1
|
He W, Yang H, Li Y, Cui Y, Wei L, Xu T, Li Y, Zhang M. Identifying the toxic mechanisms of emerging electronic contaminations liquid crystal monomers and the construction of a priority control list for graded control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175398. [PMID: 39128516 DOI: 10.1016/j.scitotenv.2024.175398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Liquid crystal monomers (LCMs) are identified as emerging organic contaminations with largely unexplored health impacts. To elucidate their toxic mechanisms, support the establishment of environmental discharge and management standards, and promote effective LCMs control, this study constructs a database covering 20,545 potential targets of 1431 LCMs, highlighting 9 key toxic target proteins that disrupt the nervous system and metabolic functions. GO and KEGG pathway analysis suggests LCMs severely affect nervous system, linked to neurodegenerative diseases and mental health disorders, with toxicity variations driven by electronegativity and structural complexity of LCM terminal groups. To achieve tiered control of LCMs, construct toxicity risk control lists for 9 key toxic target proteins, suitable for the graded control of LCMs, management recommendations are provided based on toxicity levels. These lists were validated for reliability and offer reliable toxicity predictions for LCMs. SHAP analysis points to electronic properties, molecular shape, and structural characteristics of LCMs as primary health impact factors. As the first study integrating machine learning with computational toxicology to outline LCMs health impacts, it aims to enhance public understanding of LCM toxicity risks and support the development of environmental standards, effective management of LCM production and emissions, and reduction of public exposure risks.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Yunxiang Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Yuhan Cui
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Luanxiao Wei
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Tingzhi Xu
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China.
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Meng Zhang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
2
|
Liao J, Yang Z, Yang J, Lin H, Chen B, Fu H, Lin X, Lu B, Gao F. Investigating the cardiotoxicity of N-n-butyl haloperidol iodide: Inhibition mechanisms on hERG channels. Toxicology 2024; 508:153916. [PMID: 39128488 DOI: 10.1016/j.tox.2024.153916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The human Ether-à-go-go-Related Gene (hERG) encodes a protein responsible for forming the alpha subunit of the IKr channel, which plays a crucial role in cardiac repolarization. The proper functioning of hERG channels is paramount in maintaining a normal cardiac rhythm. Inhibition of these channels can result in the prolongation of the QT interval and potentially life-threatening arrhythmias. Cardiotoxicity is a primary concern in the field of drug development. N-n-Butyl haloperidol iodide (F2), a derivative of haloperidol, has been investigated for its therapeutic potential. However, the impact of this compound on cardiac toxicity, specifically on hERG channels, remains uncertain. This study employs computational and experimental methodologies to examine the inhibitory mechanisms of F2 on hERG channels. Molecular docking and molecular dynamics simulations commonly used techniques in computational biology to predict protein-ligand complexes' binding interactions and stability. In the context of the F2-hERG complex, these methods can provide valuable insights into the potential binding modes and strength of interaction between F2 and the hERG protein. On the other hand, electrophysiological assays are experimental techniques used to characterize the extent and nature of hERG channel inhibition caused by various compounds. By measuring the electrical activity of the hERG channel in response to different stimuli, these assays can provide important information about the functional effects of ligand binding to the channel. The study's key findings indicate that F2 interacts with the hERG channel by forming hydrogen bonding, π-cation interactions, and hydrophobic forces. This interaction leads to the inhibition of hERG currents in a concentration-dependent manner, with an IC50 of 3.75 μM. The results presented in this study demonstrate the potential cardiotoxicity of F2 and underscore the significance of considering hERG channel interactions during its clinical development. This study aims to provide comprehensive insights into the interaction between F2 and hERG, which will may guid us in the safe use of F2 and in the development of new derivatives with high efficiency while low toxicity.
Collapse
Affiliation(s)
- Jilin Liao
- Department of Pharmacy, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zhenyu Yang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jinhua Yang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Hailing Lin
- Department of Pharmacy, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Bingxuan Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Hongbo Fu
- Department of Pharmacy, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaojie Lin
- Department of Pharmacy, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Binger Lu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Pharmacy, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
3
|
Wang J, Zhu F. Multi-objective molecular generation via clustered Pareto-based reinforcement learning. Neural Netw 2024; 179:106596. [PMID: 39163823 DOI: 10.1016/j.neunet.2024.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/16/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
De novo molecular design is the process of learning knowledge from existing data to propose new chemical structures that satisfy the desired properties. By using de novo design to generate compounds in a directed manner, better solutions can be obtained in large chemical libraries with less comparison cost. But drug design needs to take multiple factors into consideration. For example, in polypharmacology, molecules that activate or inhibit multiple target proteins produce multiple pharmacological activities and are less susceptible to drug resistance. However, most existing molecular generation methods either focus only on affinity for a single target or fail to effectively balance the relationship between multiple targets, resulting in insufficient validity and desirability of the generated molecules. To address the problems, an approach called clustered Pareto-based reinforcement learning (CPRL) is proposed. In CPRL, a pre-trained model is constructed to grasp existing molecular knowledge in a supervised learning manner. In addition, the clustered Pareto optimization algorithm is presented to find the best solution between different objectives. The algorithm first extracts an update set from the sampled molecules through the designed aggregation-based molecular clustering. Then, the final reward is computed by constructing the Pareto frontier ranking of the molecules from the updated set. To explore the vast chemical space, a reinforcement learning agent is designed in CPRL that can be updated under the guidance of the final reward to balance multiple properties. Furthermore, to increase the internal diversity of the molecules, a fixed-parameter exploration model is used for sampling in conjunction with the agent. The experimental results demonstrate that CPRL is capable of balancing multiple properties of the molecule and has higher desirability and validity, reaching 0.9551 and 0.9923, respectively.
Collapse
Affiliation(s)
- Jing Wang
- School of Computer Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Fei Zhu
- School of Computer Science and Technology, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
4
|
Jiang T, Zeng Q, Wang J. Unlocking the secrets of Cardiac development and function: the critical role of FHL2. Mol Cell Biochem 2024:10.1007/s11010-024-05142-6. [PMID: 39466483 DOI: 10.1007/s11010-024-05142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
FHL2 (Four-and-a-half LIM domain protein 2) is a crucial factor involved in cardiac morphogenesis, the process by which the heart develops its complex structure. It is expressed in various tissues during embryonic development, including the developing heart, and has been shown to play important roles in cell proliferation, differentiation, and migration. FHL2 interacts with multiple proteins to regulate cardiac development as a coactivator or a corepressor. It is involved in cardiac specification and determination of cell fate, cardiomyocyte growth, cardiac remodeling, myofibrillogenesis, and the regulation of HERG channels. Targeting FHL2 has therapeutic implications as it could improve cardiac function, control arrhythmias, alleviate heart failure, and maintain cardiac integrity in various pathological conditions. The identification of FHL2 as a signature gene in atrial fibrillation suggests its potential as a diagnostic marker and therapeutic target for this common arrhythmia.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Clinical Laboratory, Hengyang Medical School, the Affiliated Nanhua Hospital, University of South China, Hengyang, 421000, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421000, China
| | - Jing Wang
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research On Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- The First Clinical College, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
5
|
Kuhn B, Ritter M, Hornsperger B, Bell C, Kocer B, Rombach D, Lutz MDR, Gobbi L, Kuratli M, Bartelmus C, Bürkler M, Koller R, Tosatti P, Ruf I, Guerard M, Pavlovic A, Stephanus J, O'Hara F, Wetzl D, Saal W, Stihle M, Roth D, Hug M, Huber S, Heer D, Kroll C, Topp A, Schneider M, Gertsch J, Glasmacher S, van der Stelt M, Martella A, Wittwer MB, Collin L, Benz J, Richter H, Grether U. Structure-Guided Discovery of cis-Hexahydro-pyrido-oxazinones as Reversible, Drug-like Monoacylglycerol Lipase Inhibitors. J Med Chem 2024; 67:18448-18464. [PMID: 39360636 DOI: 10.1021/acs.jmedchem.4c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Monoacylglycerol lipase (MAGL) is a key enzyme involved in the metabolism of the endogenous signaling ligand 2-arachidonoylglycerol, a neuroprotective endocannabinoid intimately linked to central nervous system (CNS) disorders associated with neuroinflammation. In the quest for novel MAGL inhibitors, a focused screening approach on a Roche library subset provided a reversible benzoxazinone hit exhibiting high ligand efficiency. The subsequent design of the three-dimensional cis-hexahydro-pyrido-oxazinone (cis-HHPO) moiety as benzoxazinone replacement enabled the combination of high MAGL potency with favorable ADME properties. Through enzymatic resolution an efficient synthetic route of the privileged cis-(4R,8S) HHPO headgroup was established, providing access to the highly potent and selective MAGL inhibitor 7o. Candidate molecule 7o matches the target compound profile of CNS drugs as it achieves high CSF exposures after systemic administration in rodents. It engages with the target in the brain and modulates neuroinflammatory processes, thus holding great promise for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Bernd Kuhn
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Martin Ritter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Benoit Hornsperger
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Charles Bell
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Buelent Kocer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Didier Rombach
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Marius D R Lutz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Luca Gobbi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Martin Kuratli
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Christian Bartelmus
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Markus Bürkler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Raffael Koller
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Paolo Tosatti
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Iris Ruf
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Melanie Guerard
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Anto Pavlovic
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Juliane Stephanus
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Fionn O'Hara
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Dennis Wetzl
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Wiebke Saal
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Martine Stihle
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Doris Roth
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Melanie Hug
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Dominik Heer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Carsten Kroll
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Andreas Topp
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Manfred Schneider
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern 3012, Switzerland
| | - Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern 3012, Switzerland
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden 2300 CC, Netherlands
| | - Andrea Martella
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden 2300 CC, Netherlands
| | - Matthias Beat Wittwer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Ludovic Collin
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Jörg Benz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Hans Richter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Uwe Grether
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| |
Collapse
|
6
|
Zhang Y, Ding Y, Zeng Z, Zhu R, Zheng P, Fan S, Cao Q, Chen H, Ren W, Wu M, Wang L, Du J. Intra-channel bi-epitopic crosslinking unleashes ultrapotent antibodies targeting Na V1.7 for pain alleviation. Cell Rep Med 2024:101800. [PMID: 39461335 DOI: 10.1016/j.xcrm.2024.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/01/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Crucial for cell activities, ion channels are key drug discovery targets. Although small-molecule and peptide modulators dominate ion channel drug discovery, antibodies are emerging as an alternative modality. However, challenges persist in generating potent antibodies, especially for channels with limited extracellular epitopes. We herein present a bi-epitopic crosslinking strategy to overcome these challenges, focusing on NaV1.7, a potential analgesic target. Aiming to crosslink two non-overlapping epitopes on voltage-sensing domains II and IV, we construct bispecific antibodies and ligand-antibody conjugates. Enhanced affinity and potency are observed in comparison to the monospecific controls. Among them, a ligand-antibody conjugate (1080-PEG7-ACDTB) displays a two-orders-of-magnitude improvement in potency (IC50 of 0.06 ± 0.01 nM) and over 1,000-fold selectivity for NaV1.7. Additionally, this conjugate demonstrates robust analgesic effects in mouse pain models. Our study introduces an approach to developing effective antibodies against NaV1.7, thereby initiating a promising direction for the advancement of pain therapeutics.
Collapse
Affiliation(s)
- Yaning Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; Peking University-Tsinghua University-National Institute Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanchao Ding
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ziyan Zeng
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Rui Zhu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Peiyuan Zheng
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shilong Fan
- The Technology Center for Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Qingjuan Cao
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Hang Chen
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Weishuai Ren
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Mengling Wu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Luyao Wang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Gao F, Du W, Guo C, Geng P, Liu W, Jin X. α7nACh receptor, a promising target to reduce BBB damage by regulating inflammation and autophagy after ischemic stroke. Biomed Pharmacother 2024; 179:117337. [PMID: 39191022 DOI: 10.1016/j.biopha.2024.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Increased blood-brain barrier (BBB) permeability can lead to cerebral vasogenic edema and hemorrhagic transformation (HT) after reperfusion with tissue plasminogen activator (tPA), the only United States Food and Drug Administration (FDA)-approved treatment for acute ischemia stroke (AIS). The therapeutic benefits of tPA after AIS are partially outweighed by a more than a six-fold increase in the risk of symptomatic intracerebral hemorrhage. Therefore, strategies to protect the integrity of BBB are urgently needed to reduce HT and vasogenic edema after tPA thrombolysis or endovascular thrombectomy. Interestingly, an NIH study showed that smokers treated with tPA had a significantly lower prevalence of brain hemorrhage than nonsmokers, suggesting that cigarette smoking may protect patients treated with tPA from the side effects of cerebral hemorrhage. Importantly, we recently showed that treatment with nicotine reduces AIS-induced BBB damage and that modulating α7nAChR by modulation could reduce ischemia/reperfusion-induced BBB damage, suggesting that α7nAChR could be a potential target to reduce BBB after AIS. In this review, we first provide an overview of stroke and the impact of α7nAChR activation on BBB damage. Next, we discuss the features and mechanism of BBB destruction after AIS. We then discuss the effect of nicotine effect on BBB integrity as well as the mechanism underlying those effects. Finally, we discuss the side effects and potential strategies for modulating α7nAChR to reduce AIS-induced BBB damage.
