1
|
Mayle R, Holloman WK, O'Donnell ME. DNA polymerase ζ has robust reverse transcriptase activity relative to other cellular DNA polymerases. J Biol Chem 2024:107918. [PMID: 39454951 DOI: 10.1016/j.jbc.2024.107918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Cell biology and genetic studies have demonstrated that DNA double strand break (DSB) repair can be performed using an RNA transcript that spans the site of the DNA break as a template for repair. This type of DSB repair requires a reverse transcriptase to convert an RNA sequence into DNA to facilitate repair of the break, rather than copying from a DNA template as in canonical DSB repair. Translesion synthesis (TLS) DNA polymerases (Pol) are often more promiscuous than DNA Pols, raising the notion that reverse transcription could be performed by a TLS Pol. Indeed, several studies have demonstrated that human Pol η has reverse transcriptase activity, while others have suggested that the yeast TLS Pol ζ is involved. Here, we purify all seven known nuclear DNA Pols of Saccharomyces cerevisiae and compare their reverse transcriptase activities. The comparison shows that Pol ζ far surpasses Pol η and all other DNA Pols in reverse transcriptase activity. We find that Pol ζ reverse transcriptase activity is not affected by RPA or RFC/PCNA and acts distributively to make DNA complementary to an RNA template strand. Consistent with prior S. cerevisiae studies performed in vivo, we propose that Pol ζ is the major DNA Pol that functions in the RNA templated DSB repair pathway.
Collapse
Affiliation(s)
- Ryan Mayle
- Howard Hughes Medical Institute and the Department of DNA Replication, The Rockefeller University New York, NY 10065
| | - William K Holloman
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY 10065.
| | - Michael E O'Donnell
- Howard Hughes Medical Institute and the Department of DNA Replication, The Rockefeller University New York, NY 10065.
| |
Collapse
|
2
|
Lebedin M, de la Rosa K. Diversification of Antibodies: From V(D)J Recombination to Somatic Exon Shuffling. Annu Rev Cell Dev Biol 2024; 40:265-281. [PMID: 39356809 DOI: 10.1146/annurev-cellbio-112122-030835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Antibodies that gain specificity by a large insert encoding for an extra domain were described for the first time in 2016. In malaria-exposed individuals, an exon deriving from the leukocyte-associated immunoglobulin-like 1 (LAIR1) gene integrated via a copy-and-paste insertion into the immunoglobulin heavy chain encoding region. A few years later, a second example was identified, namely a dual exon integration from the leukocyte immunoglobulin-like receptor B1 (LILRB1) gene that is located in close proximity to LAIR1. A dedicated high-throughput characterization of chimeric immunoglobulin heavy chain transcripts unraveled, that insertions from distant genomic regions (including mitochondrial DNA) can contribute to human antibody diversity. This review describes the modalities of insert-containing antibodies. The role of known DNA mobility aspects, such as genomic translocation, gene conversion, and DNA fragility, is discussed in the context of insert-antibody generation. Finally, the review covers why insert antibodies were omitted from the past repertoire analyses and how insert antibodies can contribute to protective immunity or an autoreactive response.
Collapse
Affiliation(s)
- Mikhail Lebedin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kathrin de la Rosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Mayle R, Holloman WK, O’Donnell ME. DNA polymerase ζ is a robust reverse transcriptase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615452. [PMID: 39386629 PMCID: PMC11463433 DOI: 10.1101/2024.09.27.615452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cell biology and genetic studies have demonstrated that DNA double strand break (DSB) repair can be performed using an RNA transcript that spans the site of the DNA break as a template for repair. This type of DSB repair requires a reverse transcriptase to convert an RNA sequence into DNA to facilitate repair of the break, rather than copying from a DNA template as in canonical DSB repair. Translesion synthesis (TLS) DNA polymerases (Pol) are often more promiscuous than DNA Pols, raising the notion that reverse transcription could be performed by a TLS Pol. Indeed, several studies have demonstrated that human Pol η has reverse transcriptase activity, while others have suggested that the yeast TLS Pol ζ is involved. Here, we purify all seven known nuclear DNA Pols of Saccharomyces cerevisiae and compare their reverse transcriptase activities. The comparison shows that Pol ζ far surpasses Pol η and all other DNA Pols in reverse transcriptase activity. We find that Pol ζ reverse transcriptase activity is not affected by RPA or RFC/PCNA and acts distributively to make DNA complementary to an RNA template strand. Consistent with prior S. cerevisiae studies performed in vivo, we propose that Pol ζ is the major DNA Pol that functions in the RNA templated DSB repair pathway.
Collapse
Affiliation(s)
- Ryan Mayle
- Howard Hughes Medical Ins5tute and the Department of DNA Replica5on, The Rockefeller University New York, NY 10065
| | - William K. Holloman
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY 10065
| | - Michael E. O’Donnell
- Howard Hughes Medical Ins5tute and the Department of DNA Replica5on, The Rockefeller University New York, NY 10065
| |
Collapse
|
4
|
Kalamara V, Garinis GA. The epitranscriptome: reshaping the DNA damage response. Trends Cell Biol 2024:S0962-8924(24)00122-3. [PMID: 39048401 DOI: 10.1016/j.tcb.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Genomic instability poses a formidable threat to cellular vitality and wellbeing, prompting cells to deploy an intricate DNA damage response (DDR) mechanism. Recent evidence has suggested that RNA is intricately linked to the DDR by serving as template, scaffold, or regulator during the repair of DNA damage. Additionally, RNA molecules undergo modifications, contributing to the epitranscriptome, a dynamic regulatory layer influencing cellular responses to genotoxic stress. The intricate interplay between RNA and the DDR sheds new light on how the RNA epigenome contributes to the maintenance of genomic integrity and ultimately shapes the fate of damaged cells.
Collapse
Affiliation(s)
- Vivian Kalamara
- Department of Biology, University of Crete, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013, Heraklion, Crete, Greece
| | - George A Garinis
- Department of Biology, University of Crete, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013, Heraklion, Crete, Greece.
| |
Collapse
|
5
|
Kundnani DL, Yang T, Gombolay AL, Mukherjee K, Newnam G, Meers C, Verma I, Chhatlani K, Mehta ZH, Mouawad C, Storici F. Distinct features of ribonucleotides within genomic DNA in Aicardi-Goutières syndrome ortholog mutants of Saccharomyces cerevisiae. iScience 2024; 27:110012. [PMID: 38868188 PMCID: PMC11166700 DOI: 10.1016/j.isci.2024.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Ribonucleoside monophosphates (rNMPs) are abundantly found within genomic DNA of cells. The embedded rNMPs alter DNA properties and impact genome stability. Mutations in ribonuclease (RNase) H2, a key enzyme for rNMP removal, are associated with the Aicardi-Goutières syndrome (AGS), a severe neurological disorder. Here, we engineered orthologs of the human RNASEH2A-G37S and RNASEH2C-R69W AGS mutations in yeast Saccharomyces cerevisiae: rnh201-G42S and rnh203-K46W. Using the ribose-seq technique and the Ribose-Map bioinformatics toolkit, we unveiled rNMP abundance, composition, hotspots, and sequence context in these AGS-ortholog mutants. We found a high rNMP presence in the nuclear genome of rnh201-G42S-mutant cells, and an elevated rCMP content in both mutants, reflecting preferential cleavage of RNase H2 at rGMP. We discovered unique rNMP patterns in each mutant, showing differential activity of the AGS mutants on the leading or lagging replication strands. This study guides future research on rNMP characteristics in human genomes with AGS mutations.
Collapse
Affiliation(s)
- Deepali L. Kundnani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alli L. Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bacterial Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ishika Verma
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kirti Chhatlani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zeel H. Mehta
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Celine Mouawad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Kyriukha Y, Watkins MB, Redington JM, Dastvan R, Uversky VN, Hopkins JB, Pozzi N, Korolev S. The strand exchange domain of tumor suppressor PALB2 is intrinsically disordered and promotes oligomerization-dependent DNA compaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.01.543259. [PMID: 37333393 PMCID: PMC10274692 DOI: 10.1101/2023.06.01.543259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The Partner and Localizer of BRCA2 (PALB2) is a scaffold protein that links BRCA1 with BRCA2 to initiate homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR efficiency in cells. The PALB2 DNA-binding domain (PALB2-DBD) supports strand exchange, a complex multistep reaction conducted by only a few proteins such as RecA-like recombinases and Rad52. Using bioinformatics analysis, small-angle X-ray scattering, circular dichroism, and electron paramagnetic spectroscopy, we determined that PALB2-DBD is an intrinsically disordered region (IDR) forming compact molten globule-like dimer. IDRs contribute to oligomerization synergistically with the coiled-coil interaction. Using confocal single-molecule FRET we demonstrated that PALB2-DBD compacts single-stranded DNA even in the absence of DNA secondary structures. The compaction is bimodal, oligomerization-dependent, and is driven by IDRs, suggesting a novel strand exchange mechanism. Intrinsically disordered proteins (IDPs) are prevalent in the human proteome. Novel DNA binding properties of PALB2-DBD and the complexity of strand exchange mechanism significantly expands the functional repertoire of IDPs. Multivalent interactions and bioinformatics analysis suggest that PALB2 function is likely to depend on formation of protein-nucleic acids condensates. Similar intrinsically disordered DBDs may use chaperone-like mechanism to aid formation and resolution of DNA and RNA multichain intermediates during DNA replication, repair and recombination.
