1
|
Zhou W, Thiery JP. Ferroptosis-related LncRNAs in diseases. BMC Biol 2025; 23:158. [PMID: 40481573 PMCID: PMC12143037 DOI: 10.1186/s12915-025-02268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 05/27/2025] [Indexed: 06/11/2025] Open
Abstract
Ferroptosis is a form of regulated cell death (RCD) caused by the accumulation of intracellular iron and lipids and is involved in many pathological processes, including neurodegenerative and cardiovascular diseases, and cancer. Long non-coding RNAs (lncRNAs), RNA molecules exceeding 200 nt in length that do not possess protein coding function can interfere with ferroptosis by binding ferroptosis-related miRNAs or proteins. Recently, ferroptosis-related lncRNAs (FRlncRNAs) have been identified in cancer and non-malignant disease models, including inprediction of drug resistance, intra-tumoral immune infiltration, metabolic reprogramming and mutation landscape. Here, we review FRlncRNAs in cancer and non-malignant diseases, from prognosis to treatment.
Collapse
Affiliation(s)
- Wu Zhou
- Medical College, Jiaxing University, Jiaxing, 314001, China.
| | | |
Collapse
|
2
|
Johansen NJ, Kempynck N, Zemke NR, Somasundaram S, De Winter S, Hooper M, Dwivedi D, Lohia R, Wehbe F, Li B, Abaffyová D, Armand EJ, De Man J, Ekşi EC, Hecker N, Hulselmans G, Konstantakos V, Mauduit D, Mich JK, Partel G, Daigle TL, Levi BP, Zhang K, Tanaka Y, Gillis J, Ting JT, Ben-Simon Y, Miller J, Ecker JR, Ren B, Aerts S, Lein ES, Tasic B, Bakken TE. Evaluating methods for the prediction of cell-type-specific enhancers in the mammalian cortex. CELL GENOMICS 2025:100879. [PMID: 40403730 DOI: 10.1016/j.xgen.2025.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/03/2025] [Accepted: 04/17/2025] [Indexed: 05/24/2025]
Abstract
Identifying cell-type-specific enhancers is critical for developing genetic tools to study the mammalian brain. We organized the "Brain Initiative Cell Census Network (BICCN) Challenge: Predicting Functional Cell Type-Specific Enhancers from Cross-Species Multi-Omics" to evaluate machine learning and feature-based methods for nominating enhancer sequences targeting mouse cortical cell types. Methods were assessed using in vivo data from hundreds of adeno-associated virus (AAV)-packaged, retro-orbitally delivered enhancers. Open chromatin was the strongest predictor of functional enhancers, while sequence models improved prediction of non-functional enhancers and identified cell-type-specific transcription factor codes to inform in silico enhancer design. This challenge establishes a benchmark for enhancer prioritization and highlights computational and molecular features critical for identifying functional cortical enhancers, advancing efforts to map and manipulate gene regulation in the mammalian cortex.
Collapse
Affiliation(s)
| | - Niklas Kempynck
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Nathan R Zemke
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Seppe De Winter
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Marcus Hooper
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Ruchi Lohia
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Fabien Wehbe
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Bocheng Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Darina Abaffyová
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Ethan J Armand
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julie De Man
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Eren Can Ekşi
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Nikolai Hecker
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Gert Hulselmans
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Vasilis Konstantakos
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - David Mauduit
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - John K Mich
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Gabriele Partel
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kai Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yoshiaki Tanaka
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Jesse Gillis
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Jonathan T Ting
- Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Yoav Ben-Simon
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jeremy Miller
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Joseph R Ecker
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Bing Ren
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stein Aerts
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | |
Collapse
|
3
|
Sun Q, Lei X, Yang X. The crosstalk between non-coding RNAs and oxidative stress in cancer progression. Genes Dis 2025; 12:101286. [PMID: 40028033 PMCID: PMC11870203 DOI: 10.1016/j.gendis.2024.101286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2025] Open
Abstract
As living standards elevate, cancers are appearing in growing numbers among younger individuals globally and these risks escalate with advancing years. One of the reasons is that instability in the cancer genome reduces the effectiveness of conventional drug treatments and chemotherapy, compared with more targeted therapies. Previous research has discovered non-coding RNAs' crucial role in shaping genetic networks involved in cancer cell growth and invasion through their influence on messenger RNA production or protein binding. Additionally, the interaction between non-coding RNAs and oxidative stress, a crucial process in cancer advancement, cannot be overlooked. Essentially, oxidative stress results from the negative effects of radicals within the body and ties directly to cancer gene expression and signaling. Therefore, this review focuses on the mechanism between non-coding RNAs and oxidative stress in cancer progression, which is conducive to finding new cancer treatment strategies.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
4
|
Koch P, Zhang Z, Genuth NR, Susanto TT, Haimann M, Khmelinskaia A, Byeon GW, Dey S, Barna M, Leppek K. A versatile toolbox for determining IRES activity in cells and embryonic tissues. EMBO J 2025; 44:2695-2724. [PMID: 40082722 PMCID: PMC12048685 DOI: 10.1038/s44318-025-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 01/26/2025] [Accepted: 02/18/2025] [Indexed: 03/16/2025] Open
Abstract
Widespread control of gene expression through translation has emerged as a key level of spatiotemporal regulation of protein expression. A prominent mechanism by which ribosomes can confer gene regulation is via internal ribosomal entry sites (IRESes), whose functions have however, remained difficult to rigorously characterize. Here we present a set of technologies in embryos and cells, including IRES-mediated translation of circular RNA (circRNA) reporters, single-molecule messenger (m)RNA isoform imaging, PacBio long-read sequencing, and isoform-sensitive mRNA quantification along polysome profiles as a new toolbox for understanding IRES regulation. Using these techniques, we investigate a broad range of cellular IRES RNA elements including Hox IRESes. We show IRES-dependent translation in circRNAs, as well as the relative expression, localization, and translation of an IRES-containing mRNA isoform in specific embryonic tissues. We thereby provide a new resource of technologies to elucidate the roles of versatile IRES elements in gene regulation and embryonic development.