Collapse
Affiliation(s)
- Fengying Gao
- Department of Emergency, Shanxi Provincial People's Hospital, Taiyuan 030001, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wencao Liu
- Department of Emergency, Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Milanović Ž, Antonijević M, Avdović E, Simić V, Milošević M, Dolićanin Z, Kojić M, Marković Z. In silico evaluation of pharmacokinetic parameters, delivery, distribution and anticoagulative effects of new 4,7-dihydroxycoumarin derivative. J Biomol Struct Dyn 2024; 42:8343-8358. [PMID: 37545173 DOI: 10.1080/07391102.2023.2245071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In this study, pharmacological profiling and investigation of the anticoagulant activity of the newly synthesized coumarin derivative: (E)-3-(1-((4-hydroxy-3-methoxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (L) were performed. The obtained results were compared with the parameters obtained for Warfarin (WF), which is a standard good oral anticoagulant. The estimated high binding affinity of L toward plasma proteins (PPS% value is > 90%) justifies the investigation of binding affinity and comparative analysis of L and WF to Human Serum Albumin (HSA) using the spectrofluorimetric method (296, 303 and 310 K) as well as molecular docking and molecular dynamics simulations. Compound L shows a very good binding affinity especially to the active site of WF (the active site I -subdomain IIA), quenching HSA fluorescence by a static process. Also, the finite element smeared model (Kojic Transport Model, KTM), which includes blood vessels and tissue, was implemented to compute the convective-diffusion transport of L and WF within the liver. Finally, compound L shows a high degree of inhibitory activity toward the VKOR receptor comparable to the inhibitory activity of WF. Stabilization and limited flexibility of amino acid residues in the active site of the VKOR after binding of L and WF indicates a very good inhibitory potential of compound L. The high affinity of the L for the VKOR enzyme (Vitamin K antagonist), as well as the structural similarity to commercial anticoagulants (WF), provide a basis for further studies and potential application in the treatment of venous thrombosis, pulmonary embolism and ischemic heart disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Žiko Milanović
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Marko Antonijević
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Edina Avdović
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Simić
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Miljan Milošević
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Faculty of Information Technology, Belgrade Metropolitan University, Belgrade, Serbia
| | - Zana Dolićanin
- Department of Natural Science and Mathematics, State University of Novi Pazar, Novi Pazar, Serbia
| | - Miloš Kojić
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
- Houston Methodist Research Institute, Houston, TX, USA
| | - Zoran Marković
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
- Department of Natural Science and Mathematics, State University of Novi Pazar, Novi Pazar, Serbia
| |
Collapse
|
9
|
ElFessi R, Khamessi O, De Waard M, Srairi-Abid N, Ghedira K, Marrouchi R, Kharrat R. Structure-Function Relationship of a Novel MTX-like Peptide (MTX1) Isolated and Characterized from the Venom of the Scorpion Maurus palmatus. Int J Mol Sci 2024; 25:10472. [PMID: 39408804 PMCID: PMC11477167 DOI: 10.3390/ijms251910472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 10/20/2024] Open
Abstract
Maurotoxin (MTX) is a 34-residue peptide from Scorpio maurus venom. It is reticulated by four disulfide bridges with a unique arrangement compared to other scorpion toxins that target potassium (K+) channels. Structure-activity relationship studies have not been well performed for this toxin family. The screening of Scorpio maurus venom was performed by different steps of fractionation, followed by the ELISA test, using MTX antibodies, to isolate an MTX-like peptide. In vitro, in vivo and computational studies were performed to study the structure-activity relationship of the new isolated peptide. We isolated a new peptide designated MTX1, structurally related to MTX. It demonstrated toxicity on mice eight times more effectively than MTX. MTX1 blocks the Kv1.2 and Kv1.3 channels, expressed in Xenopus oocytes, with IC50 values of 0.26 and 180 nM, respectively. Moreover, MTX1 competitively interacts with both 125I-apamin (IC50 = 1.7 nM) and 125I-charybdotoxin (IC50 = 5 nM) for binding to rat brain synaptosomes. Despite its high sequence similarity (85%) to MTX, MTX1 exhibits a higher binding affinity towards the Kv1.2 and SKCa channels. Computational analysis highlights the significance of specific residues in the β-sheet region, particularly the R27, in enhancing the binding affinity of MTX1 towards the Kv1.2 and SKCa channels.
Collapse
Affiliation(s)
- Rym ElFessi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| | - Oussema Khamessi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Michel De Waard
- l’Institut du Thorax, Nantes Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médical (INSERM), F-44000 Nantes, France;
| | - Najet Srairi-Abid
- LR20IPT01 Biomolécules, Venins et Applications Théranostiques, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Riadh Marrouchi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| | - Riadh Kharrat
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| |
Collapse
|
10
|
Mahapatra C, Thakkar R, Kumar R. Modulatory Impact of Oxidative Stress on Action Potentials in Pathophysiological States: A Comprehensive Review. Antioxidants (Basel) 2024; 13:1172. [PMID: 39456426 PMCID: PMC11504047 DOI: 10.3390/antiox13101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant defenses, significantly affects cellular function and viability. It plays a pivotal role in modulating membrane potentials, particularly action potentials (APs), essential for properly functioning excitable cells such as neurons, smooth muscles, pancreatic beta cells, and myocytes. The interaction between oxidative stress and AP dynamics is crucial for understanding the pathophysiology of various conditions, including neurodegenerative diseases, cardiac arrhythmias, and ischemia-reperfusion injuries. This review explores how oxidative stress influences APs, focusing on alterations in ion channel biophysics, gap junction, calcium dynamics, mitochondria, and Interstitial Cells of Cajal functions. By integrating current research, we aim to elucidate how oxidative stress contributes to disease progression and discuss potential therapeutic interventions targeting this interaction.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ravindra Thakkar
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Ravinder Kumar
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
11
|
Rubinstein J, Pinney SM, Xie C, Wang HS. Association of same-day urinary phenol levels and cardiac electrical alterations: analysis of the Fernald Community Cohort. Environ Health 2024; 23:76. [PMID: 39300535 PMCID: PMC11412060 DOI: 10.1186/s12940-024-01114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Exposure to phenols has been linked in animal models and human populations to cardiac function alterations and cardiovascular diseases, although their effects on cardiac electrical properties in humans remains to be established. This study aimed to identify changes in electrocardiographic (ECG) parameters associated with environmental phenol exposure in adults of a midwestern large cohort known as the Fernald Community Cohort (FCC). METHODS During the day of the first comprehensive medical examination, urine samples were obtained, and electrocardiograms were recorded. Cross-sectional linear regression analyses were performed. RESULTS Bisphenol A (BPA) and bisphenol F (BPF) were both associated with a longer PR interval, an indication of delayed atrial-to-ventricle conduction, in females (p < 0.05) but not males. BPA combined with BPF was associated with an increase QRS duration, an indication of delayed ventricular activation, in females (P < 0.05) but not males. Higher triclocarban (TCC) level was associated with longer QTc interval, an indication of delayed ventricular repolarization, in males (P < 0.01) but not females. Body mass index (BMI) was associated with a significant increase in PR and QTc intervals and ventricular rate in females and in ventricular rate in males. In females, the combined effect of being in the top tertile for both BPA urinary concentration and BMI was an estimate of a 10% increase in PR interval. No associations were found with the other phenols. CONCLUSION Higher exposure to some phenols was associated with alterations of cardiac electrical properties in a sex specific manner in the Fernald cohort. Our population-based findings correlate directly with clinically relevant parameters that are associated with known pathophysiologic cardiac conditions in humans.
Collapse
Affiliation(s)
- Jack Rubinstein
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Susan M Pinney
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Changchun Xie
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Hong-Sheng Wang
- Department of Pharmacology, Physiology and Neurobiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Benn KW, Yuan PH, Chong HK, Stylii SS, Luwor RB, French CR. hERG channel agonist NS1643 strongly inhibits invasive astrocytoma cell line SMA-560. PLoS One 2024; 19:e0309438. [PMID: 39240809 PMCID: PMC11379238 DOI: 10.1371/journal.pone.0309438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/08/2024] Open
Abstract
Gliomas are highly malignant brain tumours that remain refractory to treatment. Treatment is typically surgical intervention followed by concomitant temozolomide and radiotherapy; however patient prognosis remains poor. Voltage gated ion channels have emerged as novel targets in cancer therapy and inhibition of a potassium selective subtype (hERG, Kv11.1) has demonstrated antitumour activity. Unfortunately blockade of hERG has been limited by cardiotoxicity, however hERG channel agonists have produced similar chemotherapeutic benefit without significant side effects. In this study, electrophysiological recordings suggest the presence of hERG channels in the anaplastic astrocytoma cell line SMA-560, and treatment with the hERG channel agonist NS1643, resulted in a significant reduction in the proliferation of SMA-560 cells. In addition, NS1643 treatment also resulted in a reduction of the secretion of matrix metalloproteinase-9 and SMA-560 cell migration. When combined with temozolomide, an additive impact was observed, suggesting that NS1643 may be a suitable adjuvant to temozolomide and limit the invasiveness of glioma.
Collapse
Affiliation(s)
- Kieran W Benn
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick H Yuan
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Harvey K Chong
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Stanley S Stylii
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
| | - Rodney B Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher R French
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Ling T, Arroyo-Cruz LV, Smither WR, Seighman EK, Martínez-Montemayor MM, Rivas F. Early Preclinical Studies of Ergosterol Peroxide and Biological Evaluation of Its Derivatives. ACS OMEGA 2024; 9:37117-37127. [PMID: 39246459 PMCID: PMC11375702 DOI: 10.1021/acsomega.4c04350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Ganoderma lucidum is a medicinal mushroom that produces various pharmacological compounds, including triterpenoids. A major bioactive component of G. lucidum is ergosterol peroxide (EP), which is attributed to its anticancer effects. The current study focuses on the in vitro ADME (absorption, distribution, metabolism, and elimination), in vivo efficacy and toxicity of EP, and the synthesis of new EP derivatives to improve aqueous solubility. It was found that EP is metabolically stable in liver microsomes and plasma. In vivo studies showed that EP inhibits tumor growth in murine cancer models, and it is well tolerated by mice. The maximum tolerated dose was investigated in mice at escalating doses with a defined maximum amount of 500 mg/kg, which indicated no signs of toxicity, confirmed by plasma chemistry and analysis of harvested tissues. Complementary organ toxicity assays including cardio and hepatotoxicity assays of EP demonstrated no inhibitory effects. Next, a focused library of EP derivatives was developed to investigate the iterative addition of heteroatoms to improve the aqueous solubility properties of EP. Significant solubility improvement was observed by the introduction of hydrogen bonding promoting groups, particularly the sulfate group. Superior aqueous solubility properties are directly correlated with the biological activity of the compound against triple-negative breast cancer cellular (TNBC) models. The EP derivatives maintain ample therapeutic index at the tested concentrations, indicating they engage with the same biological target(s) as the parental compound (EP). The combined studies indicate that EP and its derivatives are selective TNBC cell death inducers, while sparing noncancerous tissue.
Collapse
Affiliation(s)
- Taotao Ling
- Department of Chemistry, Louisiana State University, 133 Chopping Hall, Baton Rouge, Louisiana 70803, United States
| | - Luz V Arroyo-Cruz
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, P.O. Box 60327, Bayamón, Puerto Rico 00960-6032, United States
| | - William R Smither
- Department of Chemistry, Louisiana State University, 133 Chopping Hall, Baton Rouge, Louisiana 70803, United States
| | - Emily K Seighman
- Department of Chemistry, Louisiana State University, 133 Chopping Hall, Baton Rouge, Louisiana 70803, United States
| | - Michelle M Martínez-Montemayor
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, P.O. Box 60327, Bayamón, Puerto Rico 00960-6032, United States
| | - Fatima Rivas
- Department of Chemistry, Louisiana State University, 133 Chopping Hall, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
14
|
Pero JE, Mueller EA, Adams AM, Adolph RS, Bagchi P, Balce D, Bantscheff M, Barauskas O, Bartha I, Bohan D, Cai H, Carabajal E, Cassidy J, Cato M, Chaudhary KW, Chen D, Chen YP, Colas C, Darwech I, Eberl HC, Fernandez B, Gordon E, Grosse J, Hansen J, Hetzler B, Hwang S, Jeyasingh S, Kowalski B, Lehmann S, Lo G, McAllaster M, McHugh C, Momont C, Newby Z, Nigro M, Oladunni F, Pannirselvam M, Park A, Pearson N, Peat AJ, Plastridge B, Ranjan R, Safabakhsh P, Shapiro ND, Soriaga L, Stokes N, Sweeney D, Talecki L, Telenti A, Terrell A, Tse W, Wang L, Wang S, Wedel L, Werner T, Dalmas Wilk D, Yim S, Zhou J. Discovery of Potent STT3A/B Inhibitors and Assessment of Their Multipathogen Antiviral Potential and Safety. J Med Chem 2024; 67:14586-14608. [PMID: 39136957 DOI: 10.1021/acs.jmedchem.4c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In the aftermath of the COVID-19 pandemic, opportunities to modulate biological pathways common to the lifecycles of viruses need to be carefully considered. N-linked glycosylation in humans is mediated exclusively by the oligosaccharyltransferase complex and is frequently hijacked by viruses to facilitate infection. As such, STT3A/B, the catalytic domain of the OST complex, became an intriguing drug target with broad-spectrum antiviral potential. However, due to the critical role N-linked glycosylation plays in a number of fundamental human processes, the toxicological ramifications of STT3A/B inhibition required attention commensurate to that given to antiviral efficacy. Herein, we describe how known STT3A/B inhibitor NGI-1 inspired the discovery of superior tool compounds which were evaluated in in vitro efficacy and translational safety (e.g., CNS, cardiovascular, liver) studies. The described learnings will appeal to those interested in the therapeutic utility of modulating N-linked glycosylation as well as the broader scientific community.