Collapse
Affiliation(s)
- Yevhenii Kyriukha
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Maxwell B Watkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL
| | - Jennifer M Redington
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Reza Dastvan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| |
Collapse
|
7
|
Li Z, Liao Y, Tang C, Xu L, Peng B, Xu X. RBM14 promotes DNA end resection during homologous recombination repair. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1864-1873. [PMID: 37559455 PMCID: PMC10753362 DOI: 10.3724/abbs.2023104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 08/11/2023] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination (HR) is crucial for the maintenance of genome stability and integrity. In this study, we aim to identify novel RNA binding proteins (RBPs) involved in HR repair because little is known about RBP function in HR. For this purpose, we carry out pulldown assays using a synthetic ssDNA/dsDNA structure coated with replication protein A (RPA) to mimic resected DNA, a crucial intermediate in HR-mediated DSB repair. Using this approach, we identify RNA-binding motif protein 14 (RBM14) as a potential binding partner. We further show that RBM14 interacts with an essential HR repair factor, CtIP. RBM14 is crucial for CtIP recruitment to DSB sites and for subsequent RPA coating and RAD51 replacement, facilitating efficient HR repair. Moreover, inhibition of RBM14 expression sensitizes cancer cells to X-ray irradiation. Together, our results demonstrate that RBM14 promotes DNA end resection to ensure HR repair and may serve as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zheng Li
- College of Life SciencesCapital Normal UniversityBeijing100048China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Yanting Liao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Chen Tang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100091China
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM)Dehua HospitalDehua362500China
| | - Linli Xu
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| |
Collapse
|
8
|
Tsao N, Ashour ME, Mosammaparast N. How RNA impacts DNA repair. DNA Repair (Amst) 2023; 131:103564. [PMID: 37776841 PMCID: PMC11232704 DOI: 10.1016/j.dnarep.2023.103564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
The central dogma of molecular biology posits that genetic information flows unidirectionally, from DNA, to RNA, and finally to protein. However, this directionality is broken in some cases, such as reverse transcription where RNA is converted to DNA by retroviruses and certain transposable elements. Our genomes have evolved and adapted to the presence of reverse transcription. Similarly, our genome is continuously maintained by several repair pathways to reverse damage due to various endogenous and exogenous sources. More recently, evidence has revealed that RNA, while in certain contexts may be detrimental for genome stability, is involved in promoting certain types of DNA repair. Depending on the pathway in question, the size of these DNA repair-associated RNAs range from one or a few ribonucleotides to long fragments of RNA. Moreover, RNA is highly modified, and RNA modifications have been revealed to be functionally associated with specific DNA repair pathways. In this review, we highlight aspects of this unexpected layer of genomic maintenance, demonstrating how RNA may influence DNA integrity.
Collapse
Affiliation(s)
- Ning Tsao
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mohamed E Ashour
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Kundnani DL, Yang T, Gombolay AL, Mukherjee K, Newnam G, Meers C, Mehta ZH, Mouawad C, Storici F. Distinct features of ribonucleotides within genomic DNA in Aicardi-Goutières syndrome (AGS)-ortholog mutants of Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560505. [PMID: 37873120 PMCID: PMC10592897 DOI: 10.1101/2023.10.02.560505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ribonucleoside monophosphates (rNMPs) are abundantly found within genomic DNA of cells. The embedded rNMPs alter DNA properties and impact genome stability. Mutations in ribonuclease (RNase) H2, a key enzyme for rNMP removal, are associated with the Aicardi-Goutières syndrome (AGS), a severe neurological disorder. Here, we engineered two AGS-ortholog mutations in Saccharomyces cerevisiae: rnh201-G42S and rnh203-K46W. Using the ribose-seq technique and the Ribose-Map bioinformatics toolkit, we unveiled rNMP abundance, composition, hotspots, and sequence context in these yeast AGS-ortholog mutants. We found higher rNMP incorporation in the nuclear genome of rnh201-G42S than in wild-type and rnh203-K46W-mutant cells, and an elevated rCMP content in both mutants. Moreover, we uncovered unique rNMP patterns in each mutant, highlighting a differential activity of the AGS mutants towards rNMPs embedded on the leading or on the lagging strand of DNA replication. This study guides future research on rNMP characteristics in human genomic samples carrying AGS mutations.
Collapse
Affiliation(s)
- Deepali L Kundnani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alli L Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Bacterial Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Zeel H Mehta
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Celine Mouawad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
10
|
Kyriukha Y, Watkins MB, Redington JM, Dastvan R, Uversky VN, Hopkins J, Pozzi N, Korolev S. The PALB2 DNA-binding domain is an intrinsically disordered recombinase. RESEARCH SQUARE 2023:rs.3.rs-3235465. [PMID: 37790553 PMCID: PMC10543426 DOI: 10.21203/rs.3.rs-3235465/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The Partner and Localizer of BRCA2 (PALB2) tumor suppressor is a scaffold protein that links BRCA1 with BRCA2 to initiate homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR efficiency. The PALB2 DNA-binding domain (PALB2-DBD) supports DNA strand exchange, a complex multistep reaction supported by only a few protein families such as RecA-like recombinases or Rad52. The mechanisms of PALB2 DNA binding and strand exchange are unknown. We performed circular dichroism, electron paramagnetic spectroscopy, and small-angle X-ray scattering analyses and determined that PALB2-DBD is intrinsically disordered, even when bound to DNA. The intrinsically disordered nature of this domain was further supported by bioinformatics analysis. Intrinsically disordered proteins (IDPs) are prevalent in the human proteome and have many important biological functions. The complexity of the strand exchange reaction significantly expands the functional repertoire of IDPs. The results of confocal single-molecule FRET indicated that PALB2-DBD binding leads to oligomerization-dependent DNA compaction. We hypothesize that PALB2-DBD uses a chaperone-like mechanism to aid formation and resolution of complex DNA and RNA multichain intermediates during DNA replication and repair. Since PALB2-DBD alone or within the full-length PALB2 is predicted to have strong liquid-liquid phase separation (LLPS) potential, protein-nucleic acids condensates are likely to play a role in complex functionality of PALB2-DBD. Similar DNA-binding intrinsically disordered regions may represent a novel class of functional domains that evolved to function in eukaryotic nucleic acid metabolism complexes.
Collapse
Affiliation(s)
- Yevhenii Kyriukha
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | | | - Jennifer M Redington
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Reza Dastvan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jesse Hopkins
- BioCat, Advanced Photon Source, Argonne National Lab, Argonne, IL
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| |
Collapse
|
11
|
Wang J, Muste Sadurni M, Saponaro M. RNAPII response to transcription-blocking DNA lesions in mammalian cells. FEBS J 2023; 290:4382-4394. [PMID: 35731652 PMCID: PMC10952651 DOI: 10.1111/febs.16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 09/21/2023]
Abstract
RNA polymerase II moves along genes to decode genetic information stored in the mammalian genome into messenger RNA and different forms of non-coding RNA. However, the transcription process is frequently challenged by DNA lesions caused by exogenous and endogenous insults, among which helix-distorting DNA lesions and double-stranded DNA breaks are particularly harmful for cell survival. In response to such DNA damage, RNA polymerase II transcription is regulated both locally and globally by multi-layer mechanisms, whereas transcription-blocking lesions are repaired before transcription can recover. Failure in DNA damage repair will cause genome instability and cell death. Although recent studies have expanded our understanding of RNA polymerase II regulation confronting DNA lesions, it is still not always clear what the direct contribution of RNA polymerase II is in the DNA damage repair processes. In this review, we focus on how RNA polymerase II and transcription are both repressed by transcription stalling lesions such as DNA-adducts and double strand breaks, as well as how they are actively regulated to support the cellular response to DNA damage and favour the repair of lesions.
