1
|
Winter M, Broll G, Philipp B, Díaz C, Schlich K. Natural but threatening? (II) A systematic terrestrial ecotoxicity evaluation of biopolymers and modified natural polymers. ENVIRONMENTAL RESEARCH 2025:121665. [PMID: 40274088 DOI: 10.1016/j.envres.2025.121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Polymers can be found in various agrotechnical products. While synthetic polymers and modified natural polymers are subject to EC 2023/2055 regulation, biopolymers can be regarded as unregulated substituents. However, there is no comprehensive data-based evidence which proves environmental harmlessness of (modified) natural polymer exposure to the terrestrial ecosystem. In order to assess the ecotoxicity potential, we conducted a systematic study with the six economically relevant bio- and modified natural polymers alginate, chitosan, the cellulose fibres Jelucel® HM 200, xanthan, CMC and the modified starch Emwaxy® Jel 100. We hypothesised, that the selected polymers are not ecotoxic within the test concentration range of 10 to 1000 mg/kg. As an evaluation strategy for the ecotoxicity of polymers is missing in the European regulation, we considered different terrestrial faunistic levels within the agricultural landscape for testing. We investigated the ecotoxicity impact on soil micro-, meso- and macrofauna with the OECD TG 216, ISO 15685, ISO 20130, OECD TG 232, ISO 17512-1 and OECD TG 222. Bacterial and archaeal amoA gene abundance was additionally analysed to link functional to structural diversity. Adverse effects were predominantly found for microbial soil functions related to potential nitrification. Collembola and earthworm reproduction, as well as earthworm movement behaviour, were mostly not impaired. Overall, the results indicate that biopolymers and modified natural polymers do have concentration-dependent effects on soil-living organisms and ecotoxicity tests with focus on the terrestrial compartment should be considered in an exposure-related hazard assessment framework.
Collapse
Affiliation(s)
- Marie Winter
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department Ecotoxicology, Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Gabriele Broll
- Institute of Geography, University of Osnabrück, Seminarstraße 19ab, 49074 Osnabrück, Germany
| | - Bodo Philipp
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department Environmental microbiology, Auf dem Aberg 1, 57392 Schmallenberg, Germany; Institute of Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Münster, Germany
| | - Cecilia Díaz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department Ecotoxicology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Karsten Schlich
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department Ecotoxicology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| |
Collapse
|
2
|
Hiraoka S, Ijichi M, Takeshima H, Kumagai Y, Yang C, Makabe‐Kobayashi Y, Fukuda H, Yoshizawa S, Iwasaki W, Kogure K, Shiozaki T. Probe Capture Enrichment Sequencing of amoA Genes Improves the Detection of Diverse Ammonia-Oxidising Archaeal and Bacterial Populations. Mol Ecol Resour 2025; 25:e14042. [PMID: 39552505 PMCID: PMC11887609 DOI: 10.1111/1755-0998.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/18/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024]
Abstract
The ammonia monooxygenase subunit A (amoA) gene has been used to investigate the phylogenetic diversity, spatial distribution and activity of ammonia-oxidising archaeal (AOA) and bacterial (AOB), which contribute significantly to the nitrogen cycle in various ecosystems. Amplicon sequencing of amoA is a widely used method; however, it produces inaccurate results owing to the lack of a 'universal' primer set. Moreover, currently available primer sets suffer from amplification biases, which can lead to severe misinterpretation. Although shotgun metagenomic and metatranscriptomic analyses are alternative approaches without amplification bias, the low abundance of target genes in heterogeneous environmental DNA restricts a comprehensive analysis to a realisable sequencing depth. In this study, we developed a probe set and bioinformatics workflow for amoA enrichment sequencing using a hybridisation capture technique. Using metagenomic mock community samples, our approach effectively enriched amoA genes with low compositional changes, outperforming amplification and meta-omics sequencing analyses. Following the analysis of metatranscriptomic marine samples, we predicted 80 operational taxonomic units (OTUs) assigned to either AOA or AOB, of which 30 OTUs were unidentified using simple metatranscriptomic or amoA gene amplicon sequencing. Mapped read ratios to all the detected OTUs were significantly higher for the capture samples (50.4 ± 27.2%) than for non-capture samples (0.05 ± 0.02%), demonstrating the high enrichment efficiency of the method. The analysis also revealed the spatial diversity of AOA ecotypes with high sensitivity and phylogenetic resolution, which are difficult to examine using conventional approaches.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN)Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaKanagawaJapan
| | - Minoru Ijichi
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Hirohiko Takeshima
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Yohei Kumagai
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Ching‐Chia Yang
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | | | - Hideki Fukuda
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Wataru Iwasaki
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
- Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaChibaJapan
| | - Kazuhiro Kogure
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Takuhei Shiozaki
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| |
Collapse
|
3
|
Florio A, Legout A, Marechal M, Clesse M, Delort A, des Chatelliers CC, Gervaix J, Shi Y, van der Heijden G, Zeller B, Le Roux X. Nitrate leaching from soil under different forest tree species is related to the vertical distribution of Nitrobacter abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178776. [PMID: 39955938 DOI: 10.1016/j.scitotenv.2025.178776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Forest tree species and their mineral N uptake strategies can influence the activity and abundance of nitrifying microorganisms in deeper soil layers and subsequent nitrate leaching. However, the role of nitrifier community from the topsoil or deeper soil layers for nitrate leaching below the rooting zone remains uncertain. We evaluated potential nitrification rates and the abundance of ammonia- and nitrite- oxidizers in soil profiles covered by different tree species having (i.e. spruce and Nordmann fir) or not (i.e. Douglas fir, Corsican pine and beech) the Biological Nitrification Inhibition, BNI, capacity. Concurrently, we calculated nitrate fluxes under each tree species by coupling nitrate concentrations in soil solutions with the hydrological model Watfor to simulate water percolation, and analyzed the relationships between nitrate fluxes and nitrifiers characteristics. We observed that nitrification rates under BNI species in the topsoil were lower than those under non-BNI species, and that these changes were associated to strong differences in the abundance of Nitrobacter (500-fold changes between tree species). Nitrification potentials drastically decreased with increasing soil depth and were strongly correlated with the abundance of Nitrobacter, not ammonia oxidizers. Furthermore, by computing weighted mean values of nitrifier activity and abundance, we showed that nitrate fluxes were explained by the abundance of Nitrobacter community across the 0-60 cm soil profile. In this context, the abundance of Nitrobacter community seems an interesting proxy for evaluating water quality at the plot scale, and a promising tool to understand and predict the risk of nitrate leaching from soils in temperate forest ecosystems.
Collapse
Affiliation(s)
- A Florio
- INRAE, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, UMR 1418 LEM, Ecologie Microbienne, F 69622 Villeurbanne, France.
| | - A Legout
- INRAE, BEF, F-54000 Nancy, France
| | - M Marechal
- INRAE, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, UMR 1418 LEM, Ecologie Microbienne, F 69622 Villeurbanne, France
| | - M Clesse
- INRAE, BEF, F-54000 Nancy, France
| | - A Delort
- INRAE, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, UMR 1418 LEM, Ecologie Microbienne, F 69622 Villeurbanne, France
| | - C Creuze des Chatelliers
- INRAE, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, UMR 1418 LEM, Ecologie Microbienne, F 69622 Villeurbanne, France
| | - J Gervaix
- INRAE, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, UMR 1418 LEM, Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Y Shi
- Institute of Grassland Science, Key Laboratory of Vegetation, Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, PR China
| | | | - B Zeller
- INRAE, BEF, F-54000 Nancy, France
| | - X Le Roux
- INRAE, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, UMR 1418 LEM, Ecologie Microbienne, F 69622 Villeurbanne, France
| |
Collapse
|
4
|
Piñeiro-Guerra JM, Lewczuk NA, Della Chiesa T, Araujo PI, Acreche M, Alvarez C, Alvarez CR, Chalco Vera J, Alejandro C, José DT, Petrasek M, Piccinetti C, Picone L, Portela SI, Posse G, Martin S, Videla C, Yahdjian L, Piñeiro G. Spatial variability of nitrous oxide emissions from croplands and unmanaged natural ecosystems across a large environmental gradient. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:483-498. [PMID: 39746878 DOI: 10.1002/jeq2.20663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025]
Abstract
Atmospheric nitrous oxide (N2O) is a potent greenhouse gas, with long atmospheric residence time and a global warming potential 273 times higher than CO2. N2O emissions are mainly produced from soils and are influenced by biotic and abiotic factors that can be substantially altered by anthropogenic activities, such as land uses, especially when unmanaged natural ecosystems are replaced by croplands or other uses. In this study, we evaluated the spatial variability of N2O emissions from croplands (maize, soybean, wheat, and sugar cane crops), paired with the natural grasslands or forests that they replaced across a wide environmental gradient in Argentina, and identified the key drivers governing the spatial variability of N2O emissions using structural equation modeling. We conducted on-farm field measurements over 2 years at nine different sites, including a wide environmental gradient (mean rainfall from 679 to 1090 mm year-1 and mean temperatures from 13.8°C to 21.3°C), with diverse plant species life forms, and ecosystems, from the Semiarid Chaco forests in the Northwest of Argentina to the Pampas grasslands in the Southeast. On average, agricultural systems emitted more than twice N2O (+120%), had higher soil water content (+9%), higher soil temperatures (+3%), higher soil nitrate content (+19%) but lower ammonium (-33%) than natural ecosystems. We found that land use was the main driver of N2O emissions by directly affecting soil NO3 - contents in both natural ecosystems and croplands. Urgent management practices aimed at reducing N2O emissions from croplands are needed to mitigate their contributions to global climate change.
Collapse
Affiliation(s)
- Juan Manuel Piñeiro-Guerra
- IFEVA, CONICET, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina
- Departamento de sistemas ambientales, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- Centro Universitario Regional Este, Departamento de Modelización Estadística de Datos e Inteligencia Artificial, Universidad de la República, Rocha, Uruguay
| | | | - Tomás Della Chiesa
- IFEVA, CONICET, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Catedra de Climatología y Fenología Agrícolas, Buenos Aires, Argentina
| | | | | | | | - Carina R Alvarez
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | - De Tellería José
- INTA Inst. de Microbiología y Zoología Agrícolas, Buenos Aires, Argentina
| | - Marcos Petrasek
- Departamento de Tecnología, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
| | - Carlos Piccinetti
- INTA Inst. de Microbiología y Zoología Agrícolas, Buenos Aires, Argentina
| | | | | | - Gabriela Posse
- INTA Inst. Clima y Agua, CIRN CNIA, Buenos Aires, Argentina
| | | | | | - Laura Yahdjian
- IFEVA, CONICET, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina
| | - Gervasio Piñeiro
- IFEVA, CONICET, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina
- Departamento de sistemas ambientales, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Chang Y, Liu C, Zhang Z, Gao D. Shifts of abundance and community composition of nitrifying microbes along the Changjiang Estuary to the East China Sea. World J Microbiol Biotechnol 2025; 41:43. [PMID: 39831940 DOI: 10.1007/s11274-025-04259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Nitrification, the oxidation of ammonium to nitrate via nitrite, links nitrogen fixation and nitrogen loss processes, playing key roles in coastal nitrogen cycle. However, few studies have simultaneously examined both ammonia-oxidizing and nitrite-oxidizing microbes. This work investigated the abundance and community structure of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB) using archaeal amoA gene, bacterial amoA gene, and NOB nxrB gene, respectively, through q-PCR and Sanger sequencing along the Changjiang Estuary salinity gradient. Results showed that ammonia oxidizers were dominated by AOB and had higher abundance than NOB. AOA had a higher diversity at high-salinity stations, and AOB diversity decreased along the estuarine salinity gradient. The communities of AOA differed among freshwater, estuarine mixing and seawater zones, indicating a narrow ecological niche. AOB compositions displayed a wide niche, changing from Nitrosomonas-like sequences dominated to Nitrosospira-like sequences dominated along the salinity gradient. The RDA showed that sand and nitrate contents had significant impacts on the AOA community compositions, while the AOB communities were governed by clay and nitrate contents. This research provides insight into the understanding of the niche of ammonia oxidizers in the estuarine zones.
Collapse
Affiliation(s)
- Yongkai Chang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.
| | - Cheng Liu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, China
| | - Zongxiao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dengzhou Gao
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
6
|
Feng X, Wang X, Wei Z, Wu M, Ma X, Yan X, Shan J. Depth weakens effects of long-term fertilization on dissolved organic matter chemodiversity in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178237. [PMID: 39721550 DOI: 10.1016/j.scitotenv.2024.178237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Dissolved organic matter (DOM) is pivotal for soil biogeochemical processes, soil fertility, and ecosystem stability. While numerous studies have investigated the impact of fertilization practices on DOM content along soil profiles, variations in DOM chemodiversity and the underlying factors across soil profiles under long-term fertilization regimes remain unclear. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and high-throughput sequencing, this study investigated DOM composition characteristics and microbial community compositions across different soil layers (0-20, 20-40, 40-60, and 60-100 cm) in paddy soil under different long-term fertilization treatments, including Control (no fertilizer), NPK (mineral NPK fertilizer), NPKHS (NPK fertilizer with half straw return), and NPKS (NPK fertilizer with full straw return). The results revealed that fertilization regimes significantly increased soil TC, TN, and NO3- contents, as well as DOM chemodiversity in the top soil layer, particularly under NPKHS and NPKS treatments. Both the DOM chemodiversity and bacterial diversity decreased with soil depth. However, below 0-20 cm, DOM chemodiversity was not significantly affected by fertilization treatments. Co-occurrence network analysis further showed that microbial decomposition primarily drove the changes in DOM composition across soil profile. Overall, our study suggests that long-term NPK fertilization and straw return significantly increased DOM chemodiversity only in the top layer of paddy soil by regulating soil TC, TN, and NO3- contents. Our study provides useful information regarding the vertical molecular composition of DOM and enhances the understanding of DOM chemodiversity along soil profile in rice paddy ecosystems.