Collapse
Affiliation(s)
- Joseph E Pero
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Elizabeth A Mueller
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Ashley M Adams
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Ramona S Adolph
- Cellzome GmbH, a GSK company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Parikshit Bagchi
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Dale Balce
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Marcus Bantscheff
- Cellzome GmbH, a GSK company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Ona Barauskas
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Istvan Bartha
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Dana Bohan
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Haiying Cai
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Esteban Carabajal
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - James Cassidy
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Matthew Cato
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Khuram W Chaudhary
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Dingjun Chen
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Yi-Pei Chen
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Christophe Colas
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Isra Darwech
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - H Christian Eberl
- Cellzome GmbH, a GSK company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Beth Fernandez
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Earl Gordon
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Johannes Grosse
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Justin Hansen
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Belinda Hetzler
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Seungmin Hwang
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Sam Jeyasingh
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Beatriz Kowalski
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Stephanie Lehmann
- Cellzome GmbH, a GSK company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gary Lo
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Michael McAllaster
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Charles McHugh
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Corey Momont
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Zachary Newby
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Maria Nigro
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Fatai Oladunni
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Malar Pannirselvam
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Arnold Park
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Neil Pearson
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Andrew J Peat
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Bob Plastridge
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Rohit Ranjan
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Pegah Safabakhsh
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Nathan D Shapiro
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Leah Soriaga
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Neil Stokes
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - David Sweeney
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Lindsey Talecki
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Amalio Telenti
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Ashley Terrell
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Winston Tse
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Lisha Wang
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Shuya Wang
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Laura Wedel
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Thilo Werner
- Cellzome GmbH, a GSK company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Deidre Dalmas Wilk
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Samantha Yim
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| | - Jiayi Zhou
- Vir Biotechnology, Inc., 1800 Owens St., San Francisco, California 94158, United States
| |
Collapse
|
15
|
Yang C, Song X, Sun H, Chen X, Liu C, Chen M. Cardiovascular adverse events associated with PARP inhibitors for ovarian cancer: a real world study (RWS) with Bayesian disproportional analysis based on the FDA adverse event reporting system (FAERS). Expert Opin Drug Saf 2024:1-8. [PMID: 39132853 DOI: 10.1080/14740338.2024.2390640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/27/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND To investigate the pharmacovigilance (PV) and make pairwise comparisons on reporting proportion, seriousness, and severity of outcomes of major adverse cardiovascular events (MACE) among poly(ADP-ribose) polymerase-inhibitors (PARPis) in treating ovarian cancer, fallopian tube carcinoma, and primary peritoneal cancer (collectively named EOC) from the US Food and Drug Administration Adverse Event Reporting System (FAERS). RESEARCH DESIGN AND METHODS Data on adverse cardiovascular events reports related to EOC treatment submitted to FAERS from the first quarter of 2015 to the second quarter of 2023 were harvested. Three PARPis were identified: olaparib, niraparib, and rucaparib. RESULTS Eventually, a total of 258,596 eligible records were enrolled with 12,331 reports including 5,292 reports of MACE and 7,039 reports of other cardiovascular events. For the primary composite endpoint, a PV signal associated with MACE was detected in niraparib (ROR = 1.12; IC025 = 0.03), whereas it was not detected in olaparib and rucaparib; For the secondary endpoint, PV signals associated with other cardiovascular events were detected in niraparib (ROR = 1.17;IC025 = 0.04), but not in olaparib and rucaparib. CONCLUSIONS For EOC patients, close monitoring of blood pressure, heart rate, and coagulation function should be conducted when selecting niraparib for treatment.
Collapse
Affiliation(s)
- Chenguang Yang
- Department of Gynaecology and Obstetrics, Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, Anhui Province, China
| | - Xuan Song
- Department of General Medicine, Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, Anhui Province, China
| | - Hongmei Sun
- Department of Gynaecology and Obstetrics, Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, Anhui Province, China
| | - Xi Chen
- Department of Epidemiology and Statistics, School of Public Health, Medical College, Zhejiang University, Zhejiang, China
| | - Chengjiang Liu
- Department of General Medicine, Affiliated Anqing First People's Hospital of Anhui Medical University, Hefei, China
| | - Min Chen
- Department of Gynaecology and Obstetrics, Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, Anhui Province, China
| |
Collapse
|
16
|
Peng Y, Zhang AH, Wei L, Welsh WJ. Preclinical Evaluation of Sigma 1 Receptor Antagonists as a Novel Treatment for Painful Diabetic Neuropathy. ACS Pharmacol Transl Sci 2024; 7:2358-2368. [PMID: 39144554 PMCID: PMC11320727 DOI: 10.1021/acsptsci.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024]
Abstract
The global prevalence of diabetes is steadily rising, with an estimated 537 million adults affected by diabetes in 2021, projected to reach 783 million by 2045. A severe consequence of diabetes is the development of painful diabetic neuropathy (PDN), afflicting approximately one in every three diabetic patients and significantly compromising their quality of life. Current pharmacotherapies for PDN provide inadequate pain relief for many patients, underscoring the need for novel treatments that are both safe and effective. The Sigma 1 Receptor (S1R) is a ligand-operated chaperone protein that resides at the mitochondria-associated membrane of the endoplasmic reticulum. The S1R has been shown to play crucial roles in regulating cellular processes implicated in pain modulation. This study explores the potential of PW507, a novel S1R antagonist, as a therapeutic candidate for PDN. PW507 exhibited promising in vitro and in vivo properties in terms of ADME, toxicity, pharmacokinetics, and safety. In preclinical rat models of Streptozotocin-induced diabetic neuropathy, PW507 demonstrated significant efficacy in alleviating mechanical allodynia and thermal hyperalgesia following both acute and chronic (2-week) administration, without inducing tolerance and visual evidence of toxicity. To the best of our knowledge, this is the first report to evaluate an S1R antagonist in STZ-induced diabetic rats following both acute and 2-week chronic administration, offering compelling preclinical evidence for the potential use of PW507 as a promising therapeutic option for PDN.
Collapse
Affiliation(s)
- Youyi Peng
- Biomedical
Informatics Shared Resource, Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Allen H. Zhang
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - Liping Wei
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - William J. Welsh
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
17
|
Abdul-Hammed M, Adedotun IO, Akinboade MW, Adegboyega TA, Salaudeen OM. Antibacterial activities, PASS prediction and ADME analysis of phytochemicals from Curcubita moschata, Curcubita maxima, and Irvingia gabonensis: insights from in silico studies. In Silico Pharmacol 2024; 12:65. [PMID: 39035102 PMCID: PMC11254879 DOI: 10.1007/s40203-024-00234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Microbial infection management and treatment are crucial as a result of the prevalent antimicrobial resistance issue. Progressive studies are being carried out on how to develop drugs that can mitigate the resistance trends of these microorganisms. Secondary metabolites of plants can also be employed and accessed for this role, as the current study examines the antibacterial activities of phytochemicals from three (3) plants (Cucubita moschata, Cucubita maxima, and Irvingia gabonesis) through computational approaches. Molecular docking studies were carried out to show the binding affinities of the phytochemicals against two target receptors (DNA gyrase and Penicillin Binding Protein 3). In addition, drug likeness analysis, bioactivity and oral-bioavailability properties, absorption, distribution, metabolism, and excretion (ADME) profiling, as well as prediction of activity spectra for substances (PASS) using online tools like SwissADME, PASS online, AdmetSAR2, and Discovery Studio, were also performed. The results obtained identified isochlorogenic acid and apigenin-7-O-glucoside for DNA gyrase (1KZN) and apigenin-7-O-glucoside for Penicillin Binding Protein 3 (4BJP), which were further subjected to molecular dynamics simulation (MDS) and therefore recommended as the lead compounds.
Collapse
Affiliation(s)
- Misbaudeen Abdul-Hammed
- Computational Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
| | - Ibrahim Olaide Adedotun
- Computational Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
- Insilico Scientific Inventions and Development Limited (ISID), Ibadan, Nigeria
| | - Modinat Wuraola Akinboade
- Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
| | - Timilehin Adekunle Adegboyega
- Department of Chemistry, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061 USA
| | - Oladele Muheez Salaudeen
- Computational Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
| |
Collapse
|
18
|
Yamin R, Ahmad I, Khalid H, Perveen A, Abbasi SW, Nishan U, Sheheryar S, Moura AA, Ahmed S, Ullah R, Ali EA, Shah M, Chandra Ojha S. Identifying plant-derived antiviral alkaloids as dual inhibitors of SARS-CoV-2 main protease and spike glycoprotein through computational screening. Front Pharmacol 2024; 15:1369659. [PMID: 39086396 PMCID: PMC11288853 DOI: 10.3389/fphar.2024.1369659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
COVID-19 is currently considered the ninth-deadliest pandemic, spreading through direct or indirect contact with infected individuals. It has imposed a consistent strain on both the financial and healthcare resources of many countries. To address this challenge, there is a pressing need for the development of new potential therapeutic agents for the treatment of this disease. To identify potential antiviral agents as novel dual inhibitors of SARS-CoV-2, we retrieved 404 alkaloids from 12 selected medicinal antiviral plants and virtually screened them against the renowned catalytic sites and favorable interacting residues of two essential proteins of SARS-CoV-2, namely, the main protease and spike glycoprotein. Based on docking scores, 12 metabolites with dual inhibitory potential were subjected to drug-likeness, bioactivity scores, and drug-like ability analyses. These analyses included the ligand-receptor stability and interactions at the potential active sites of target proteins, which were analyzed and confirmed through molecular dynamic simulations of the three lead metabolites. We also conducted a detailed binding free energy analysis of pivotal SARS-CoV-2 protein inhibitors using molecular mechanics techniques to reveal their interaction dynamics and stability. Overall, our results demonstrated that 12 alkaloids, namely, adouetine Y, evodiamide C, ergosine, hayatinine, (+)-homoaromoline, isatithioetherin C, N,alpha-L-rhamnopyranosyl vincosamide, pelosine, reserpine, toddalidimerine, toddayanis, and zanthocadinanine, are shortlisted as metabolites based on their interactions with target proteins. All 12 lead metabolites exhibited a higher unbound fraction and therefore greater distribution compared with the standards. Particularly, adouetine Y demonstrated high docking scores but exhibited a nonspontaneous binding profile. In contrast, ergosine and evodiamide C showed favorable binding interactions and superior stability in molecular dynamics simulations. Ergosine demonstrated exceptional performance in several key pharmaceutical metrics. Pharmacokinetic evaluations revealed that ergosine exhibited pronounced bioactivity, good absorption, and optimal bioavailability. Additionally, it was predicted not to cause skin sensitivity and was found to be non-hepatotoxic. Importantly, ergosine and evodiamide C emerged as superior drug candidates for dual inhibition of SARS-CoV-2 due to their strong binding affinity and drug-like ability, comparable to known inhibitors like N3 and molnupiravir. This study is limited by its in silico nature and demands the need for future in vitro and in vivo studies to confirm these findings.