Collapse
Affiliation(s)
- Jianming Wang
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic SciencesUniversity of BirminghamUK
| | - Martina Muste Sadurni
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic SciencesUniversity of BirminghamUK
| | - Marco Saponaro
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic SciencesUniversity of BirminghamUK
| |
Collapse
|
12
|
Palovcak A, Yuan F, Verdun R, Luo L, Zhang Y. Fanconi anemia associated protein 20 (FAAP20) plays an essential role in homology-directed repair of DNA double-strand breaks. Commun Biol 2023; 6:873. [PMID: 37620397 PMCID: PMC10449828 DOI: 10.1038/s42003-023-05252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
FAAP20 is a Fanconi anemia (FA) protein that associates with the FA core complex to promote FANCD2/FANCI monoubiquitination and activate the damage response to interstrand crosslink damage. Here, we report that FAAP20 has a marked role in homologous recombination at a DNA double-strand break not associated with an ICL and separable from its binding partner FANCA. While FAAP20's role in homologous recombination is not dependent on FANCA, we found that FAAP20 stimulates FANCA's biochemical activity in vitro and participates in the single-strand annealing pathway of double-strand break repair in a FANCA-dependent manner. This indicates that FAAP20 has roles in several homology-directed repair pathways. Like other homology-directed repair factors, FAAP20 loss causes a reduction in nuclear RAD51 Irradiation-induced foci; and sensitizes cancer cells to ionizing radiation and PARP inhibition. In summary, FAAP20 participates in DNA double strand break repair by supporting homologous recombination in a non-redundant manner to FANCA, and single-strand annealing repair via FANCA-mediated strand annealing activity.
Collapse
Affiliation(s)
- Anna Palovcak
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ramiro Verdun
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
13
|
Liu G, Li J, He B, Yan J, Zhao J, Wang X, Zhao X, Xu J, Wu Y, Zhang S, Gan X, Zhou C, Li X, Zhang X, Chen X. Bre1/RNF20 promotes Rad51-mediated strand exchange and antagonizes the Srs2/FBH1 helicases. Nat Commun 2023; 14:3024. [PMID: 37230987 DOI: 10.1038/s41467-023-38617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Central to homologous recombination (HR) is the assembly of Rad51 recombinase on single-strand DNA (ssDNA), forming the Rad51-ssDNA filament. How the Rad51 filament is efficiently established and sustained remains partially understood. Here, we find that the yeast ubiquitin ligase Bre1 and its human homolog RNF20, a tumor suppressor, function as recombination mediators, promoting Rad51 filament formation and subsequent reactions via multiple mechanisms independent of their ligase activities. We show that Bre1/RNF20 interacts with Rad51, directs Rad51 to ssDNA, and facilitates Rad51-ssDNA filament assembly and strand exchange in vitro. In parallel, Bre1/RNF20 interacts with the Srs2 or FBH1 helicase to counteract their disrupting effect on the Rad51 filament. We demonstrate that the above functions of Bre1/RNF20 contribute to HR repair in cells in a manner additive to the mediator protein Rad52 in yeast or BRCA2 in human. Thus, Bre1/RNF20 provides an additional layer of mechanism to directly control Rad51 filament dynamics.
Collapse
Affiliation(s)
- Guangxue Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jimin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Boxue He
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jiaqi Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jingyu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xuejie Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiaocong Zhao
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yeyao Wu
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Simin Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiaoli Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chun Zhou
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangpan Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xinghua Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Tschage L, Kowarz E, Marschalek R. Model System to Analyze RNA-Mediated DNA Repair in Mammalian Cells. CRISPR J 2023. [PMID: 37200486 DOI: 10.1089/crispr.2022.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
"RNA-templated/directed DNA repair" is a biological mechanism that has been experimentally demonstrated in bacteria, yeast, and mammalian cells. Recent study has shown that small noncoding RNAs (DDRNAs) and/or newly RNAPII transcribed RNAs (dilncRNAs) are orchestrating the initial steps of double-strand break (DSB) repair. In this study, we demonstrate that also pre-mRNA could be used as direct or indirect substrate for DSB repair. Our test system is based on (1) a stably integrated mutant reporter gene that produces constitutively a nonspliceable pre-mRNA, (2) a transiently expressed sgRNA-guided dCas13b::ADAR fusion protein to specifically RNA edit the nonspliceable pre-mRNA, and (3) transiently expressed I-SceI to create a DSB situation to study the effect of spliceable pre-mRNA on DNA repair. Based on our data, the RNA-edited pre-mRNA was used in cis for the DSB repair process, thereby converting the genomically encoded mutant reporter gene into an active reporter gene. Overexpression and knockdown of several cellular proteins were performed to delineate their role in this novel "RNA-mediated end joining" pathway.
Collapse
Affiliation(s)
- Lisa Tschage
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Germany
| | - Eric Kowarz
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Chakraborty A, Tapryal N, Islam A, Sarker AH, Manohar K, Mitra J, Hegde ML, Hazra T. Human DNA polymerase η promotes RNA-templated error-free repair of DNA double-strand breaks. J Biol Chem 2023; 299:102991. [PMID: 36758800 PMCID: PMC10011834 DOI: 10.1016/j.jbc.2023.102991] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
A growing body of evidence indicates that RNA plays a critical role in orchestrating DNA double-strand break repair (DSBR). Recently, we showed that homologous nascent RNA can be used as a template for error-free repair of double-strand breaks (DSBs) in the transcribed genome and to restore the missing sequence at the break site via the transcription-coupled classical nonhomologous end-joining (TC-NHEJ) pathway. TC-NHEJ is a complex multistep process in which a reverse transcriptase (RT) is essential for synthesizing the DNA strand from template RNA. However, the identity of the RT involved in the TC-NHEJ pathway remained unknown. Here, we report that DNA polymerase eta (Pol η), known to possess RT activity, plays a critical role in TC-NHEJ. We found that Pol η forms a multiprotein complex with RNAP II and other TC-NHEJ factors, while also associating with nascent RNA. Moreover, purified Pol η, along with DSBR proteins PNKP, XRCC4, and Ligase IV can fully repair RNA templated 3'-phosphate-containing gapped DNA substrate. In addition, we demonstrate here that Pol η deficiency leads to accumulation of R-loops and persistent strand breaks in the transcribed genes. Finally, we determined that, in Pol η depleted but not in control cells, TC-NHEJ-mediated repair was severely abrogated when a reporter plasmid containing a DSB with several nucleotide deletion within the E. coli lacZ gene was introduced for repair in lacZ-expressing mammalian cells. Thus, our data strongly suggest that RT activity of Pol η is required in error-free DSBR.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nisha Tapryal
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Azharul Islam
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Altaf H Sarker
- Life Sciences Division, Department of Cancer and DNA Damage Responses, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kodavati Manohar
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Tapas Hazra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
16
|
Multifaceted Nature of DNA Polymerase θ. Int J Mol Sci 2023; 24:ijms24043619. [PMID: 36835031 PMCID: PMC9962433 DOI: 10.3390/ijms24043619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
DNA polymerase θ belongs to the A family of DNA polymerases and plays a key role in DNA repair and damage tolerance, including double-strand break repair and DNA translesion synthesis. Pol θ is often overexpressed in cancer cells and promotes their resistance to chemotherapeutic agents. In this review, we discuss unique biochemical properties and structural features of Pol θ, its multiple roles in protection of genome stability and the potential of Pol θ as a target for cancer treatment.
Collapse
|
17
|
Zafar K, Khan MZ, Amin I, Mukhtar Z, Zafar M, Mansoor S. Employing template-directed CRISPR-based editing of the OsALS gene to create herbicide tolerance in Basmati rice. AOB PLANTS 2023; 15:plac059. [PMID: 36873055 PMCID: PMC9977225 DOI: 10.1093/aobpla/plac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Rice (Oryza sativa) is one of the primary food crops which contributes major portion of daily calorie intake. It is used as model crop for various genome editing studies. Basmati rice was also explored for establishing non-homologous end joining-based genome editing. But it was not clear whether homology-directed repair (HDR)-based genome editing can be done in Basmati rice. The current study was designed to establish HDR-based genome editing in Basmati rice to develop herbicide tolerance. There is severe weed spread when rice is grown via direct planted rice method in various countries to save labour and water resources. Therefore, the use of herbicides is necessary to control weeds. These herbicides can also affect cultivated rice which creates the need to develop herbicide-tolerant rice. In current study, we introduced a point mutation in Acetolactate Synthase gene to convert tryptophan to leucine at position 548. For this purpose, different constructs for HDR were tested with different RNA scaffold and orientation of repair templates. Out of four different architectures, the one having repair template identical to the target DNA strand precisely edited the target site. We successfully established template-directed CRISPR-Cas9 system in Super Basmati rice by detecting desired substitutions at the target site in Acetolactate Synthase locus. Moreover, this editing of Acetolactate Synthase gene resulted in the production of herbicide tolerance in Super Basmati rice. This study suggests that such type of HDR system can be used to precisely edit other genes for crop improvement.