Collapse
Affiliation(s)
- Xueying Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Xiaofang Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China.
| |
Collapse
|
7
|
Wang M, Lin M, Liu Q, Zhang Y, Luo R, Pang X. Altitudinal decline of vegetation restoration effects on soil microbial communities on high-altitude roadside slops: Environmental drivers and management implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177424. [PMID: 39522786 DOI: 10.1016/j.scitotenv.2024.177424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Construction activities in high-altitude regions have left many bare roadside slopes vulnerable to degradation, complicating restoration efforts. Soil microorganisms are vital for plant growth and nutrient cycling, yet their responses to restoration efforts at various altitudes remains uncertain. This study investigates soil microbial composition, network properties, ecological functions, keystone taxa, and environmental drivers across three restored vegetation types: herbaceous plants (H), shrubs + herbaceous plants (SH), and trees + shrubs + herbaceous plants (TSH) at elevations from 3100 to 3800 m. Our structural equation model identifies elevation and vegetation type as key factors influencing microbial communities, directly or indirectly, through their effects on plant and soil properties. We also found that bacterial α-diversity decreased with elevation, while fungal α-diversity increased, resulting in more complex but less stable microbial networks. R-strategists predominated in the herbaceous type (H) and at lower altitudes, whereas K-strategists dominated in the SH and TSH types, and at higher altitudes. Keystone species of type H, associated with pathotrophs and plant pathogens, showed a negative correlation with plant properties, which weakened at higher altitudes. Both bacterial and fungal communities were driven more by abiotic factors, especially ammonium (NH4+-N) and dissolved organic nitrogen (DON) for bacteria and soil water content (SWC) for fungi. This study proposes managing restoration-sensitive microbes and keystone taxa associated with specific vegetation types for effective restoration at appropriate altitudes, especially those shared by SH and TSH. Furthermore, integrating suitable legume or nitrogen-fixing woody vegetation into restoration efforts at lower altitudes and herbaceous vegetation into higher altitudes has the potential to significantly enhance plant growth and health at high altitudes. This study offers valuable guidance for optimizing restoration strategies by effectively addressing key environmental factors and nurturing essential microbial species crucial for successful restoration efforts and global warming mitigation.
Collapse
Affiliation(s)
- Min Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, China; University of Chinese Academy of Sciences, China; Restoration Ecology, Technical University of Munich, Germany
| | - Mao Lin
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Qinghua Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, China
| | - Yan Zhang
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Ruyi Luo
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, China
| | - Xueyong Pang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, China.
| |
Collapse
|
8
|
Bai Y, Du Y, Xiong Y, Deng Y, Gan Y, Li Q. Integrated impacts of mariculture on nitrogen cycling processes in the coastal groundwater of Beihai, southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177622. [PMID: 39566628 DOI: 10.1016/j.scitotenv.2024.177622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Groundwater nitrogen (N) contamination in coastal zones is becoming an increasingly serious global issue. Mariculture, as a major anthropogenic activity, has profound impacts on coastal groundwater and constitutes an important source of coastal N contamination. However, a comprehensive understanding of the impact of mariculture on N cycling (especially N removal) is still lacking. Taking the Daguansha mariculture region in southern China as the study area, we aimed to investigate the environmental impact of mariculture on coastal groundwater and identify N cycling processes influenced by mariculture using hydrogeochemistry, multiple isotopes, coupled with 16S rRNA gene sequencing, and the quantitative polymerase chain reaction (qPCR) experiments. The results showed that the combined effects of seawater intrusion and seepage from land-based mariculture ponds have led to localized groundwater salinization in the region. Meanwhile, mariculture promotes nitrification and anammox processes in groundwater. The dominance of ammonia-oxidizing and anammox bacteria in the upper aquifer is attributable to local salinization, N and organic carbon input, as well as anoxic to suboxic conditions induced by seepage from aquaculture ponds. In addition, the gene abundances of ammonia oxidation (dominated by AOA) and denitrification were positively correlated, indicating their cooperative interaction. This study provides deeper insight into N cycling in coastal groundwater systems affected by extensive mariculture.
Collapse
Affiliation(s)
- Yuxi Bai
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Yao Du
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Yaojin Xiong
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China; Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China
| | - Yiqun Gan
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Qinghua Li
- Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China.
| |
Collapse
|
9
|
Lee UJ, Gwak JH, Choi S, Jung MY, Lee TK, Ryu H, Imisi Awala S, Wanek W, Wagner M, Quan ZX, Rhee SK. " Ca. Nitrosocosmicus" members are the dominant archaea associated with plant rhizospheres. mSphere 2024; 9:e0082124. [PMID: 39530672 DOI: 10.1128/msphere.00821-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Archaea catalyzing the first step of nitrification in the rhizosphere possibly have an influence on plant growth and development. In this study, we found a distinct archaeal community, dominated by ammonia-oxidizing archaea (AOA), associated with the root system of pepper (Capsicum anuum L.) and ginseng plants (Panax ginseng C.A. Mey.) compared to bulk soil not penetrated by roots. While the abundance of total AOA decreased in the rhizosphere soils, AOA related to "Candidatus Nitrosocosmicus," which harbor gene encoding manganese catalase (MnKat) in contrast to most other AOA, dominated the AOA community in the rhizosphere soils. For both plant species, the ratio of copy numbers of the AOA MnKat gene to the amoA gene (encoding the ammonia monooxygenase subunit A) was significantly higher in the rhizospheres than in bulk soils. In contrast to MnKat-negative strains from other AOA clades, the catalase activity of a representative isolate of "Ca. Nitrosocosmicus" was demonstrated. Members of this clade were enriched in H2O2-amended bulk soils, and constitutive expression of their MnKat gene was observed in both bulk and rhizosphere soils. Due to their abundance, "Ca. Nitrosocosmicus" members can be considered important players mediating the nitrification process in rhizospheres. The dominance of this MnKat-containing AOA in rhizospheres of agriculturally important plants hints at a previously overlooked AOA-plant interaction. IMPORTANCE Ammonia-oxidizing archaea (AOA) are widespread in terrestrial environments and outnumber other ammonia oxidizers in the rhizosphere, possibly exerting an influence on plant growth and development. However, little is known about the selection forces that shape their composition, functions, survival, and proliferation strategies in the rhizosphere. Here, we observed a distinct AOA community on root systems of two different plant species compared to bulk soil. Our results show that the "Ca. Nitrosocosmicus" clade, which possesses functional MnKat genes unlike most other AOA, dominated the rhizosphere soils. Moreover, members of this clade were enriched in H2O2-amended bulk soil, which mimics the ROS stress in root systems. While research on AOA-plant interactions in the rhizosphere is still in its infancy, these findings suggest that "Ca. Nitrosocosmicus" may be an important clade of AOA with potential AOA-plant interaction.
Collapse
Affiliation(s)
- Ui-Ju Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Seungyeon Choi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Man-Young Jung
- Department of Science Education, Jeju National University, Jeju, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Hojin Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Center of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Vienna, Austria
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Zhe-Xue Quan
- School of Life Sciences, Fudan University, Shanghai, China
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
10
|
Wu Y, Yang W, Kou J, Li Q, Liu J, Chi L, Zhang Y, Liu Q, Yu Y. Impacts of phosphate-solubilizing bacterium strain MWP-1 on vegetation growth, soil characteristics, and microbial communities in the Muli coal mining area, China. Front Microbiol 2024; 15:1500070. [PMID: 39703706 PMCID: PMC11655473 DOI: 10.3389/fmicb.2024.1500070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Due to the cold climate and low soil nutrient content, high-altitude mining areas are challenging to restore ecologically. Their poor nutrient content may be ameliorated by introducing specific microorganisms into the soil. This study aims to evaluate the effects of a highly efficient phosphate solubilizing bacterium MWP-1, Pseudomonas poae, on plant growth, soil nutrients in remedying the soil of the high-altitude Muli mining area in Qinghai Province, and analyze its impact on microbial communities through high-throughput sequencing soil microbial communities. The results showed that MWP-1 significantly increased the content of soil available phosphorus by >50%, soil organic matter and total nitrogen by >10%, and significantly increased the height, coverage, and aboveground biomass of vegetation by >40% in comparison with the control (p < 0.05). MWP-1 mainly affected the composition of the soil bacterial communities at the taxonomic level below the phylum. Its impact on soil fungal communities occurred at the phylum and below taxonomic levels. In addition, MWP-1 also significantly improved the diversity of soil bacterial and fungal communities (p < 0.05), and changed their functions. It also significantly altered the relative abundance of genes regulating phosphorus absorption and transport, inorganic phosphorus dissolution and organic phosphorus mineralization in the bacterial community (p < 0.05). It caused a significant increase in the relative abundance of the genes regulating nitrogen fixation and nitrification in nitrogen cycling (p < 0.05), but a significant decrease in the genes regulating phospholipase (p < 0.05). Although sequencing results indicated that Pseudomonas poae did not become the dominant species, its dissolved phosphorus elements can promote plant growth and development, enrich soil nutrient content, and affect the succession of microbial communities, enhance ecosystem stability, with an overall positive effect on soil remediation in the mining area.
Collapse
Affiliation(s)
- Yanru Wu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region (Qinghai University), Ministry of Education, Xining, China
| | - Wenquan Yang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jiancun Kou
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region (Qinghai University), Ministry of Education, Xining, China
| | - Qinyao Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jiaqing Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Lu Chi
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yangcan Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Qian Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yanghua Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Han S, Kim S, Sedlacek CJ, Farooq A, Song C, Lee S, Liu S, Brüggemann N, Rohe L, Kwon M, Rhee SK, Jung MY. Adaptive traits of Nitrosocosmicus clade ammonia-oxidizing archaea. mBio 2024; 15:e0216924. [PMID: 39360821 PMCID: PMC11559005 DOI: 10.1128/mbio.02169-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Nitrification is a core process in the global nitrogen (N) cycle mediated by ammonia-oxidizing microorganisms, including ammonia-oxidizing archaea (AOA) as a key player. Although much is known about AOA abundance and diversity across environments, the genetic drivers of the ecophysiological adaptations of the AOA are often less clearly defined. This is especially true for AOA within the genus Nitrosocosmicus, which have several unique physiological traits (e.g., high substrate tolerance, low substrate affinity, and large cell size). To better understand what separates the physiology of Nitrosocosmicus AOA, we performed comparative genomics with genomes from 39 cultured AOA, including five Nitrosocosmicus AOA. The absence of a canonical high-affinity type ammonium transporter and typical S-layer structural genes was found to be conserved across all Nitrosocosmicus AOA. In agreement, cryo-electron tomography confirmed the absence of a visible outermost S-layer structure, which has been observed in other AOA. In contrast to other AOA, the cryo-electron tomography highlighted the possibility that Nitrosocosmicus AOA may possess a glycoprotein or glycolipid-based glycocalyx cell covering outer layer. Together, the genomic, physiological, and metabolic properties revealed in this study provide insight into niche adaptation mechanisms and the overall ecophysiology of members of the Nitrosocosmicus clade in various terrestrial ecosystems. IMPORTANCE Nitrification is a vital process within the global biogeochemical nitrogen cycle but plays a significant role in the eutrophication of aquatic ecosystems and the production of the greenhouse gas nitrous oxide (N2O) from industrial agriculture ecosystems. While various types of ammonia-oxidizing microorganisms play a critical role in the N cycle, ammonia-oxidizing archaea (AOA) are often the most abundant nitrifiers in natural environments. Members of the genus Nitrosocosmicus are one of the prevalent AOA groups detected in undisturbed terrestrial ecosystems and have previously been reported to possess a range of physiological characteristics that set their physiology apart from other AOA species. This study provides significant progress in understanding these unique physiological traits and their genetic drivers. Our results highlight how physiological studies based on comparative genomics-driven hypotheses can contribute to understanding the unique niche of Nitrosocosmicus AOA.
Collapse
Affiliation(s)
- Saem Han
- Interdisciplinary Graduate Program in Advance Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Seongwook Kim
- Interdisciplinary Graduate Program in Advance Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Christopher J. Sedlacek
- Division of Microbial Ecology, Centre for Microbiology and Environmental System Science, University of Vienna, Vienna, Austria
- Department of Biology, University of Southern Indiana, Evansville, Indiana, USA
| | - Adeel Farooq
- Department of Biology Education, Jeju National University, Jeju, South Korea
| | - Chihong Song
- Core Research Facility, Pusan National University, Yangsan, South Korea
| | - Sujin Lee
- Core Research Facility, Pusan National University, Yangsan, South Korea
| | - Shurong Liu
- School of Agriculture, Sun Yat-Sen University, Shenzhen, China
| | - Nicolas Brüggemann
- Agrosphäre (IBG-3), Institut für Bio- und Geowissenschaften (IBG), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lena Rohe
- Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
| | - Miye Kwon
- Biodiversity Research Institute, Jeju Technopark, Jeju, South Korea
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Chungdae-ro,Seowon-Gu, Cheongju, South Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Program in Advance Convergence Technology and Science, Jeju National University, Jeju, South Korea
- Department of Biology Education, Jeju National University, Jeju, South Korea
| |
Collapse
|
12
|
Hou X, Ou Y, Wang X, Liu H, Cheng L, Yan L. The influence of vermicompost on atrazine microbial degradation performance and pathway in black soil, Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175415. [PMID: 39128514 DOI: 10.1016/j.scitotenv.2024.175415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The atrazine (ATR) is extensively used in dryland crops like corn and sorghum in black soil region of Northeast China, posing ecological risks due to toxic metabolites. Vermicompost are known for soil organic pollution remediation but their role in pesticide degradation in black soil remains understudied. The influence of vermicompost on the microbial degradation pathway of atrazine was assessed in this study. Although vermicompost didn't significantly boost atrazine removal, they notably aided in primary metabolite degradation, hydroxyatrazine (HYA), deisopropylatrazine (DIA), and deethylatrazine (DEA), reducing their content by 38.67 %. They also altered the soil microbial community structure, favoring atrazine-degrading bacteria like Proteobacteria, Firmicutes, and Actinobacteria. Five secondary degradation products were identified in vermicompost treatments. Atrazine degradation occurred via dechlorination, dealkylation, and deamination pathways mainly by Nocardioidacea, Streptomycetaceae, Bacillaceae, Sphingomonadaceae, Comamonadaceae and Nitrososphaeraceae. pH and available nitrogen (AN) influenced microbial community structure and atrazine degradation, correlating with vermicompost application rates. Future black soil remediation should optimize application rates based on atrazine content and soil properties.