Collapse
Affiliation(s)
- Philipp Koch
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany
| | - Zijian Zhang
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Naomi R Genuth
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Teodorus Theo Susanto
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Epigenetic and Epitranscriptomic Systems, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | - Martin Haimann
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area "Building Blocks of Matter and Fundamental Interactions", University of Bonn, Bonn, 53113, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, 53121, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Gun Woo Byeon
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Saurabh Dey
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany
| | - Maria Barna
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Kathrin Leppek
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany.
| |
Collapse
|
5
|
Rajinikanth N, Chauhan R, Prabakaran S. Harnessing Noncanonical Proteins for Next-Generation Drug Discovery and Diagnosis. WIREs Mech Dis 2025; 17:e70001. [PMID: 40423871 DOI: 10.1002/wsbm.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Noncanonical proteins, encoded by previously overlooked genomic regions (part of the "dark genome"), are emerging as crucial players in human health and disease, expanding our understanding of the "dark proteome." This review explores their landscape, including proteins derived from long non-coding RNAs, circular RNAs, and alternative open reading frames. Recent advances in ribosome profiling, mass spectrometry, and proteogenomics have unveiled their involvement in critical cellular processes. We examine their roles in cancer, neurological disorders, cardiovascular diseases, and infectious diseases, highlighting their potential as novel biomarkers and therapeutic targets. The review addresses challenges in identifying and characterizing these proteins, particularly recently evolved ones, and discusses implications for drug discovery, including cancer immunotherapy and neoantigen sources. By synthesizing recent findings, we underscore the significance of noncanonical proteins in expanding our understanding of the human genome and proteome, and their promise in developing innovative diagnostic tools and targeted therapies. This overview aims to stimulate further research into this unexplored biological space, potentially revolutionizing approaches to disease treatment and personalized medicine.
Collapse
Affiliation(s)
- Nachiket Rajinikanth
- University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | | | - Sudhakaran Prabakaran
- NonExomics, Inc., Acton, Massachusetts, USA
- Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Feng H, Nie Q, Yang S. SORFPP: Enhancing rich sequence-driven information to identify SEPs based on fused framework on validation datasets. PLoS One 2025; 20:e0320314. [PMID: 40294059 PMCID: PMC12036913 DOI: 10.1371/journal.pone.0320314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/17/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Genome sequencing has enabled us to find functional peptides encoded by short open read frames (sORFs) in long non-coding RNAs (lncRNAs). sORFs-encoded peptides (SEPs) regulate gene expression, signaling, and so on and have significant roles, unlike common peptides. Various computational methods have been proposed. However, there is a lack of contributive features and effective models. Therefore, a high-throughput computational method to predict SEPs is needed. RESULTS We propose a computational method, SORFPP, to predict SEPs by mining feature information from multiple perspectives in an experimentally validated dataset from TranLnc. SORFPP fully extracts SEP sequence information using the protein language model ESM-2 and curated traditional encoding, including QSOrder, k-mer, etc. SORFPP uses CatBoost to solve the sparsity problem of traditional encoding. SORFPP also analyzes ESM-2 pre-training characterization information with the Self-attention model. Finally, an ensemble learning framework combines the two models and their results are fed into Logistic Regression model for accurate and robust predictions. For comparison, SORFPP outperforms other state-of-the-art models in Matthew correlation coefficient by 12.2%-24.2% on three benchmark datasets. CONCLUSION Integrating the ensemble learning strategy with contributive traditional features and the protein language encoding methods shows better performance. Datasets and codes are accessible at https://doi.org/10.6084/m9.figshare.28079897 and http://111.229.198.94:5000/.
Collapse
Affiliation(s)
- Hongqi Feng
- School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou, China
| | - Qi Nie
- School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou, China
| | - Sen Yang
- School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou, China
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
7
|
Ismail AM, Saha A, Morrissey KA, Lundquist D, Garcia E, Balne P, Cannon JL, Chodosh J, Rajaiya J. OCT4 Negatively Regulates the Transcriptional Programming of the Early Region 3 Immune Evasion Genes of Human Adenovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.23.650321. [PMID: 40376086 PMCID: PMC12080961 DOI: 10.1101/2025.04.23.650321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Genomes of viruses are constrained by the virions' nanoscale, and viral nucleotide sequences without function are a luxury. Yet the double-stranded DNA genome of human adenovirus (HAdV) contains large regions without known purpose. Using TRANSFAC and ChIP-Seq analysis, we identified binding of OCT4 (octomer-binding transcription factor 4) to a noncoding region of HAdV-D37 DNA. Manipulation of OCT4 expression impacted viral E3 gene transcription and gp19k protein expression, altering subsequent MHC Class I expression. These effects were specific to OCT4 binding to the adenovirus 5 ' inverted terminal repeat (ITR) within nucleotides 101-159. Using targeted mutations to OCT4, we found one of two OCT4 binding motifs in the ITR to be crucial for repression of E3 gene expression. In OCT4-siRNA treated cells, E3 RID-α gene expression was also upregulated to inhibit pro-apoptotic signals, suggesting that OCT4 binding also indirectly represses viral replication. Consistent with a role for transcription factors in epigenetic modification during infections, OCT4 knockdown also reduced histone H3 acetylation and DNA methylation. In stem cells, OCT4 sustains pluripotency, whereas in somatic cells, OCT4 plays a dispensable role in self-renewal and maintenance. Herein, we show that OCT4 binding also confers a previously unidentified function to non-coding adenovirus DNA. Graphical abstract
Collapse
|
8
|
Jiang Y, Saeed TN, Alfarttoosi KH, Bishoyi AK, Rekha MM, Kundlas M, Jain B, Rizaev J, Taher WM, Alwan M, Jawad MJ, Ali Al-Nuaimi AM. The intersection of ferroptosis and non-coding RNAs: a novel approach to ovarian cancer. Eur J Med Res 2025; 30:300. [PMID: 40247379 PMCID: PMC12007203 DOI: 10.1186/s40001-025-02559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Understanding the core principles of ovarian cancer has been significantly improved through the exploration of Ferroptosis, a type of cell death triggered by iron that leads to an increase in lipid peroxides. Current research has shed light on the critical functions of non-coding RNAs, such as circRNAs, lncRNAs, and miRNAs, in regulating ferroptosis in ovarian cancer. The aim of this paper is to comprehensively analyze how ncRNAs influence the development of ferroptosis in ovarian cancer cells. In-depth exploration is undertaken to understand the intricate ways in which ncRNAs regulate essential elements of ferroptosis, including iron management and lipid peroxidation levels. We also investigate their significant involvement in the progression of this type of cellular demise. It should be emphasized that ncRNAs can impact the synthesis of crucial proteins, such as GPX4, a key contributor to the cellular defense against oxidation, and ACSL4, involved in lipid formation. In addition, we examine the correlation between ncRNAs and well-known pathways associated with oxidative stress and cell death. The consequences of these discoveries are noteworthy, since focusing on particular ncRNAs could potentially render ovarian cancer cells more vulnerable to ferroptosis, effectively combating drug resistance problems. This discussion highlights the growing significance of ncRNAs in governing ferroptosis and their potential as useful biomarkers and treatment targets for ovarian cancer. We intend to promote additional research into the involvement of ncRNAs in controlling ferroptosis, based on current findings, with the ultimate goal of informing targeted therapeutic strategies and improving long-term treatment outcomes for individuals suffering from OC.