Collapse
Affiliation(s)
- Ramsha Yamin
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Hira Khalid
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Asia Perveen
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | | | - Sarfraz Ahmed
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Grether U, Foxton RH, Gruener S, Korn C, Kimbara A, Osterwald A, Zirwes E, Uhles S, Thoele J, Colé N, Rogers-Evans M, Röver S, Nettekoven M, Martin RE, Adam JM, Fingerle J, Bissantz C, Guba W, Alker A, Szczesniak AM, Porter RF, Toguri TJ, Revelant F, Poirier A, Perret C, Winther L, Caruso A, Fezza F, Maccarrone M, Kelly MEM, Fauser S, Ullmer C. RG7774 (Vicasinabin), an orally bioavailable cannabinoid receptor 2 (CB2R) agonist, decreases retinal vascular permeability, leukocyte adhesion, and ocular inflammation in animal models. Front Pharmacol 2024; 15:1426446. [PMID: 39070793 PMCID: PMC11272598 DOI: 10.3389/fphar.2024.1426446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Preclinical studies suggest that cannabinoid receptor type 2 (CB2R) activation has a therapeutic effect in animal models on chronic inflammation and vascular permeability, which are key pathological features of diabetic retinopathy (DR). A novel CB2R agonist, triazolopyrimidine RG7774, was generated through lead optimization of a high-throughput screening hit. The aim of this study was to characterize the pharmacology, absorption, distribution, metabolism, elimination, and toxicity (ADMET) profile of RG7774, and to explore its potential for managing the key pathological features associated with retinal disease in rodents. Methods The in vitro pharmacology of RG7774 was investigated for CB2R binding and receptor activation using recombinant human and mouse CB2R expression in Chinese hamster ovary cells, and endogenous CB2R expression in human Jurkat cells, and rat and mouse spleen cells. The ADMET profile was evaluated and the effects of RG7774 on retinal permeability, leukocyte adhesion, and choroidal neovascularization (CNV) were investigated in rodent models of retinal disease. Pharmacokinetic (PK) parameters and the exposure-response relationship were characterized in healthy animals and in animals with laser-induced CNV. Results RG7774 was found to be a potent (EC50: 2.8 nM and Ki: 51.3 nM), selective, and full CB2R agonist with no signs of cannabinoid receptor type 1 (CB1R) binding or activation. The ligand showed a favorable ADMET profile and exhibited systemic and ocular exposure after oral delivery. Functional potency in vitro translated from recombinant to endogenous expression systems. In vivo, orally administered RG7774 reduced retinal permeability and leukocyte adhesion in rodents with lipopolysaccharide (LPS)-induced uveitis and streptozotocin (STZ)-induced DR, and reduced lesion areas in rats with laser-induced CNV with an ED50 of 0.32 mg/kg. Anatomically, RG7774 reduced the migration of retinal microglia to retinal lesions. Discussion RG7774 is a novel, highly selective, and orally bioavailable CB2R agonist, with an acceptable systemic and ocular PK profile, and beneficial effects on retinal vascular permeability, leukocyte adhesion, and ocular inflammation in rodent animal models. Results support the development of RG7774 as a potential treatment for retinal diseases with similar pathophysiologies as addressed by the animal models.
Collapse
Affiliation(s)
- Uwe Grether
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Richard H. Foxton
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Sabine Gruener
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Claudia Korn
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Atsushi Kimbara
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Anja Osterwald
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Elisabeth Zirwes
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Sabine Uhles
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Janina Thoele
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Nadine Colé
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Mark Rogers-Evans
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Röver
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Matthias Nettekoven
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Rainer E. Martin
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Jean-Michel Adam
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Jürgen Fingerle
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Caterina Bissantz
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Wolfgang Guba
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - André Alker
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Anna M. Szczesniak
- Departments of Pharmacology, Anesthesia, Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Ross F. Porter
- Departments of Pharmacology, Anesthesia, Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Tom J. Toguri
- Departments of Pharmacology, Anesthesia, Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Franco Revelant
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Agnès Poirier
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Camille Perret
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Lotte Winther
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Antonello Caruso
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Filomena Fezza
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, Rome, Italy
| | - Melanie E. M. Kelly
- Departments of Pharmacology, Anesthesia, Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Sascha Fauser
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Christoph Ullmer
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
20
|
Anees P, Saminathan A, Rozmus ER, Di A, Malik AB, Delisle BP, Krishnan Y. Detecting organelle-specific activity of potassium channels with a DNA nanodevice. Nat Biotechnol 2024; 42:1065-1074. [PMID: 37735264 PMCID: PMC11021130 DOI: 10.1038/s41587-023-01928-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
Cell surface potassium ion (K+) channels regulate nutrient transport, cell migration and intercellular communication by controlling K+ permeability and are thought to be active only at the plasma membrane. Although these channels transit the trans-Golgi network, early and recycling endosomes, whether they are active in these organelles is unknown. Here we describe a pH-correctable, ratiometric reporter for K+ called pHlicKer, use it to probe the compartment-specific activity of a prototypical voltage-gated K+ channel, Kv11.1, and show that this cell surface channel is active in organelles. Lumenal K+ in organelles increased in cells expressing wild-type Kv11.1 channels but not after treatment with current blockers. Mutant Kv11.1 channels, with impaired transport function, failed to increase K+ levels in recycling endosomes, an effect rescued by pharmacological correction. By providing a way to map the organelle-specific activity of K+ channels, pHlicKer technology could help identify new organellar K+ channels or channel modulators with nuanced functions.
Collapse
Affiliation(s)
- Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
- Institute of Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Anand Saminathan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Ezekiel R Rozmus
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Anke Di
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Brian P Delisle
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Grossman Center for Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
- Institute of Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
El Sherbini A, Liblik K, Lee J, Baranchuk A, Zhang S, El-Diasty M. Opioids-induced inhibition of HERG ion channels and sudden cardiac death, a systematic review of current literature. Trends Cardiovasc Med 2024; 34:279-285. [PMID: 37015297 DOI: 10.1016/j.tcm.2023.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND It is estimated that over 60 million individuals regularly use opioids globally, with opioid use disorder increasing substantially in the past decade. Several reports have linked sudden cardiac death, QTc prolongation, and other adverse cardiovascular outcomes with opioid use through their inhibitory effect on the human ether-a-go-go-related gene (HERG) ion channel. Therefore, understanding this underlying mechanism may be critical for risk prevention and management in prescribing opioids and treating patients with opioid dependency. AIM The present systematic review summarizes the current literature on the impact of opioids-induced inhibition of HERG channel function and its relationship with sudden cardiac death, QTc prolongation, and other cardiovascular adverse effects. METHODS A systematic review was conducted of the databases PubMed, EMBASE, Cochrane, and ClinicalTrials.gov of primary studies that reported the effects of opioids on HERG channel function and associated cardiovascular outcomes. RESULTS The search identified 1,546 studies, of which 12 were finally included for data extraction. Based on the current literature, methadone, oliceridine, l-α-acetylmethadol (LAAM), and fentanyl were found to inhibit the HERG channel function and were associated with QTc prolongation. However, other opioids such as morphine, codeine, tramadol, and buprenorphine were not associated with inhibition of HERG channels or QTc prolongation. Additional cardiac outcomes associated with opioid related HERG channels dysfunction included sudden cardiac death and Torsade de Pointes. CONCLUSION Our findings suggest that certain opioid consumption may result in the inhibition of HERG channels, subsequently prolonging the QTc interval and increasing patient susceptibility to sudden cardiac death.
Collapse
Affiliation(s)
- Adham El Sherbini
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Kiera Liblik
- School of Medicine, Queen's University, Kingston, ON, Canada
| | - Junsu Lee
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Adrian Baranchuk
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mohammad El-Diasty
- Division of Cardiac Surgery, Department of Surgery, Queen's University, 76 Stuart St, Kingston, ON K7L2V7, Canada.
| |
Collapse
|
22
|
Egly CL, Barny LA, Do T, McDonald EF, Knollmann BC, Plate L. The proteostasis interactomes of trafficking-deficient variants of the voltage-gated potassium channel K V11.1 associated with long QT syndrome. J Biol Chem 2024; 300:107465. [PMID: 38876300 PMCID: PMC11284683 DOI: 10.1016/j.jbc.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
The voltage-gated potassium ion channel KV11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause long QT syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which pharmacological chaperones like E-4031 can rescue. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes of WT KV11.1 or trafficking-deficient channel variants in the presence or absence of E-4031. We identified 572 core KV11.1 protein interactors. Trafficking-deficient variants KV11.1-G601S and KV11.1-G601S-G965∗ had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We confirmed previous findings that the proteasome is critical for KV11.1 degradation. Our report provides the first comprehensive characterization of protein quality control mechanisms of KV11.1. We find extensive interactome remodeling associated with trafficking-deficient KV11.1 variants and with pharmacological chaperone rescue of KV11.1 cell surface expression. The identified protein interactions could be targeted therapeutically to improve KV11.1 trafficking and treat LQTS.
Collapse
Affiliation(s)
- Christian L Egly
- Department of Medicine, Vanderbilt University Medical Center, Nasville, Tennessee, USA
| | - Lea A Barny
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Tri Do
- Department of Medicine, Vanderbilt University Medical Center, Nasville, Tennessee, USA
| | - Eli F McDonald
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Björn C Knollmann
- Department of Medicine, Vanderbilt University Medical Center, Nasville, Tennessee, USA.
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
23
|
El Bakri Y, Karthikeyan S, Lai CH, Bakhite EA, Ahmad I, Abdel-Rahman AE, Abuelhassan S, Marae IS, Mohamed SK, Mague JT. New tetrahydroisoquinoline-4-carbonitrile derivatives as potent agents against cyclin-dependent kinases, crystal structures, and computational studies. J Biomol Struct Dyn 2024; 42:5053-5071. [PMID: 38764131 DOI: 10.1080/07391102.2023.2224899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/07/2023] [Indexed: 05/21/2024]
Abstract
The synthesis of two new hexahydroisoquinoline-4-carbonitrile derivatives (3a and 3b) is reported along with spectroscopic data and their crystal structures. In compound 3a, the intramolecular O-H···O hydrogen bond constraints the acetyl and hydroxyl groups to be syn. In the crystal, inversion dimers are generated by C-H···O hydrogen bonds and are connected into layers parallel to (10-1) by additional C-H···O hydrogen bonds. The layers are stacked with Cl···S contacts 0.17 Å less than the sum of the respective van der Waals radii. The conformation of the compound 3b is partially determined by the intramolecular O-H···O hydrogen bond. A puckering analysis of the tetrahydroisoquinoline unit was performed. In the crystal, O-H···O and C-H···O hydrogen bonds together with C-H···π(ring) interactions form layers parallel to (01-1) which pack with normal van der Waals interactions. To understand the binding efficiency and stability of the title molecules, molecular docking, and 100 ns dynamic simulation analyses were performed with CDK5A1. To rationalize their structure-activity relationship(s), a DFT study at the B3LYP/6-311++G** theoretical level was also done. The 3D Hirshfled surfaces were also taken to investigate the crystal packings of both compounds. In addition, their ADMET properties were explored.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russia
| | - Subramani Karthikeyan
- Division of Physics, school of advanced science, Vellore Institute of Technology, Chennai Campus, Chennai, Tamil Nadu, India
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | | | | | - Islam S Marae
- Department of Chemistry, Assiut University, Assiut, Egypt
| | - Shaaban K Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, England
- Chemistry Department, Minia University, El-Minia, Egypt
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, Los Angeles, USA
| |
Collapse
|
24
|
Rajan RK, Engels M, Ramanathan M. Predicting phase-I metabolism of piceatannol: an in silico study. In Silico Pharmacol 2024; 12:52. [PMID: 38854674 PMCID: PMC11153392 DOI: 10.1007/s40203-024-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Piceatannol is a natural compound found in plants and can be derived from resveratrol. While resveratrol has been extensively researched for its effects and how the body processes it, there are concerns about its use. These concerns include its limited absorption in the body, the need for specific dosages, potential interactions with other drugs, lack of standardization, and limited clinical evidence to support its benefits. Interestingly, Piceatannol, another compound derived from resveratrol, has received less attention from researchers but appears to offer advantages. It has better bioavailability and seems to have a more favorable therapeutic profile compared to resveratrol. Surprisingly, no previous attempts have been made to explore or predict the metabolites of piceatannol when it interacts with the enzyme cytochrome P450. This study aims to fill that gap by predicting how piceatannol is metabolized by cytochrome P450 and assessing any potential toxicity associated with its metabolites. This research is interesting because it's the first of its kind to investigate the metabolic fate of piceatannol, especially in the context of cytochrome P450. The findings have the potential to significantly contribute to the field of piceatannol research, particularly in the food industry where this compound has applications and implications. Graphical abstract
Collapse
Affiliation(s)
- Ravi Kumar Rajan
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Tezpur Campus, Tezpur, Assam India
- Present Address: Department of Pharmacology, Himalayan Pharmacy Institute, Majitar, East Sikkim 737136 India
| | - Maida Engels
- Department of Pharmaceutical Chemistry, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| | - Muthiah Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| |
Collapse
|
25
|
Rubinstein J, Pinney SM, Xie C, Wang HS. Association of same-day urinary phenol levels and cardiac electrical alterations: analysis of the Fernald Community Cohort. RESEARCH SQUARE 2024:rs.3.rs-4445657. [PMID: 38853936 PMCID: PMC11160919 DOI: 10.21203/rs.3.rs-4445657/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Exposure to phenols has been linked in animal models and human populations to cardiac function alterations and cardiovascular diseases, although their effects on cardiac electrical properties in humans remains to be established. This study aimed to identify changes in electrocardiographic (ECG) parameters associated with environmental phenol exposure in adults of a midwestern large cohort known as the Fernald Community Cohort (FCC). Methods During the day of the first comprehensive medical examination, urine samples were obtained, and electrocardiograms were recorded. Cross-sectional linear regression analyses were performed. Results Bisphenol A (BPA) and bisphenol F (BPF) were both associated with a longer PR interval, an indication of delayed atrial-to-ventricle conduction, in females (p < 0.05) but not males. BPA combined with BPF was associated with an increase QRS duration, an indication of delayed ventricular activation, in females (P < 0.05) but not males. Higher triclocarban (TCC) level was associated with longer QTc interval, an indication of delayed ventricular repolarization, in males (P < 0.01) but not females. Body mass index (BMI) was associated with a significant increase in PR and QTc intervals and ventricular rate in females and in ventricular rate in males. In females, the combined effect of being in the top tertile for both BPA urinary concentration and BMI was an estimate of a 10% increase in PR interval. No associations were found with the other phenols. Conclusion Higher exposure to some phenols was associated with alterations of cardiac electrical properties in a sex specific manner in the Fernald cohort. Our population-based findings correlate directly with clinically relevant parameters that are associated with known pathophysiologic cardiac conditions in humans.