Collapse
Affiliation(s)
- Xia Hou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yang Ou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China.
| | - Xinhong Wang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Huiping Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lei Cheng
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Liming Yan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
13
|
Tamang M, Sikorski J, van Bommel M, Piecha M, Urich T, Ruess L, Huber K, Neumann-Schaal M, Pester M. Succession of Bacteria and Archaea Within the Soil Micro-Food Web Shifts Soil Respiration Dynamics. Environ Microbiol 2024; 26:e70007. [PMID: 39572458 PMCID: PMC11582019 DOI: 10.1111/1462-2920.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024]
Abstract
Bacterivorous nematodes are important grazers in the soil micro-food web. Their trophic regulation shapes the composition and ecosystem services of the soil microbiome, but the underlying population dynamics of bacteria and archaea are poorly understood. We followed soil respiration and 221 dominant bacterial and archaeal 16S rRNA gene amplicon sequencing variants (ASVs) in response to top-down control by a common bacterivorous soil nematode, Acrobeloides buetschlii, bottom-up control by maize litter amendment and their combination over 32 days. Maize litter amendment significantly increased soil respiration, while A. buetschlii addition caused an earlier peak in soil respiration. Underlying bacterial and archaeal population dynamics separated into five major response types, differentiating in their temporal abundance maxima and minima. In-depth analysis of these population dynamics identified a broad imprint of A. buetschlii grazing on dominant bacterial (Acidobacteriota, Bacteroidota, Gemmatimonadota, Pseudomonadota) and archaeal (Nitrososphaerota) ASVs. Combined bottom-up control by maize litter and top-down control by A. buetschlii grazing caused a succession of soil microbiota, driven by population changes first in the Bacteroidota, then in the Pseudomonadota and finally in the Acidobacteriota and Nitrososphaerota. Our results are an essential step forward in understanding trophic modulation of soil microbiota and its feedback on soil respiration.
Collapse
Affiliation(s)
- Mandip Tamang
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Johannes Sikorski
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Miriam van Bommel
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology Group, Berlin, Germany
| | - Marc Piecha
- University of Greifswald, Institute of Microbiology, Greifswald, Germany
| | - Tim Urich
- University of Greifswald, Institute of Microbiology, Greifswald, Germany
| | - Liliane Ruess
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology Group, Berlin, Germany
| | - Katharina Huber
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Michael Pester
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Technical University of Braunschweig, Institute for Microbiology, Braunschweig, Germany
| |
Collapse
|
14
|
Lori M, Kundel D, Mäder P, Singh A, Patel D, Sisodia BS, Riar A, Krause HM. Organic farming systems improve soil quality and shape microbial communities across a cotton-based crop rotation in an Indian Vertisol. FEMS Microbiol Ecol 2024; 100:fiae127. [PMID: 39289000 PMCID: PMC11503945 DOI: 10.1093/femsec/fiae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024] Open
Abstract
The adverse effects of intensified cropland practices on soil quality and biodiversity become especially evident in India, where nearly 60% of land is dedicated to cultivation and almost 30% of soil is already degraded. Intensive agricultural practice significantly contributes to soil degradation, highlighting the crucial need for effective countermeasures to support sustainable development goals. A long-term experiment, established in the semi-arid Nimar Valley (India) in 2007, monitors the effect of organic and conventional management on the plant-soil system in a Vertisol. The focus of our study was to assess how organic and conventional farming systems affect biological and chemical soil quality indicators. Additionally, we followed the community structure of the soil microbiome throughout the vegetation phase under soya or cotton cultivation in the year 2019. We found that organic farming enhanced soil organic carbon and nitrogen content, increased microbial abundance and activity, and fostered distinct microbial communities associated with traits in nutrient mineralization. In contrast, conventional farming enhanced the abundance of bacteria involved in ammonium oxidation suggesting high nitrification and subsequent nitrogen losses with regular mineral fertilization. Our findings underscore the value of adopting organic farming approaches in semi-arid subtropical regions to rectify soil quality and minimize nitrogen losses.
Collapse
Affiliation(s)
- Martina Lori
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Dominika Kundel
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Paul Mäder
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Akanksha Singh
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | | | | | - Amritbir Riar
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Hans-Martin Krause
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| |
Collapse
|
15
|
Lagomarsino A, De Meo I, Óskarsson H, Rocchi F, Vitali F, Pastorelli R. Green-house gas fluxes and soil microbial functional genes abundance in saturated and drained peatlands in South-West Iceland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174221. [PMID: 38914341 DOI: 10.1016/j.scitotenv.2024.174221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The drainage of peatlands followed by land use conversion significantly impacts on the fluxes of green-house gases (GHGs, i.e. CO2, CH4, and N2O) to and from the atmosphere, driven by changes in soil properties and microbial communities. In this study, we compared saturated peatlands with drained ones used for sheep grazing or cultivated, which are common in South-West Iceland. These areas exhibit different degrees of soil saturation and nitrogen (N) content, reflecting the anthropic pressure gradient. We aimed at covering knowledge gaps about lack of estimates on N2O fluxes and drainage, by assessing the emissions of GHGs, and the impact of land conversion on these emissions. Moreover, we investigated soil microbial community functional diversity, and its connection with processes contributing to GHGs emission. GHGs emissions differed between saturated and drained peatlands, with increased soil respiration rates (CO2 emissions) and N mineralization (N2O), consistent with the trend of anthropogenic pressure. Drainage drastically reduced methane (CH4) emissions but increased CO2 emissions, resulting in a higher global warming potential (GWP). Cultivation, involving occasional tillage and fertilization, further increased N2O emissions, mediated by higher N availability and conditions favorable to nitrification. Functional genes mirrored the overall trend, showing a shift from prevalent methanogenic archaea (mcrA) in saturated peatlands to nitrifiers (amoA) in drained-cultivated areas. Environmental variables and nutrient content were critical factors affecting community composition in both environments, which overall affected the GHGs emissions and the relative contribution of the three gases.
Collapse
Affiliation(s)
- Alessandra Lagomarsino
- Research Centre for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA-AA), via di Lanciola 12/A, 50125 Firenze, Italy.
| | - Isabella De Meo
- Research Centre for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA-AA), via di Lanciola 12/A, 50125 Firenze, Italy.
| | - Hlynur Óskarsson
- Environmental Department, Agricultural University of Iceland (LBHÍ), Hvanneyrabraut, Hvanneyri, Borgarnes 311, Iceland.
| | - Filippo Rocchi
- Research Centre for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA-AA), via di Lanciola 12/A, 50125 Firenze, Italy.
| | - Francesco Vitali
- Research Centre for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA-AA), via di Lanciola 12/A, 50125 Firenze, Italy.
| | - Roberta Pastorelli
- Research Centre for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA-AA), via di Lanciola 12/A, 50125 Firenze, Italy.
| |
Collapse
|
16
|
Li Y, Chen J, Lin Y, Zhong C, Jing H, Liu H. Thaumarchaeota from deep-sea methane seeps provide novel insights into their evolutionary history and ecological implications. MICROBIOME 2024; 12:197. [PMID: 39385283 PMCID: PMC11463064 DOI: 10.1186/s40168-024-01912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota mediate the rate-limiting step of nitrification and remove the ammonia that inhibits the aerobic metabolism of methanotrophs. However, the AOA that inhabit deep-sea methane-seep surface sediments (DMS) are rarely studied. Here, we used global DMS metagenomics and metagenome-assembled genomes (MAGs) to investigate the metabolic activity, evolutionary history, and ecological contributions of AOA. Expression of AOA-specific ammonia-oxidizing gene (amoA) was examined in the sediments collected from the South China Sea (SCS) to identify their active ammonia metabolism in the DMS. RESULTS Our analysis indicated that AOA contribute > 75% to the composition of ammonia-utilization genes within the surface layers (above 30 cm) of global DMS. The AOA-specific ammonia-oxidizing gene was actively expressed in the DMS collected from the SCS. Phylogenomic analysis of medium-/high-quality MAGs from 18 DMS-AOA indicated that they evolved from ancestors in the barren deep-sea sediment and then expanded from the DMS to shallow water forming an amoA-NP-gamma clade-affiliated lineage. Molecular dating suggests that the DMS-AOA origination coincided with the Neoproterozoic oxidation event (NOE), which occurred ~ 800 million years ago (mya), and their expansion to shallow water coincided with the Sturtian glaciation (~ 713 mya). Comparative genomic analysis suggests that DMS-AOA exhibit higher requirement of carbon source for protein synthesis with enhanced genomic capability for osmotic regulation, motility, chemotaxis, and utilization of exogenous organic compounds, suggesting it could be more heterotrophic compared with other lineages. CONCLUSION Our findings provide new insights into the evolutionary history of AOA within the Thaumarchaeota, highlighting their critical roles in nitrogen cycling in the global DMS ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yingdong Li
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jiawei Chen
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanxun Lin
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Cheng Zhong
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
17
|
Li W, Zhen Y, Yang Y, Wang D, He H. Environmental Adaptability and Roles in Ammonia Oxidation of Aerobic Ammonia-Oxidizing Microorganisms in the Surface Sediments of East China Sea. J Microbiol 2024; 62:845-858. [PMID: 39212864 DOI: 10.1007/s12275-024-00166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
This study investigated the community characteristics and environmental influencing factors of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the surface sediments of the East China Sea. The research found no consistent pattern in the richness and diversity of AOA and AOB with respect to the distance from the shore, indicating a complex interplay of factors. The expression levels of AOA amoA gene and AOB amoA gene in the surface sediments of the East China Sea ranged from 4.49 × 102 to 2.17 × 106 copies per gram of sediment and from 6.6 × 101 to 7.65 × 104 copies per gram of sediment, respectively. Salinity (31.77 to 34.53 PSU) and nitrate concentration (1.51 to 10.12 μmol/L) were identified as key environmental factors significantly affecting the AOA community, while salinity and temperature (13.71 to 19.50 °C) were crucial for the AOB community. The study also found that AOA, dominated by the Nitrosopumilaceae family, exhibited higher gene expression levels than AOB, suggesting a more significant role in ammonia oxidation. The expression of AOB was sensitive to multiple environmental factors, indicating a responsive role in nitrogen cycles and ecosystem health. The findings contribute to a better understanding of the biogeochemical processes and ecological roles of ammonia-oxidizing microorganisms in marine sediments.
Collapse
Affiliation(s)
- Wenhui Li
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Yu Zhen
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, People's Republic of China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, People's Republic of China.
| | - Yuhong Yang
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Daling Wang
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Hui He
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| |
Collapse
|
18
|
Li D, Wang L, Jiang F, Zeng X, Xu Q, Zhang X, Zheng Q, Shao Z. Unveiling the microbial diversity across the northern Ninety East Ridge in the Indian Ocean. Front Microbiol 2024; 15:1436735. [PMID: 39380675 PMCID: PMC11458393 DOI: 10.3389/fmicb.2024.1436735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
Prokaryotes play a crucial role in marine ecosystem health and drive biogeochemical processes. The northern Ninety East Ridge (NER) of the Indian Ocean, a pivotal yet understudied area for these cycles, has been the focus of our study. We employed high-throughput 16S rRNA gene sequencing to analyze 35 water samples from five stations along the ridge, categorized into three depth- and dissolved oxygen-level-based groups. Our approach uncovered a clear stratification of microbial communities, with key bioindicators such as Prochlorococcus MIT9313, Sva0996 marine group, and Candidatus Actinomarina in the upper layer; Ketobacter, Pseudophaeobacter, Nitrospina, and SAR324 clade in the middle layer; and Methylobacterium-Methylorubrum, Sphingomonas, Sphingobium, and Erythrobacter in the deep layer. Methylobacterium-Methylorubrum emerged as the most abundant bacterial genus, while Nitrosopumilaceae predominated among archaeal communities. The spatial and depth-wise distribution patterns revealed that Ketobacter was unique to the northern NER, whereas Methylobacterium-Methylorubrum, UBA10353, SAR324 clade, SAR406, Sva0996_marine_group, Candidatus Actinomarina were ubiquitous across various marine regions, exhibiting niche differentiation at the OTU level. Environmental factors, especially dissolved oxygen (DO), silicate, nitrate, and salinity, significantly influence community structure. These findings not only reveal the novelty and adaptability of the microbial ecosystem in the northern NER but also contribute to the broader understanding of marine microbial diversity and its response to environmental heterogeneity.
