)
- Lydia Djenoune
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Mohammed Mahamdeh
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Thai V. Truong
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher T. Nguyen
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Martina Brueckner
- Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jonathon Howard
- Department of Molecular Biochemistry and Biophysics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shiaulou Yuan
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
24
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
25
|
Sandoval L, Labarca M, Retamal C, Sánchez P, Larraín J, González A. Sonic hedgehog is basolaterally sorted from the TGN and transcytosed to the apical domain involving Dispatched-1 at Rab11-ARE. Front Cell Dev Biol 2022; 10:833175. [PMID: 36568977 PMCID: PMC9768590 DOI: 10.3389/fcell.2022.833175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Hedgehog proteins (Hhs) secretion from apical and/or basolateral domains occurs in different epithelial cells impacting development and tissue homeostasis. Palmitoylation and cholesteroylation attach Hhs to membranes, and Dispatched-1 (Disp-1) promotes their release. How these lipidated proteins are handled by the complex secretory and endocytic pathways of polarized epithelial cells remains unknown. We show that polarized Madin-Darby canine kidney cells address newly synthesized sonic hedgehog (Shh) from the TGN to the basolateral cell surface and then to the apical domain through a transcytosis pathway that includes Rab11-apical recycling endosomes (Rab11-ARE). Both palmitoylation and cholesteroylation contribute to this sorting behavior, otherwise Shh lacking these lipid modifications is secreted unpolarized. Disp-1 mediates first basolateral secretion from the TGN and then transcytosis from Rab11-ARE. At the steady state, Shh predominates apically and can be basolaterally transcytosed. This Shh trafficking provides several steps for regulation and variation in different epithelia, subordinating the apical to the basolateral secretion.
Collapse
Affiliation(s)
- Lisette Sandoval
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mariana Labarca
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile
| | - Paula Sánchez
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Larraín
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile,*Correspondence: Alfonso González,
| |
Collapse
|
26
|
Amack JD. Structures and functions of cilia during vertebrate embryo development. Mol Reprod Dev 2022; 89:579-596. [PMID: 36367893 PMCID: PMC9805515 DOI: 10.1002/mrd.23650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Cilia are hair-like structures that project from the surface of cells. In vertebrates, most cells have an immotile primary cilium that mediates cell signaling, and some specialized cells assemble one or multiple cilia that are motile and beat synchronously to move fluids in one direction. Gene mutations that alter cilia structure or function cause a broad spectrum of disorders termed ciliopathies that impact virtually every system in the body. A wide range of birth defects associated with ciliopathies underscores critical functions for cilia during embryonic development. In many cases, the mechanisms underlying cilia functions during development and disease remain poorly understood. This review describes different types of cilia in vertebrate embryos and discusses recent research results from diverse model systems that provide novel insights into how cilia form and function during embryo development. The work discussed here not only expands our understanding of in vivo cilia biology, but also opens new questions about cilia and their roles in establishing healthy embryos.
Collapse
Affiliation(s)
- Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA,,BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, New York, USA
| |
Collapse
|
27
|
Wang S, Tanaka Y, Xu Y, Takeda S, Hirokawa N. KIF3B promotes a PI3K signaling gradient causing changes in a Shh protein gradient and suppressing polydactyly in mice. Dev Cell 2022; 57:2273-2289.e11. [DOI: 10.1016/j.devcel.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
|
28
|
Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol 2022; 85:107-122. [PMID: 33836254 PMCID: PMC8492792 DOI: 10.1016/j.semcancer.2021.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Cell-cell communication through evolutionarily conserved signaling pathways governs embryonic development and adult tissue homeostasis. Deregulation of these signaling pathways has been implicated in a wide range of human diseases including cancer. One such pathway is the Hedgehog (Hh) pathway, which was originally discovered in Drosophila and later found to play a fundamental role in human development and diseases. Abnormal Hh pathway activation is a major driver of basal cell carcinomas (BCC) and medulloblastoma. Hh exerts it biological influence through a largely conserved signal transduction pathway from the activation of the GPCR family transmembrane protein Smoothened (Smo) to the conversion of latent Zn-finger transcription factors Gli/Ci proteins from their repressor (GliR/CiR) to activator (GliA/CiA) forms. Studies from model organisms and human patients have provided deep insight into the Hh signal transduction mechanisms, revealed roles of Hh signaling in a wide range of human cancers, and suggested multiple strategies for targeting this pathway in cancer treatment.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Molecular Biology and Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
29
|
Nguyen TD, Truong ME, Reiter JF. The Intimate Connection Between Lipids and Hedgehog Signaling. Front Cell Dev Biol 2022; 10:876815. [PMID: 35757007 PMCID: PMC9222137 DOI: 10.3389/fcell.2022.876815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/13/2022] [Indexed: 01/19/2023] Open
Abstract
Hedgehog (HH) signaling is an intercellular communication pathway involved in directing the development and homeostasis of metazoans. HH signaling depends on lipids that covalently modify HH proteins and participate in signal transduction downstream. In many animals, the HH pathway requires the primary cilium, an organelle with a specialized protein and lipid composition. Here, we review the intimate connection between HH signaling and lipids. We highlight how lipids in the primary cilium can create a specialized microenvironment to facilitate signaling, and how HH and components of the HH signal transduction pathway use lipids to communicate between cells.