Collapse
Affiliation(s)
| | - Muhammad Zuhaib Khan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad 37000, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad 37000, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad 37000, Pakistan
| | - Mehak Zafar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad 37000, Pakistan
| | | |
Collapse
|
18
|
Zhao H, Hartono SR, de Vera KMF, Yu Z, Satchi K, Zhao T, Sciammas R, Sanz L, Chédin F, Barlow J. Senataxin and RNase H2 act redundantly to suppress genome instability during class switch recombination. eLife 2022; 11:e78917. [PMID: 36542058 PMCID: PMC9771370 DOI: 10.7554/elife.78917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Class switch recombination generates distinct antibody isotypes critical to a robust adaptive immune system, and defects are associated with autoimmune disorders and lymphomagenesis. Transcription is required during class switch recombination to recruit the cytidine deaminase AID-an essential step for the formation of DNA double-strand breaks-and strongly induces the formation of R loops within the immunoglobulin heavy-chain locus. However, the impact of R loops on double-strand break formation and repair during class switch recombination remains unclear. Here, we report that cells lacking two enzymes involved in R loop removal-senataxin and RNase H2-exhibit increased R loop formation and genome instability at the immunoglobulin heavy-chain locus without impacting its transcriptional activity, AID recruitment, or class switch recombination efficiency. Senataxin and RNase H2-deficient cells also exhibit increased insertion mutations at switch junctions, a hallmark of alternative end joining. Importantly, these phenotypes were not observed in cells lacking senataxin or RNase H2B alone. We propose that senataxin acts redundantly with RNase H2 to mediate timely R loop removal, promoting efficient repair while suppressing AID-dependent genome instability and insertional mutagenesis.
Collapse
Affiliation(s)
- Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Stella R Hartono
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | | | - Zheyuan Yu
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
- Graduate Group in Biostatistics, University of California, DavisDavisUnited States
| | - Krishni Satchi
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Tracy Zhao
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Roger Sciammas
- Center for Immunology and Infectious Diseases, University of California, DavisDavisUnited States
| | - Lionel Sanz
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Jacqueline Barlow
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| |
Collapse
|
19
|
Tsegay PS, Hernandez D, Qu F, Olatunji M, Mamun Y, Chapagain P, Liu Y. RNA-guided DNA base damage repair via DNA polymerase-mediated nick translation. Nucleic Acids Res 2022; 51:166-181. [PMID: 36533524 PMCID: PMC9841414 DOI: 10.1093/nar/gkac1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
DNA repair is mediated by DNA synthesis guided by a DNA template. Recent studies have shown that DNA repair can also be accomplished by RNA-guided DNA synthesis. However, it remains unknown how RNA can guide DNA synthesis to repair DNA damage. In this study, we revealed the molecular mechanisms underlying RNA-guided DNA synthesis and base damage repair mediated by human repair DNA polymerases. We showed that pol β, pol κ, and pol ι predominantly synthesized one nucleotide, and pol η, pol ν, and pol θ synthesized multi-nucleotides during RNA-guided DNA base damage repair. The steady-state kinetics showed that pol η exhibited more efficient RNA-guided DNA synthesis than pol β. Using molecular dynamics simulation, we further revealed dynamic conformational changes of pol β and pol η and their structural basis to accommodate the RNA template and misoriented triphosphates of an incoming nucleotide. We demonstrated that RNA-guided base damage repair could be accomplished by the RNA-guided DNA strand-displacement synthesis and nick translation leading to nick ligation in a double-strand DNA region. Our study revealed a novel RNA-guided base damage repair pathway during transcription and DNA replication.
Collapse
Affiliation(s)
- Pawlos S Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Daniela Hernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Fei Qu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Mustapha Olatunji
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Yasir Mamun
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL, USA,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Yuan Liu
- To whom correspondence should be addressed. Tel: +1 305 348 3628; Fax: +1 305 348 2772;
| |
Collapse
|
20
|
Yadav T, Zhang JM, Ouyang J, Leung W, Simoneau A, Zou L. TERRA and RAD51AP1 promote alternative lengthening of telomeres through an R- to D-loop switch. Mol Cell 2022; 82:3985-4000.e4. [PMID: 36265486 PMCID: PMC9637728 DOI: 10.1016/j.molcel.2022.09.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Alternative lengthening of telomeres (ALT), a telomerase-independent process maintaining telomeres, is mediated by break-induced replication (BIR). RAD52 promotes ALT by facilitating D-loop formation, but ALT also occurs through a RAD52-independent BIR pathway. Here, we show that the telomere non-coding RNA TERRA forms dynamic telomeric R-loops and contributes to ALT activity in RAD52 knockout cells. TERRA forms R-loops in vitro and at telomeres in a RAD51AP1-dependent manner. The formation of R-loops by TERRA increases G-quadruplexes (G4s) at telomeres. G4 stabilization enhances ALT even when TERRA is depleted, suggesting that G4s act downstream of R-loops to promote BIR. In vitro, the telomeric R-loops assembled by TERRA and RAD51AP1 generate G4s, which persist after R-loop resolution and allow formation of telomeric D-loops without RAD52. Thus, the dynamic telomeric R-loops formed by TERRA and RAD51AP1 enable the RAD52-independent ALT pathway, and G4s orchestrate an R- to D-loop switch at telomeres to stimulate BIR.
Collapse
Affiliation(s)
- Tribhuwan Yadav
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Wendy Leung
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Antoine Simoneau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
21
|
Kaminski N, Wondisford AR, Kwon Y, Lynskey ML, Bhargava R, Barroso-González J, García-Expósito L, He B, Xu M, Mellacheruvu D, Watkins SC, Modesti M, Miller KM, Nesvizhskii AI, Zhang H, Sung P, O'Sullivan RJ. RAD51AP1 regulates ALT-HDR through chromatin-directed homeostasis of TERRA. Mol Cell 2022; 82:4001-4017.e7. [PMID: 36265488 PMCID: PMC9713952 DOI: 10.1016/j.molcel.2022.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/10/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in subsets of aggressive cancer. Recent studies have revealed that telomere repeat-containing RNA (TERRA) promotes ALT-associated HDR (ALT-HDR). Here, we report that RAD51AP1, a crucial ALT factor, interacts with TERRA and utilizes it to generate D- and R-loop HR intermediates. We also show that RAD51AP1 binds to and might stabilize TERRA-containing R-loops as RAD51AP1 depletion reduces R-loop formation at telomere DNA breaks. Proteomic analyses uncover a role for RAD51AP1-mediated TERRA R-loop homeostasis in a mechanism of chromatin-directed suppression of TERRA and prevention of transcription-replication collisions (TRCs) during ALT-HDR. Intriguingly, we find that both TERRA binding and this non-canonical function of RAD51AP1 require its intrinsic SUMO-SIM regulatory axis. These findings provide insights into the multi-contextual functions of RAD51AP1 within the ALT mechanism and regulation of TERRA.
Collapse
Affiliation(s)
- Nicole Kaminski
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michelle Lee Lynskey
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ragini Bhargava
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Barroso-González
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura García-Expósito
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Boxue He
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Meng Xu
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Dattatreya Mellacheruvu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Simon C Watkins
- Department of Cell Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm UMR1068, Aix Marseille Université U105, Institut Paoli Calmettes, 27 Boulevard Lei Roure CS30059, 13273 Marseille Cedex 09, France
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Huaiying Zhang
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Hassan MM, Yuan G, Liu Y, Alam M, Eckert CA, Tuskan GA, Golz JF, Yang X. Precision genome editing in plants using gene targeting and prime editing: existing and emerging strategies. Biotechnol J 2022; 17:e2100673. [PMID: 35766313 DOI: 10.1002/biot.202100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
Precise modification of plant genomes, such as seamless insertion, deletion, or replacement of DNA sequences at a predefined site, is a challenging task. Gene targeting (GT) and prime editing are currently the best approaches for this purpose. However, these techniques are inefficient in plants, which limits their applications for crop breeding programs. Recently, substantial developments have been made to improve the efficiency of these techniques in plants. Several strategies, such as RNA donor templating, chemically modified donor DNA template, and tandem-repeat homology-directed repair, are aimed at improving GT. Additionally, improved prime editing gRNA design, use of engineered reverse transcriptase enzymes, and splitting prime editing components have improved the efficacy of prime editing in plants. These emerging strategies and existing technologies are reviewed along with various perspectives on their future improvement and the development of robust precision genome editing technologies for plants.