Collapse
Affiliation(s)
- Ding Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen, China
| | - Liping Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Fan Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen, China
| | - Xiang Zeng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Qinzeng Xu
- First Institute of Oceanography, Ministry of Natural Resources of PR China, Qingdao, Shandong, China
| | - Xuelei Zhang
- First Institute of Oceanography, Ministry of Natural Resources of PR China, Qingdao, Shandong, China
| | - Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen, China
| |
Collapse
|
19
|
Zhao Z, Qin W, Li L, Zhao H, Ju F. Discovery of Candidatus Nitrosomaritimum as a New Genus of Ammonia-Oxidizing Archaea Widespread in Anoxic Saltmarsh Intertidal Aquifers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16040-16054. [PMID: 39115222 DOI: 10.1021/acs.est.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Ammonia-oxidizing archaea (AOA) are widely distributed in marine and terrestrial habitats, contributing significantly to global nitrogen and carbon cycles. However, their genomic diversity, ecological niches, and metabolic potentials in the anoxic intertidal aquifers remain poorly understood. Here, we discovered and named a novel AOA genus, Candidatus Nitrosomaritimum, from the intertidal aquifers of Yancheng Wetland, showing close metagenomic abundance to the previously acknowledged dominant Nitrosopumilus AOA. Further construction of ammonia monooxygenase-based phylogeny demonstrated the widespread distribution of Nitrosomaritimum AOA in global estuarine-coastal niches and marine sediment. Niche differentiation among sublineages of this new genus in anoxic intertidal aquifers is driven by salinity and dissolved oxygen gradients. Comparative genomics revealed that Candidatus Nitrosomaritimum has the genetic capacity to utilize urea and possesses high-affinity phosphate transporter systems (phnCDE) for surviving phosphorus-limited conditions. Additionally, it contains putative nosZ genes encoding nitrous-oxide (N2O) reductase for reducing N2O to nitrogen gas. Furthermore, we gained first genomic insights into the archaeal phylum Hydrothermarchaeota populations residing in intertidal aquifers and revealed their potential hydroxylamine-detoxification mutualism with AOA through utilizing the AOA-released extracellular hydroxylamine using hydroxylamine oxidoreductase. Together, this study unravels the overlooked role of priorly unknown but abundant AOA lineages of the newly discovered genus Candidatus Nitrosomaritimum in biological nitrogen transformation and their potential for nitrogen pollution mitigation in coastal environments.
Collapse
Affiliation(s)
- Ze Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Wei Qin
- School of Biological Sciences and Institute for Environmental Genomes, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ling Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Heping Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
20
|
Yang Y, Chen J, Zheng Y, Jiang R, Sang Y, Zhang J. The Effects of Mixed Robinia pseudoacacia and Quercus variabilis Plantation on Soil Bacterial Community Structure and Nitrogen-Cycling Gene Abundance in the Southern Taihang Mountain Foothills. Microorganisms 2024; 12:1773. [PMID: 39338448 PMCID: PMC11434179 DOI: 10.3390/microorganisms12091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Mixed forests often increase their stability and species richness in comparison to pure stands. However, a comprehensive understanding of the effects of mixed forests on soil properties, bacterial community diversity, and soil nitrogen cycling remains elusive. This study investigated soil samples from pure Robinia pseudoacacia stands, pure Quercus variabilis stands, and mixed stands of both species in the southern foothills of the Taihang Mountains. Utilizing high-throughput sequencing and real-time fluorescence quantitative PCR, this study analyzed the bacterial community structure and the abundance of nitrogen-cycling functional genes within soils from different stands. The results demonstrated that Proteobacteria, Acidobacteria, and Actinobacteria were the dominant bacterial groups across all three forest soil types. The mixed-forest soil exhibited a higher relative abundance of Firmicutes and Bacteroidetes, while Nitrospirae and Crenarchaeota were most abundant in the pure R. pseudoacacia stand soils. Employing FAPROTAX for predictive bacterial function analysis in various soil layers, this study found that nitrogen-cycling processes such as nitrification and denitrification were most prominent in pure R. pseudoacacia soils. Whether in surface or deeper soil layers, the abundance of AOB amoA, nirS, and nirK genes was typically highest in pure R. pseudoacacia stand soils. In conclusion, the mixed forest of R. pseudoacacia and Q. variabilis can moderate the intensity of nitrification and denitrification processes, consequently reducing soil nitrogen loss.
Collapse
Affiliation(s)
- Yi Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
- Henan Xiaolangdi Forest System National Research Station, Jiyuan 459000, China
| | - Jing Chen
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
- Henan Xiaolangdi Forest System National Research Station, Jiyuan 459000, China
| | - Yiwei Zheng
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
- Henan Xiaolangdi Forest System National Research Station, Jiyuan 459000, China
| | - Rui Jiang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
- Henan Xiaolangdi Forest System National Research Station, Jiyuan 459000, China
| | - Yuqiang Sang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
- Henan Xiaolangdi Forest System National Research Station, Jiyuan 459000, China
| | - Jinsong Zhang
- Henan Xiaolangdi Forest System National Research Station, Jiyuan 459000, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
21
|
Zhang X, Zhang H, Wang Z, Tian Y, Tian W, Liu Z. Diversity of Microbial Functional Genes Promotes Soil Nitrogen Mineralization in Boreal Forests. Microorganisms 2024; 12:1577. [PMID: 39203419 PMCID: PMC11355967 DOI: 10.3390/microorganisms12081577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Soil nitrogen (N) mineralization typically governs the availability and movement of soil N. Understanding how factors, especially functional genes, affect N transformations is essential for the protection and restoration of forest ecosystems. To uncover the underlying mechanisms driving soil N mineralization, this study investigated the effects of edaphic environments, substrates, and soil microbial assemblages on net soil N mineralization in boreal forests. Field studies were conducted in five representative forests: Larix principis-rupprechtii forest (LF), Betula platyphylla forest (BF), mixed forest of Larix principis-rupprechtii and Betula platyphylla (MF), Picea asperata forest (SF), and Pinus sylvestris var. mongolica forest (MPF). Results showed that soil N mineralization rates (Rmin) differed significantly among forests, with the highest rate in BF (p < 0.05). Soil properties and microbial assemblages accounted for over 50% of the variability in N mineralization. This study indicated that soil environmental factors influenced N mineralization through their regulatory impact on microbial assemblages. Compared with microbial community assemblages (α-diversity, Shannon and Richness), functional genes assemblages were the most important indexes to regulate N mineralization. It was thus determined that microbial functional genes controlled N mineralization in boreal forests. This study clarified the mechanisms of N mineralization and provided a mechanistic understanding to enhance biogeochemical models for forecasting soil N availability, alongside aiding species diversity conservation and fragile ecosystem revitalization in boreal forests.
Collapse
Affiliation(s)
- Xiumin Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
- Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Zhongyu Wang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Wang Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Zhao Liu
- Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao 266237, China;
| |
Collapse
|
22
|
Joshi E, Schwarzbach MR, Briggs B, Coats ER, Coleman MD. Nutrient leaching potential along a time series of forest water reclamation facilities in northern Idaho. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121729. [PMID: 38976949 DOI: 10.1016/j.jenvman.2024.121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Forest water reclamation is a decades-old practice of repurposing municipal reclaimed water using land application on forests to filter nutrients and increase wood production. However, long-term application may lead to nutrient saturation, leaching, and potential impairment of ground and surface water quality. We studied long-term effects of reclaimed water application on nutrient leaching potential in a four-decade time series of forest water reclamation facilities in northern Idaho. Our approach compared reclaimed water treated plots with untreated control plots at each of the forest water reclamation facilities. We measured soil nitrifier abundance and net nitrification rates and used tension lysimeters to sample soil matrix water and drain gauges to sample from a combination of matrix and preferential flow paths. We determined nutrient leaching as the product of soil water nutrient concentrations and model-estimated drainage flux. There was more than 450-fold increase in nitrifier abundance and a 1000-fold increase in net nitrification rates in treated plots compared with control plots at long-established facilities, indicating greater nitrate production with increased cumulative inputs. There were no differences in soil water ammonium, phosphate, and dissolved organic nitrogen concentrations between control and effluent treatments in tension lysimeter samples. However, concurrent with increased nitrifier abundance and net nitrification, nitrate concentration below the rooting zone was 2 to 4-fold higher and nitrate leaching was 4 to 10-fold higher in effluent treated plots, particularly at facilities that have been in operation for over two decades. Thus, net nitrification and nitrifier abundance assays are likely indicators of nitrate leaching potential. Inorganic nutrient concentrations in drain gauge samples were 2 to 11-fold higher than lysimeter samples, suggesting nutrient losses occurred predominantly through preferential flow paths. Nitrate was vulnerable to leaching during the wet season under saturated flow conditions. Although nitrogen saturation is a concern that should be mitigated at long-established facilities, these forest water reclamation facilities were able to maintain average soil water nitrate concentrations to less than 2 mg L-1, so that nitrogen and phosphorous are effectively filtered to below safe water standards.
Collapse
Affiliation(s)
- Eureka Joshi
- Environmental Science Program, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | | | - Bailey Briggs
- Environmental Science Program, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | - Erik R Coats
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, ID, 83844, USA
| | - Mark D Coleman
- Department of Forest, Rangeland, and Fire Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
23
|
Sato Y. Transcriptome analysis: a powerful tool to understand individual microbial behaviors and interactions in ecosystems. Biosci Biotechnol Biochem 2024; 88:850-856. [PMID: 38749545 DOI: 10.1093/bbb/zbae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/06/2024] [Indexed: 07/23/2024]
Abstract
Transcriptome analysis is a powerful tool for studying microbial ecology, especially individual microbial functions in an ecosystem and their interactions. With the development of high-throughput sequencing technology, great progress has been made in analytical methods for microbial communities in natural environments. 16S rRNA gene amplicon sequencing (ie microbial community structure analysis) and shotgun metagenome analysis have been widely used to determine the composition and potential metabolic capability of microorganisms in target environments without requiring culture. However, even if the types of microorganisms present and their genes are known, it is difficult to determine what they are doing in an ecosystem. Gene expression analysis (transcriptome analysis; RNA-seq) is a powerful tool to address these issues. The history and basic information of gene expression analysis, as well as examples of studies using this method to analyze microbial ecosystems, are presented.
Collapse
Affiliation(s)
- Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
24
|
Antony R, Mongad D, Sanyal A, Dhotre D, Thamban M. Holed up, but thriving: Impact of multitrophic cryoconite communities on glacier elemental cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173187. [PMID: 38750762 DOI: 10.1016/j.scitotenv.2024.173187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Cryoconite holes (water and sediment-filled depressions), found on glacier surfaces worldwide, serve as reservoirs of microbes, carbon, trace elements, and nutrients, transferring these components downstream via glacier hydrological networks. Through targeted amplicon sequencing of carbon and nitrogen cycling genes, coupled with functional inference-based methods, we explore the functional diversity of these mini-ecosystems within Antarctica and the Himalayas. These regions showcase distinct environmental gradients and experience varying rates of environmental change influenced by global climatic shifts. Analysis revealed a diverse array of photosynthetic microorganisms, including Stramenopiles, Cyanobacteria, Rhizobiales, Burkholderiales, and photosynthetic purple sulfur Proteobacteria. Functional inference highlighted the high potential for carbohydrate, amino acid, and lipid metabolism in the Himalayan region, where organic carbon concentrations surpassed those in Antarctica by up to 2 orders of magnitude. Nitrogen cycling processes, including fixation, nitrification, and denitrification, are evident, with Antarctic cryoconite exhibiting a pronounced capacity for nitrogen fixation, potentially compensating for the limited nitrate concentrations in this region. Processes associated with the respiration of elemental sulfur and inorganic sulfur compounds such as sulfate, sulfite, thiosulfate, and sulfide suggest the presence of a complete sulfur cycle. The Himalayan region exhibits a higher potential for sulfur cycling, likely due to the abundant sulfate ions and sulfur-bearing minerals in this region. The capability for complete iron cycling through iron oxidation and reduction reactions was also predicted. Methanogenic archaea that produce methane during organic matter decomposition and methanotrophic bacteria that utilize methane as carbon and energy sources co-exist in the cryoconite, suggesting that these niches support the complete cycling of methane. Additionally, the presence of various microfauna suggests the existence of a complex food web. Collectively, these results indicate that cryoconite holes are self-sustaining ecosystems that drive elemental cycles on glaciers and potentially control carbon, nitrogen, sulfur, and iron exports downstream.
Collapse
Affiliation(s)
- Runa Antony
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, India; GFZ German Research Centre for Geosciences, Potsdam, Germany.
| | - Dattatray Mongad
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Aritri Sanyal
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, India
| | - Dhiraj Dhotre
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Meloth Thamban
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, India
| |
Collapse
|
25
|
Sun Y, Du P, Li H, Zhou K, Shou L, Chen J, Meng Li. Prokaryotic community assembly patterns and nitrogen metabolic potential in oxygen minimum zone of Yangtze Estuary water column. ENVIRONMENTAL RESEARCH 2024; 252:119011. [PMID: 38670213 DOI: 10.1016/j.envres.2024.119011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
It is predicted that oxygen minimum zones (OMZs) in the ocean will expand as a consequence of global warming and environmental pollution. This will affect the overall microbial ecology and microbial nitrogen cycle. As one of the world's largest alluvial estuaries, the Yangtze Estuary has exhibited a seasonal OMZ since the 1980s. In this study, we have uncovered the microbial composition, the patterns of community assembly and the potential for microbial nitrogen cycling within the water column of the Yangtze Estuary, with a particular focus on OMZ. Based on the 16 S rRNA gene sequencing, a specific spatial variation in the composition of prokaryotic communities was observed for each water layer, with the Proteobacteria (46.1%), Bacteroidetes (20.3%), and Cyanobacteria (10.3%) dominant. Stochastic and deterministic processes together shaped the community assembly in the water column. Further, pH was the most important environmental factor influencing prokaryotic composition in the surface water, followed by silicate, PO43-, and distance offshore (p < 0.05). Water depth, NH4+, and PO43- were the main factors in the bottom water (p < 0.05). At last, species analysis and marker gene annotation revealed candidate nitrogen cycling performers, and a rich array of nitrogen cycling potential in the bottom water of the Yangtze Estuary. The determined physiochemical parameters and potential for nitrogen respiration suggested that organic nitrogen and NO3- (or NO2-) are the preferred nitrogen sources for microorganisms in the Yangtze Estuary OMZ. These findings are expected to advance research on the ecological responses of estuarine oxygen minimum zones (OMZs) to future global climate perturbations.