Collapse
Affiliation(s)
- Thi D. Nguyen
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa E. Truong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States,Chan Zuckerberg Biohub, San Francisco, CA, United States,*Correspondence: Jeremy F. Reiter,
| |
Collapse
|
30
|
Kumar P, Zadjali F, Yao Y, Köttgen M, Hofherr A, Gross KW, Mehta D, Bissler JJ. Single Gene Mutations in Pkd1 or Tsc2 Alter Extracellular Vesicle Production and Trafficking. BIOLOGY 2022; 11:biology11050709. [PMID: 35625437 PMCID: PMC9139108 DOI: 10.3390/biology11050709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 04/30/2022] [Indexed: 12/17/2022]
Abstract
Simple Summary Extracellular vesicles shed from primary cilia may be involved in renal cystogenesis. The disruption of the Pkd1 gene in our cell culture system increased the production of EVs in a similar way that occurs when the Tsc2 gene is disrupted. Disruption of the primary cilia depresses EV production, and this may be the reason that the combined Kif3A/Pkd1 mutant mouse has a less severe phenotype than the Pkd1 mutant alone. We initiated studies aimed at understanding the renal trafficking of renally-derived EVs and found that single gene disruptions can alter the EV kinetics based on dye tracking studies. These results raise the possibility that EV features, such as cargo, dose, tissue half-life, and targeting, may be involved in the disease process, and these features may also be fertile targets for diagnostic, prognostic, and therapeutic investigation. Abstract Patients with autosomal dominant polycystic kidney disease (ADPKD) and tuberous sclerosis complex (TSC) are born with normal or near-normal kidneys that later develop cysts and prematurely lose function. Both renal cystic diseases appear to be mediated, at least in part, by disease-promoting extracellular vesicles (EVs) that induce genetically intact cells to participate in the renal disease process. We used centrifugation and size exclusion chromatography to isolate the EVs for study. We characterized the EVs using tunable resistive pulse sensing, dynamic light scattering, transmission electron microscopy, and Western blot analysis. We performed EV trafficking studies using a dye approach in both tissue culture and in vivo studies. We have previously reported that loss of the Tsc2 gene significantly increased EV production and here demonstrate that the loss of the Pkd1 gene also significantly increases EV production. Using a cell culture system, we also show that loss of either the Tsc2 or Pkd1 gene results in EVs that exhibit an enhanced uptake by renal epithelial cells and a prolonged half-life. Loss of the primary cilia significantly reduces EV production in renal collecting duct cells. Cells that have a disrupted Pkd1 gene produce EVs that have altered kinetics and a prolonged half-life, possibly impacting the duration of the EV cargo effect on the recipient cell. These results demonstrate the interplay between primary cilia and EVs and support a role for EVs in polycystic kidney disease pathogenesis.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- US FDA National Center for Toxicological Research, Jefferson, AR 72079, USA;
| | - Fahad Zadjali
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Department of Clinical Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Ying Yao
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Michael Köttgen
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.K.); (A.H.)
- CIBSS—Centre for Integrative Biological Signaling Studies, 79104 Freiburg, Germany
| | - Alexis Hofherr
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.K.); (A.H.)