Collapse
Affiliation(s)
- Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Nambour, Queensland, Australia
| | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - John F Golz
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| |
Collapse
|
23
|
Trifault B, Mamontova V, Burger K. In vivo Proximity Labeling of Nuclear and Nucleolar Proteins by a Stably Expressed, DNA Damage-Responsive NONO-APEX2 Fusion Protein. Front Mol Biosci 2022; 9:914873. [PMID: 35733943 PMCID: PMC9207311 DOI: 10.3389/fmolb.2022.914873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular stress can induce DNA lesions that threaten the stability of genes. The DNA damage response (DDR) recognises and repairs broken DNA to maintain genome stability. Intriguingly, components of nuclear paraspeckles like the non-POU domain containing octamer-binding protein (NONO) participate in the repair of DNA double-strand breaks (DSBs). NONO is a multifunctional RNA-binding protein (RBP) that facilitates the retention and editing of messenger (m)RNA as well as pre-mRNA processing. However, the role of NONO in the DDR is poorly understood. Here, we establish a novel human U2OS cell line that expresses NONO fused to the engineered ascorbate peroxidase 2 (U2OS:NONO-APEX2-HA). We show that NONO-APEX2-HA accumulates in the nucleolus in response to DNA damage. Combining viability assays, subcellular localisation studies, coimmunoprecipitation experiments and in vivo proximity labeling, we demonstrate that NONO-APEX2-HA is a stably expressed fusion protein that mimics endogenous NONO in terms of expression, localisation and bona fide interactors. We propose that in vivo proximity labeling in U2OS:NONO-APEX2-HA cells is capable for the assessment of NONO interactomes by downstream assays. U2OS:NONO-APEX2-HA cells will likely be a valuable resource for the investigation of NONO interactome dynamics in response to DNA damage and other stimuli.
Collapse
|
24
|
Li Y, Mensah EO, Fordjour E, Bai J, Yang Y, Bai Z. Recent advances in high-throughput metabolic engineering: Generation of oligonucleotide-mediated genetic libraries. Biotechnol Adv 2022; 59:107970. [PMID: 35550915 DOI: 10.1016/j.biotechadv.2022.107970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
The preparation of genetic libraries is an essential step to evolve microorganisms and study genotype-phenotype relationships by high-throughput screening/selection. As the large-scale synthesis of oligonucleotides becomes easy, cheap, and high-throughput, numerous novel strategies have been developed in recent years to construct high-quality oligo-mediated libraries, leveraging state-of-art molecular biology tools for genome editing and gene regulation. This review presents an overview of recent advances in creating and characterizing in vitro and in vivo genetic libraries, based on CRISPR/Cas, regulatory RNAs, and recombineering, primarily for Escherichia coli and Saccharomyces cerevisiae. These libraries' applications in high-throughput metabolic engineering, strain evolution and protein engineering are also discussed.
Collapse
Affiliation(s)
- Ye Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Emmanuel Osei Mensah
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Eric Fordjour
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Bai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yankun Yang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
25
|
Scherzer M, Giordano F, Ferran MS, Ström L. Recruitment of Scc2/4 to double-strand breaks depends on γH2A and DNA end resection. Life Sci Alliance 2022; 5:e202101244. [PMID: 35086935 PMCID: PMC8807874 DOI: 10.26508/lsa.202101244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination enables cells to overcome the threat of DNA double-strand breaks (DSBs), allowing for repair without the loss of genetic information. Central to the homologous recombination repair process is the de novo loading of cohesin around a DSB by its loader complex Scc2/4. Although cohesin's DSB accumulation has been explored in numerous studies, the prerequisites for Scc2/4 recruitment during the repair process are still elusive. To address this question, we combine chromatin immunoprecipitation-qPCR with a site-specific DSB in vivo, in Saccharomyces cerevisiae We find that Scc2 DSB recruitment relies on γH2A and Tel1, but as opposed to cohesin, not on Mec1. We further show that the binding of Scc2, which emanates from the break site, depends on and coincides with DNA end resection. Absence of chromatin remodeling at the DSB affects Scc2 binding and DNA end resection to a comparable degree, further indicating the latter to be a major driver for Scc2 recruitment. Our results shed light on the intricate DSB repair cascade leading to the recruitment of Scc2/4 and subsequent loading of cohesin.
Collapse
Affiliation(s)
- Martin Scherzer
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fosco Giordano
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Solé Ferran
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lena Ström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Chen J, Li S, He Y, Li J, Xia L. An update on precision genome editing by homology-directed repair in plants. PLANT PHYSIOLOGY 2022; 188:1780-1794. [PMID: 35238390 PMCID: PMC8968426 DOI: 10.1093/plphys/kiac037] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/20/2022] [Indexed: 05/22/2023]
Abstract
Beneficial alleles derived from local landraces or related species, or even orthologs from other plant species, are often caused by differences of one or several single-nucleotide polymorphisms or indels in either the promoter region or the encoding region of a gene and often account for major differences in agriculturally important traits. Clustered regularly interspaced short palindromic repeats-associated endonuclease Cas9 system (CRISPR/Cas9)-mediated precision genome editing enables targeted allele replacement or insertion of flag or foreign genes at specific loci via homology-directed repair (HDR); however, HDR efficiency is low due to the intrinsic rare occurrence of HDR and insufficient DNA repair template in the proximity of a double-stranded break (DSB). Precise replacement of the targeted gene with elite alleles from landraces or relatives into a commercial variety through genome editing has been a holy grail in the crop genome editing field. In this update, we briefly summarize CRISPR/Cas-mediated HDR in plants. We describe diverse strategies to improve HDR efficiency by manipulating the DNA repair pathway, timing DSB induction, and donor delivery, and so on. Lastly, we outline open questions and challenges in HDR-mediated precision genome editing in both plant biological research and crop improvement.
Collapse
Affiliation(s)
- Jilin Chen
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yubing He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingying Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
27
|
Kieffer SR, Lowndes NF. Immediate-Early, Early, and Late Responses to DNA Double Stranded Breaks. Front Genet 2022; 13:793884. [PMID: 35173769 PMCID: PMC8841529 DOI: 10.3389/fgene.2022.793884] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Loss or rearrangement of genetic information can result from incorrect responses to DNA double strand breaks (DSBs). The cellular responses to DSBs encompass a range of highly coordinated events designed to detect and respond appropriately to the damage, thereby preserving genomic integrity. In analogy with events occurring during viral infection, we appropriate the terms Immediate-Early, Early, and Late to describe the pre-repair responses to DSBs. A distinguishing feature of the Immediate-Early response is that the large protein condensates that form during the Early and Late response and are resolved upon repair, termed foci, are not visible. The Immediate-Early response encompasses initial lesion sensing, involving poly (ADP-ribose) polymerases (PARPs), KU70/80, and MRN, as well as rapid repair by so-called ‘fast-kinetic’ canonical non-homologous end joining (cNHEJ). Initial binding of PARPs and the KU70/80 complex to breaks appears to be mutually exclusive at easily ligatable DSBs that are repaired efficiently by fast-kinetic cNHEJ; a process that is PARP-, ATM-, 53BP1-, Artemis-, and resection-independent. However, at more complex breaks requiring processing, the Immediate-Early response involving PARPs and the ensuing highly dynamic PARylation (polyADP ribosylation) of many substrates may aid recruitment of both KU70/80 and MRN to DSBs. Complex DSBs rely upon the Early response, largely defined by ATM-dependent focal recruitment of many signalling molecules into large condensates, and regulated by complex chromatin dynamics. Finally, the Late response integrates information from cell cycle phase, chromatin context, and type of DSB to determine appropriate pathway choice. Critical to pathway choice is the recruitment of p53 binding protein 1 (53BP1) and breast cancer associated 1 (BRCA1). However, additional factors recruited throughout the DSB response also impact upon pathway choice, although these remain to be fully characterised. The Late response somehow channels DSBs into the appropriate high-fidelity repair pathway, typically either ‘slow-kinetic’ cNHEJ or homologous recombination (HR). Loss of specific components of the DSB repair machinery results in cells utilising remaining factors to effect repair, but often at the cost of increased mutagenesis. Here we discuss the complex regulation of the Immediate-Early, Early, and Late responses to DSBs proceeding repair itself.