Collapse
Affiliation(s)
- Yihua Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, No. 3688 Nanhai Avenue, 518060 Shenzhen, Guangdong, PR China; Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, No. 3688 Nanhai Avenue, 518060 Shenzhen, Guangdong, PR China
| | - Ping Du
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, China, No. 36 Baochubei Road, 310012 Hangzhou, Zhejiang, PR China
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, China, No. 36 Baochubei Road, 310012 Hangzhou, Zhejiang, PR China
| | - Konglin Zhou
- Institute of Oceanography, Minjiang University, No. 200 xiyuangong Road, 350108 Fuzhou, Fujian, PR China
| | - Lu Shou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, China, No. 36 Baochubei Road, 310012 Hangzhou, Zhejiang, PR China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, China, No. 36 Baochubei Road, 310012 Hangzhou, Zhejiang, PR China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, No. 3688 Nanhai Avenue, 518060 Shenzhen, Guangdong, PR China; Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, No. 3688 Nanhai Avenue, 518060 Shenzhen, Guangdong, PR China; Synthetic Biology Research Center, Shenzhen University, No. 3688 Nanhai Avenue, 518060 Shenzhen, Guangdong, PR China.
| |
Collapse
|
26
|
Govednik A, Eler K, Mihelič R, Suhadolc M. Mineral and organic fertilisation influence ammonia oxidisers and denitrifiers and nitrous oxide emissions in a long-term tillage experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172054. [PMID: 38569950 DOI: 10.1016/j.scitotenv.2024.172054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Nitrous oxide (N2O) emissions from different agricultural systems have been studied extensively to understand the mechanisms underlying their formation. While a number of long-term field experiments have focused on individual agricultural practices in relation to N2O emissions, studies on the combined effects of multiple practices are lacking. This study evaluated the effect of different tillage [no-till (NT) vs. conventional plough tillage (CT)] in combination with fertilisation [mineral (MIN), compost (ORG), and unfertilised control (CON)] on seasonal N2O emissions and the underlying N-cycling microbial community in one maize growing season. Rainfall events after fertilisation, which resulted in increased soil water content, were the main triggers of the observed N2O emission peaks. The highest cumulative emissions were measured in MIN fertilisation, followed by ORG and CON fertilisation. In the period after the first fertilisation CT resulted in higher cumulative emissions than NT, while no significant effect of tillage was observed cumulatively across the entire season. A higher genetic potential for N2O emissions was observed under NT than CT, as indicated by an increased (nirK + nirS)/(nosZI + nosZII) ratio. The mentioned ratio under NT decreased in the order CON > MIN > ORG, indicating a higher N2O consumption potential in the NT-ORG treatment, which was confirmed in terms of cumulative emissions. The AOB/16S ratio was strongly affected by fertilisation and was higher in the MIN than in the ORG and CON treatments, regardless of the tillage system. Multiple regression has revealed that this ratio is one of the most important variables explaining cumulative N2O emissions, possibly reflecting the role of bacterial ammonia oxidisers in minerally fertilised soil. Although the AOB/16S ratio aligned well with the measured N2O emissions in our experimental field, the higher genetic potential for denitrification expressed by the (nirK + nirS)/(nosZI + nosZII) ratio in NT than CT was not realized in the form of increased emissions. Our results suggest that organic fertilisation in combination with NT shows a promising combination for mitigating N2O emissions; however, addressing the yield gap is necessary before incorporating it in recommendations for farmers.
Collapse
Affiliation(s)
- Anton Govednik
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Klemen Eler
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Rok Mihelič
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Marjetka Suhadolc
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
27
|
Wang E, Yu B, Zhang J, Gu S, Yang Y, Deng Y, Guo X, Wei B, Bi J, Sun M, Feng H, Song A, Fan F. Low Carbon Loss from Long-Term Manure-Applied Soil during Abrupt Warming Is Realized through Soil and Microbiome Interplay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9658-9668. [PMID: 38768036 DOI: 10.1021/acs.est.3c08319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Manure application is a global approach for enhancing soil organic carbon (SOC) sequestration. However, the response of SOC decomposition in manure-applied soil to abrupt warming, often occurring during diurnal temperature fluctuations, remains poorly understood. We examined the effects of long-term (23 years) continuous application of manure on SOC chemical composition, soil respiration, and microbial communities under temperature shifts (15 vs 25 °C) in the presence of plant residues. Compared to soil without fertilizer, manure application reduced SOC recalcitrance indexes (i.e., aliphaticity and aromaticity) by 17.45 and 21.77%, and also reduced temperature sensitivity (Q10) of native SOC decomposition, plant residue decomposition, and priming effect by 12.98, 15.98, and 52.83%, respectively. The relative abundances of warm-stimulated chemoheterotrophic bacteria and fungi were lower in the manure-applied soil, whereas those of chemoautotrophic Thaumarchaeota were higher. In addition, the microbial network of the manure-applied soil was more interconnected, with more negative connections with the warm-stimulated taxa than soils without fertilizer or with chemical fertilizer applied. In conclusion, our study demonstrated that the reduced loss of SOC to abrupt warming by manure application arises from C chemistry modification, less warm-stimulated microorganisms, a more complex microbial community, and the higher CO2 intercepting capability by Thaumarchaeota.
Collapse
Affiliation(s)
- Enzhao Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bing Yu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiayin Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Songsong Gu
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunfeng Yang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Deng
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xue Guo
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100864, China
| | - Buqing Wei
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Bi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaomiao Sun
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huaqi Feng
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Alin Song
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fenliang Fan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
28
|
von Kügelgen A, Cassidy CK, van Dorst S, Pagani LL, Batters C, Ford Z, Löwe J, Alva V, Stansfeld PJ, Bharat TAM. Membraneless channels sieve cations in ammonia-oxidizing marine archaea. Nature 2024; 630:230-236. [PMID: 38811725 PMCID: PMC11153153 DOI: 10.1038/s41586-024-07462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Nitrosopumilus maritimus is an ammonia-oxidizing archaeon that is crucial to the global nitrogen cycle1,2. A critical step for nitrogen oxidation is the entrapment of ammonium ions from a dilute marine environment at the cell surface and their subsequent channelling to the cell membrane of N. maritimus. Here we elucidate the structure of the molecular machinery responsible for this process, comprising the surface layer (S-layer), using electron cryotomography and subtomogram averaging from cells. We supplemented our in situ structure of the ammonium-binding S-layer array with a single-particle electron cryomicroscopy structure, revealing detailed features of this immunoglobulin-rich and glycan-decorated S-layer. Biochemical analyses showed strong ammonium binding by the cell surface, which was lost after S-layer disassembly. Sensitive bioinformatic analyses identified similar S-layers in many ammonia-oxidizing archaea, with conserved sequence and structural characteristics. Moreover, molecular simulations and structure determination of ammonium-enriched specimens enabled us to examine the cation-binding properties of the S-layer, revealing how it concentrates ammonium ions on its cell-facing side, effectively acting as a multichannel sieve on the cell membrane. This in situ structural study illuminates the biogeochemically essential process of ammonium binding and channelling, common to many marine microorganisms that are fundamental to the nitrogen cycle.
Collapse
Affiliation(s)
- Andriko von Kügelgen
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - C Keith Cassidy
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, USA
| | - Sofie van Dorst
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lennart L Pagani
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christopher Batters
- Protein and Nucleic Acid Chemistry Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Zephyr Ford
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jan Löwe
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
29
|
Wang T, Gao M, Shao W, Wang L, Yang C, Wang X, Yao S, Zhang B. Dissecting the role of soybean rhizosphere-enriched bacterial taxa in modulating nitrogen-cycling functions. Appl Microbiol Biotechnol 2024; 108:347. [PMID: 38805033 PMCID: PMC11133221 DOI: 10.1007/s00253-024-13184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Crop roots selectively recruit certain microbial taxa that are essential for supporting their growth. Within the recruited microbes, some taxa are consistently enriched in the rhizosphere across various locations and crop genotypes, while others are unique to specific planting sites or genotypes. Whether these differentially enriched taxa are different in community composition and how they interact with nutrient cycling need further investigation. Here, we sampled bulk soil and the rhizosphere soil of five soybean varieties grown in Shijiazhuang and Xuzhou, categorized the rhizosphere-enriched microbes into shared, site-specific, and variety-specific taxa, and analyzed their correlation with the diazotrophic communities and microbial genes involved in nitrogen (N) cycling. The shared taxa were dominated by Actinobacteria and Thaumarchaeota, the site-specific taxa were dominated by Actinobacteria in Shijiazhuang and by Nitrospirae in Xuzhou, while the variety-specific taxa were more evenly distributed in several phyla and contained many rare operational taxonomic units (OTUs). The rhizosphere-enriched taxa correlated with most diazotroph orders negatively but with eight orders including Rhizobiales positively. Each group within the shared, site-specific, and variety-specific taxa negatively correlated with bacterial amoA and narG in Shijiazhuang and positively correlated with archaeal amoA in Xuzhou. These results revealed that the shared, site-specific, and variety-specific taxa are distinct in community compositions but similar in associations with rhizosphere N-cycling functions. They exhibited potential in regulating the soybean roots' selection for high-efficiency diazotrophs and the ammonia-oxidizing and denitrification processes. This study provides new insights into soybean rhizosphere-enriched microbes and their association with N cycling. KEY POINTS: • Soybean rhizosphere affected diazotroph community and enriched nifH, amoA, and nosZ. • Shared and site- and variety-specific taxa were dominated by different phyla. • Rhizosphere-enriched taxa were similarly associated with N-cycle functions.
Collapse
Affiliation(s)
- Tianshu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Miao Gao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunyan Yang
- The Key Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050031, China
| | - Xing Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Shuihong Yao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
30
|
Tan Q, Wu H, Zheng L, Wang X, Xing Y, Tian Q, Zhang Y. Urban and agricultural land use led to niche differentiation of AOA, AOB and comammox along the Beiyun River continuum. WATER RESEARCH 2024; 255:121480. [PMID: 38518415 DOI: 10.1016/j.watres.2024.121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
River ecological health has been severely threatened by anthropogenic land-use pressures. Here, by combining remote sensing and molecular biology methods, we evaluated the impact of land-use activities on nitrification, a fundamental ecological process in rivers, which is conducted by ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB), or the newly discovered complete ammonia oxidisers (comammox). We explored the relationships of the abundance, activity, and diversity of AOA, AOB, and comammox in river sediments with land-use pressure by proposing a quantitative land use pattern index (LPI) over a 184 km continuum along the Beiyun River in North China. We found that comammox dominated nitrification in the forestry upstream (67.07 % in summer, 56.40 % in winter), while AOB became the major player in the urban middle (56.51 % in summer, 53.08 % in winter) and agricultural downstream reaches (62.98 % in summer, 50.74 % in winter). In addition, urban and agricultural land use lowered the α diversity of AOA and comammox, as well as simplified their co-occurrence networks, but promoted AOB diversity and complicated their networks. The structural equation model illustrated that the key drivers affecting the key taxa and activities were ammonia, and C/N for AOB, and total organic matter, and pH for comammox. We thus conclude that watershed urban and agricultural land use drive the niche differentiation of AOA, AOB, and comammox, specifically leading to a robust AOB community but weakened AOA and comammox communities. Our study connects the macro and micro worlds and provides a new paradigm for studying the variation in microbial communities as well as the potential ecological consequences under the increased anthropogenic land-use pressures in the Anthropocene.
Collapse
Affiliation(s)
- Qiuyang Tan
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Haoming Wu
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing 100875, PR China.
| | - Xue Wang
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Qi Tian
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yaoxin Zhang
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
31
|
Zhang A, Zhu M, Zheng Y, Tian Z, Mu G, Zheng M. The significant contribution of comammox bacteria to nitrification in a constructed wetland revealed by DNA-based stable isotope probing. BIORESOURCE TECHNOLOGY 2024; 399:130637. [PMID: 38548031 DOI: 10.1016/j.biortech.2024.130637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
The discovery of Comammox bacteria (CMX) has changed our traditional concept towards nitrification, yet its role in constructed wetlands (CWs) remains unclear. This study investigated the contributions of CMX and two canonical ammonia-oxidizing microorganisms, ammonia-oxidizing bacteria (AOB) and archaea to nitrification in four regions (sediment, shoreside, adjacent soil, and water) of a typical CW using DNA-based stable isotope probing. The results revealed that CMX not only widely occurred in sediment and shoreside zones with high abundance (5.08 × 104 and 6.57 × 104 copies g-1 soil, respectively), but also actively participated in ammonia oxidation, achieving ammonia oxidation rates of 1.43 and 2.00 times that of AOB in sediment and shoreside, respectively. Phylogenetic analysis indicated that N. nitrosa was the dominant and active CMX species. These findings uncovered the crucial role of CMX in nitrification of sediment and shoreside, providing a new insight into nitrogen cycle of constructed wetlands.
Collapse
Affiliation(s)
- Anqi Zhang
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Mingyang Zhu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yize Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichao Tian
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Guangli Mu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
32
|
Cai S, Lao Q, Chen C, Zhu Q, Chen F. The impact of algal blooms on promoting in-situ N 2O emissions: A case in Zhanjiang bay, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120935. [PMID: 38648725 DOI: 10.1016/j.jenvman.2024.120935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Under the influence of many factors, such as climate change, anthropogenic eutrophication, and the development of aquaculture, the area and frequency of algal blooms have showed an increasing trend worldwide, which has become a challenging issue at present. However, the coupled relationship between nitrous oxide (N2O) and algal blooms and the underlying mechanisms remain unclear. To address this issue, 15N isotope cultures and quantitative polymerase chain reaction (qPCR) experiments were conducted in Zhanjiang Bay during algal and non-algal bloom periods. The results showed that denitrification and nitrification-denitrification were the two processes responsible for the in-situ production of N2O during algal and non-algal bloom periods. Stable isotope rate cultivation experiments indicated that denitrification and nitrification-denitrification were promoted in the water during the algal bloom period. The in-situ production of N2O during the algal bloom period was three-fold that during the non-algal bloom period. This may be because fresh particulate organic matter (POM) from the organisms responsible for the algal bloom provides the necessary anaerobic and hypoxic environment for denitrification and nitrification-denitrification in the degradation environment. Additionally, a positive linear correlation between N2O concentrations and ammonia-oxidizing bacteria (AOB) and denitrifying bacteria (nirK and nirS) also supported the significant denitrification and nitrification-denitrification occurring in the water during the algal bloom period. However, the algal bloom changed the main process for the in-situ production of N2O, wherein it shifted from denitrification during the non-algal bloom period to nitrification-denitrification during the algal bloom period. The results of our study will improve our understanding of the processes responsible for the in-situ production of N2O during the algal bloom period, and can help formulate effective policies to mitigate N2O emissions in the bay.