| | - Kenneth W. Gross
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Darshan Mehta
- US FDA National Center for Toxicological Research, Jefferson, AR 72079, USA;
| | - John J. Bissler
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Pediatric Medicine Department, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Correspondence:
| |
Collapse
|
31
|
Laterality in modern medicine: a historical overview of animal laterality, human laterality, and current influences in clinical practice. EUROPEAN JOURNAL OF PLASTIC SURGERY 2022. [DOI: 10.1007/s00238-022-01963-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
He J, You D, Li Q, Wang J, Ding S, He X, Zheng H, Ji Z, Wang X, Ye X, Liu C, Kang H, Xu X, Xu X, Wang H, Yu M. Osteogenesis-Inducing Chemical Cues Enhance the Mechanosensitivity of Human Mesenchymal Stem Cells for Osteogenic Differentiation on a Microtopographically Patterned Surface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200053. [PMID: 35373921 PMCID: PMC9165486 DOI: 10.1002/advs.202200053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Indexed: 05/13/2023]
Abstract
Mechanical cues are widely used for regulating cell behavior because of their overarching, extensive, and non-invasive advantages. However, unlike chemical cues, mechanical cues are not efficient enough to determine cell fate independently and improving the mechanosensitivity of cells is rather challenging. In this study, the combined effect of chemical and mechanical cues on the osteogenic differentiation of human mesenchymal stem cells is examined. These results show that chemical cues such as the presence of an osteogenic medium, induce cells to secrete more collagen, and induce integrin for recruiting focal adhesion proteins that mature and cascade a series of events with the help of the mechanical force of the scaffold material. High-resolution, highly ordered hollow-micro-frustum-arrays using double-layer lithography, combined with modified methacrylate gelatin loaded with pre-defined soluble chemicals to provide both chemical and mechanical cues to cells. This approach ultimately facilitates the achievement of cellular osteodifferentiation and enhances bone repair efficiency in a model of femoral fracture in vivo in mice. Moreover, the results also reveal these pivotal roles of Integrin α2/Focal adhesion kinase/Ras homolog gene family member A/Large Tumor Suppressor 1/Yes-associated protein in human mesenchymal stem cells osteogenic differentiation both in vitro and in vivo. Overall, these results show that chemical cues enhance the microtopographical sensitivity of cells.
Collapse
Affiliation(s)
- Jianxiang He
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Dongqi You
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Qi Li
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Jiabao Wang
- School of Materials Science and Engineeringand Institute for Advanced StudyTongji UniversityShanghai201804P. R. China
| | - Sijia Ding
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Xiaotong He
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Haiyan Zheng
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Zhenkai Ji
- School of Materials Science and Engineeringand Institute for Advanced StudyTongji UniversityShanghai201804P. R. China
| | - Xia Wang
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Xin Ye
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Chao Liu
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Hanyue Kang
- School of Materials Science and Engineeringand Institute for Advanced StudyTongji UniversityShanghai201804P. R. China
| | - Xiuzhen Xu
- School of Materials Science and Engineeringand Institute for Advanced StudyTongji UniversityShanghai201804P. R. China
| | - Xiaobin Xu
- School of Materials Science and Engineeringand Institute for Advanced StudyTongji UniversityShanghai201804P. R. China
| | - Huiming Wang
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
- School of StomatologyThe First Affiliated Hospital of Zhejiang University School of MedicineHangzhou310003P. R. China
| | - Mengfei Yu
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| |
Collapse
|
33
|
Wang Y, Wei J, Hong K, Zhou N, Liu X, Hong X, Li W, Zhao J, Chen C, Wu L, Yu L, Zhu X. Transcriptome Analysis Reveals the Molecular Response to Salinity Challenge in Larvae of the Giant Freshwater Prawn Macrobrachium rosenbergii. Front Physiol 2022; 13:885035. [PMID: 35574435 PMCID: PMC9099292 DOI: 10.3389/fphys.2022.885035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/11/2022] [Indexed: 11/15/2022] Open
Abstract
Salinity is a crucial factor influencing the growth, development, immunity, and reproduction of aquatic organisms; however, little is known about the molecular mechanism of the response to salinity challenge in larvae of the giant freshwater prawn Macrobrachium rosenbergii. Herein, larvae cultured in three treatment groups with salinities of 10, 13, and 16‰ (S10, S13, and S16) were collected, and then transcriptome analysis was conducted by RNA-seq. A total of 6,473, 3,830 and 3,584 differentially expressed genes (DEGs) were identified in the S10 vs. S13 comparison, S10 vs. S16 comparison and S13 vs. S16 comparison, respectively. These genes are involved in osmoregulation, energy metabolism, molting, and the immune response. qPCR analysis was used to detect the expression patterns of 16 DEGs to verify the accuracy of the transcriptome data. Protein–protein interaction (PPI) analysis for DEGs and microsatellite marker screening were also conducted to reveal the molecular mechanism of salinity regulation. Together, our results will provide insight into the molecular genetic basis of adaptation to salinity challenge for larvae of M. rosenbergii.