Collapse
|
28
|
Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol 2022; 23:389-406. [DOI: 10.1038/s41580-021-00447-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
|
29
|
Betlej G, Lewińska A, Adamczyk-Grochala J, Błoniarz D, Rzeszutek I, Wnuk M. Deficiency of TRDMT1 impairs exogenous RNA-based response and promotes retrotransposon activity during long-term culture of osteosarcoma cells. Toxicol In Vitro 2022; 80:105323. [DOI: 10.1016/j.tiv.2022.105323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/11/2023]
|
30
|
Rossi MJ, DiDomenico SF, Patel M, Mazin AV. RAD52: Paradigm of Synthetic Lethality and New Developments. Front Genet 2021; 12:780293. [PMID: 34887904 PMCID: PMC8650160 DOI: 10.3389/fgene.2021.780293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022] Open
Abstract
DNA double-strand breaks and inter-strand cross-links are the most harmful types of DNA damage that cause genomic instability that lead to cancer development. The highest fidelity pathway for repairing damaged double-stranded DNA is termed Homologous recombination (HR). Rad52 is one of the key HR proteins in eukaryotes. Although it is critical for most DNA repair and recombination events in yeast, knockouts of mammalian RAD52 lack any discernable phenotypes. As a consequence, mammalian RAD52 has been long overlooked. That is changing now, as recent work has shown RAD52 to be critical for backup DNA repair pathways in HR-deficient cancer cells. Novel findings have shed light on RAD52's biochemical activities. RAD52 promotes DNA pairing (D-loop formation), single-strand DNA and DNA:RNA annealing, and inverse strand exchange. These activities contribute to its multiple roles in DNA damage repair including HR, single-strand annealing, break-induced replication, and RNA-mediated repair of DNA. The contributions of RAD52 that are essential to the viability of HR-deficient cancer cells are currently under investigation. These new findings make RAD52 an attractive target for the development of anti-cancer therapies against BRCA-deficient cancers.
Collapse
Affiliation(s)
- Matthew J. Rossi
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | | | | | | |
Collapse
|
31
|
Franklin A, Steele EJ. RNA-directed DNA repair and antibody somatic hypermutation. Trends Genet 2021; 38:426-436. [PMID: 34740453 DOI: 10.1016/j.tig.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022]
Abstract
Somatic hypermutation at antibody loci affects both deoxyadenosine-deoxythymidine (A/T) and deoxycytidine-deoxyguanosine (C/G) pairs. Deamination of C to deoxyuridine (U) by activation-induced deaminase (AID) explains how mutation at C/G pairs is potentiated. Mutation at A/T pairs is triggered during the initial stages of repair of AID-generated U lesions and occurs through an as yet unknown mechanism in which polymerase η has a major role. Recent evidence confirms that human polymerase η can act as a reverse transcriptase. Here, we compare the popular suggestion of mutation at A/T pairs through nucleotide mispairing (owing to polymerase error) during short-patch repair synthesis with the alternative proposal of mutation at A/T pairs through RNA editing and RNA-directed DNA repair.
Collapse
Affiliation(s)
- Andrew Franklin
- Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland.
| | | |
Collapse
|
32
|
Salas-Leiva DE, Tromer EC, Curtis BA, Jerlström-Hultqvist J, Kolisko M, Yi Z, Salas-Leiva JS, Gallot-Lavallée L, Williams SK, Kops GJPL, Archibald JM, Simpson AGB, Roger AJ. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat Commun 2021; 12:6003. [PMID: 34650064 PMCID: PMC8516963 DOI: 10.1038/s41467-021-26077-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Cells replicate and segregate their DNA with precision. Previous studies showed that these regulated cell-cycle processes were present in the last eukaryotic common ancestor and that their core molecular parts are conserved across eukaryotes. However, some metamonad parasites have secondarily lost components of the DNA processing and segregation apparatuses. To clarify the evolutionary history of these systems in these unusual eukaryotes, we generated a genome assembly for the free-living metamonad Carpediemonas membranifera and carried out a comparative genomics analysis. Here, we show that parasitic and free-living metamonads harbor an incomplete set of proteins for processing and segregating DNA. Unexpectedly, Carpediemonas species are further streamlined, lacking the origin recognition complex, Cdc6 and most structural kinetochore subunits. Carpediemonas species are thus the first known eukaryotes that appear to lack this suite of conserved complexes, suggesting that they likely rely on yet-to-be-discovered or alternative mechanisms to carry out these fundamental processes.
Collapse
Affiliation(s)
- Dayana E. Salas-Leiva
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada ,grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Eelco C. Tromer
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom ,grid.4830.f0000 0004 0407 1981Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Bruce A. Curtis
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Jon Jerlström-Hultqvist
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Martin Kolisko
- grid.418095.10000 0001 1015 3316Institute of Parasitology, Biology Centre, Czech Acad. Sci, České Budějovice, Czech Republic
| | - Zhenzhen Yi
- grid.263785.d0000 0004 0368 7397Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Joan S. Salas-Leiva
- grid.466575.30000 0001 1835 194XCONACyT-Centro de Investigación en Materiales Avanzados, Departamento de medio ambiente y energía, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih. México
| | - Lucie Gallot-Lavallée
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Shelby K. Williams
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Geert J. P. L. Kops
- grid.7692.a0000000090126352Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - John M. Archibald
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Alastair G. B. Simpson
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Andrew J. Roger
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
33
|
Jensen ED, Laloux M, Lehka BJ, Pedersen LE, Jakočiūnas T, Jensen M, Keasling J. A synthetic RNA-mediated evolution system in yeast. Nucleic Acids Res 2021; 49:e88. [PMID: 34107026 PMCID: PMC8421215 DOI: 10.1093/nar/gkab472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 11/19/2022] Open
Abstract
Laboratory evolution is a powerful approach to search for genetic adaptations to new or improved phenotypes, yet either relies on labour-intensive human-guided iterative rounds of mutagenesis and selection, or prolonged adaptation regimes based on naturally evolving cell populations. Here we present CRISPR- and RNA-assisted in vivo directed evolution (CRAIDE) of genomic loci using evolving chimeric donor gRNAs continuously delivered from an error-prone T7 RNA polymerase, and directly introduced as RNA repair donors into genomic targets under either Cas9 or dCas9 guidance. We validate CRAIDE by evolving novel functional variants of an auxotrophic marker gene, and by conferring resistance to a toxic amino acid analogue in baker's yeast Saccharomyces cerevisiae with a mutation rate >3,000-fold higher compared to spontaneous native rate, thus enabling the first demonstrations of in vivo delivery and information transfer from long evolving RNA donor templates into genomic context without the use of in vitro supplied and pre-programmed repair donors.
Collapse
Affiliation(s)
- Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marcos Laloux
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Beata J Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lasse E Pedersen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tadas Jakočiūnas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, CA, USA
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| |
Collapse
|
34
|
Guha S, Bhaumik SR. Transcription-coupled DNA double-strand break repair. DNA Repair (Amst) 2021; 109:103211. [PMID: 34883263 DOI: 10.1016/j.dnarep.2021.103211] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022]
Abstract
The genomic DNA is constantly under attack by cellular and/or environmental factors. Fortunately, the cell is armed to safeguard its genome by various mechanisms such as nucleotide excision, base excision, mismatch and DNA double-strand break repairs. While these processes maintain the integrity of the genome throughout, DNA repair occurs preferentially faster at the transcriptionally active genes. Such transcription-coupled repair phenomenon plays important roles to maintain active genome integrity, failure of which would interfere with transcription, leading to an altered gene expression (and hence cellular pathologies/diseases). Among the various DNA damages, DNA double-strand breaks are quite toxic to the cells. If DNA double-strand break occurs at the active gene, it would interfere with transcription/gene expression, thus threatening cellular viability. Such DNA double-strand breaks are found to be repaired faster at the active gene in comparison to its inactive state or the inactive gene, thus supporting the existence of a new phenomenon of transcription-coupled DNA double-strand break repair. Here, we describe the advances of this repair process.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA.
| |
Collapse
|
35
|
Fijen C, Rothenberg E. The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair (Amst) 2021; 105:103170. [PMID: 34256335 DOI: 10.1016/j.dnarep.2021.103170] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Formation of biomolecular condensates is increasingly recognized as a mechanism employed by cells to deal with stress and to optimize enzymatic reactions. Recent studies have characterized several DNA repair foci as phase-separated condensates, behaving like liquid droplets. Concomitantly, the apparent importance of long non-coding RNAs and RNA-binding proteins for the repair of double-strand breaks has raised many questions about their exact contribution to the repair process. Here we discuss how RNA molecules can participate in condensate formation and how RNA-binding proteins can act as molecular scaffolds. We furthermore summarize our current knowledge about how properties of condensates can influence the choice of repair pathway (homologous recombination or non-homologous end joining) and identify the open questions in this field of emerging importance.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
36
|
Palancade B, Rothstein R. The Ultimate (Mis)match: When DNA Meets RNA. Cells 2021; 10:cells10061433. [PMID: 34201169 PMCID: PMC8227541 DOI: 10.3390/cells10061433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022] Open
Abstract
RNA-containing structures, including ribonucleotide insertions, DNA:RNA hybrids and R-loops, have recently emerged as critical players in the maintenance of genome integrity. Strikingly, different enzymatic activities classically involved in genome maintenance contribute to their generation, their processing into genotoxic or repair intermediates, or their removal. Here we review how this substrate promiscuity can account for the detrimental and beneficial impacts of RNA insertions during genome metabolism. We summarize how in vivo and in vitro experiments support the contribution of DNA polymerases and homologous recombination proteins in the formation of RNA-containing structures, and we discuss the role of DNA repair enzymes in their removal. The diversity of pathways that are thus affected by RNA insertions likely reflects the ancestral function of RNA molecules in genome maintenance and transmission.