Collapse
Affiliation(s)
- Shangjun Cai
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qibin Lao
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunqing Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qingmei Zhu
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
33
|
Tian S, Xia Y, Yu Z, Zhou H, Wu S, Zhang N, Yue X, Deng Y, Xia Y. Improvement and the relationship between chemical properties and microbial communities in secondary salinization of soils induced by rotating vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171019. [PMID: 38382605 DOI: 10.1016/j.scitotenv.2024.171019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Choosing a good crop rotation plan helps maintain soil fertility and creates a healthy soil ecosystem. However, excessive fertilization and continuous cultivation of vegetables in a greenhouse results in secondary salinization of the soil. It remains unclear how crop rotation affects Yunnan's main place for vegetable growing in the greenhouse. Six plant cultivation patterns were chosen to determine how different rotation patterns affect the chemical properties and the soil microbial communities with secondary salinization, including lettuce monoculture, lettuce-large leaf mustard, lettuce-red leaf beet, lettuce-cabbage, lettuce-romaine lettuce, and lettuce-cilantro (DZ, A1, A2, A3, A4, and A5). The results showed that all treatments increased the proportion of nutrients available in the soil, and the effect of the A1 treatment was the most significant compared to the monoculture mode. The high-throughput sequencing findings revealed that distinct crop rotation patterns exerted varying effects on the microbial communities. Microbial community diversity was significantly lower in the monoculture than in the other treatments. The number of microbial operational taxonomic units OTUs was significantly higher in the crop rotation modes (P < 0.05), and the A1 treatment had larger numbers and diversity of bacterial and fungal OTUs (Shannon's and Simpson's) than other treatments (P < 0.05). Prominent bacterial and fungal communities were readily observable in the soils planted with rotational crops. Proteobacteria had the highest relative abundance of bacteria, whereas Ascomycota was the most abundant fungus. The principal coordinate analysis at the OTU level separated soil bacterial and fungal growth communities under the different treatments. Among the six treatments, The first two axes (PC1 and PC2) described 46.44 % and 42.42 % of the bacterial and fungal communities, respectively. Network-based analysis showed that Bacteroidota and Gemmatimonadota members of the genus Bacteroidota were positively correlated with Proteobacteria. Members of Ascomycota and Chytridiomycota exhibited positive relationships. These results extend the theoretical understanding of how various crop rotation patterns affect soil chemical properties, microbial community diversity, and metabolic functions. They reveal the beneficial effects of crop rotation patterns on enhanced soil quality. This study provides theoretical guidance for the future enhancement of sustainable agriculture and soil management planning.
Collapse
Affiliation(s)
- Shihan Tian
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yi Xia
- College of Tropical Crops, Yunnan Agricultural University, Pu'er 665099, China
| | - Zhong Yu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; Huazhi Biotechnology Co. Ltd, Changsha 410000, China
| | - Hongyin Zhou
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Sirui Wu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Naiming Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; Yunnan Engineering Research Center of Soil Fertility and Pollution Remediation,Kunming 650201, China
| | - Xianrong Yue
- Yunnan Engineering Research Center of Soil Fertility and Pollution Remediation,Kunming 650201, China
| | - Yishu Deng
- Yunnan Engineering Research Center of Soil Fertility and Pollution Remediation,Kunming 650201, China
| | - Yunsheng Xia
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; Yunnan Engineering Research Center of Soil Fertility and Pollution Remediation,Kunming 650201, China.
| |
Collapse
|
34
|
Leung PM, Grinter R, Tudor-Matthew E, Lingford JP, Jimenez L, Lee HC, Milton M, Hanchapola I, Tanuwidjaya E, Kropp A, Peach HA, Carere CR, Stott MB, Schittenhelm RB, Greening C. Trace gas oxidation sustains energy needs of a thermophilic archaeon at suboptimal temperatures. Nat Commun 2024; 15:3219. [PMID: 38622143 PMCID: PMC11018855 DOI: 10.1038/s41467-024-47324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Diverse aerobic bacteria use atmospheric hydrogen (H2) and carbon monoxide (CO) as energy sources to support growth and survival. Such trace gas oxidation is recognised as a globally significant process that serves as the main sink in the biogeochemical H2 cycle and sustains microbial biodiversity in oligotrophic ecosystems. However, it is unclear whether archaea can also use atmospheric H2. Here we show that a thermoacidophilic archaeon, Acidianus brierleyi (Thermoproteota), constitutively consumes H2 and CO to sub-atmospheric levels. Oxidation occurs across a wide range of temperatures (10 to 70 °C) and enhances ATP production during starvation-induced persistence under temperate conditions. The genome of A. brierleyi encodes a canonical CO dehydrogenase and four distinct [NiFe]-hydrogenases, which are differentially produced in response to electron donor and acceptor availability. Another archaeon, Metallosphaera sedula, can also oxidize atmospheric H2. Our results suggest that trace gas oxidation is a common trait of Sulfolobales archaea and may play a role in their survival and niche expansion, including during dispersal through temperate environments.
Collapse
Affiliation(s)
- Pok Man Leung
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Eve Tudor-Matthew
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - James P Lingford
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Luis Jimenez
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Han-Chung Lee
- Monash Proteomics and Metabolomics Platform and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Michael Milton
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Iresha Hanchapola
- Monash Proteomics and Metabolomics Platform and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Erwin Tanuwidjaya
- Monash Proteomics and Metabolomics Platform and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ashleigh Kropp
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Hanna A Peach
- Geomicrobiology Research Group, Department of Geothermal Sciences, Te Pū Ao | GNS Science, Wairakei, Taupō, 3377, Aotearoa New Zealand
| | - Carlo R Carere
- Geomicrobiology Research Group, Department of Geothermal Sciences, Te Pū Ao | GNS Science, Wairakei, Taupō, 3377, Aotearoa New Zealand
- Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand
| | - Matthew B Stott
- Geomicrobiology Research Group, Department of Geothermal Sciences, Te Pū Ao | GNS Science, Wairakei, Taupō, 3377, Aotearoa New Zealand
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
35
|
Han P, Tang X, Koch H, Dong X, Hou L, Wang D, Zhao Q, Li Z, Liu M, Lücker S, Shi G. Unveiling unique microbial nitrogen cycling and nitrification driver in coastal Antarctica. Nat Commun 2024; 15:3143. [PMID: 38609359 PMCID: PMC11014942 DOI: 10.1038/s41467-024-47392-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Largely removed from anthropogenic delivery of nitrogen (N), Antarctica has notably low levels of nitrogen. Though our understanding of biological sources of ammonia have been elucidated, the microbial drivers of nitrate (NO3-) cycling in coastal Antarctica remains poorly understood. Here, we explore microbial N cycling in coastal Antarctica, unraveling the biological origin of NO3- via oxygen isotopes in soil and lake sediment, and through the reconstruction of 1968 metagenome-assembled genomes from 29 microbial phyla. Our analysis reveals the metabolic potential for microbial N2 fixation, nitrification, and denitrification, but not for anaerobic ammonium oxidation, signifying a unique microbial N-cycling dynamic. We identify the predominance of complete ammonia oxidizing (comammox) Nitrospira, capable of performing the entire nitrification process. Their adaptive strategies to the Antarctic environment likely include synthesis of trehalose for cold stress, high substrate affinity for resource utilization, and alternate metabolic pathways for nutrient-scarce conditions. We confirm the significant role of comammox Nitrospira in the autotrophic, nitrification process via 13C-DNA-based stable isotope probing. This research highlights the crucial contribution of nitrification to the N budget in coastal Antarctica, identifying comammox Nitrospira clade B as a nitrification driver.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Hanna Koch
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, A-3430, Tulln, Austria
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Danhe Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Qian Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zhe Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
- Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Guitao Shi
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
36
|
Chen T, Yang X, Zuo Z, Xu H, Yang X, Zheng X, He S, Wu X, Lin X, Li Y, Zhang Z. Shallow wet irrigation reduces nitrogen leaching loss rate in paddy fields by microbial regulation and lowers rate of downward migration of leaching water: a 15N-tracer study. FRONTIERS IN PLANT SCIENCE 2024; 15:1340336. [PMID: 38590742 PMCID: PMC10999577 DOI: 10.3389/fpls.2024.1340336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
China consumes 35% of the world's fertilizer every year; however, most of the nitrogen fertilizers, which are essential for rice cultivation, are not used effectively. In this study, factors affecting the nitrogen leaching loss rate were studied in typical soil and rice varieties in South China. The effects of various irrigation measures on rice growth and nitrogen leaching loss were investigated by conducting experiments with eight groups. These groups included traditional irrigation (TI) and shallow wet irrigation (SWI). The TI is a common irrigation method for farmers in South China, maintaining a water layer of 5-8 cm depth. For SWI, after establishing a shallow water layer usually maintaining at 1-2 cm, paddy is irrigated when the field water level falls to a certain depth, then this process is then repeat as necessary. The nitrogen distribution characteristics were determined using 15N isotope tracing. In addition, the effects of nitrification, denitrification, and microbial composition on soil nitrogen transformation at different depths were studied by microbial functional gene quantification and high-throughput sequencing. The results revealed that in the SWI groups, the total nitrogen leaching loss rate reduced by 0.3-0.8% and the nitrogen use efficiency (NUE) increased by 2.18-4.43% compared with those in the TI groups. After the 15N-labeled nitrogen fertilizer was applied, the main pathways of nitrogen were found to be related to plant absorption and nitrogen residues. Furthermore, paddy soil ammonia-oxidizing archaea were more effective than ammonia-oxidizing bacteria for soil ammonia oxidation by SWI groups. The SWI measures increased the relative abundance of Firmicutes in paddy soil, enhancing the ability of rice to fix nitrogen to produce ammonium nitrogen, thus reducing the dependence of rice on chemical fertilizers. Moreover, SWI enhanced the relative abundance of nirS and nosZ genes within surface soil bacteria, thereby promoting denitrification in the surface soil of paddy fields. SWI also promoted ammonia oxidation and denitrification by increasing the abundance and activity of Proteobacteria, Nitrospirae, and Bacteroidetes. Collectively, SWI effectively reduced the nitrogen leaching loss rate and increase NUE.
Collapse
Affiliation(s)
- Tianyi Chen
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, China
| | - Xiaoming Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, China
| | - Zheng Zuo
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, China
| | - Huijuan Xu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, China
| | - Xiangjian Zheng
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, China
| | - Shuran He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Xin Wu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, China
| | - Xueming Lin
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, China
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
37
|
Ghimire-Kafle S, Weaver ME, Kimbrel MP, Bollmann A. Competition between ammonia-oxidizing archaea and complete ammonia oxidizers from freshwater environments. Appl Environ Microbiol 2024; 90:e0169823. [PMID: 38349190 PMCID: PMC10952389 DOI: 10.1128/aem.01698-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 03/21/2024] Open
Abstract
Aerobic ammonia oxidizers (AOs) are prokaryotic microorganisms that contribute to the global nitrogen cycle by performing the first step of nitrification, the oxidation of ammonium to nitrite and nitrate. While aerobic AOs are found ubiquitously, their distribution is controlled by key environmental conditions such as substrate (ammonium) availability. Ammonia-oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) are generally found in oligotrophic environments with low ammonium availability. However, whether AOA and comammox share these habitats or outcompete each other is not well understood. We assessed the competition for ammonium between an AOA and comammox enriched from the freshwater Lake Burr Oak. The AOA enrichment culture (AOA-BO1) contained Nitrosarchaeum sp. BO1 as the ammonia oxidizer and Nitrospira sp. BO1 as the nitrite oxidizer. The comammox enrichment BO4 (cmx-BO4) contained the comammox strain Nitrospira sp. BO4. The competition experiments were performed either in continuous cultivation with ammonium as a growth-limiting substrate or in batch cultivation with initial ammonium concentrations of 50 and 500 µM. Regardless of the ammonium concentration, Nitrospira sp. BO4 outcompeted Nitrosarchaeum sp. BO1 under all tested conditions. The dominance of Nitrospira sp. BO4 could be explained by the ability of comammox to generate more energy through the complete oxidation of ammonia to nitrate and their more efficient carbon fixation pathway-the reductive tricarboxylic acid cycle. Our results are supported by the higher abundance of comammox compared to AOA in the sediment of Lake Burr Oak. IMPORTANCE Nitrification is a key process in the global nitrogen cycle. Aerobic ammonia oxidizers play a central role in the nitrogen cycle by performing the first step of nitrification. Ammonia-oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) are the dominant nitrifiers in environments with low ammonium availability. While AOA have been studied for almost 20 years, comammox were only discovered 8 years ago. Until now, there has been a gap in our understanding of whether AOA and comammox can co-exist or if one strain would be dominant under ammonium-limiting conditions. Here, we present the first study characterizing the competition between freshwater AOA and comammox under varying substrate concentrations. Our results will help in elucidating the niches of two key nitrifiers in freshwater lakes.