Collapse
Affiliation(s)
- Youyi Jiang
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing, China
| | - Tamara Nazar Saeed
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| | | | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Bhavik Jain
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, 174103, India
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
9
|
Gray ZH, Honer MA, Ghatalia P, Shi Y, Whetstine JR. 20 years of histone lysine demethylases: From discovery to the clinic and beyond. Cell 2025; 188:1747-1783. [PMID: 40185081 DOI: 10.1016/j.cell.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Twenty years ago, histone lysine demethylases (KDMs) were discovered. Since their discovery, they have been increasingly studied and shown to be important across species, development, and diseases. Considerable advances have been made toward understanding their (1) enzymology, (2) role as critical components of biological complexes, (3) role in normal cellular processes and functions, (4) implications in pathological conditions, and (5) therapeutic potential. This Review covers these key relationships related to the KDM field with the awareness that numerous laboratories have contributed to this field. The current knowledge coupled with future insights will shape our understanding about cell function, development, and disease onset and progression, which will allow for novel biomarkers to be identified and for optimal therapeutic options to be developed for KDM-related diseases in the years ahead.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pooja Ghatalia
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
10
|
Johansen NJ, Kempynck N, Zemke NR, Somasundaram S, De Winter S, Hooper M, Dwivedi D, Lohia R, Wehbe F, Li B, Abaffyová D, Armand EJ, De Man J, Eksi EC, Hecker N, Hulselmans G, Konstantakos V, Mauduit D, Mich JK, Partel G, Daigle TL, Levi BP, Zhang K, Tanaka Y, Gillis J, Ting JT, Ben-Simon Y, Miller J, Ecker JR, Ren B, Aerts S, Lein ES, Tasic B, Bakken TE. Evaluating Methods for the Prediction of Cell Type-Specific Enhancers in the Mammalian Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.21.609075. [PMID: 39229027 PMCID: PMC11370467 DOI: 10.1101/2024.08.21.609075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Identifying cell type-specific enhancers in the brain is critical to building genetic tools for investigating the mammalian brain. Computational methods for functional enhancer prediction have been proposed and validated in the fruit fly and not yet the mammalian brain. We organized the 'Brain Initiative Cell Census Network (BICCN) Challenge: Predicting Functional Cell Type-Specific Enhancers from Cross-Species Multi-Omics' to assess machine learning and feature-based methods designed to nominate enhancer DNA sequences to target cell types in the mouse cortex. Methods were evaluated based on in vivo validation data from hundreds of cortical cell type-specific enhancers that were previously packaged into individual AAV vectors and retro-orbitally injected into mice. We find that open chromatin was a key predictor of functional enhancers, and sequence models improved prediction of non-functional enhancers that can be deprioritized as opposed to pursued for in vivo testing. Sequence models also identified cell type-specific transcription factor codes that can guide designs of in silico enhancers. This community challenge establishes a benchmark for enhancer prioritization algorithms and reveals computational approaches and molecular information that are crucial for identifying functional enhancers in mammalian cortical cell types. The results of this challenge bring us closer to understanding the complex gene regulatory landscape of the mammalian cortex and to designing more efficient genetic tools to target cortical cell types.