Collapse
|
26
|
Müller ME, Petersenn F, Hackbarth J, Pfeiffer J, Gampp H, Frey N, Lugenbiel P, Thomas D, Rahm AK. Electrophysiological Effects of the Sodium-Glucose Co-Transporter-2 (SGLT2) Inhibitor Dapagliflozin on Human Cardiac Potassium Channels. Int J Mol Sci 2024; 25:5701. [PMID: 38891889 PMCID: PMC11172209 DOI: 10.3390/ijms25115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The sodium-glucose co-transporter-2 (SGLT2) inhibitor dapagliflozin is increasingly used in the treatment of diabetes and heart failure. Dapagliflozin has been associated with reduced incidence of atrial fibrillation (AF) in clinical trials. We hypothesized that the favorable antiarrhythmic outcome of dapagliflozin use may be caused in part by previously unrecognized effects on atrial repolarizing potassium (K+) channels. This study was designed to assess direct pharmacological effects of dapagliflozin on cloned ion channels Kv11.1, Kv1.5, Kv4.3, Kir2.1, K2P2.1, K2P3.1, and K2P17.1, contributing to IKur, Ito, IKr, IK1, and IK2P K+ currents. Human channels coded by KCNH2, KCNA5, KCND3, KCNJ2, KCNK2, KCNK3, and KCNK17 were heterologously expressed in Xenopus laevis oocytes, and currents were recorded using the voltage clamp technique. Dapagliflozin (100 µM) reduced Kv11.1 and Kv1.5 currents, whereas Kir2.1, K2P2.1, and K2P17.1 currents were enhanced. The drug did not significantly affect peak current amplitudes of Kv4.3 or K2P3.1 K+ channels. Biophysical characterization did not reveal significant effects of dapagliflozin on current-voltage relationships of study channels. In conclusion, dapagliflozin exhibits direct functional interactions with human atrial K+ channels underlying IKur, IKr, IK1, and IK2P currents. Substantial activation of K2P2.1 and K2P17.1 currents could contribute to the beneficial antiarrhythmic outcome associated with the drug. Indirect or chronic effects remain to be investigated in vivo.
Collapse
Affiliation(s)
- Mara Elena Müller
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Finn Petersenn
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Juline Hackbarth
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Julia Pfeiffer
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Heike Gampp
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Tikhomirov R, Oakley RH, Anderson C, Xiang Y, Al-Othman S, Smith M, Yaar S, Torre E, Li J, Wilson LR, Goulding DR, Donaldson I, Harno E, Soattin L, Shiels HA, Morris GM, Zhang H, Boyett MR, Cidlowski JA, Mesirca P, Mangoni ME, D'Souza A. Cardiac GR Mediates the Diurnal Rhythm in Ventricular Arrhythmia Susceptibility. Circ Res 2024; 134:1306-1326. [PMID: 38533639 PMCID: PMC11081863 DOI: 10.1161/circresaha.123.323464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. We investigated the recruitment of transcription factors that underpins transcriptional rhythms in ion channels and assessed whether this mechanism was pertinent to the heart's intrinsic diurnal susceptibility to VA. METHODS AND RESULTS Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the animals' inactive (ZT0) and active (ZT12) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and distinct transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically-detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts. CONCLUSIONS Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.
Collapse
Affiliation(s)
- Roman Tikhomirov
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, United Kingdom (R.T., M.S., A.D.)
| | - Robert H Oakley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - Cali Anderson
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Yirong Xiang
- Department of Physics and Astronomy (Y.X., H.Z.), The University of Manchester, United Kingdom
| | - Sami Al-Othman
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Matthew Smith
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, United Kingdom (R.T., M.S., A.D.)
| | - Sana Yaar
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), F-34094 Montpellier France (E.T., P.M., M.E.M.)
| | - Jianying Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - Leslie R Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - David R Goulding
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - Ian Donaldson
- Bioinformatics Core Facility (I.D.), The University of Manchester, United Kingdom
| | - Erika Harno
- Division of Diabetes, Endocrinology and Gastroenterology (E.H.), The University of Manchester, United Kingdom
| | - Luca Soattin
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Holly A Shiels
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Gwilym M Morris
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
- Department of Cardiology, John Hunter Hospital, Newcastle, NSW, Australia (G.M.M.)
| | - Henggui Zhang
- Department of Physics and Astronomy (Y.X., H.Z.), The University of Manchester, United Kingdom
| | - Mark R Boyett
- Faculty of Life Sciences, University of Bradford, United Kingdom (M.R.B.)
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), F-34094 Montpellier France (E.T., P.M., M.E.M.)
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), F-34094 Montpellier France (E.T., P.M., M.E.M.)
| | - Alicia D'Souza
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, United Kingdom (R.T., M.S., A.D.)
| |
Collapse
|
28
|
de Wit L, Hendriks H, van Engelen J, Heusinkveld H, Kienhuis A, Rorije E, Woutersen M, van der Zee M, Jeurissen S. New Approach Methodologies (NAMs) for ad hoc human health risk assessment of food and non-food products - Proceedings of a workshop. Regul Toxicol Pharmacol 2024; 149:105615. [PMID: 38555098 DOI: 10.1016/j.yrtph.2024.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
RIVM convened a workshop on the use of New Approach Methodologies (NAMs) for the ad hoc human health risk assessment of food and non-food products. Central to the workshop were two case studies of marketed products with a potential health concern: the botanical Tabernanthe iboga which is used to facilitate mental or spiritual insight or to (illegally) treat drug addiction and is associated with cardiotoxicity, and dermal creams containing female sex hormones, intended for use by perimenopausal women to reduce menopause symptoms without medical supervision. The workshop participants recognized that data from NAM approaches added valuable information for the ad hoc risk assessment of these products, although the available approaches were inadequate to derive health-based guidance values. Recommendations were provided on how to further enhance and implement NAM approaches in regulatory risk assessment, specifying both scientific and technical aspects as well as stakeholder engagement aspects.
Collapse
Affiliation(s)
- Lianne de Wit
- RIVM, Centre for Prevention, Lifestyle and Health, Bilthoven, the Netherlands
| | - Hester Hendriks
- RIVM, Centre for Safety of Substances and Products, Bilthoven, the Netherlands.
| | | | | | - Anne Kienhuis
- RIVM, Centre for Health Protection, Bilthoven, the Netherlands
| | - Emiel Rorije
- RIVM, Centre for Safety of Substances and Products, Bilthoven, the Netherlands
| | - Marjolijn Woutersen
- RIVM, Centre for Safety of Substances and Products, Bilthoven, the Netherlands
| | | | - Suzanne Jeurissen
- RIVM, Centre for Prevention, Lifestyle and Health, Bilthoven, the Netherlands
| |
Collapse
|
29
|
Jennings MW, Nithiarasu P, Pant S. Quantifying the efficacy of voltage protocols in characterising ion channel kinetics: A novel information-theoretic approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3815. [PMID: 38544355 DOI: 10.1002/cnm.3815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 05/15/2024]
Abstract
Voltage-clamp experiments are commonly utilised to characterise cellular ion channel kinetics. In these experiments, cells are stimulated using a known time-varying voltage, referred to as the voltage protocol, and the resulting cellular response, typically in the form of current, is measured. Parameters of models that describe ion channel kinetics are then estimated by solving an inverse problem which aims to minimise the discrepancy between the predicted response of the model and the actual measured cell response. In this paper, a novel framework to evaluate the information content of voltage-clamp protocols in relation to ion channel model parameters is presented. Additional quantitative information metrics that allow for comparisons among various voltage protocols are proposed. These metrics offer a foundation for future optimal design frameworks to devise novel, information-rich protocols. The efficacy of the proposed framework is evidenced through the analysis of seven voltage protocols from the literature. By comparing known numerical results for inverse problems using these protocols with the information-theoretic metrics, the proposed approach is validated. The essential steps of the framework are: (i) generate random samples of the parameters from chosen prior distributions; (ii) run the model to generate model output (current) for all samples; (iii) construct reduced-dimensional representations of the time-varying current output using proper orthogonal decomposition (POD); (iv) estimate information-theoretic metrics such as mutual information, entropy equivalent variance, and conditional mutual information using non-parametric methods; (v) interpret the metrics; for example, a higher mutual information between a parameter and the current output suggests the protocol yields greater information about that parameter, resulting in improved identifiability; and (vi) integrate the information-theoretic metrics into a single quantitative criterion, encapsulating the protocol's efficacy in estimating model parameters.
Collapse
Affiliation(s)
- Matthew W Jennings
- Zienkiewicz Institute for Modelling, Data and AI, Swansea University, Swansea, UK
| | - Perumal Nithiarasu
- Zienkiewicz Institute for Modelling, Data and AI, Swansea University, Swansea, UK
| | - Sanjay Pant
- Zienkiewicz Institute for Modelling, Data and AI, Swansea University, Swansea, UK
| |
Collapse
|
30
|
Gelman I, Sharma N, Mckeeman O, Lee P, Campagna N, Tomei N, Baranchuk A, Zhang S, El-Diasty M. The ion channel basis of pharmacological effects of amiodarone on myocardial electrophysiological properties, a comprehensive review. Biomed Pharmacother 2024; 174:116513. [PMID: 38565056 DOI: 10.1016/j.biopha.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Amiodarone is a benzofuran-based class III antiarrhythmic agent frequently used for the treatment of atrial and ventricular arrhythmias. The primary target of class III antiarrhythmic drugs is the cardiac human ether-a-go-go-related gene (hERG) encoded channel, KCNH2, commonly known as HERG, that conducts the rapidly activating delayed rectifier potassium current (IKr). Like other class III antiarrhythmic drugs, amiodarone exerts its physiologic effects mainly through IKr blockade, delaying the repolarization phase of the action potential and extending the effective refractory period. However, while many class III antiarrhythmics, including sotalol and dofetilide, can cause long QT syndrome (LQTS) that can progress to torsade de pointes, amiodarone displays less risk of inducing this fatal arrhythmia. This review article discusses the arrhythmogenesis in LQTS from the aspects of the development of early afterdepolarizations (EADs) associated with Ca2+ current, transmural dispersion of repolarization (TDR), as well as reverse use dependence associated with class III antiarrhythmic drugs to highlight electropharmacological effects of amiodarone on the myocardium.
Collapse
Affiliation(s)
- Illia Gelman
- Department of Biomedical and Molecular Sciences, Queens's University, Kingston, ON, Canada
| | - Neelakshi Sharma
- Department of Biomedical and Molecular Sciences, Queens's University, Kingston, ON, Canada
| | - Olivia Mckeeman
- Department of Biomedical and Molecular Sciences, Queens's University, Kingston, ON, Canada
| | - Peter Lee
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Noah Campagna
- Department of Biomedical and Molecular Sciences, Queens's University, Kingston, ON, Canada
| | - Nicole Tomei
- Department of Biomedical and Molecular Sciences, Queens's University, Kingston, ON, Canada
| | - Adrian Baranchuk
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queens's University, Kingston, ON, Canada.
| | - Mohammad El-Diasty
- Department of Biomedical and Molecular Sciences, Queens's University, Kingston, ON, Canada; Harrington Heart and Vascular Institute, Department of Cardiac Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, United States.
| |
Collapse
|
31
|
Hu J, Song Y, Huang X, Li C, Jin X, Cen L, Zhang C, Ding B, Lian J. Opioids-Induced Long QT Syndrome: A Challenge to Cardiac Health. Cardiovasc Toxicol 2024; 24:472-480. [PMID: 38630336 PMCID: PMC11076354 DOI: 10.1007/s12012-024-09853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
The challenge posed by opioid overdose has become a significant concern for health systems due to the complexities associated with drug prohibition, widespread clinical use, and potential abuse. In response, healthcare professionals have primarily concentrated on mitigating the hallucinogenic and respiratory depressant consequences of opioid overdose to minimize associated risks. However, it is crucial to acknowledge that most opioids possess the capacity to prolong the QT interval, particularly in cases of overdose, thereby potentially resulting in severe ventricular arrhythmias and even sudden death if timely intervention is not implemented. Consequently, alongside addressing the typical adverse effects of opioids, it is imperative to consider their cardiotoxicity. To enhance comprehension of the correlation between opioids and arrhythmias, identify potential targets for prompt intervention, and mitigate the hazards associated with clinical utilization, an exploration of the interaction between drugs and ion channels, as well as their underlying mechanisms, becomes indispensable. This review primarily concentrates on elucidating the impact of opioid drugs on diverse ion channels, investigating recent advancements in this domain, and attaining a deeper understanding of the mechanisms underlying the prolongation of the QT interval by opioid drugs, along with potential interventions.
Collapse
Affiliation(s)
- Jiale Hu
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Yongfei Song
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315000, Zhejiang, China
| | - Xiaoyan Huang
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315000, Zhejiang, China
| | - Chongrong Li
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Xiaojun Jin
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Lichao Cen
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Chuanjin Zhang
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Beilei Ding
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Jiangfang Lian
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China.