Collapse
Affiliation(s)
| | - Matt E. Weaver
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | | | | |
Collapse
|
38
|
Stein LY. Agritech to Tame the Nitrogen Cycle. Cold Spring Harb Perspect Biol 2024; 16:a041668. [PMID: 37788889 PMCID: PMC10910340 DOI: 10.1101/cshperspect.a041668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
While the Haber-Bosch process for N-fixation has enabled a steady food supply for half of humanity, substantial use of synthetic fertilizers has caused a radical unevenness in the global N-cycle. The resulting increases in nitrate production and greenhouse gas (GHG) emissions have contributed to eutrophication of both ground and surface waters, the growth of oxygen minimum zones in coastal regions, ozone depletion, and rising global temperatures. As stated by the Food and Agriculture Organization of the United Nations, agriculture releases ∼9.3 Gt CO2 equivalents per year, of which methane (CH4) and nitrous oxide (N2O) account for 5.3 Gt CO2 equivalents. N-pollution and slowing the runaway N-cycle requires a combined effort to replace chemical fertilizers with biological alternatives, which after a 10-yr span of usage could eliminate a minimum of 30% of ag-related GHG emissions (∼1.59 Gt), protect waterways from nitrate pollution, and protect soils from further deterioration. Agritech solutions include bringing biological fertilizers and biological nitrification inhibitors to the marketplace to reduce the microbial conversion of fertilizer nitrogen into GHGs and other toxic intermediates. Worldwide adoption of these plant-derived molecules will substantially elevate nitrogen use efficiency by crops while blocking the dominant source of N2O to the atmosphere and simultaneously protecting the biological CH4 sink. Additional agritech solutions to curtail N-pollution, soil erosion, and deterioration of freshwater supplies include soil-free aquaponics systems that utilize improved microbial inocula to enhance nitrogen use efficiency without GHG production. With adequate and timely investment and scale-up, microbe-based agritech solutions emphasizing N-cycling processes can dramatically reduce GHG emissions on short time lines.
Collapse
Affiliation(s)
- Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
39
|
Jiang C, Wu J, Ye J, Hong Y. High throughput amplicon analysis reveals potential novel ammonia oxidizing prokaryotes in the eutrophic Jiaozhou Bay. MARINE POLLUTION BULLETIN 2024; 200:116046. [PMID: 38246016 DOI: 10.1016/j.marpolbul.2024.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Ammonia-oxidizing prokaryotes (AOPs) are the major contributors of ammonia oxidization with widely distribution. Here we investigated the phylogenetic diversity, community composition, and regulating factors of AOPs in Jiaozhou Bay (JZB) with high-throughput sequencing of amoA gene. Phylogenetic analysis showed most of the OTUs could not be clustered with any known AOPs, indicating there might exist putative novel AOPs. With new developed protocols for AOP community analysis, we confirmed that only 3 OTUs of ammonia-oxidizing archaea (AOA) could be affiliated to known Nitrosopumilaceae and Nitrososphaera, and the other OTUs were identified as novel AOA based on the threshold. All abstained OTUs of ammonia-oxidizing bacteria (AOB) were identified as novel clusters based on the threshold. Further analysis showed the novel AOPs had different distribution characteristics related to environmental factors. The high abundance and widespread distribution of these novel AOPs indicated that they played an important role in ammonia conversion in eutrophic JZB.
Collapse
Affiliation(s)
- Cuihong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
40
|
Sun D, Rozmoš M, Kotianová M, Hršelová H, Jansa J. Arbuscular mycorrhizal fungi suppress ammonia-oxidizing bacteria but not archaea across agricultural soils. Heliyon 2024; 10:e26485. [PMID: 38444950 PMCID: PMC10912043 DOI: 10.1016/j.heliyon.2024.e26485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are supposedly competing with ammonia-oxidizing microorganisms (AO) for soil nitrogen in form of ammonium. Despite a few studies directly addressing AM fungal and AO interactions, mostly in artificial cultivation substrates, it is not yet clear whether AM fungi can effectively suppress AO in field soils containing complex indigenous microbiomes. To fill this knowledge gap, we conducted compartmentalized pot experiments using four pairs of cropland and grassland soils with varying physicochemical properties. To exclude the interference of roots, a fine nylon mesh was used to separate the rhizosphere and mesh bags, with the latter being filled with unsterile field soils. Inoculation of plants with AM fungus Rhizophagus irregularis LPA9 suppressed AO bacteria (AOB) but not archaea (AOA) in the soils, indicating how soil nitrification could be suppressed by AM fungal presence/activity. In addition, in rhizosphere filled with artificial substrate, AM inoculation did suppress both AOB and AOA, implying more complex interactions between roots, AO, and AM fungi. Besides, we also observed that indigenous AM fungi contained in the field soils eventually did colonize the roots of plants behind the root barrier, and that the extent of such colonization was higher if the soil has previously been taken from cropland than from grassland. Despite this, the effect of experimental AM fungal inoculation on suppression of indigenous AOB in the unsterile field soils did not vanish. It seems that studying processes at a finer temporal scale, using larger buffer zones between rhizosphere and mesh bags, and/or detailed characterization of indigenous AM fungal and AO communities would be needed to uncover further details of the biotic interactions between the AM fungi and indigenous soil AO.
Collapse
Affiliation(s)
- Daquan Sun
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Martin Rozmoš
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Michala Kotianová
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Hana Hršelová
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic
| |
Collapse
|
41
|
Beneduce L, Piergiacomo F, Limoni PP, Zuffianò LE, Polemio M. Microbial, chemical, and isotopic monitoring integrated approach to assess potential leachate contamination of groundwater in a karstic aquifer (Apulia, Italy). ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:312. [PMID: 38413499 PMCID: PMC10899417 DOI: 10.1007/s10661-024-12477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
Landfill sites are subjected to long-term risks of accidental spill of leachate through the soil and consequential contamination of the groundwater. Wide areas surrounding the landfill can seriously be threatened with possible consequences to human health and the environment. Given the potential impact of different coexisting anthropic pollution sources (i.e., agriculture and cattle farming) on the same site, the perturbation of the groundwater quality may be due to multiple factors. Therefore, it is a challenging issue to correctly establish the pollution source of an aquifer where the landfill is not isolated from other anthropic land uses, especially in the case of a karstic coastal aquifer. The present study is aimed at setting in place an integrated environmental monitoring system that included microbiological, chemical, and isotope methods to evaluate potential groundwater pollution in a landfill district in the south of Italy located in Murgia karstic aquifer. Conventional (microbial plate count and physical-chemical analyses) and advanced methods (PCR-ARISA, isotope analysis of δ18O, δ2H, 3H, δ 13C, δ 15N-NO3-, and δ 18O-NO3-) were included in the study. Through data integration, it was possible to reconstruct a scenario in which agriculture and other human activities along with seawater intrusion in the karst aquifer were the main drivers of groundwater pollution at the monitored site. The microbiological, chemical, and isotope results confirmed the absence of leachate effects on groundwater quality, showing the decisive role of fertilizers as potential nitrate sources. The next goal will be to extend long-term integrated monitoring to other landfill districts, with different geological and hydrogeological characteristics and including different sources of pollution, to support the ecological restoration of landfills.
Collapse
Affiliation(s)
- L Beneduce
- Department of the Science of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25 -71122, Foggia, Italy
| | - F Piergiacomo
- Present address: Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 1, 39100, Bolzano-Bozen, Italy
| | - P P Limoni
- CNR-IRPI, National Research Council, Research Institute for Hydrogeological Protection, Via Amendola 122/I, 70126, Bari, Italy
| | - L E Zuffianò
- CNR-IRPI, National Research Council, Research Institute for Hydrogeological Protection, Via Amendola 122/I, 70126, Bari, Italy.
| | - M Polemio
- CNR-IRPI, National Research Council, Research Institute for Hydrogeological Protection, Via Amendola 122/I, 70126, Bari, Italy
| |
Collapse
|
42
|
Qin W, Wei SP, Zheng Y, Choi E, Li X, Johnston J, Wan X, Abrahamson B, Flinkstrom Z, Wang B, Li H, Hou L, Tao Q, Chlouber WW, Sun X, Wells M, Ngo L, Hunt KA, Urakawa H, Tao X, Wang D, Yan X, Wang D, Pan C, Weber PK, Jiang J, Zhou J, Zhang Y, Stahl DA, Ward BB, Mayali X, Martens-Habbena W, Winkler MKH. Ammonia-oxidizing bacteria and archaea exhibit differential nitrogen source preferences. Nat Microbiol 2024; 9:524-536. [PMID: 38297167 DOI: 10.1038/s41564-023-01593-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
Ammonia-oxidizing microorganisms (AOM) contribute to one of the largest nitrogen fluxes in the global nitrogen budget. Four distinct lineages of AOM: ammonia-oxidizing archaea (AOA), beta- and gamma-proteobacterial ammonia-oxidizing bacteria (β-AOB and γ-AOB) and complete ammonia oxidizers (comammox), are thought to compete for ammonia as their primary nitrogen substrate. In addition, many AOM species can utilize urea as an alternative energy and nitrogen source through hydrolysis to ammonia. How the coordination of ammonia and urea metabolism in AOM influences their ecology remains poorly understood. Here we use stable isotope tracing, kinetics and transcriptomics experiments to show that representatives of the AOM lineages employ distinct regulatory strategies for ammonia or urea utilization, thereby minimizing direct substrate competition. The tested AOA and comammox species preferentially used ammonia over urea, while β-AOB favoured urea utilization, repressed ammonia transport in the presence of urea and showed higher affinity for urea than for ammonia. Characterized γ-AOB co-utilized both substrates. These results reveal contrasting niche adaptation and coexistence patterns among the major AOM lineages.
Collapse
Affiliation(s)
- Wei Qin
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA.
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| | - Stephany P Wei
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Yue Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Eunkyung Choi
- Department of Microbiology and Cell Science, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, USA
| | - Xiangpeng Li
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | | | - Xianhui Wan
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Britt Abrahamson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Zachary Flinkstrom
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Baozhan Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hanyan Li
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Lei Hou
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Qing Tao
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Wyatt W Chlouber
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Xin Sun
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Michael Wells
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Long Ngo
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Hidetoshi Urakawa
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Xuanyu Tao
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Dongyu Wang
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Chongle Pan
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Peter K Weber
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jiandong Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jizhong Zhou
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Bess B Ward
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Xavier Mayali
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Willm Martens-Habbena
- Department of Microbiology and Cell Science, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, USA.
| | | |
Collapse
|
43
|
Beeckman F, Drozdzecki A, De Knijf A, Audenaert D, Beeckman T, Motte H. High-throughput assays to identify archaea-targeting nitrification inhibitors. FRONTIERS IN PLANT SCIENCE 2024; 14:1283047. [PMID: 38259951 PMCID: PMC10800436 DOI: 10.3389/fpls.2023.1283047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Nitrification is a microbial process that converts ammonia (NH3) to nitrite (NO2 -) and then to nitrate (NO3 -). The first and rate-limiting step in nitrification is ammonia oxidation, which is conducted by both bacteria and archaea. In agriculture, it is important to control this process as high nitrification rates result in NO3 - leaching, reduced nitrogen (N) availability for the plants and environmental problems such as eutrophication and greenhouse gas emissions. Nitrification inhibitors can be used to block nitrification, and as such reduce N pollution and improve fertilizer use efficiency (FUE) in agriculture. Currently applied inhibitors target the bacteria, and do not block nitrification by ammonia-oxidizing archaea (AOA). While it was long believed that nitrification in agroecosystems was primarily driven by bacteria, recent research has unveiled potential significant contributions from ammonia-oxidizing archaea (AOA), especially when bacterial activity is inhibited. Hence, there is also a need for AOA-targeting nitrification inhibitors. However, to date, almost no AOA-targeting inhibitors are described. Furthermore, AOA are difficult to handle, hindering their use to test or identify possible AOA-targeting nitrification inhibitors. To address the need for AOA-targeting nitrification inhibitors, we developed two miniaturized nitrification inhibition assays using an AOA-enriched nitrifying community or the AOA Nitrosospaera viennensis. These assays enable high-throughput testing of candidate AOA inhibitors. We here present detailed guidelines on the protocols and illustrate their use with some examples. We believe that these assays can contribute to the discovery of future AOA-targeting nitrification inhibitors, which could complement the currently applied inhibitors to increase nitrification inhibition efficiency in the field and as such contribute to a more sustainable agriculture.
Collapse
Affiliation(s)
- Fabian Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Andrzej Drozdzecki
- Screening Core, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Alexa De Knijf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Dominique Audenaert
- Screening Core, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| |
Collapse
|
44
|
Zheng Y, Wang B, Gao P, Yang Y, Xu B, Su X, Ning D, Tao Q, Li Q, Zhao F, Wang D, Zhang Y, Li M, Winkler MKH, Ingalls AE, Zhou J, Zhang C, Stahl DA, Jiang J, Martens-Habbena W, Qin W. Novel order-level lineage of ammonia-oxidizing archaea widespread in marine and terrestrial environments. THE ISME JOURNAL 2024; 18:wrad002. [PMID: 38365232 PMCID: PMC10811736 DOI: 10.1093/ismejo/wrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/03/2023] [Accepted: 10/28/2023] [Indexed: 02/18/2024]
Abstract
Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant archaea on Earth, widely distributed in marine, terrestrial, and geothermal ecosystems. However, the genomic diversity, biogeography, and evolutionary process of AOA populations in subsurface environments are vastly understudied compared to those in marine and soil systems. Here, we report a novel AOA order Candidatus (Ca.) Nitrosomirales which forms a sister lineage to the thermophilic Ca. Nitrosocaldales. Metagenomic and 16S rRNA gene-read mapping demonstrates the abundant presence of Nitrosomirales AOA in various groundwater environments and their widespread distribution across a range of geothermal, terrestrial, and marine habitats. Terrestrial Nitrosomirales AOA show the genetic capacity of using formate as a source of reductant and using nitrate as an alternative electron acceptor. Nitrosomirales AOA appear to have acquired key metabolic genes and operons from other mesophilic populations via horizontal gene transfer, including genes encoding urease, nitrite reductase, and V-type ATPase. The additional metabolic versatility conferred by acquired functions may have facilitated their radiation into a variety of subsurface, marine, and soil environments. We also provide evidence that each of the four AOA orders spans both marine and terrestrial habitats, which suggests a more complex evolutionary history for major AOA lineages than previously proposed. Together, these findings establish a robust phylogenomic framework of AOA and provide new insights into the ecology and adaptation of this globally abundant functional guild.