Collapse
Affiliation(s)
- Nelson J Johansen
- Allen Institute for Brain Science, Seattle, WA 98109
- These authors contributed equally
| | - Niklas Kempynck
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
- These authors contributed equally
| | - Nathan R Zemke
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | | | - Seppe De Winter
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Marcus Hooper
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Ruchi Lohia
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Fabien Wehbe
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Bocheng Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Darina Abaffyová
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Ethan J Armand
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093
| | - Julie De Man
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Eren Can Eksi
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Nikolai Hecker
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Gert Hulselmans
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Vasilis Konstantakos
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - David Mauduit
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - John K Mich
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Gabriele Partel
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | | | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Kai Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yoshiaki Tanaka
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Jesse Gillis
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan T Ting
- Allen Institute for Brain Science, Seattle, WA 98109
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | | | - Jeremy Miller
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Joseph R Ecker
- Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Bing Ren
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Stein Aerts
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Trygve E Bakken
- Allen Institute for Brain Science, Seattle, WA 98109
- Lead contact
| |
Collapse
|
11
|
Penaloza JS, Moreland B, Gaither JB, Landis BJ, Ware SM, McBride KL, White P. Identification of Long Noncoding RNA Candidate Disease Genes Associated With Clinically Reported Copy Number Variants in Congenital Heart Disease. J Am Heart Assoc 2025; 14:e039177. [PMID: 40079339 DOI: 10.1161/jaha.124.039177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/04/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Copy number variants (CNVs) contribute to 3% to 10% of isolated congenital heart disease (CHD) cases, yet their pathogenic roles remain unclear. Diagnostic efforts have focused on protein-coding genes, largely overlooking long noncoding RNAs (lncRNAs), which play key roles in development and disease. METHODS AND RESULTS We systematically analyzed lncRNAs overlapping clinically validated CNVs in 743 patients with CHD from the Cytogenomics of Cardiovascular Malformations Consortium. We identified heart-expressed lncRNAs, constructed a gene regulatory network using weighted gene coexpression network analysis, and identified gene modules associated with heart development. Functional enrichment and network analyses were used to identify lncRNAs that may be involved in heart development and potentially contribute to CHD. The code is stably archived at https://doi.org/10.5281/zenodo.13799779. We identified 18 lncRNA candidate genes within modules significantly correlated with heart tissue, highlighting their potential involvement in CHD pathogenesis. Notably, lncRNAs such as lnc-STK32C-3, lnc-TBX20-1, and CRMA demonstrated strong associations with known CHD genes. Strikingly, although only 7.6% of known CHD genes were affected by a CNV, 68.8% of the CNVs contained a lncRNA expressed in the heart. CONCLUSIONS Using weighted gene coexpression network analysis, we identified CNV-associated lncRNAs with potential relevance to CHD, underscoring the complexities of noncoding regions in disease pathogenesis. These findings suggest that lncRNAs may play a greater role in CHD than previously recognized, highlighting the need for broader genomic analyses that extend beyond protein-coding genes. This study provides a foundation for further exploration of lncRNAs in CHD, with potential implications for improved genetic characterization and diagnosis.
Collapse
Affiliation(s)
- Jacqueline S Penaloza
- The Office of Data Sciences The Abigail Wexner Research Institute Nationwide Children's Hospital Columbus OH USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine The Abigail Wexner Research Institute Nationwide Children's Hospital Columbus OH USA
| | - Blythe Moreland
- The Steve and Cindy Rasmussen Institute for Genomic Medicine The Abigail Wexner Research Institute Nationwide Children's Hospital Columbus OH USA
| | - Jeffrey B Gaither
- The Office of Data Sciences The Abigail Wexner Research Institute Nationwide Children's Hospital Columbus OH USA
| | - Benjamin J Landis
- Department of Pediatrics Indiana University School of Medicine Indianapolis IN USA
- Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| | - Stephanie M Ware
- Department of Pediatrics Indiana University School of Medicine Indianapolis IN USA
- Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| | - Kim L McBride
- Department of Medical Genetics Cumming School of Medicine University of Calgary Calgary Canada
| | - Peter White
- The Office of Data Sciences The Abigail Wexner Research Institute Nationwide Children's Hospital Columbus OH USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine The Abigail Wexner Research Institute Nationwide Children's Hospital Columbus OH USA
- Department of Pediatrics The Ohio State University College of Medicine Columbus OH USA
| |
Collapse
|
12
|
Kuerban S, Chen H, Chen L, Zhang L, Li X, Zhen B, Xiao H, Chen Y, Zhou H, Liang Z, Xu G, Tao Y, Lin J, Kang X. cfDNA hydroxymethylcytosine profiling for detection metastasis and recurrence of Esophageal Squamous Cell Carcinoma. World J Surg Oncol 2025; 23:90. [PMID: 40089765 PMCID: PMC11909818 DOI: 10.1186/s12957-025-03747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND A blood-based approach to monitor metastasis and recurrence of esophageal squamous cell carcinoma (ESCC) remains undeveloped. This study aimed to establish a dependable model utilizing cfDNA 5-hydroxymethylcytosines (5hmC) signatures to detect these conditions in ESCC. METHODS The 5hmC-Seal technique was employed to generate comprehensive 5hmC profiles from the plasma cell-free DNA (cfDNA) of 122 ESCC patients, classified into 72 with metastasis, 50 without metastasis, 30 with recurrence, and 92 without recurrence. Initial steps involved identifying distinct hydroxymethylation signatures linked to metastasis and recurrence. Machine learning algorithms were then utilized to construct predictive models. RESULTS The study confirmed that 5hmC-based markers are predictive of metastasis and recurrence among ESCC patients. The analysis of 14 5hmC biomarkers revealed a sensitivity of 88.90% and a specificity of 84.00% (AUC = 0.922) in differentiating patients with ESCC metastasis from those without in the validation cohort. Similarly, 11 5hmC biomarkers showed a sensitivity of 93.30% and a specificity of 89.10% (AUC = 0.936) in identifying recurrent versus non-recurrent ESCC cases. Additionally, a wp-score for metastasis and recurrence, derived from the 5hmC marker, prognosticated patient outcomes. CONCLUSIONS The findings indicate that 5hmC markers from cfDNA serve as effective epigenetic indicators for the non-invasive detection of ESCC metastasis and recurrence.
Collapse
Affiliation(s)
- Subinuer Kuerban
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Hangyu Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Peking University, Third Hospital Cancer Center, Beijing, 100191, China
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Peking University, Third Hospital Cancer Center, Beijing, 100191, China
| | - Lei Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Peking University, Third Hospital Cancer Center, Beijing, 100191, China
| | - Xuehui Li
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Baixin Zhen
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Hong Xiao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570100, China
| | - Yingzhu Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Haitao Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), the First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Peking University School of Oncology, Beijing, China
| | - Zhen Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), the First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Peking University School of Oncology, Beijing, China
| | - Guobing Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yicun Tao
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China.
| | - Jian Lin
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
- Peking University, Third Hospital Cancer Center, Beijing, 100191, China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570100, China.