Collapse
Affiliation(s)
- Yakun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jie Wei
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Kunhao Hong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Nan Zhou
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Liang Wu
- Sisal and Sisal Products Quality Supervision, Inspection and Testing Center, Ministry of Agriculture and Rural Affairs, Zhanjiang, China
| | - Lingyun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Lingyun Yu, ; Xinping Zhu,
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Lingyun Yu, ; Xinping Zhu,
| |
Collapse
|
34
|
Antony D, Gulec Yilmaz E, Gezdirici A, Slagter L, Bakey Z, Bornaun H, Tanidir IC, Van Dinh T, Brunner HG, Walentek P, Arnold SJ, Backofen R, Schmidts M. Spectrum of Genetic Variants in a Cohort of 37 Laterality Defect Cases. Front Genet 2022; 13:861236. [PMID: 35547246 PMCID: PMC9083912 DOI: 10.3389/fgene.2022.861236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Laterality defects are defined by the perturbed left–right arrangement of organs in the body, occurring in a syndromal or isolated fashion. In humans, primary ciliary dyskinesia (PCD) is a frequent underlying condition of defective left–right patterning, where ciliary motility defects also result in reduced airway clearance, frequent respiratory infections, and infertility. Non-motile cilia dysfunction and dysfunction of non-ciliary genes can also result in disturbances of the left–right body axis. Despite long-lasting genetic research, identification of gene mutations responsible for left–right patterning has remained surprisingly low. Here, we used whole-exome sequencing with Copy Number Variation (CNV) analysis to delineate the underlying molecular cause in 35 mainly consanguineous families with laterality defects. We identified causative gene variants in 14 families with a majority of mutations detected in genes previously associated with PCD, including two small homozygous CNVs. None of the patients were previously clinically diagnosed with PCD, underlining the importance of genetic diagnostics for PCD diagnosis and adequate clinical management. Identified variants in non-PCD-associated genes included variants in PKD1L1 and PIFO, suggesting that dysfunction of these genes results in laterality defects in humans. Furthermore, we detected candidate variants in GJA1 and ACVR2B possibly associated with situs inversus. The low mutation detection rate of this study, in line with other previously published studies, points toward the possibility of non-coding genetic variants, putative genetic mosaicism, epigenetic, or environmental effects promoting laterality defects.
Collapse
Affiliation(s)
- Dinu Antony
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Elif Gulec Yilmaz
- Department of Medical Genetics, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Lennart Slagter
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Zeineb Bakey
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Helen Bornaun
- Department of Pediatric Cardiology, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | | | - Tran Van Dinh
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Han G. Brunner
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Maastricht University Medical Center and GROW School of Oncology and Development, Maastricht University, Maastricht, Netherlands
| | - Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Sebastian J. Arnold
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Miriam Schmidts
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Faculty of Medicine, Freiburg, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- *Correspondence: Miriam Schmidts,
| |
Collapse
|
35
|
Expanding the phenotype of males with OFD1 pathogenic variants-a case report and literature review. Eur J Med Genet 2022; 65:104496. [PMID: 35398350 PMCID: PMC10369588 DOI: 10.1016/j.ejmg.2022.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/31/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022]
Abstract
Pathogenic variants in the OFD1 gene have been classically associated with the Orofaciodigital syndrome type 1 in females, a condition previously considered to be X-linked dominant with male embryonic lethality. However, an increasing number of males with pathogenic OFD1 variants who survived beyond the neonatal period have now been reported in the literature. Although each new report has added to the ever-broadening spectrum of clinical findings seen in males, many questions about genotype-phenotype correlations and disease mechanism remain. Herein, we describe a 9-year-old male child with a novel hemizygous pathogenic OFD1 variant identified by exome sequencing and a unique combination of findings, not previously reported, including presence of both a hypothalamic hamartoma and the molar tooth sign. His clinical features overlap multiple ciliopathy phenotypes, blurring the boundaries of distinct ciliopathy gene-disease relationships. This case provides further evidence for the consideration of a broad OFD1-relateddisorder spectrum in affected males rather than multiple distinct phenotypes. Additionally, a review of previously published cases of the disorder in males support the inclusion of the OFD1 gene in the differential diagnosis and work up for all individuals who present with primary ciliopathy-type features, regardless of their gender. We also highlight current information about OFD1 variant types and pathogenesis and explore how these could mechanistically drive some of the observed phenotypic differences.
Collapse
|
36
|
Djenoune L, Berg K, Brueckner M, Yuan S. A change of heart: new roles for cilia in cardiac development and disease. Nat Rev Cardiol 2022; 19:211-227. [PMID: 34862511 PMCID: PMC10161238 DOI: 10.1038/s41569-021-00635-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Although cardiac abnormalities have been observed in a growing class of human disorders caused by defective primary cilia, the function of cilia in the heart remains an underexplored area. The primary function of cilia in the heart was long thought to be restricted to left-right axis patterning during embryogenesis. However, new findings have revealed broad roles for cilia in congenital heart disease, valvulogenesis, myocardial fibrosis and regeneration, and mechanosensation. In this Review, we describe advances in our understanding of the mechanisms by which cilia function contributes to cardiac left-right axis development and discuss the latest findings that highlight a broader role for cilia in cardiac development. Specifically, we examine the growing line of evidence connecting cilia function to the pathogenesis of congenital heart disease. Furthermore, we also highlight research from the past 10 years demonstrating the role of cilia function in common cardiac valve disorders, including mitral valve prolapse and aortic valve disease, and describe findings that implicate cardiac cilia in mechanosensation potentially linking haemodynamic and contractile forces with genetic regulation of cardiac development and function. Finally, given the presence of cilia on cardiac fibroblasts, we also explore the potential role of cilia in fibrotic growth and summarize the evidence implicating cardiac cilia in heart regeneration.