Collapse
Affiliation(s)
- Benoit Palancade
- Institut Jacques Monod, Université de Paris, CNRS, F-75006 Paris, France
- Correspondence: (B.P.); (R.R.)
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (B.P.); (R.R.)
| |
Collapse
|
37
|
Miao Y, Xia Y, Kong Y, Zhu H, Mei H, Li P, Feng H, Xun W, Xu Z, Zhang N, Liu D, Shen Q, Zhang R. Overcoming diverse homologous recombinations and single chimeric guide RNA competitive inhibition enhances Cas9-based cyclical multiple genes coediting in filamentous fungi. Environ Microbiol 2021; 23:2937-2954. [PMID: 33754479 DOI: 10.1111/1462-2920.15477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
Deciphering the complex cellular behaviours and advancing the biotechnology applications of filamentous fungi increase the requirement for genetically manipulating a large number of target genes. The current strategies cannot cyclically coedit multiple genes simultaneously. In this study, we firstly revealed the existence of diverse homologous recombination (HR) types in marker-free editing of filamentous fungi, and then, demonstrated that sgRNA efficiency-mediated competitive inhibition resulted in the low integration of multiple genetic sites during coediting, which are the two major obstacles to limit the efficiency of cyclically coediting of multiple genes. To overcome these obstacles, we developed a biased cutting strategy by Cas9 to greatly enhance the desired HR type and applied a new selection marker labelling strategy for multiple donor DNAs, in which only the donor DNA with the lowest sgRNA efficiency was labelled. Combined with these strategies, we successfully developed a convenient method for cyclically coediting multiple genes in different filamentous fungi. In addition, diverse HRs resulted in a useful and convenient one-step approach for gene functional study combining both gene disruption and complementation. This research provided both a useful one-step approach for gene functional study and an efficient strategy for cyclically coediting multiple genes in filamentous fungi.
Collapse
Affiliation(s)
- Youzhi Miao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanwei Xia
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanqiong Kong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huiling Mei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pan Li
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haichao Feng
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
38
|
San Martin Alonso M, Noordermeer S. Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 2021; 49:4848-4863. [PMID: 33755171 PMCID: PMC8136775 DOI: 10.1093/nar/gkab178] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
R-loops are RNA:DNA hybrids assembled during biological processes but are also linked to genetic instability when formed out of their natural context. Emerging evidence suggests that the repair of DNA double-strand breaks requires the formation of a transient R-loop, which eventually must be removed to guarantee a correct repair process. The multifaceted BRCA1 protein has been shown to be recruited at this specific break-induced R-loop, and it facilitates mechanisms in order to regulate R-loop removal. In this review, we discuss the different potential roles of BRCA1 in R-loop homeostasis during DNA repair and how these processes ensure faithful DSB repair.
Collapse
Affiliation(s)
- Marta San Martin Alonso
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
39
|
Klaric JA, Wüst S, Panier S. New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Front Mol Biosci 2021; 8:668821. [PMID: 34026839 PMCID: PMC8138124 DOI: 10.3389/fmolb.2021.668821] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. To protect genomic stability and ensure cell homeostasis, cells mount a complex signaling-based response that not only coordinates the repair of the broken DNA strand but also activates cell cycle checkpoints and, if necessary, induces cell death. The last decade has seen a flurry of studies that have identified RNA-binding proteins (RBPs) as novel regulators of the DSB response. While many of these RBPs have well-characterized roles in gene expression, it is becoming increasingly clear that they also have non-canonical functions in the DSB response that go well beyond transcription, splicing and mRNA processing. Here, we review the current understanding of how RBPs are integrated into the cellular response to DSBs and describe how these proteins directly participate in signal transduction, amplification and repair at damaged chromatin. In addition, we discuss the implications of an RBP-mediated DSB response for genome instability and age-associated diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Julie A Klaric
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stas Wüst
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stephanie Panier
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
41
|
Gene insertion in Saccharomyces cerevisiae using the CRISPR/Cas9 system. 3 Biotech 2021; 11:90. [PMID: 33520576 DOI: 10.1007/s13205-021-02648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
The aim of this work was to rapidly and efficiently insert target DNA sequences into predetermined genomic sites in Saccharomyces cerevisiae. In this study, we designed two technical routes for gene insertion in the S. cerevisiae genome based on the CRISPR/Cas9 system, and a CRISPR array was inserted into the Amp site and the crRNA site of the pCRCT plasmid, respectively. The CRISPR array consists of a 100 bp donor sequence, the target gene and guide sequence. A 100 bp donor sequence was designed to have two 50 bp homology arms flanking the Cas9 cutting site and incorporate 8 bp or 1000 bp deletions including the PAM sequence, where the target gene was also inserted. The results showed that using only one pCRCTG plasmid and a 100 bp dsDNA mutagenizing homologous recombination donor, we can successfully insert a 2.9 kb gene fragment at the target site of the S. cerevisiae genome. However, inserting the CRISPR array into the crRNA site has a higher recombination efficiency than inserting into the Amp site. This recombination strategy represents a powerful tool for creating yeast strains with target gene inserts.
Collapse
|
42
|
de Polo A, Labbé DP. Diet-Dependent Metabolic Regulation of DNA Double-Strand Break Repair in Cancer: More Choices on the Menu. Cancer Prev Res (Phila) 2021; 14:403-414. [PMID: 33509805 DOI: 10.1158/1940-6207.capr-20-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Despite several epidemiologic and preclinical studies supporting the role of diet in cancer progression, the complexity of the diet-cancer link makes it challenging to deconvolute the underlying mechanisms, which remain scantly elucidated. This review focuses on genomic instability as one of the cancer hallmarks affected by diet-dependent metabolic alterations. We discuss how altered dietary intake of metabolites of the one-carbon metabolism, including methionine, folate, and vitamins B and C, can impact the methylation processes and thereby tumorigenesis. We present the concept that the protumorigenic effect of certain diets, such as the Western diet, is in part due to a diet-induced erosion of the DNA repair capacity caused by altered epigenetic and epitranscriptomic landscapes, while the protective effect of other dietary patterns, such as the Mediterranean diet, can be partly explained by their ability to sustain a proficient DNA repair. In particular, considering that diet-dependent alterations of the one-carbon metabolism can impact the rate of methylation processes, changes in dietary patterns can affect the activity of writers and erasers of histone and RNA methyl marks and consequently impair their role in ensuring a proficient DNA damage repair.
Collapse
Affiliation(s)
- Anna de Polo
- Division of Urology, Department of Surgery, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - David P Labbé
- Division of Urology, Department of Surgery, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
43
|
Tiwari M, Trivedi P, Pandey A. Emerging tools and paradigm shift of gene editing in cereals, fruits, and horticultural crops for enhancing nutritional value and food security. Food Energy Secur 2020. [DOI: 10.1002/fes3.258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Manish Tiwari
- National Institute of Plant Genome Research New Delhi India
| | - Prabodh Trivedi
- CSIR‐Central Institute of Medicinal and Aromatic Plants Lucknow India
| | | |
Collapse
|
44
|
Lee SY, Kim JJ, Miller KM. Emerging roles of RNA modifications in genome integrity. Brief Funct Genomics 2020; 20:106-112. [PMID: 33279952 DOI: 10.1093/bfgp/elaa022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Post-translational modifications of proteins are well-established participants in DNA damage response (DDR) pathways, which function in the maintenance of genome integrity. Emerging evidence is starting to reveal the involvement of modifications on RNA in the DDR. RNA modifications are known regulators of gene expression but how and if they participate in DNA repair and genome maintenance has been poorly understood. Here, we review several studies that have now established RNA modifications as key components of DNA damage responses. RNA modifying enzymes and the binding proteins that recognize these modifications localize to and participate in the repair of UV-induced and DNA double-strand break lesions. RNA modifications have a profound effect on DNA-RNA hybrids (R-loops) at DNA damage sites, a structure known to be involved in DNA repair and genome stability. Given the importance of the DDR in suppressing mutations and human diseases such as neurodegeneration, immunodeficiencies, cancer and aging, RNA modification pathways may be involved in human diseases not solely through their roles in gene expression but also by their ability to impact DNA repair and genome stability.