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China.
| | - Xiaozheng Kang
- Section of Esophageal and Mediastinal Oncology, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Zhong F, Pu T, Hu Q, Li M, Wang L, Wang S, Ruan K, Shi Y, Sun B, Jiang Y, Lv M. NSUN6 inhibitor discovery guided by its mRNA substrate bound crystal structure. Structure 2025; 33:443-450.e4. [PMID: 39862858 DOI: 10.1016/j.str.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
NSUN6 preferentially catalyzes the methylation of cytosine nucleotides in mRNA substrates, which enhances transcription. Dysregulation of NSUN6 catalysis drives the oncogenesis of certain cancers. In this study, we determined the crystal structure of human NSUN6 in complex with its S-adenosyl-L-methionine analog and a bound NECT-2 3'-UTR RNA substrate at 2.9 Å resolution. The complex structure reveals how NSUN6 recognizes the specific CUC[CU]A consensus motif of the substrate and facilitates the methyl transfer from S-adenosyl-L-methionine (SAM) to mRNA. By combining the structural data with nuclear magnetic resonance (NMR)-based fragment screening, a virtual screening, and a further comprehensive biochemical verification, we identified thiamine disulfide as a non-SAM analog lead compound that competes with the CUC[CU]A substrate for binding to NSUN6. Our findings pave the way for the discovery of potent inhibitors for the treatment of NSUN6-driven cancers in the future.
Collapse
Affiliation(s)
- Fumei Zhong
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Tian Pu
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qian Hu
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Mingwei Li
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Wang
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Suman Wang
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ke Ruan
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Yunyu Shi
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Yiyang Jiang
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; School of Life Science, Anhui Medical University, Hefei 230022, China.
| | - Mengqi Lv
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
14
|
Olatunji M, Liu Y. RNA damage and its implications in genome stability. DNA Repair (Amst) 2025; 147:103821. [PMID: 40043352 DOI: 10.1016/j.dnarep.2025.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Endogenous and environmental stressors can damage DNA and RNA to compromise genome and transcriptome stability and integrity in cells, leading to genetic instability and diseases. Recent studies have demonstrated that RNA damage can also modulate genome stability via RNA-templated DNA synthesis, suggesting that it is essential to maintain RNA integrity for the sustainment of genome stability. However, little is known about RNA damage and repair and their roles in modulating genome stability. Current efforts have mainly focused on revealing RNA surveillance pathways that detect and degrade damaged RNA, while the critical role of RNA repair is often overlooked. Due to their abundance and susceptibility to nucleobase damaging agents, it is essential for cells to evolve robust RNA repair mechanisms that can remove RNA damage, maintaining RNA integrity during gene transcription. This is supported by the discovery of the alkylated RNA nucleobase repair enzyme human AlkB homolog 3 that can directly remove the methyl group on damaged RNA nucleobases, predominantly in the nucleus of human cells, thereby restoring the integrity of the damaged RNA nucleobases. This is further supported by the fact that several DNA repair enzymes can also process RNA damage. In this review, we discuss RNA damage and its effects on cellular function, DNA repair, genome instability, and potential RNA damage repair mechanisms. Our review underscores the necessity for future research on RNA damage and repair and their essential roles in modulating genome stability.
Collapse
Affiliation(s)
- Mustapha Olatunji
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA; Department of Chemistry and Biochemistry, and Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
15
|
Tan S, Yang W, Ren Z, Peng Q, Xu X, Jiang X, Wu Z, Oyang L, Luo X, Lin J, Xia L, Peng M, Wu N, Tang Y, Han Y, Liao Q, Zhou Y. Noncoding RNA-encoded peptides in cancer: biological functions, posttranslational modifications and therapeutic potential. J Hematol Oncol 2025; 18:20. [PMID: 39972384 PMCID: PMC11841355 DOI: 10.1186/s13045-025-01671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
In the present era, noncoding RNAs (ncRNAs) have become a subject of considerable scientific interest, with peptides encoded by ncRNAs representing a particularly promising avenue of investigation. The identification of ncRNA-encoded peptides in human cancers is increasing. These peptides regulate cancer progression through multiple molecular mechanisms. Here, we delineate the patterns of diverse ncRNA-encoded peptides and provide a synopsis of the methodologies employed for the identification of ncRNAs that possess the capacity to encode these peptides. Furthermore, we discuss the impacts of ncRNA-encoded peptides on the biological behavior of cancer cells and the underlying molecular mechanisms. In conclusion, we describe the prospects of ncRNA-encoded peptides in cancer and the challenges that need to be overcome.
Collapse
Affiliation(s)
- Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zongyao Ren
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zhu Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| | - Qianjin Liao
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China.
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
16
|
Sipola J, Munzur AD, Kwan EM, Seo CCY, Hauk BJ, Parekh K, Liao YJ(R, Bernales CQ, Donnellan G, Bloise I, Fung E, Ng SWS, Wang G, Vandekerkhove G, Nykter M, Annala M, Maurice-Dror C, Chi KN, Herberts C, Wyatt AW, Takeda DY. Plasma Cell-Free DNA Chromatin Immunoprecipitation Profiling Depicts Phenotypic and Clinical Heterogeneity in Advanced Prostate Cancer. Cancer Res 2025; 85:791-807. [PMID: 39652574 PMCID: PMC11832346 DOI: 10.1158/0008-5472.can-24-2052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025]
Abstract
Cell phenotype underlies prostate cancer presentation and treatment resistance and can be regulated by epigenomic features. However, the osteotropic tendency of prostate cancer limits access to metastatic tissue, meaning most prior insights into prostate cancer chromatin biology are from preclinical models that do not fully represent disease complexity. Noninvasive chromatin immunoprecipitation of histones in plasma cell-free DNA (cfDNA) in humans may enable the capture of disparate prostate cancer phenotypes. In this study, we analyzed activating promoter- and enhancer-associated H3K4me2 from cfDNA in metastatic prostate cancer enriched for divergent patterns of metastasis and diverse clinical presentation. H3K4me2 density across prostate cancer genes, accessible chromatin, and lineage-defining transcription factor-binding sites correlated strongly with ctDNA fraction-demonstrating capture of prostate cancer-specific biology and informing the development of a statistical framework to adjust for ctDNA fraction. Chromatin hallmarks mirrored synchronously measured clinicogenomic features: bone- versus liver-predominant disease, serum PSA, biopsy-confirmed histopathologic subtype, and RB1 deletions convergently indicated phenotype segregation along an axis of differential androgen receptor activity and neuroendocrine identity. Detection of lineage switching after sequential progression on systemic therapy in select patients indicates potential use for individualized resistance monitoring. Epigenomic footprints of metastasis-induced normal tissue destruction were evident in bulk cfDNA from two patients. Finally, a public epigenomic resource was generated using a distinct chromatin marker that has not been widely investigated in prostate cancer. These results provide insights into the adaptive molecular landscape of aggressive prostate cancer and endorse plasma cfDNA chromatin profiling as a biomarker source and biological discovery tool. Significance: Plasma cell-free chromatin immunoprecipitation sequencing enables phenotypic dissection of lethal prostate cancer and is a practical tool for biomarker discovery while overcoming prior limitations of access to relevant tissue and reliance on model systems.