Collapse
Affiliation(s)
- Lydia Djenoune
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Berg
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Martina Brueckner
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| | - Shiaulou Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Abstract
Embryonic cells grow in environments that provide a plethora of physical cues, including mechanical forces that shape the development of the entire embryo. Despite their prevalence, the role of these forces in embryonic development and their integration with chemical signals have been mostly neglected, and scrutiny in modern molecular embryology tilted, instead, towards the dissection of molecular pathways involved in cell fate determination and patterning. It is now possible to investigate how mechanical signals induce downstream genetic regulatory networks to regulate key developmental processes in the embryo. Here, we review the insights into mechanical control of early vertebrate development, including the role of forces in tissue patterning and embryonic axis formation. We also highlight recent in vitro approaches using individual embryonic stem cells and self-organizing multicellular models of human embryos, which have been instrumental in expanding our understanding of how mechanics tune cell fate and cellular rearrangements during human embryonic development.
Collapse
|
38
|
Reiter CR, Rebiai R, Kwak A, Marshall J, Wozniak D, Scesa G, Nguyen D, Rue E, Pathmasiri C, Pijewski R, van Breemen R, Cologna S, Crocker SJ, Givogri MI, Bongarzone ER. The Pathogenic Sphingolipid Psychosine is Secreted in Extracellular Vesicles in the Brain of a Mouse Model of Krabbe Disease. ASN Neuro 2022; 14:17590914221087817. [PMID: 35300522 PMCID: PMC8943320 DOI: 10.1177/17590914221087817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Psychosine exerts most of its toxic effects by altering membrane dynamics with increased shedding of extracellular vesicles (EVs). In this study, we discovered that a fraction of psychosine produced in the brain of the Twitcher mouse, a model for Krabbe disease, is associated with secreted EVs. We evaluated the effects of attenuating EV secretion in the Twitcher brain by depleting ceramide production with an inhibitor of neutral sphingomyelinase 2, GW4869. Twitcher mice treated with GW4869 had decreased overall EV levels, reduced EV-associated psychosine and unexpectedly, correlated with increased disease severity. Notably, characterization of well-established, neuroanatomic hallmarks of disease pathology, such as demyelination and inflammatory gliosis, remained essentially unaltered in the brains of GW4869-treated Twitcher mice compared to vehicle-treated Twitcher controls. Further analysis of Twitcher brain pathophysiology is required to understand the mechanism behind early-onset disease severity in GW4869-treated mice. The results herein demonstrate that some pathogenic lipids like psychosine may be secreted using EV pathways. Our results highlight the relevance of this secretory mechanism as a possible contributor to spreading pathogenic lipids in neurological lipidoses.
Collapse
Affiliation(s)
- Cory R. Reiter
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rima Rebiai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Angelika Kwak
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeff Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dylan Wozniak
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Giusepe Scesa
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Duc Nguyen
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Emily Rue
- Department of Pharmaceutical Science, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Chandimal Pathmasiri
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Pijewski
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard van Breemen
- Department of Pharmaceutical Science, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Stephanie Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - M Irene Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
39
|
Yates AG, Pink RC, Erdbrügger U, Siljander PR, Dellar ER, Pantazi P, Akbar N, Cooke WR, Vatish M, Dias‐Neto E, Anthony DC, Couch Y. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo: Part I: Health and Normal Physiology: Part I: Health and Normal Physiology. J Extracell Vesicles 2022; 11:e12151. [PMID: 35041249 PMCID: PMC8765331 DOI: 10.1002/jev2.12151] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Previously thought to be nothing more than cellular debris, extracellular vesicles (EVs) are now known to mediate physiological and pathological functions throughout the body. We now understand more about their capacity to transfer nucleic acids and proteins between distant organs, the interaction of their surface proteins with target cells, and the role of vesicle-bound lipids in health and disease. To date, most observations have been made in reductionist cell culture systems, or as snapshots from patient cohorts. The heterogenous population of vesicles produced in vivo likely act in concert to mediate both beneficial and detrimental effects. EVs play crucial roles in both the pathogenesis of diseases, from cancer to neurodegenerative disease, as well as in the maintenance of system and organ homeostasis. This two-part review draws on the expertise of researchers working in the field of EV biology and aims to cover the functional role of EVs in physiology and pathology. Part I will outline the role of EVs in normal physiology.