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
32
|
Osorio LA, Lozano M, Soto P, Moreno-Hidalgo V, Arévalo-Gil A, Ramírez-Balaguera A, Hevia D, Cifuentes J, Hidalgo Y, Alcayaga-Miranda F, Pasten C, Morales D, Varela D, Urquidi C, Iturriaga A, Rivera-Palma A, Larrea-Gómez R, Irarrázabal CE. Levels of Small Extracellular Vesicles Containing hERG-1 and Hsp47 as Potential Biomarkers for Cardiovascular Diseases. Int J Mol Sci 2024; 25:4913. [PMID: 38732154 PMCID: PMC11084293 DOI: 10.3390/ijms25094913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 05/13/2024] Open
Abstract
The diagnosis of cardiovascular disease (CVD) is still limited. Therefore, this study demonstrates the presence of human ether-a-go-go-related gene 1 (hERG1) and heat shock protein 47 (Hsp47) on the surface of small extracellular vesicles (sEVs) in human peripheral blood and their association with CVD. In this research, 20 individuals with heart failure and 26 participants subjected to cardiac stress tests were enrolled. The associations between hERG1 and/or Hsp47 in sEVs and CVD were established using Western blot, flow cytometry, electron microscopy, ELISA, and nanoparticle tracking analysis. The results show that hERG1 and Hsp47 were present in sEV membranes, extravesicularly exposing the sequences 430AFLLKETEEGPPATE445 for hERG1 and 169ALQSINEWAAQTT- DGKLPEVTKDVERTD196 for Hsp47. In addition, upon exposure to hypoxia, rat primary cardiomyocytes released sEVs into the media, and human cardiomyocytes in culture also released sEVs containing hERG1 (EV-hERG1) and/or Hsp47 (EV-Hsp47). Moreover, the levels of sEVs increased in the blood when cardiac ischemia was induced during the stress test, as well as the concentrations of EV-hERG1 and EV-Hsp47. Additionally, the plasma levels of EV-hERG1 and EV-Hsp47 decreased in patients with decompensated heart failure (DHF). Our data provide the first evidence that hERG1 and Hsp47 are present in the membranes of sEVs derived from the human cardiomyocyte cell line, and also in those isolated from human peripheral blood. Total sEVs, EV-hERG1, and EV-Hsp47 may be explored as biomarkers for heart diseases such as heart failure and cardiac ischemia.
Collapse
Affiliation(s)
- Luis A. Osorio
- Laboratory of Molecular and Integrative Physiology, Physiology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (L.A.O.); (C.P.)
| | - Mauricio Lozano
- Laboratory of Molecular and Integrative Physiology, Physiology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (L.A.O.); (C.P.)
| | - Paola Soto
- Laboratory of Molecular and Integrative Physiology, Physiology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (L.A.O.); (C.P.)
| | - Viviana Moreno-Hidalgo
- Laboratory of Molecular and Integrative Physiology, Physiology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (L.A.O.); (C.P.)
| | - Angely Arévalo-Gil
- Laboratory of Molecular and Integrative Physiology, Physiology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (L.A.O.); (C.P.)
| | - Angie Ramírez-Balaguera
- Laboratory of Molecular and Integrative Physiology, Physiology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (L.A.O.); (C.P.)
| | - Daniel Hevia
- Laboratory of Molecular and Integrative Physiology, Physiology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (L.A.O.); (C.P.)
| | - Jorge Cifuentes
- Laboratory of Molecular and Integrative Physiology, Physiology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (L.A.O.); (C.P.)
| | - Yessia Hidalgo
- Laboratory of Nano-Regenerative Medicine, Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile
| | - Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile
| | - Consuelo Pasten
- Laboratory of Molecular and Integrative Physiology, Physiology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (L.A.O.); (C.P.)
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
| | - Danna Morales
- Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Diego Varela
- Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Cinthya Urquidi
- Department of Epidemiology and Health Studies, Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Andrés Iturriaga
- Departamento de Matemática y Ciencia de la Computación, Facultad de Ciencia, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | | | | | - Carlos E. Irarrázabal
- Laboratory of Molecular and Integrative Physiology, Physiology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile; (L.A.O.); (C.P.)
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
| |
Collapse
|
33
|
Cybulski M, Zaremba-Czogalla M, Trzaskowski B, Kubiszewski M, Tobiasz J, Jaromin A, Krzeczyński P, Gubernator J, Michalak O. The conjugates of 5'-deoxy-5-fluorocytidine and hydroxycinnamic acids - synthesis, anti-pancreatic cancer activity and molecular docking studies. RSC Adv 2024; 14:13129-13141. [PMID: 38655481 PMCID: PMC11036175 DOI: 10.1039/d4ra01683a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
New amide conjugates 1-6 of hydroxycinnamic acids (HCA) and 5'-deoxy-5-fluorocytidine (5-dFCR), the prodrug of 5-fluorouracil (5-FU), were synthesized and tested in vitro against pancreatic cancer lines (PDAC). The compounds showed slightly higher efficacy against primary BxPC-3 cells (IC50 values of 14-45 μM) than against metastatic AsPC-1 (IC50 values of 37-133 μM), and similar to that of 5-FU for both PDAC lines. Compound 1, which has a para-(acetyloxy)coumaroyl substituent, was found to be the most potent (IC50 = 14 μM) with a selectivity index of approximately 7 to normal dermal fibroblasts (IC50 = 96 μM). The potential pharmacological profiles were discussed on the basis of the ADME data. Docking to the carboxylesterase CES2 showed that the synthesized compounds have the ability to bind via hydrogen bonding between a specific acetate group of the sugar moiety and Ser228, which belongs to the catalytic triad that causes hydrolysis. Docking to albumin, a major transport protein in the circulatory system, revealed a strong interaction of the conjugates at the binding site which is native to warfarin and responsible for its transport in the body.
Collapse
Affiliation(s)
- Marcin Cybulski
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland +48 453 056 175 +48 453 056 177
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw Fryderyka Joliot-Curie 14a 50-383 Wroclaw Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Laboratory, Center of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Marek Kubiszewski
- Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland
| | - Joanna Tobiasz
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland +48 453 056 175 +48 453 056 177
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw Fryderyka Joliot-Curie 14a 50-383 Wroclaw Poland
| | - Piotr Krzeczyński
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland +48 453 056 175 +48 453 056 177
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw Fryderyka Joliot-Curie 14a 50-383 Wroclaw Poland
| | - Olga Michalak
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland +48 453 056 175 +48 453 056 177
| |
Collapse
|
34
|
Cheng YJ, Wu Y, Wei HQ, Liao YJ, Qu LP, Pan YH, Liu LJ, Bi WT. A novel mutation in hERG gene associated with azithromycin-induced acquired long QT syndrome. Mol Biol Rep 2024; 51:520. [PMID: 38625436 DOI: 10.1007/s11033-024-09421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Mutations in human ether-à-go-go-related gene (hERG) potassium channels are closely associated with long QT syndrome (LQTS). Previous studies have demonstrated that macrolide antibiotics increase the risk of cardiovascular diseases. To date, the mechanisms underlying acquired LQTS remain elusive. METHODS A novel hERG mutation I1025N was identified in an azithromycin-treated patient with acquired long QT syndrome via Sanger sequencing. The mutant I1025N plasmid was transfected into HEK-293 cells, which were subsequently incubated with azithromycin. The effect of azithromycin and mutant I1025N on the hERG channel was evaluated via western blot, immunofluorescence, and electrophysiology techniques. RESULTS The protein expression of the mature hERG protein was down-regulated, whereas that of the immature hERG protein was up-regulated in mutant I1025N HEK-293 cells. Azithromycin administration resulted in a negative effect on the maturation of the hERG protein. Additionally, the I1025N mutation exerted an inhibitory effect on hERG channel current. Moreover, azithromycin inhibited hERG channel current in a concentration-dependent manner. The I1025N mutation and azithromycin synergistically decreased hERG channel expression and hERG current. However, the I1025N mutation and azithromycin did not alter channel gating dynamics. CONCLUSIONS These findings suggest that hERG gene mutations might be involved in the genetic susceptibility mechanism underlying acquired LQTS induced by azithromycin.
Collapse
Affiliation(s)
- Yun-Jiu Cheng
- Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yang Wu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Hui-Qiang Wei
- Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi-Jian Liao
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Li-Ping Qu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yue-Han Pan
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Li-Juan Liu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China.
| | - Wen-Tao Bi
- Department of Cardiovascular Medicine, People's Hospital of Macheng City, Macheng, China.
| |
Collapse
|
35
|
Seck I, Ndoye SF, Kapchoup MVK, Nguemo F, Ciss I, Ba LA, Ba A, Sokhna S, Seck M. Effects of plant extracts and derivatives on cardiac K +, Nav, and Ca v channels: a review. Nat Prod Res 2024:1-28. [PMID: 38586947 DOI: 10.1080/14786419.2024.2337112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Natural products (NPs) are endless sources of compounds for fighting against several pathologies. Many dysfunctions, including cardiovascular disorders, such as cardiac arrhythmias have their modes of action regulation of the concentration of electrolytes inside and outside the cell targeting ion channels. Here, we highlight plant extracts and secondary metabolites' effects on the treatment of related cardiac pathologies on hERG, Nav, and Cav of cardiomyocytes. The natural product's pharmacology of expressed receptors like alpha-adrenergic receptors causes an influx of Ca2+ ions through receptor-operated Ca2+ ion channels. We also examine the NPs associated with cardiac contractions such as myocardial contractility by reducing the L-type calcium current and decreasing the intracellular calcium transient, inhibiting the K+ induced contractions, decreasing amplitude of myocyte shortening and showed negative ionotropic and chronotropic effects due to decreasing cytosolic Ca2+. We examine whether the NPs block potassium channels, particular the hERG channel and regulatory effects on Nav1.7.
Collapse
Affiliation(s)
- Insa Seck
- Laboratoire de Chimie de Coordination Organique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Samba Fama Ndoye
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Filomain Nguemo
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Ismaila Ciss
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Lalla Aicha Ba
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Abda Ba
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Seynabou Sokhna
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Matar Seck
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| |
Collapse
|
36
|
Gest AMM, Lazzari-Dean JR, Ortiz G, Yaeger-Weiss SK, Boggess SC, Miller EW. A red-emitting carborhodamine for monitoring and measuring membrane potential. Proc Natl Acad Sci U S A 2024; 121:e2315264121. [PMID: 38551837 PMCID: PMC10998576 DOI: 10.1073/pnas.2315264121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/25/2024] [Indexed: 04/02/2024] Open
Abstract
Biological membrane potentials, or voltages, are a central facet of cellular life. Optical methods to visualize cellular membrane voltages with fluorescent indicators are an attractive complement to traditional electrode-based approaches, since imaging methods can be high throughput, less invasive, and provide more spatial resolution than electrodes. Recently developed fluorescent indicators for voltage largely report changes in membrane voltage by monitoring voltage-dependent fluctuations in fluorescence intensity. However, it would be useful to be able to not only monitor changes but also measure values of membrane potentials. This study discloses a fluorescent indicator which can address both. We describe the synthesis of a sulfonated tetramethyl carborhodamine fluorophore. When this carborhodamine is conjugated with an electron-rich, methoxy (-OMe) containing phenylenevinylene molecular wire, the resulting molecule, CRhOMe, is a voltage-sensitive fluorophore with red/far-red fluorescence. Using CRhOMe, changes in cellular membrane potential can be read out using fluorescence intensity or lifetime. In fluorescence intensity mode, CRhOMe tracks fast-spiking neuronal action potentials (APs) with greater signal-to-noise than state-of-the-art BeRST 1 (another voltage-sensitive fluorophore). CRhOMe can also measure values of membrane potential. The fluorescence lifetime of CRhOMe follows a single exponential decay, substantially improving the quantification of membrane potential values using fluorescence lifetime imaging microscopy (FLIM). The combination of red-shifted excitation and emission, mono-exponential decay, and high voltage sensitivity enable fast FLIM recording of APs in cardiomyocytes. The ability to both monitor and measure membrane potentials with red light using CRhOMe makes it an important approach for studying biological voltages.