Collapse
Affiliation(s)
- Joonatan Sipola
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Asli D. Munzur
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Edmond M. Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medicine, School of Clinical Sciences; Monash University; Melbourne, Victoria, Australia
| | - Clara C. Y. Seo
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Benjamin J. Hauk
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karan Parekh
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Yi Jou (Ruby) Liao
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Cecily Q. Bernales
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Gráinne Donnellan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Ingrid Bloise
- Instituto Brasileiro de Controle ao Cancer, Sao Paulo, Brazil
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Emily Fung
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Sarah W. S. Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Gang Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Gillian Vandekerkhove
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Matti Annala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | | | - Kim N. Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - David Y. Takeda
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Nai S, Song J, Su W, Liu X. Bidirectional Interplay Among Non-Coding RNAs, the Microbiome, and the Host During Development and Diseases. Genes (Basel) 2025; 16:208. [PMID: 40004537 PMCID: PMC11855195 DOI: 10.3390/genes16020208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
It is widely known that the dysregulation of non-coding RNAs (ncRNAs) and dysbiosis of the gut microbiome play significant roles in host development and the progression of various diseases. Emerging evidence has highlighted the bidirectional interplay between ncRNAs and the gut microbiome. This article aims to review the current understanding of the molecular mechanisms underlying the crosstalk between ncRNAs, especially microRNA (miRNA), and the gut microbiome in the context of development and diseases, such as colorectal cancer, inflammatory bowel diseases, neurological disorders, obesity, and cardiovascular disease. Ultimately, this review seeks to provide a foundation for exploring the potential roles of ncRNAs and gut microbiome interactions as biomarkers and therapeutic targets for clinical diagnosis and treatment, such as ncRNA mimics, antisense oligonucleotides, and small-molecule compounds, as well as probiotics, prebiotics, and diets.
Collapse
Affiliation(s)
| | | | | | - Xiaoqian Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (S.N.); (J.S.); (W.S.)
| |
Collapse
|
18
|
Yu X, Xu H, Xing Y, Sun D, Li D, Shi J, Sui G, Li G. Identifying Essential Hub Genes and circRNA-Regulated ceRNA Networks in Hepatocellular Carcinoma. Int J Mol Sci 2025; 26:1408. [PMID: 40003874 PMCID: PMC11855757 DOI: 10.3390/ijms26041408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Competitive endogenous RNAs (ceRNAs) absorb microRNAs and subsequently promote corresponding mRNA and long noncoding RNA (lncRNA) expression, which may alter cancer cell malignancy. Thus, dissecting ceRNA networks may reveal novel targets in cancer therapies. In this study, we analyzed differentially expressed genes (DEGs) of mRNAs and lncRNAs, and differentially expressed microRNAs (DE-miRNAs) and circular RNAs (DE-circRNAs) extracted from high-throughput sequencing datasets of hepatocellular carcinoma patients. Based on these data, we identified 26 gene modules using weighted gene co-expression network analysis (WGCNA), of which 5 were associated with tumor differentiation. In these modules, 269 genes were identified by GO and KEGG enrichment and patient's survival correlation analyses. Next, 40 DE-miRNAs, each of which potentially bound a pair of DE-circRNA and hub gene, were discovered. Together with 201 circRNAs and 24 hub genes potentially bound by these miRNAs, 1151 ceRNA networks were constructed. Among them, 75 ceRNA networks consisting of 24 circRNAs, 28 miRNAs and 17 hub genes showed a positive circRNA-hub gene correlation. For validation, we carried out experiments for 4 randomly selected circRNAs regulating 19 potential ceRNA networks and verified 5 of them. This study represents a powerful strategy to identify essential gene networks and provides insights into designing effective therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoqian Yu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Hao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Yutao Xing
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Dehui Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310030, China
| |
Collapse
|
19
|
Ozdemir S, Zadegan SB, Sultana MS, Coffey N, Rice JH, Hewezi T. Regulation and Functions of Long Noncoding RNAs During Meloidogyne incognita Parasitism of Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:72-83. [PMID: 39561195 DOI: 10.1094/mpmi-10-24-0140-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators of various aspects of immune response and plant-pathogen interactions. However, the regulatory function of lncRNAs during plant-nematode interaction remains largely elusive. In this study, we investigated the differential regulation and function of lncRNAs during two different stages of tomato infection by the root-knot nematode Meloidogyne incognita. At the early stage of infection, 2,218 and 2,827 lncRNAs were regulated locally in the M. incognita-induced galls and systemically in the neighboring root cells, respectively. However, at the later stage of infection, the number of M. incognita-regulated lncRNAs was dramatically reduced, with only 49 lncRNAs being identified as differentially expressed. Differentially expressed lncRNAs were predicted to encode peptides with functionally annotated domains, providing insights into the potential roles of these peptides in regulating gene expression, RNA stability and splicing, and protein-protein-interactions. Among the differentially expressed lncRNAs, 55 were found to contain putative binding sites for 56 microRNAs (miRNAs). Overexpressing five of these lncRNAs significantly increased tomato resistance to M. incognita, supporting the functional importance of lncRNAs for establishing tomato-M. incognita interaction. Functional analysis of the target mimicry of lncRNAs towards miRNAs resulted in the identification of two novel regulatory modules involving miR47 and miR156e-5p and their targeted genes that regulate tomato responses to M. incognita parasitism. Taken together, our data provide novel insights into the transcriptional and posttranscriptional regulatory functions of lncRNA and open a new avenue to engineer crop plants with enhanced nematode resistance by leveraging the regulatory potential of lncRNAs. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Selin Ozdemir
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Sobhan Bahrami Zadegan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Mst Shamira Sultana
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Nicole Coffey
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - J Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
20
|