Collapse
Affiliation(s)
- Abi G. Yates
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of Biomedical SciencesFaculty of MedicineUniversity of QueenslandSt LuciaAustralia
| | - Ryan C. Pink
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Uta Erdbrügger
- Department of Medicine, Division of NephrologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pia R‐M. Siljander
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Elizabeth R. Dellar
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Paschalia Pantazi
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - William R. Cooke
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Manu Vatish
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Emmanuel Dias‐Neto
- Laboratory of Medical Genomics. A.C. Camargo Cancer CentreSão PauloBrazil
- Laboratory of Neurosciences (LIM‐27) Institute of PsychiatrySão Paulo Medical SchoolSão PauloBrazil
| | | | - Yvonne Couch
- Acute Stroke Programme ‐ Radcliffe Department of MedicineUniversity of OxfordJohn Radcliffe Hospital, HeadingtonOxfordUK
| |
Collapse
|
40
|
Klingbeil K, Nguyen TQ, Fahrner A, Guthmann C, Wang H, Schoels M, Lilienkamp M, Franz H, Eckert P, Walz G, Yakulov TA. Corpuscles of Stannius development requires FGF signaling. Dev Biol 2021; 481:160-171. [PMID: 34666023 DOI: 10.1016/j.ydbio.2021.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
The corpuscles of Stannius (CS) represent a unique endocrine organ of teleostean fish that secrets stanniocalcin-1 (Stc1) to maintain calcium homeostasis. Appearing at 20-25 somite stage in the distal zebrafish pronephros, stc1-expressing cells undergo apical constriction, and are subsequently extruded to form a distinct gland on top of the distal pronephric tubules at 50 h post fertilization (hpf). Several transcription factors (e.g. Hnf1b, Irx3b, Tbx2a/b) and signaling pathways (e.g. Notch) control CS development. We report now that Fgf signaling is required to commit tubular epithelial cells to differentiate into stc1-expressing CS cells. Inhibition of Fgf signaling by SU5402, dominant-negative Fgfr1, or depletion of fgf8a prevented CS formation and stc1 expression. Ablation experiments revealed that CS have the ability to partially regenerate via active cell migration involving extensive filopodia and lamellipodia formation. Activation of Wnt signaling curtailed stc1 expression, but had no effect on CS formation. Thus, our observations identify Fgf signaling as a crucial component of CS cell fate commitment.
Collapse
Affiliation(s)
- Konstantin Klingbeil
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Thanh Quang Nguyen
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Andreas Fahrner
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Clara Guthmann
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Hui Wang
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Maximilian Schoels
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Miriam Lilienkamp
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Henriette Franz
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Priska Eckert
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Albertstrasse 19, 79104, Freiburg, Germany
| | - Toma Antonov Yakulov
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
41
|
Loo CKC, Pearen MA, Ramm GA. The Role of Sonic Hedgehog in Human Holoprosencephaly and Short-Rib Polydactyly Syndromes. Int J Mol Sci 2021; 22:ijms22189854. [PMID: 34576017 PMCID: PMC8468456 DOI: 10.3390/ijms22189854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
The Hedgehog (HH) signalling pathway is one of the major pathways controlling cell differentiation and proliferation during human development. This pathway is complex, with HH function influenced by inhibitors, promotors, interactions with other signalling pathways, and non-genetic and cellular factors. Many aspects of this pathway are not yet clarified. The main features of Sonic Hedgehog (SHH) signalling are discussed in relation to its function in human development. The possible role of SHH will be considered using examples of holoprosencephaly and short-rib polydactyly (SRP) syndromes. In these syndromes, there is wide variability in phenotype even with the same genetic mutation, so that other factors must influence the outcome. SHH mutations were the first identified genetic causes of holoprosencephaly, but many other genes and environmental factors can cause malformations in the holoprosencephaly spectrum. Many patients with SRP have genetic defects affecting primary cilia, structures found on most mammalian cells which are thought to be necessary for canonical HH signal transduction. Although SHH signalling is affected in both these genetic conditions, there is little overlap in phenotype. Possible explanations will be canvassed, using data from published human and animal studies. Implications for the understanding of SHH signalling in humans will be discussed.