Collapse
Affiliation(s)
| | | | - Gloria Ortiz
- Department of Chemistry, University of California, Berkeley, CA 94720
| | | | - Steven C Boggess
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
37
|
Lu YY, Cheng CC, Chen YC, Lin YK, Higa S, Kao YH, Chen YJ. Adenosine monophosphate-regulated protein kinase inhibition modulates electrophysiological characteristics and calcium homeostasis of rabbit right ventricular outflow tract. Fundam Clin Pharmacol 2024; 38:262-275. [PMID: 37664898 DOI: 10.1111/fcp.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 07/23/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Metabolic stress predisposes to ventricular arrhythmias and sudden cardiac death. Right ventricular outflow tract (RVOT) is the common origin of ventricular arrhythmias. Adenosine monophosphate-regulated protein kinase (AMPK) activation is an important compensatory mechanism for cardiac remodeling during metabolic stress. OBJECTIVES The purpose of this study was to access whether AMPK inhibition would modulate RVOT electrophysiology, calcium (Ca2+ ) regulation, and RVOT arrhythmogenesis or not. METHODS Conventional microelectrodes were used to record electrical activity before and after compound C (10 µM, an AMPK inhibitor) in isoproterenol (1 µM)-treated rabbit RVOT tissue preparations under electrical pacing. Whole-cell patch-clamp and confocal microscopic examinations were performed in baseline and compound C-treated rabbit RVOT cardiomyocytes to investigate ionic currents and intracellular Ca2+ transients in isolated rabbit RVOT cardiomyocytes. RESULTS Compound C decreased RVOT contractility, and reversed isoproterenol increased RVOT contractility. Compound C decreased the incidence, rate, and duration of isoproterenol-induced RVOT burst firing under rapid pacing. Compared to baseline, compound C-treated RVOT cardiomyocytes had a longer action potential duration, smaller intracellular Ca2+ transients, late sodium (Na+ ), peak L-type Ca2+ current density, Na+ -Ca2+ exchanger, transient outward potassium (K+ ) current, and rapid and slow delayed rectifier K+ currents. CONCLUSION AMPK inhibition modulates RVOT electrophysiological characteristics and Ca2+ homeostasis, contributing to lower RVOT arrhythmogenic activity. Accordingly, AMPK inhibition might potentially reduce ventricular tachyarrhythmias.
Collapse
Affiliation(s)
- Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chen-Chuan Cheng
- Department of Cardiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, and Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa, Japan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
38
|
Lei CL, Whittaker DG, Mirams GR. The impact of uncertainty in hERG binding mechanism on in silico predictions of drug-induced proarrhythmic risk. Br J Pharmacol 2024; 181:987-1004. [PMID: 37740435 DOI: 10.1111/bph.16250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Drug-induced reduction of the rapid delayed rectifier potassium current carried by the human Ether-à-go-go-Related Gene (hERG) channel is associated with increased risk of arrhythmias. Recent updates to drug safety regulatory guidelines attempt to capture each drug's hERG binding mechanism by combining in vitro assays with in silico simulations. In this study, we investigate the impact on in silico proarrhythmic risk predictions due to uncertainty in the hERG binding mechanism and physiological hERG current model. EXPERIMENTAL APPROACH Possible pharmacological binding models were designed for the hERG channel to account for known and postulated small molecule binding mechanisms. After selecting a subset of plausible binding models for each compound through calibration to available voltage-clamp electrophysiology data, we assessed their effects, and the effects of different physiological models, on proarrhythmic risk predictions. KEY RESULTS For some compounds, multiple binding mechanisms can explain the same data produced under the safety testing guidelines, which results in different inferred binding rates. This can result in substantial uncertainty in the predicted torsade risk, which often spans more than one risk category. By comparison, we found that the effect of a different hERG physiological current model on risk classification was subtle. CONCLUSION AND IMPLICATIONS The approach developed in this study assesses the impact of uncertainty in hERG binding mechanisms on predictions of drug-induced proarrhythmic risk. For some compounds, these results imply the need for additional binding data to decrease uncertainty in safety-critical applications.
Collapse
Affiliation(s)
- Chon Lok Lei
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Dominic G Whittaker
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - Gary R Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
39
|
Lei M, Salvage SC, Jackson AP, Huang CLH. Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol 2024; 15:1342761. [PMID: 38505707 PMCID: PMC10949183 DOI: 10.3389/fphys.2024.1342761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024] Open
Abstract
Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Aguado-Sierra J, Dominguez-Gomez P, Amar A, Butakoff C, Leitner M, Schaper S, Kriegl JM, Darpo B, Vazquez M, Rast G. Virtual clinical QT exposure-response studies - A translational computational approach. J Pharmacol Toxicol Methods 2024; 126:107498. [PMID: 38432528 DOI: 10.1016/j.vascn.2024.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/13/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND AND PURPOSE A recent paradigm shift in proarrhythmic risk assessment suggests that the integration of clinical, non-clinical, and computational evidence can be used to reach a comprehensive understanding of the proarrhythmic potential of drug candidates. While current computational methodologies focus on predicting the incidence of proarrhythmic events after drug administration, the objective of this study is to predict concentration-response relationships of QTc as a clinical endpoint. EXPERIMENTAL APPROACH Full heart computational models reproducing human cardiac populations were created to predict the concentration-response relationship of changes in the QT interval as recommended for clinical trials. The concentration-response relationship of the QT-interval prolongation obtained from the computational cardiac population was compared against the relationship from clinical trial data for a set of well-characterized compounds: moxifloxacin, dofetilide, verapamil, and ondansetron. KEY RESULTS Computationally derived concentration-response relationships of QT interval changes for three of the four drugs had slopes within the confidence interval of clinical trials (dofetilide, moxifloxacin and verapamil) when compared to placebo-corrected concentration-ΔQT and concentration-ΔQT regressions. Moxifloxacin showed a higher intercept, outside the confidence interval of the clinical data, demonstrating that in this example, the standard linear regression does not appropriately capture the concentration-response results at very low concentrations. The concentrations corresponding to a mean QTc prolongation of 10 ms were consistently lower in the computational model than in clinical data. The critical concentration varied within an approximate ratio of 0.5 (moxifloxacin and ondansetron) and 1 times (dofetilide, verapamil) the critical concentration observed in human clinical trials. Notably, no other in silico methodology can approximate the human critical concentration values for a QT interval prolongation of 10 ms. CONCLUSION AND IMPLICATIONS Computational concentration-response modelling of a virtual population of high-resolution, 3-dimensional cardiac models can provide comparable information to clinical data and could be used to complement pre-clinical and clinical safety packages. It provides access to an unlimited exposure range to support trial design and can improve the understanding of pre-clinical-clinical translation.
Collapse
Affiliation(s)
- Jazmin Aguado-Sierra
- Elem Biotech, Barcelona, Spain; Barcelona Supercomputing Center, Barcelona, Spain.
| | | | | | | | - Michael Leitner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach, Germany.
| | - Stefan Schaper
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach, Germany.
| | - Jan M Kriegl
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach, Germany.
| | | | - Mariano Vazquez
- Elem Biotech, Barcelona, Spain; Barcelona Supercomputing Center, Barcelona, Spain.
| | - Georg Rast
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach, Germany.
| |
Collapse
|
41
|
Arcangeli A, Iorio J, Duranti C. Targeting the hERG1 and β1 integrin complex for cancer treatment. Expert Opin Ther Targets 2024; 28:145-157. [PMID: 38372580 DOI: 10.1080/14728222.2024.2318449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Despite great advances, novel therapeutic targets and strategies are still needed, in particular for some carcinomas in the metastatic stage (breast cancer, colorectal cancer, pancreatic ductal adenocarcinoma and the clear cell renal carcinoma). Ion channels may be considered good cancer biomarkers and targets for antineoplastic therapy. These concepts are particularly relevant considering the hERG1 potassium channel as a novel target for antineoplastic therapy. AREAS COVERED A great deal of evidence demonstrates that hERG1 is aberrantly expressed in human cancers, in particular in aggressive carcinomas. A relevant cornerstone was the discovery that, in cancer cells, the channel is present in a very peculiar conformation, strictly bound to the β1 subunit of integrin receptors. The hERG1/β1 integrin complex does not occur in the heart. Starting from this evidence, we developed a novel single chain bispecific antibody (scDb-hERG1-β1), which specifically targets the hERG1/β1 integrin complex and exerts antineoplastic effects in preclinical experiments. EXPERT OPINION Since hERG1 blockade cannot be pursued for antineoplastic therapy due to the severe cardiac toxic effects (ventricular arrhythmias) that many hERG1 blockers exert, different strategies must be identified to specifically target hERG1 in cancer. The targeting of the hERG1/β1 integrin complex through the bispecific antibody scDb-hERG1-β1 can overcome such hindrances.
Collapse
Affiliation(s)
- Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
- CSDC (Center for the Study of complex dynamics), University of Florence, Sesto Fiorentino (FI), Italy
- MCK Therapeutics srl, Pistoia (PT), Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
- MCK Therapeutics srl, Pistoia (PT), Italy
| |
Collapse
|
42
|
Cherian K, Shinozuka K, Tabaac BJ, Arenas A, Beutler BD, Evans VD, Fasano C, Muir OS. Psychedelic Therapy: A Primer for Primary Care Clinicians-Ibogaine. Am J Ther 2024; 31:e133-e140. [PMID: 38518270 DOI: 10.1097/mjt.0000000000001723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Ibogaine is a plant-derived alkaloid that has been used for thousands of years in rites of passage and spiritual ceremonies in West-Central Africa. In the West, it has primarily been used and studied for its anti-addictive properties and more recently for other neuropsychiatric indications, including post-traumatic stress disorder, depression, anxiety, and traumatic brain injury. AREAS OF UNCERTAINTY Ibogaine requires careful patient screening and monitoring because of significant safety issues. There is potential for cardiotoxicity (prolonged QT interval); without rigorous screening, fatal arrhythmias may occur. However, preliminary research suggests that co-administration of ibogaine with magnesium may mitigate cardiotoxicity. Additionally, ibogaine may have dangerous interactions with opiates, so patients who receive ibogaine treatment for opioid use disorder must withdraw from long-acting opioids. Other potential concerning effects of ibogaine include rare incidences of mania or psychosis. Anticipated transient effects during ibogaine treatment can include ataxia, tremors, and gastrointestinal symptoms. THERAPEUTIC ADVANCES Robust effects after a single treatment with ibogaine have been reported. In open-label and randomized controlled trials (RCTs), ibogaine reduces heroin and opioid cravings by upwards of 50%, up to 24 weeks after the treatment. An observational study of 30 Special Operations Forces veterans with mild traumatic brain injury reported that 86% were in remission from post-traumatic stress disorder, 83% from depression, and 83% from anxiety, one month after a single-dose ibogaine treatment. LIMITATIONS Although there are several observational and open-label studies, there is only a single double-blind, placebo-controlled RCT on ibogaine. More RCTs with large sample sizes must be conducted to support ibogaine's safety and efficacy. CONCLUSIONS Given the promising preliminary findings, ibogaine could potentially fill a much-needed gap in treatments for challenging conditions, including opioid dependence. Ibogaine's remarkable effects in traditionally treatment-resistant, combat-exposed individuals hints at its potential in broader populations with physical and psychological trauma.
Collapse
Affiliation(s)
- Kirsten Cherian
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA
| | - Kenneth Shinozuka
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Burton J Tabaac
- University of Nevada, Reno School of Medicine, Reno, NV
- Department of Neurology, Carson Tahoe Health, Carson City, NV
| | - Alejandro Arenas
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA
| | - Bryce D Beutler
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Viviana D Evans
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Owen S Muir
- Fermata Health, Brooklyn, NY; and
- Acacia Clinics, Sunnyvale, CA
| |
Collapse
|
43
|
Seal S, Spjuth O, Hosseini-Gerami L, García-Ortegón M, Singh S, Bender A, Carpenter AE. Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA Drug-Induced Cardiotoxicity Rank. J Chem Inf Model 2024; 64:1172-1186. [PMID: 38300851 PMCID: PMC10900289 DOI: 10.1021/acs.jcim.3c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Drug-induced cardiotoxicity (DICT) is a major concern in drug development, accounting for 10-14% of postmarket withdrawals. In this study, we explored the capabilities of chemical and biological data to predict cardiotoxicity, using the recently released DICTrank data set from the United States FDA. We found that such data, including protein targets, especially those related to ion channels (e.g., hERG), physicochemical properties (e.g., electrotopological state), and peak concentration in plasma offer strong predictive ability for DICT. Compounds annotated with mechanisms of action such as cyclooxygenase inhibition could distinguish between most-concern and no-concern DICT. Cell Painting features for ER stress discerned most-concern cardiotoxic from nontoxic compounds. Models based on physicochemical properties provided substantial predictive accuracy (AUCPR = 0.93). With the availability of omics data in the future, using biological data promises enhanced predictability and deeper mechanistic insights, paving the way for safer drug development. All models from this study are available at https://broad.io/DICTrank_Predictor.