Xu N, Gao Z, Wu D, Chen H, Zhang Z, Zhang L, Wang Y, Lu X, Yao X, Liu X, Huang Y, Qiu M, Wang S, Liang J, Mao C, Zhang F, Xu H, Wang Y, Li X, Chen Z, Huang D, Shi J, Huang W, Lei F, Yang Z, Chen L, He C, Zhu H, Luo H, Gu J, Lin J. 5-hydroxymethylcytosine features of portal venous blood predict metachronous liver metastases of colorectal cancer and reveal phosphodiesterase 4 as a therapeutic target. Clin Transl Med 2025; 15:e70189. [PMID: 39956959 PMCID: PMC11830572 DOI: 10.1002/ctm2.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/24/2024] [Accepted: 01/08/2025] [Indexed: 02/18/2025] Open
Abstract
Metachronous liver metastases (MLM) are characterised by high incidence and high mortality in clinical colorectal cancer treatment. Currently traditional clinical methods cannot effectively predict and prevent the occurrence of metachronous liver metastasis in colorectal cancer. Based on 5hmC-Seal analysis of blood and tissue samples, this study found that portal venous blood was more relevant to tumour gDNA than peripheral blood. We performed a novel epigenetic liquid biopsy strategy using the 10 5hmC epigenetic alterations, to accurately distinguish MLM patients from patients without metastases. Among these epigenetic alterations, phosphodiesterase 4 (PDE4D) was highly increased in MLM patients and correlated with poor survival. Moreover, our studies demonstrated that PDE4D was a key metastasis-driven target for drug development. Interfering with the function of PDE4D significantly repressed liver metastases. Similarly, roflumilast, a PDE4 inhibitor for chronic obstructive pulmonary disease (COPD) therapy, also inhibits liver metastases. Further studies indicate that blocking the function of PDE4D can affect CRC invasion through the HIF-1α-CCN2 pathway. To develop a more efficient PDE4 inhibitor and reduce the occurrence of adverse events, we also designed several new compounds based on 2-arylbenzofurans and discovered lead L11 with potent affinity for PDE4D and significant suppression of liver metastases. In this work, our study provides a promising strategy for predicting metachronous liver metastasis and discovers L11 as a potential repurposed drug for inhibiting liver metastasis, which have the potential to benefit patients with CRC in the future. KEY POINTS: 5hmC epigenetic markers derived from portal venous blood could accurately predict metachronous metastasis of colorectal cancer. PDE4D was a key metastasis-driven target that promoted metachronous metastasis via the HIF-1α-CCN2 pathway. The newly synthesised compound L11 could specifically inhibit PDE4D and abolish metachronous metastasis of colorectal cancer without obvious toxic side effects.
Collapse
|
21
|
Zhou H, Clark E, Guan D, Lagarrigue S, Fang L, Cheng H, Tuggle CK, Kapoor M, Wang Y, Giuffra E, Egidy G. Comparative Genomics and Epigenomics of Transcriptional Regulation. Annu Rev Anim Biosci 2025; 13:73-98. [PMID: 39565835 DOI: 10.1146/annurev-animal-111523-102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Transcriptional regulation in response to diverse physiological cues involves complicated biological processes. Recent initiatives that leverage whole genome sequencing and annotation of regulatory elements significantly contribute to our understanding of transcriptional gene regulation. Advances in the data sets available for comparative genomics and epigenomics can identify evolutionarily constrained regulatory variants and shed light on noncoding elements that influence transcription in different tissues and developmental stages across species. Most epigenomic data, however, are generated from healthy subjects at specific developmental stages. To bridge the genotype-phenotype gap, future research should focus on generating multidimensional epigenomic data under diverse physiological conditions. Farm animal species offer advantages in terms of feasibility, cost, and experimental design for such integrative analyses in comparison to humans. Deep learning modeling and cutting-edge technologies in sequencing and functional screening and validation also provide great promise for better understanding transcriptional regulation in this dynamic field.
Collapse
Affiliation(s)
- Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA; , , ,
| | - Emily Clark
- The Roslin Institute, University of Edinburgh, Edinburgh, Midlothian, United Kingdom;
| | - Dailu Guan
- Department of Animal Science, University of California, Davis, California, USA; , , ,
| | | | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark;
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, California, USA; , , ,
| | | | - Muskan Kapoor
- Department of Animal Science, Iowa State University, Ames, Iowa, USA; ,
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA; , , ,
| | | | - Giorgia Egidy
- GABI, AgroParisTech, INRAE, Jouy-en-Josas, France; ,
| |
Collapse
|
22
|
Li M, Zhang Z, Geng Q, Lu Y, Miao S, Zhang X, Song W, Li K. A testis-specific long non-coding RNA, 1700052I22Rik, regulates spermatid chromatin condensation in mice. Int J Biochem Cell Biol 2025; 179:106725. [PMID: 39667612 DOI: 10.1016/j.biocel.2024.106725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Long non-coding RNAs (lncRNAs), serving as diverse functional regulators, are abundantly expressed in the testis. However, many testis-specific or preferentially expressed lncRNAs remain uncharacterized. Here, we report a testis-specific lncRNA, 1700052I22Rik, which exhibits a dynamic expression pattern during spermatogenesis. Our findings demonstrate that knockout of 1700052I22Rik in mice leads to reduced sperm counts and subfertility in males, as well as defective spermatid chromatin condensation. We further elucidate the underlying mechanism by which 1700052I22Rik modulates the translation of protamine 1 (PRM1) through interaction with Y-box binding protein 2 (YBX2). Collectively, our results uncover a crucial role for the testis-specific lncRNA 1700052I22Rik in regulating spermatid chromatin condensation in mice, providing novel insights into the functions of lncRNAs in spermatogenesis and potential targets for the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zexuan Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Qi Geng
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xingguang Zhang
- Department of Health Statistics, Public Health College, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, China.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
23
|
Katikaneni A, Lowe CB. Novelty versus innovation of gene regulatory elements in human evolution and disease. Curr Opin Genet Dev 2025; 90:102279. [PMID: 39591813 PMCID: PMC11769741 DOI: 10.1016/j.gde.2024.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
It is not currently understood how much of human evolution is due to modifying existing functional elements in the genome versus forging novel elements from nonfunctional DNA. Many early experiments that aimed to assign genetic changes on the human lineage to their resulting phenotypic change have focused on mutations that modify existing elements. However, a number of recent studies have highlighted the potential ease and importance of forging novel gene regulatory elements from nonfunctional sequences on the human lineage. In this review, we distinguish gene regulatory element novelty from innovation. We propose definitions for these terms and emphasize their importance in studying the genetic basis of human uniqueness. We discuss why the forging of novel regulatory elements may have been less emphasized during the previous decades, and why novel regulatory elements are likely to play a significant role in both human adaptation and disease.