Collapse
Affiliation(s)
- Yue Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Baozhan Wang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Gao
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiyan Yang
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Bu Xu
- Department of Ocean Science and Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
- Shanghai Sheshan National Geophysical Observatory , Shanghai 201602, China
| | - Xiaoquan Su
- College of Computer Science and Technology, Qingdao University , Qingdao 266101, China
| | - Daliang Ning
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
| | - Qing Tao
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
| | - Qian Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mari-K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA 98195, United States
| | - Jizhong Zhou
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, United States
- Department of Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
- Shanghai Sheshan National Geophysical Observatory , Shanghai 201602, China
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Willm Martens-Habbena
- Department of Microbiology and Cell Science, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL 33314, United States
| | - Wei Qin
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
| |
Collapse
|
45
|
Abiola C, Gwak JH, Lee UJ, Awala SI, Jung MY, Park W, Rhee SK. Growth of soil ammonia-oxidizing archaea on air-exposed solid surface. ISME COMMUNICATIONS 2024; 4:ycae129. [PMID: 39544964 PMCID: PMC11561398 DOI: 10.1093/ismeco/ycae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Soil microorganisms often thrive as microcolonies or biofilms within pores of soil aggregates exposed to the soil atmosphere. However, previous studies on the physiology of soil ammonia-oxidizing microorganisms (AOMs), which play a critical role in the nitrogen cycle, were primarily conducted using freely suspended AOM cells (planktonic cells) in liquid media. In this study, we examined the growth of two representative soil ammonia-oxidizing archaea (AOA), Nitrososphaera viennensis EN76 and "Nitrosotenuis chungbukensis" MY2, and a soil ammonia-oxidizing bacterium, Nitrosomonas europaea ATCC 19718 on polycarbonate membrane filters floated on liquid media to observe their adaptation to air-exposed solid surfaces. Interestingly, ammonia oxidation activities of N. viennensis EN76 and "N. chungbukensis" MY2 were significantly repressed on floating filters compared to the freely suspended cells in liquid media. Conversely, the ammonia oxidation activity of N. europaea ATCC 19718 was comparable on floating filters and liquid media. N. viennensis EN76 and N. europaea ATCC 19718 developed microcolonies on floating filters. Transcriptome analysis of N. viennensis EN76 floating filter-grown cells revealed upregulation of unique sets of genes for cell wall and extracellular polymeric substance biosynthesis, ammonia oxidation (including ammonia monooxygenase subunit C (amoC3) and multicopper oxidases), and defense against H2O2-induced oxidative stress. These genes may play a pivotal role in adapting AOA to air-exposed solid surfaces. Furthermore, the floating filter technique resulted in the enrichment of distinct soil AOA communities dominated by the "Ca. Nitrosocosmicus" clade. Overall, this study sheds light on distinct adaptive mechanisms governing AOA growth on air-exposed solid surfaces.
Collapse
Affiliation(s)
- Christiana Abiola
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Ui-Ju Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
- Department of Science Education, Jeju National University, Jeju 63243, Republic of Korea
- Jeju Microbiome Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Anam-Dong, Seungbuk-Ku, Seoul 02841, Republic of Korea
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| |
Collapse
|
46
|
Johnson J, Jain KR, Patel A, Parmar N, Joshi C, Madamwar D. Chronic industrial perturbation and seasonal change induces shift in the bacterial community from gammaproteobacteria to betaproteobacteria having catabolic potential for aromatic compounds at Amlakhadi canal. World J Microbiol Biotechnol 2023; 40:52. [PMID: 38146029 DOI: 10.1007/s11274-023-03848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/19/2023] [Indexed: 12/27/2023]
Abstract
Escalating proportions of industrially contaminated sites are one of the major catastrophes faced at the present time due to the industrial revolution. The difficulties associated with culturing the microbes, has been circumvent by the direct use of metagenomic analysis of various complex niches. In this study, a metagenomic approach using next generation sequencing technologies was applied to exemplify the taxonomic abundance and metabolic potential of the microbial community residing in Amlakhadi canal, Ankleshwar at two different seasons. All the metagenomes revealed a predominance of Proteobacteria phylum. However, difference was observed within class level where Gammaproteobacteria was relatively high in polluted metagenome in Summer while in Monsoon the abundance shifted to Betaproteobacteria. Similarly, significant statistical differences were obtained while comparing the genera amongst contaminated sites where Serratia, Achromobacter, Stenotrophomonas and Pseudomonas were abundant in summer season and the dominance changed to Thiobacillus, Thauera, Acidovorax, Nitrosomonas, Sulfuricurvum, Novosphingobium, Hyphomonas and Geobacter in monsoon. Further upon functional characterization, the microbiomes revealed the diverse survival mechanisms, in response to the prevailing ecological conditions (such as degradation of aromatic compounds, heavy metal resistance, oxidative stress responses and multidrug resistance efflux pumps, etc.). The results have important implications in understanding and predicting the impacts of human-induced activities on microbial communities inhabiting natural niche and their responses in coping with the fluctuating pollution load.
Collapse
Affiliation(s)
- Jenny Johnson
- Post Graduate Department of Biosciences, Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol (Anand), Gujarat, 388 315, India
| | - Kunal R Jain
- Post Graduate Department of Biosciences, Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol (Anand), Gujarat, 388 315, India
| | - Anand Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India
| | - Nidhi Parmar
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, 6th Floor, M. S. Building, Sector 11, Gandhinagar, Gujarat, 382011, India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa (Anand), Gujarat, 388 421, India.
| |
Collapse
|
47
|
Akutsu Y, Fujiwara T, Suzuki R, Nishigaya Y, Yamazaki T. Juglone, a plant-derived 1,4-naphthoquinone, binds to hydroxylamine oxidoreductase and inhibits the electron transfer to cytochrome c554. Appl Environ Microbiol 2023; 89:e0129123. [PMID: 38009977 PMCID: PMC10734522 DOI: 10.1128/aem.01291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/20/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Nitrification, the microbial conversion of ammonia to nitrate via nitrite, plays a pivotal role in the global nitrogen cycle. However, the excessive use of ammonium-based fertilizers in agriculture has disrupted this cycle, leading to groundwater pollution and greenhouse gas emissions. In this study, we have demonstrated the inhibitory effects of plant-derived juglone and related 1,4-naphthoquinones on the nitrification process in Nitrosomonas europaea. Notably, the inhibition mechanism is elucidated in which 1,4-naphthoquinones interact with hydroxylamine oxidoreductase, disrupting the electron transfer to cytochrome c554, a physiological electron acceptor. These findings support the notion that phytochemicals can impede nitrification by interfering with the essential electron transfer process in ammonia oxidation. The findings presented in this article offer valuable insights for the development of strategies aimed at the management of nitrification, reduction of fertilizer utilization, and mitigation of greenhouse gas emissions.
Collapse
Affiliation(s)
- Yukie Akutsu
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takaaki Fujiwara
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Rintaro Suzuki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | | | - Toshimasa Yamazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
48
|
Dong J, Yang B, Wang H, Cao X, He F, Wang L. Reveal molecular mechanism on the effects of silver nanoparticles on nitrogen transformation and related functional microorganisms in an agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166765. [PMID: 37660816 DOI: 10.1016/j.scitotenv.2023.166765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Silver nanoparticles (AgNPs) are widely present in aquatic and soil environment, raising significant concerns about their impacts on creatures in ecosystem. While the toxicity of AgNPs on microorganisms has been reported, their effects on biogeochemical processes and specific functional microorganisms remain relatively unexplored. In this study, a 28-day microcosmic experiment was conducted to investigate the dose-dependent effects of AgNPs (10 mg and 100 mg Ag kg-1 soil) on nitrogen transformation and functional microorganisms in agricultural soils. The molecular mechanisms were uncovered by examining change in functional microorganisms and metabolic pathways. To enable comparison, the toxicity of positive control with an equivalent Ag+ dose from CH3COOAg was also included. The results indicated that both AgNPs and CH3COOAg enhanced nitrogen fixation and nitrification, corresponding to increased relative abundances of associated functional genes. However, they inhibited denitrification via downregulating nirS, nirK, and nosZ genes as well as reducing nitrate and nitrite reductase activities. In contrast to high dose of AgNPs, low levels increased bacterial diversity. AgNPs and CH3COOAg altered the activities of associated metabolic pathways, resulting in the enrichment of specific taxa that demonstrated tolerance to Ag. At genus level, AgNPs increased the relative abundances of nitrogen-fixing Microvirga and Bacillus by 0.02 %-629.39 % and 14.44 %-30.10 %, respectively, compared with control group (CK). The abundances of denitrifying bacteria, such as Rhodoplanes, Pseudomonas, and Micromonospora, decreased by 19.03 % to 32.55 %, 24.73 % to 50.05 %, and 15.66 % to 76.06 %, respectively, compared to CK. CH3COOAg reduced bacterial network complexity, diminished the symbiosis mode compared to AgNPs. The prediction of genes involved in metabolic pathways related to membrane transporter and cell motility showed sensitive to AgNPs exposure in the soil. Further studies involving metabolomics are necessary to reveal the essential effects of AgNPs and CH3COOAg on biogeochemical cycle of elements in agricultural soil.
Collapse
Affiliation(s)
- Jinhao Dong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Xinlei Cao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Fei He
- Jinan Environmental Research Academy, Jinan 250098, China
| | - Lijiao Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
49
|
Uhlen M, Quake SR. Sequential sequencing by synthesis and the next-generation sequencing revolution. Trends Biotechnol 2023; 41:1565-1572. [PMID: 37482467 DOI: 10.1016/j.tibtech.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023]
Abstract
The impact of next-generation sequencing (NGS) cannot be overestimated. The technology has transformed the field of life science, contributing to a dramatic expansion in our understanding of human health and disease and our understanding of biology and ecology. The vast majority of the major NGS systems today are based on the concept of 'sequencing by synthesis' (SBS) with sequential detection of nucleotide incorporation using an engineered DNA polymerase. Based on this strategy, various alternative platforms have been developed, including the use of either native nucleotides or reversible terminators and different strategies for the attachment of DNA to a solid support. In this review, some of the key concepts leading to this remarkable development are discussed.
Collapse
Affiliation(s)
- Mathias Uhlen
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford, CA, USA; Chan Zuckerberg Initiative, Redwood City, California, USA, Stanford, CA, USA
| |
Collapse
|
50
|
Brescia F, Sillo F, Franchi E, Pietrini I, Montesano V, Marino G, Haworth M, Zampieri E, Fusini D, Schillaci M, Papa R, Santamarina C, Vita F, Chitarra W, Nerva L, Petruzzelli G, Mennone C, Centritto M, Balestrini R. The 'microbiome counterattack': Insights on the soil and root-associated microbiome in diverse chickpea and lentil genotypes after an erratic rainfall event. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:459-483. [PMID: 37226644 PMCID: PMC10667653 DOI: 10.1111/1758-2229.13167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Legumes maintain soil fertility thanks to their associated microbiota but are threatened by climate change that causes soil microbial community structural and functional modifications. The core microbiome associated with different chickpea and lentil genotypes was described after an unexpected climatic event. Results showed that chickpea and lentil bulk soil microbiomes varied significantly between two sampling time points, the first immediately after the rainfall and the second 2 weeks later. Rhizobia were associated with the soil of the more productive chickpea genotypes in terms of flower and fruit number. The root-associated bacteria and fungi were surveyed in lentil genotypes, considering that several parcels showed disease symptoms. The metabarcoding analysis revealed that reads related to fungal pathogens were significantly associated with one lentil genotype. A lentil core prokaryotic community common to all genotypes was identified as well as a genotype-specific one. A higher number of specific bacterial taxa and an enhanced tolerance to fungal diseases characterized a lentil landrace compared to the commercial varieties. This outcome supported the hypothesis that locally adapted landraces might have a high recruiting efficiency of beneficial soil microbes.
Collapse
Affiliation(s)
- Francesca Brescia
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
| | - Fabiano Sillo
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
| | - Elisabetta Franchi
- Eni S.p.A.R&D Environmental & Biological LaboratoriesSan Donato MilaneseItaly
| | - Ilaria Pietrini
- Eni S.p.A.R&D Environmental & Biological LaboratoriesSan Donato MilaneseItaly
| | - Vincenzo Montesano
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyBernalda (MT)Italy
| | - Giovanni Marino
- Institute for Sustainable Plant ProtectionNational Research Council of ItalySesto FiorentinoItaly
| | - Matthew Haworth
- Institute for Sustainable Plant ProtectionNational Research Council of ItalySesto FiorentinoItaly
| | - Elisa Zampieri
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
| | - Danilo Fusini
- Eni S.p.A.R&D Environmental & Biological LaboratoriesSan Donato MilaneseItaly
| | - Martino Schillaci
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
| | - Roberto Papa
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Chiara Santamarina
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Federico Vita
- Department of Bioscience, Biotechnology and EnvironmentUniversity of Bari Aldo MoroBariItaly
| | - Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and EconomicsConeglianoItaly
| | - Luca Nerva
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and EconomicsConeglianoItaly
| | | | - Carmelo Mennone
- Azienda Pantanello, ALSIA Research Center Metapontum AgrobiosBernalda (MT)Italy
| | - Mauro Centritto
- Institute for Sustainable Plant ProtectionNational Research Council of ItalySesto FiorentinoItaly
- ENI‐CNR Water Research Center ‘Hypatia of Alexandria’ALSIA Research Center Metapontum AgrobiosBernaldaItaly
| | - Raffaella Balestrini
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
- ENI‐CNR Water Research Center ‘Hypatia of Alexandria’ALSIA Research Center Metapontum AgrobiosBernaldaItaly
| |
Collapse
|