Collapse
Affiliation(s)
- Seo Yun Lee
- Miller laboratory at the University of Texas at Austin
| | - Jae Jin Kim
- Miller laboratory at the University of Texas at Austin
| | | |
Collapse
|
45
|
Vågbø CB, Slupphaug G. RNA in DNA repair. DNA Repair (Amst) 2020; 95:102927. [DOI: 10.1016/j.dnarep.2020.102927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
|
46
|
Mullis A, Lu Z, Zhan Y, Wang TY, Rodriguez J, Rajeh A, Chatrath A, Lin Z. Parallel Concerted Evolution of Ribosomal Protein Genes in Fungi and Its Adaptive Significance. Mol Biol Evol 2020; 37:455-468. [PMID: 31589316 PMCID: PMC6993855 DOI: 10.1093/molbev/msz229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribosomal protein (RP) genes encode structural components of ribosomes, the cellular machinery for protein synthesis. A single functional copy has been maintained in most of 78–80 RP families in animals due to evolutionary constraints imposed by gene dosage balance. Some fungal species have maintained duplicate copies in most RP families. The mechanisms by which the RP genes were duplicated and maintained and their functional significance are poorly understood. To address these questions, we identified all RP genes from 295 fungi and inferred the timing and nature of gene duplication events for all RP families. We found that massive duplications of RP genes have independently occurred by different mechanisms in three distantly related lineages: budding yeasts, fission yeasts, and Mucoromycota. The RP gene duplicates in budding yeasts and Mucoromycota were mainly created by whole genome duplication events. However, duplicate RP genes in fission yeasts were likely generated by retroposition, which is unexpected considering their dosage sensitivity. The sequences of most RP paralogs have been homogenized by repeated gene conversion in each species, demonstrating parallel concerted evolution, which might have facilitated the retention of their duplicates. Transcriptomic data suggest that the duplication and retention of RP genes increased their transcript abundance. Physiological data indicate that increased ribosome biogenesis allowed these organisms to rapidly consume sugars through fermentation while maintaining high growth rates, providing selective advantages to these species in sugar-rich environments.
Collapse
Affiliation(s)
- Alison Mullis
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Yu Zhan
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Judith Rodriguez
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO
| | - Ahmad Rajeh
- Department of Biology, Saint Louis University, St. Louis, MO.,Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO
| | - Ajay Chatrath
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO
| |
Collapse
|
47
|
Li M, Klungland A. Modifications and interactions at the R-loop. DNA Repair (Amst) 2020; 96:102958. [PMID: 32961406 DOI: 10.1016/j.dnarep.2020.102958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
R-loops are tripartite structures consisting of an RNA:DNA hybrid and a displaced single-stranded DNA [1]. They are widespread and occupy up to 5 % of the mammalian genomes [2]. R-loops have a key role in genome stability, and known functions associated with gene regulation, DNA replication, chromatin patterning, immunoglobuline gene recombination and DNA Double-strand break repair [3-7]. Novel methodology, including the application of the S9.6 antibody, have more recently led to detailed knowledge on the genome-wide distribution of the R-loops as well as the identification of the R-loop interactome [8-10]. The regulation of R-loops was recently shown to also depend on dynamic RNA-methylation, including METTL3/14 dependent 6-methylAdenines (m6As) and METTL8 dependent 3-methylCytosines (m3Cs) [11-13].
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway.
| |
Collapse
|
48
|
Meers C, Keskin H, Banyai G, Mazina O, Yang T, Gombolay AL, Mukherjee K, Kaparos EI, Newnam G, Mazin A, Storici F. Genetic Characterization of Three Distinct Mechanisms Supporting RNA-Driven DNA Repair and Modification Reveals Major Role of DNA Polymerase ζ. Mol Cell 2020; 79:1037-1050.e5. [PMID: 32882183 DOI: 10.1016/j.molcel.2020.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023]
Abstract
DNA double-stranded breaks (DSBs) are dangerous lesions threatening genomic stability. Fidelity of DSB repair is best achieved by recombination with a homologous template sequence. In yeast, transcript RNA was shown to template DSB repair of DNA. However, molecular pathways of RNA-driven repair processes remain obscure. Utilizing assays of RNA-DNA recombination with and without an induced DSB in yeast DNA, we characterize three forms of RNA-mediated genomic modifications: RNA- and cDNA-templated DSB repair (R-TDR and c-TDR) using an RNA transcript or a DNA copy of the RNA transcript for DSB repair, respectively, and a new mechanism of RNA-templated DNA modification (R-TDM) induced by spontaneous or mutagen-induced breaks. While c-TDR requires reverse transcriptase, translesion DNA polymerase ζ (Pol ζ) plays a major role in R-TDR, and it is essential for R-TDM. This study characterizes mechanisms of RNA-DNA recombination, uncovering a role of Pol ζ in transferring genetic information from transcript RNA to DNA.
Collapse
Affiliation(s)
- Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Havva Keskin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gabor Banyai
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Olga Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alli L Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Efiyenia I Kaparos
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alexander Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
49
|
|
50
|
Mosbach V, Viterbo D, Descorps-Declère S, Poggi L, Vaysse-Zinkhöfer W, Richard GF. Resection and repair of a Cas9 double-strand break at CTG trinucleotide repeats induces local and extensive chromosomal deletions. PLoS Genet 2020; 16:e1008924. [PMID: 32673314 PMCID: PMC7413560 DOI: 10.1371/journal.pgen.1008924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/07/2020] [Accepted: 06/10/2020] [Indexed: 12/26/2022] Open
Abstract
Microsatellites are short tandem repeats, ubiquitous in all eukaryotes and represent ~2% of the human genome. Among them, trinucleotide repeats are responsible for more than two dozen neurological and developmental disorders. Targeting microsatellites with dedicated DNA endonucleases could become a viable option for patients affected with dramatic neurodegenerative disorders. Here, we used the Streptococcus pyogenes Cas9 to induce a double-strand break within the expanded CTG repeat involved in myotonic dystrophy type 1, integrated in a yeast chromosome. Repair of this double-strand break generated unexpected large chromosomal deletions around the repeat tract. These deletions depended on RAD50, RAD52, DNL4 and SAE2, and both non-homologous end-joining and single-strand annealing pathways were involved. Resection and repair of the double-strand break (DSB) were totally abolished in a rad50Δ strain, whereas they were impaired in a sae2Δ mutant, only on the DSB end containing most of the repeat tract. This observation demonstrates that Sae2 plays significant different roles in resecting a DSB end containing a repeated and structured sequence as compared to a non-repeated DSB end. In addition, we also discovered that gene conversion was less efficient when the DSB could be repaired using a homologous template, suggesting that the trinucleotide repeat may interfere with gene conversion too. Altogether, these data show that SpCas9 may not be the best choice when inducing a double-strand break at or near a microsatellite, especially in mammalian genomes that contain many more dispersed repeated elements than the yeast genome. With the discovery of highly specific DNA endonucleases such as TALEN and CRISPR-Cas systems, gene editing has become an attractive approach to address genetic disorders. Myotonic dystrophy type 1 (Steinert disease) is due to a large expansion of a CTG trinucleotide repeat in the DMPK gene. At the present time, despite numerous therapeutic attempts, this dramatic neurodegenerative disorder still has no cure. In the present work, we tried to use the Cas9 endonuclease to induce a double-strand break within the expanded CTG repeat of the DMPK gene integrated in the yeast genome. Surprisingly, this break induced chromosomal deletions around the repeat tract. These deletions were local and involved non-homologous joining of the two DNA ends, or more extensive involving homologous recombination between repeated elements upstream and downstream the break. Using yeast genetics, we investigated the genetic requirements for these deletions and found that the triplet repeat tract altered the capacity of the repair machinery to faithfully repair the double-strand break. These results have implications for future gene therapy approaches in human patients.
Collapse
Affiliation(s)
| | | | - Stéphane Descorps-Declère
- Institut Pasteur, CNRS, UMR3525, Paris, France
- Institut Pasteur, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Paris, France
| | - Lucie Poggi
- Institut Pasteur, CNRS, UMR3525, Paris, France
- Sorbonne Universités, Collège doctoral, Paris, France
| | - Wilhelm Vaysse-Zinkhöfer
- Institut Pasteur, CNRS, UMR3525, Paris, France
- Sorbonne Universités, Collège doctoral, Paris, France
| | | |
Collapse
|