Collapse
Affiliation(s)
- Christine K. C. Loo
- South Eastern Area Laboratory Services, Department of Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-93829015
| | - Michael A. Pearen
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.A.P.); (G.A.R.)
| | - Grant A. Ramm
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.A.P.); (G.A.R.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| |
Collapse
|
42
|
Functional Roles of FGF Signaling in Early Development of Vertebrate Embryos. Cells 2021; 10:cells10082148. [PMID: 34440915 PMCID: PMC8391977 DOI: 10.3390/cells10082148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles. Although FGFs have been the focus of research for therapeutic approaches in cancer, cardiovascular disease, and metabolic syndrome, in this review, we mainly focused on their role in germ layer specification and axis patterning during early vertebrate embryogenesis. We discussed the functional roles of FGFs and their interacting partners as part of the gene regulatory network for germ layer specification, dorsal-ventral (DV), and anterior-posterior (AP) patterning. Finally, we briefly reviewed the regulatory molecules and pharmacological agents discovered that may allow modulation of FGF signaling in research.
Collapse
|
43
|
Thakur A, Ke X, Chen YW, Motallebnejad P, Zhang K, Lian Q, Chen HJ. The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics. Protein Cell 2021; 13:631-654. [PMID: 34374936 PMCID: PMC9233731 DOI: 10.1007/s13238-021-00863-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) are tiny biological nanovesicles ranging from approximately 30-1000 nm in diameter that are released into the extracellular matrix of most cell types and in biofluids. The classification of EVs includes exosomes, microvesicles, and apoptotic bodies, dependent on various factors such as size, markers, and biogenesis pathways. The transition of EV relevance from that of being assumed as a trash bag to be a key player in critical physiological and pathological conditions has been revolutionary in many ways. EVs have been recently revealed to play a crucial role in stem cell biology and cancer progression via intercellular communication, contributing to organ development and the progression of cancer. This review focuses on the significant research progress made so far in the role of the crosstalk between EVs and stem cells and their niche, and cellular communication among different germ layers in developmental biology. In addition, it discusses the role of EVs in cancer progression and their application as therapeutic agents or drug delivery vehicles. All such discoveries have been facilitated by tremendous technological advancements in EV-associated research, especially the microfluidics systems. Their pros and cons in the context of characterization of EVs are also extensively discussed in this review. This review also deliberates the role of EVs in normal cell processes and disease conditions, and their application as a diagnostic and therapeutic tool. Finally, we propose future perspectives for EV-related research in stem cell and cancer biology.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Xiaoshan Ke
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Ya-Wen Chen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Stem Cell Biology and Regenerative Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Pedram Motallebnejad
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Kui Zhang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. .,HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Huanhuan Joyce Chen
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA. .,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
44
|
Hickey D, Vilfan A, Golestanian R. Ciliary chemosensitivity is enhanced by cilium geometry and motility. eLife 2021; 10:66322. [PMID: 34346311 DOI: 10.7554/elife.66322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cilia are hairlike organelles involved in both sensory functions and motility. We discuss the question of whether the location of chemical receptors on cilia provides an advantage in terms of sensitivity and whether motile sensory cilia have a further advantage. Using a simple advection-diffusion model, we compute the capture rates of diffusive molecules on a cilium. Because of its geometry, a non-motile cilium in a quiescent fluid has a capture rate equivalent to a circular absorbing region with ∼4× its surface area. When the cilium is exposed to an external shear flow, the equivalent surface area increases to ∼6×. Alternatively, if the cilium beats in a non-reciprocal way in an otherwise quiescent fluid, its capture rate increases with the beating frequency to the power of 1/3. Altogether, our results show that the protruding geometry of a cilium could be one of the reasons why so many receptors are located on cilia. They also point to the advantage of combining motility with chemical reception.
Collapse
Affiliation(s)
- David Hickey
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany.,J. Stefan Institute, Ljubljana, Slovenia
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany.,Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
46
|
Gore T, Matusek T, D'Angelo G, Giordano C, Tognacci T, Lavenant-Staccini L, Rabouille C, Thérond PP. The GTPase Rab8 differentially controls the long- and short-range activity of the Hedgehog morphogen gradient by regulating Hedgehog apico-basal distribution. Development 2021; 148:dev.191791. [PMID: 33547132 DOI: 10.1242/dev.191791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023]
Abstract
The Hedgehog (Hh) morphogen gradient is required for patterning during metazoan development, yet the mechanisms involved in Hh apical and basolateral release and how this influences short- and long-range target induction are poorly understood. We found that depletion of the GTPase Rab8 in Hh-producing cells induces an imbalance between the level of apically and laterally released Hh. This leads to non-cell-autonomous differential effects on the expression of Hh target genes, namely an increase in its short-range targets and a concomitant decrease in long-range targets. We further found that Rab8 regulates the endocytosis and apico-basal distribution of Ihog, a transmembrane protein known to bind to Hh and to be crucial for establishment of the Hh gradient. Our data provide new insights into morphogen gradient formation, whereby morphogen activity is functionally distributed between apically and basolaterally secreted pools.