Collapse
Affiliation(s)
- Srijit Seal
- Imaging
Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Ola Spjuth
- Department
of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box
591, SE-75124 Uppsala, Sweden
| | - Layla Hosseini-Gerami
- Ignota
Labs, The Bradfield Centre, Cambridge Science Park, County Hall, Westminster Bridge Road, Cambridge CB4 0GA, U.K.
| | - Miguel García-Ortegón
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Shantanu Singh
- Imaging
Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Andreas Bender
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Anne E. Carpenter
- Imaging
Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
44
|
Cybulski M, Sidoryk K, Zaremba-Czogalla M, Trzaskowski B, Kubiszewski M, Tobiasz J, Jaromin A, Michalak O. The Conjugates of Indolo[2,3- b]quinoline as Anti-Pancreatic Cancer Agents: Design, Synthesis, Molecular Docking and Biological Evaluations. Int J Mol Sci 2024; 25:2573. [PMID: 38473820 DOI: 10.3390/ijms25052573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
New amide conjugates of hydroxycinnamic acids (HCAs) and the known antineoplastic 5,11-dimethyl-5H-indolo[2,3-b]quinoline (DiMIQ), an analog of the natural alkaloid neocryptolepine, were synthesized and tested in vitro for anticancer activity. The compound 9-[((2-hydroxy)cinnamoyl)amino]-5,11-dimethyl-5H-indolo[2,3-b]quinoline (2), which contains the ortho-coumaric acid fragment, demonstrated dose-dependent effectiveness against both normal BxPC-3 and metastatic AsPC-1 pancreatic cancer cells. The IC50 values for AsPC-1 and BxPC-3 were 336.5 nM and 347.5 nM, respectively, with a selectivity index of approximately 5 for both pancreatic cancer cells compared to normal dermal fibroblasts. Conjugate 2 did not exhibit any hemolytic activity against human erythrocytes at the tested concentration. Computational studies were performed to predict the pharmacokinetic profile and potential mechanism of action of the synthesized conjugates. These studies focused on the ADME properties of the conjugates and their interactions with DNA, as well as DNA-topoisomerase alpha and beta complexes. All of the conjugates studied showed approximately one order of magnitude stronger binding to DNA compared to the reference DiMIQ, and approximately two orders of magnitude stronger binding to the topoisomerase II-DNA complex compared to DiMIQ. Conjugate 2 was predicted to have the strongest binding to the enzyme-DNA complex, with a Ki value of 2.8 nM.
Collapse
Affiliation(s)
- Marcin Cybulski
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Katarzyna Sidoryk
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marek Kubiszewski
- Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Joanna Tobiasz
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Olga Michalak
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| |
Collapse
|
45
|
Bollikanda RK, Nagineni D, Pranathi AN, Chirra N, Misra S, Kantevari S. Dihydrobenzothiazole coupled N-piperazinyl acetamides as antimicrobial agents: Design, synthesis, biological evaluation and molecular docking studies. Arch Pharm (Weinheim) 2024; 357:e2300450. [PMID: 38036302 DOI: 10.1002/ardp.202300450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Substituted saturated N-heterocycles have gained momentum as effective scaffolds for the development of new drugs. In this study, we coupled partly saturated benzothiazoles with substituted piperazines and evaluated their antimicrobial activity. Following a three-step reaction sequence from commercially available cyclic 1,3-diones, a series of novel 2-[4-substituted-1-piperazinyl]-N-(7-oxo-4,5,6,7-tetrahydrobenzo[d]thiazol-2-yl)acetamides (7a-af) were synthesised. 2-Amino-5,6-dihydro-benzo[d]thiazol-7(4H)-ones, obtained through the condensation of cyclohexane-1,3-diones with thiourea, were acetylated with chloroacetic chloride and then reacted with N-substituted piperazines 6a-p to give the desired products 7a-af in excellent yields. All 32 new compounds were fully characterised by their 1 H-nuclear magnetic resonance (NMR), 13 C-NMR and high-resolution mass spectrometry spectra. The synthetic compounds 7a-af were tested in vitro for their efficacy as antimicrobials against pathogenic strains of Gram-positive and Gram-negative bacteria, Streptococcus mutans and Salmonella typhi, respectively, as well as against fungal strains, including Candida albicans 3018 and C. albicans 4748. Ciprofloxacin and fluconazole served as the reference drugs. While compounds 7c and 7l showed inhibition against fungal strains with zones of inhibition of 11 and 1 mm, respectively, four analogues (7d, 7l, 7n, and 7r) demonstrated strong antibacterial action (zone of inhibition in the range of 10-15 mm). Three compounds (7j, 7l, and 7w) also exhibited moderate antitubercular activity (MIC: 6.25 µg/mL) against Mycobacterium tuberculosis H37Rv. Molecular docking investigations and the predicted physicochemical and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties for the potent compounds made this scaffold useful as a pharmacologically active framework for the development of potential antimicrobial hits.
Collapse
Affiliation(s)
- Rakesh K Bollikanda
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra Nagineni
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abburi Naga Pranathi
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nagaraju Chirra
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Misra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
46
|
Wang R, Qu Z, Huang X. Dissecting the roles of calcium cycling and its coupling with voltage in the genesis of early afterdepolarizations in cardiac myocyte models. PLoS Comput Biol 2024; 20:e1011930. [PMID: 38416778 PMCID: PMC10927084 DOI: 10.1371/journal.pcbi.1011930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/11/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024] Open
Abstract
Early afterdepolarizations (EADs) are abnormal depolarizations during the plateau phase of the action potential, which are known to be associated with lethal arrhythmias in the heart. There are two major hypotheses for EAD genesis based on experimental observations, i.e., the voltage (Vm)-driven and intracellular calcium (Ca)-driven mechanisms. In ventricular myocytes, Ca and Vm are bidirectionally coupled, which can affect each other's dynamics and result in new dynamics, however, the roles of Ca cycling and its coupling with Vm in the genesis of EADs have not been well understood. In this study, we use an action potential model that is capable of independent Vm and Ca oscillations to investigate the roles of Vm and Ca coupling in EAD genesis. Four different mechanisms of EADs are identified, which are either driven by Vm oscillations or Ca oscillations alone, or oscillations caused by their interactions. We also use 5 other ventricular action potential models to assess these EAD mechanisms and show that EADs in these models are mainly Vm-driven. These mechanistic insights from our simulations provide a theoretical base for understanding experimentally observed EADs and EAD-related arrhythmogenesis.
Collapse
Affiliation(s)
- Rui Wang
- Department of Physics, South China University of Technology, Guangzhou, China
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Xiaodong Huang
- Department of Physics, South China University of Technology, Guangzhou, China
| |
Collapse
|
47
|
Egly CL, Barny L, Do T, McDonald EF, Plate L, Knollmann BC. The proteostasis interactomes of trafficking-deficient K V 11.1 variants associated with Long QT Syndrome and pharmacological chaperone rescue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.574410. [PMID: 38352392 PMCID: PMC10862811 DOI: 10.1101/2024.01.31.574410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Introduction The voltage gated potassium ion channel K V 11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause Long QT Syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which can be rescued by pharmacological chaperones like E-4031. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery, comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants, and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. Methods We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes in human embryonic kidney (HEK293) cells expressing wild-type (WT) K V 11.1 or trafficking-deficient channel variants in the presence or absence of E-4031. Resultsa We identified 573 core K V 11.1 protein interactors. Both variants K V 11.1-G601S and K V 11.1-G601S-G965* had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We found that proteasomal degradation is a key component for K V 11.1 degradation and that the K V 11.1-G601S-G965* variant was more responsive to E-4031 treatment. This suggests a role in the C-terminal domain and the ER retention motif of K V 11.1 in regulating trafficking. Conclusion Our report characterizes the proteostasis network of K V 11.1, two trafficking deficient K V 11.1 variants, and variants treated with a pharmacological chaperone. The identified protein interactions could be targeted therapeutically to improve K V 11.1 trafficking and treat Long QT Syndrome.
Collapse
|
48
|
Ngo K, Yarov-Yarovoy V, Clancy CE, Vorobyov I. Harnessing AlphaFold to reveal state secrets: Prediction of hERG closed and inactivated states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577468. [PMID: 38352360 PMCID: PMC10862728 DOI: 10.1101/2024.01.27.577468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
To design safe, selective, and effective new therapies, there must be a deep understanding of the structure and function of the drug target. One of the most difficult problems to solve has been resolution of discrete conformational states of transmembrane ion channel proteins. An example is KV11.1 (hERG), comprising the primary cardiac repolarizing current, IKr. hERG is a notorious drug anti-target against which all promising drugs are screened to determine potential for arrhythmia. Drug interactions with the hERG inactivated state are linked to elevated arrhythmia risk, and drugs may become trapped during channel closure. However, the structural details of multiple conformational states have remained elusive. Here, we guided AlphaFold2 to predict plausible hERG inactivated and closed conformations, obtaining results consistent with myriad available experimental data. Drug docking simulations demonstrated hERG state-specific drug interactions aligning well with experimental results, revealing that most drugs bind more effectively in the inactivated state and are trapped in the closed state. Molecular dynamics simulations demonstrated ion conduction that aligned with earlier studies. Finally, we identified key molecular determinants of state transitions by analyzing interaction networks across closed, open, and inactivated states in agreement with earlier mutagenesis studies. Here, we demonstrate a readily generalizable application of AlphaFold2 as a novel method to predict discrete protein conformations and novel linkages from structure to function.
Collapse
Affiliation(s)
- Khoa Ngo
- Biophysics Graduate Group, University of California, Davis, CA
- Department of Physiology and Membrane Biology, University of California, Davis, CA
- Center for Precision Medicine and Data Science, University of California, Davis, CA
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA
- Department of Anesthesiology and Pain Medicine, University of California, Davis, CA
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California, Davis, CA
- Department of Pharmacology, University of California, Davis, CA
- Center for Precision Medicine and Data Science, University of California, Davis, CA
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, CA
- Department of Pharmacology, University of California, Davis, CA
| |
Collapse
|
49
|
Abd El-Razek MH, Eissa IH, Al-Karmalawy AA, Elrashedy AA, El-Desoky AH, Aboelmagd M, Mohamed TA, Hegazy MEF. epi-Magnolin, a tetrahydrofurofuranoid lignan from the oleo-gum resin of Commiphora wightii, as inhibitor of pancreatic cancer cell proliferation, in-vitro and in-silico study. J Biomol Struct Dyn 2024:1-13. [PMID: 38265952 DOI: 10.1080/07391102.2024.2308767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Five known furofuran lignans, dia-sesamin (1), 5-methoxysesamin (2), epi-magnolin (3), kobusin (4) and yangambin (5) were isolated for the first-time from the oleo-gum resin of Commiphora wightii. This is the first report on the 13C NMR assignments for epi-magnolin (3). Each of the isolated compounds was evaluated for its ability to inhibit MIA PaCa-2 pancreatic cancer cell line. Among them, epi-magnolin (3) displayed potential activity (IC50 = 29 nM) compared to colchicine (IC50 = 56 nM). 3D-flexible alignment revealed that epi-magnolin (3) has great matching with the tubulin polymerization inhibitor, colchicine. Meanwhile, docking studies exhibited that compounds 1-5 displayed good binding free energies against colchicine binding site (CBS) of tubulin with binding modes that were highly comparable to that of colchicine. Compounds 2, 3, and 5 showed superior binding free energies than colchicine (-24.37 kcal/mol). epi-Magnolin (3) showed the highest binding score against CBS. MD simulation studies confirmed the stability of epi-magnolin (3) in the active site for 200 ns. Furthermore, four online servers (Swiss ADME, pkCSM pharmacokinetics, AdmetSAR, and ProTox-II) were utilized to predict the ADMET parameters. The in-silico pharmacokinetics predictions reveled that epi-magnolin (3) has significant oral bioavailability and drug-like capabilities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed H Abd El-Razek
- Chemistry of Natural Compounds Department, Institute of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Giza, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Ahmed A Elrashedy
- Department of the Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Institute, National Research Centre (NRC), Giza, Egypt
| | - Ahmed H El-Desoky
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Giza, Egypt
| | - Mohamed Aboelmagd
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Giza, Egypt
| | - Tarik A Mohamed
- Chemistry of Medicinal Plants Department, Institute of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Giza, Egypt
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, Institute of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Giza, Egypt
| |
Collapse
|
50
|
Bloothooft M, Verbruggen B, Seibertz F, van der Heyden MAG, Voigt N, de Boer TP. Recording ten-fold larger I Kr conductances with automated patch clamping using equimolar Cs + solutions. Front Physiol 2024; 15:1298340. [PMID: 38328302 PMCID: PMC10847579 DOI: 10.3389/fphys.2024.1298340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Background: The rapid delayed rectifier potassium current (IKr) is important for cardiac repolarization and is most often involved in drug-induced arrhythmias. However, accurately measuring this current can be challenging in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes because of its small current density. Interestingly, the ion channel conducting IKr, hERG channel, is not only permeable to K+ ions but also to Cs+ ions when present in equimolar concentrations inside and outside of the cell. Methods: In this study, IhERG was measured from Chinese hamster ovary (CHO)-hERG cells and hiPSC-CM using either Cs+ or K+ as the charge carrier. Equimolar Cs+ has been used in the literature in manual patch-clamp experiments, and here, we apply this approach using automated patch-clamp systems. Four different (pre)clinical drugs were tested to compare their effects on Cs+- and K+-based currents. Results: Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. Comparison of Cs+- and K+-mediated currents upon application of dofetilide, desipramine, moxifloxacin, or LUF7244 revealed many similarities in inhibition or activation properties of the drugs studied. Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. In hiPSC-CM, the Cs+-based conductance is larger compared to the known K+-based conductance, and the Cs+ hERG conductance can be inhibited similarly to the K+-based conductance. Conclusion: Using equimolar Cs+ instead of K+ for IhERG measurements in an automated patch-clamp system gives rise to a new method by which, for example, quick scans can be performed on effects of drugs on hERG currents. This application is specifically relevant when such experiments are performed using cells which express small IKr current densities in combination with small membrane capacitances.
Collapse
Affiliation(s)
- Meye Bloothooft
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bente Verbruggen
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
- Nanion Technologies GmbH, Munich, Germany
| | - Marcel A. G. van der Heyden
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Teun P. de Boer
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|