Collapse
Affiliation(s)
- Tanvi Gore
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Tamás Matusek
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Gisela D'Angelo
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France.,Institut Curie, UMR144 CNRS, 12 Rue Lhomond, 75005 Paris, France
| | - Cécile Giordano
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France.,Institut Curie, UMR144 CNRS, 12 Rue Lhomond, 75005 Paris, France
| | - Thomas Tognacci
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Laurence Lavenant-Staccini
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Catherine Rabouille
- Department of Cell Biology, Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences & University Medical Center Utrecht, 3584 CT Utrecht, Netherlands.,Department of Biomedical Science of Cells and Systems, University Medical Center Groningen, 9700 AD Groningen, Netherlands
| | - Pascal P Thérond
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| |
Collapse
|
47
|
Abstract
The hedgehog (Hh) signaling pathway plays several diverse regulatory and patterning roles during organogenesis of the intestine and in the regulation of adult intestinal homeostasis. In the embryo, fetus, and adult, intestinal Hh signaling is paracrine: Hh ligands are expressed in the endodermally derived epithelium, while signal transduction is confined to the mesenchymal compartment, where at least a dozen distinct cell types are capable of responding to Hh signals. Epithelial Hh ligands not only regulate a variety of mesenchymal cell behaviors, but they also direct these mesenchymal cells to secrete additional soluble factors (e.g., Wnts, Bmps, inflammatory mediators) that feed back to regulate the epithelial cells themselves. Evolutionary conservation of the core Hh signaling pathway, as well as conservation of epithelial/mesenchymal cross talk in the intestine, has meant that work in many diverse model systems has contributed to our current understanding of the role of this pathway in intestinal organogenesis, which is reviewed here.
Collapse
Affiliation(s)
- Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; ,
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; ,
| |
Collapse
|
48
|
Little RB, Norris DP. Right, left and cilia: How asymmetry is established. Semin Cell Dev Biol 2021; 110:11-18. [PMID: 32571625 DOI: 10.1016/j.semcdb.2020.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
The initial breaking of left-right (L-R) symmetry in the embryo is controlled by a motile-cilia-driven leftward fluid flow in the left-right organiser (LRO), resulting in L-R asymmetric gene expression flanking the LRO. Ultimately this results in left- but not right-sided activation of the Nodal-Pitx2 pathway in more lateral tissues. While aspects of the initial breaking event clearly vary between vertebrates, events in the Lateral Plate Mesoderm (LPM) are conserved through the vertebrate lineage. Evidence from model systems and humans highlights the role of cilia both in the initial symmetry breaking and in the ability of more lateral tissues to exhibit asymmetric gene expression. In this review we concentrate on the process of L-R determination in mouse and humans.
Collapse
Affiliation(s)
- Rosie B Little
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Dominic P Norris
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
49
|
Pivoriunas A, Verkhratsky A. Astrocyte-derived extracellular vesicles mediate intercellular communications of the neurogliovascular unit. Neural Regen Res 2021; 16:1421-1422. [PMID: 33318436 PMCID: PMC8284268 DOI: 10.4103/1673-5374.300994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Augustas Pivoriunas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Alexei Verkhratsky
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
50
|
Mateska I, Nanda K, Dye NA, Alexaki VI, Eaton S. Range of SHH signaling in adrenal gland is limited by membrane contact to cells with primary cilia. J Biophys Biochem Cytol 2020; 219:211483. [PMID: 33090184 PMCID: PMC7588141 DOI: 10.1083/jcb.201910087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023] Open
Abstract
The signaling protein Sonic Hedgehog (SHH) is crucial for the development and function of many vertebrate tissues. It remains largely unclear, however, what defines the range and specificity of pathway activation. The adrenal gland represents a useful model to address this question, where the SHH pathway is activated in a very specific subset of cells lying near the SHH-producing cells, even though there is an abundance of lipoproteins that would allow SHH to travel and signal long-range. We determine that, whereas adrenal cells can secrete SHH on lipoproteins, this form of SHH is inactive due to the presence of cosecreted inhibitors, potentially explaining the absence of long-range signaling. Instead, we find that SHH-producing cells signal at short range via membrane-bound SHH, only to receiving cells with primary cilia. Finally, our data from NCI-H295R adrenocortical carcinoma cells suggest that adrenocortical tumors may evade these regulatory control mechanisms by acquiring the ability to activate SHH target genes in response to TGF-β.
Collapse
Affiliation(s)
- Ivona Mateska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany,Correspondence to Ivona Mateska:
| | - Kareena Nanda
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Natalie A. Dye
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|