Collapse
Affiliation(s)
- Anushka Katikaneni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
24
|
Fadebi OO, Miya TV, Khanyile R, Dlamini Z, Marima R. Long Intergenic Non-Coding RNAs and BRCA1 in Breast Cancer Pathogenesis: Neighboring Companions or Nemeses? Noncoding RNA 2025; 11:9. [PMID: 39997609 PMCID: PMC11857994 DOI: 10.3390/ncrna11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is one of the leading causes of mortality among women, primarily due to its complex molecular landscape and heterogeneous nature. The tendency of breast cancer patients to develop metastases poses significant challenges in clinical management. Notably, mutations in the breast cancer gene 1 (BRCA1) significantly elevate breast cancer risk. The current research endeavors employ diverse molecular approaches, including RNA, DNA, and protein studies, to explore avenues for the early diagnosis and treatment of breast cancer. Recent attention has shifted towards long non-coding RNAs (lncRNAs) as promising diagnostic, prognostic, and therapeutic targets in the multifaceted progression of breast cancer. Among these, long intergenic non-coding RNAs (lincRNAs), a specific class of lncRNAs, play critical roles in regulating various aspects of tumorigenesis, including cell proliferation, apoptosis, epigenetic modulation, tumor invasion, and metastasis. Their distinctive expression patterns in cellular and tissue contexts underscore their importance in breast cancer development and progression. Harnessing lincRNAs' sensitivity and precision as diagnostic, therapeutic, and prognostic markers holds significant promise for the clinical management of breast cancer. However, the potential of lincRNAs remains relatively underexplored, particularly in the context of BRCA1-mutated breast cancer and other clinicopathological parameters such as receptor status and patient survival. Consequently, there is an urgent need for comprehensive investigations into novel diagnostic and prognostic breast cancer biomarkers. This review examines the roles of lincRNAs associated with BRCA1 in the landscape of breast cancer, highlighting the potential avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Olalekan Olatunde Fadebi
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Thabiso Victor Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Richard Khanyile
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
25
|
Ummarino S, Poluben L, Ebralidze AK, Autiero I, Zhang Y, Paniza T, Deshpande M, Rinaldi L, Lee JD, Bassal MA, Trinh BQ, Balk SP, Flaumenhaft R, Gerhardt J, Mirkin SM, Tenen DG, Di Ruscio A. RNAs anchoring replication complex control initiation and firing of DNA replication. RESEARCH SQUARE 2025:rs.3.rs-5723221. [PMID: 39975922 PMCID: PMC11838740 DOI: 10.21203/rs.3.rs-5723221/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Coordinated initiation of DNA replication is essential to ensure efficient and timely DNA synthesis. Yet, molecular mechanism describing how replication initiation is coordinated in eukaryotic cells is not completely understood. Herein, we present data demonstrating a novel feature of RNAs transcribed in the proximity of actively replicating gene loci. We show that RNAs aNChoring ORC1 (ANCORs) to the histone variant H2A.Z are licensors of the DNA replication process. This ANCOR-H2A.Z interaction is essential for cells to initiate duplication of their genetic material. Widespread and locus-specific perturbations of these transcripts correlate with anomalous replication patterns and a notable loss of the H2A.Z replicative marker at the origin site. Collectively, we present a previously undescribed RNA-mediated mechanism that is associated with the generation of active replication origins in eukaryotic cells. Our findings delineate a strategy to modulate the origins of replication in human cells at a local and global level, with potentially broad biomedical implications.
Collapse
Affiliation(s)
- Simone Ummarino
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
| | - Larysa Poluben
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- These two authors equally contributed to the work
| | - Alex K. Ebralidze
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
- These two authors equally contributed to the work
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, CNR, Naples, 80100, Italy
| | - Yanzhou Zhang
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
| | - Theodore Paniza
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Madhura Deshpande
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lucrezia Rinaldi
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
| | - Johnathan D. Lee
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
| | - Mahmoud A. Bassal
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
- Cancer Science Institute of Singapore, National University of Singapore, 117456, Singapore
| | | | - Steven P. Balk
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Robert Flaumenhaft
- Beth Israel Deaconess Medical Center, Division of Hemostasis and Thrombosis, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeannine Gerhardt
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Daniel G. Tenen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- These two authors equally contributed to the work
| | - Annalisa Di Ruscio
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
- University of Eastern Piedmont, Department of Translational Medicine, Novara, 28100, Italy
- These two authors equally contributed to the work
| |
Collapse
|
26
|
Gao Y, Takenaka K, Xu SM, Cheng Y, Janitz M. Recent advances in investigation of circRNA/lncRNA-miRNA-mRNA networks through RNA sequencing data analysis. Brief Funct Genomics 2025; 24:elaf005. [PMID: 40251826 PMCID: PMC12008121 DOI: 10.1093/bfgp/elaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/21/2025] Open
Abstract
Non-coding RNAs (ncRNAs) are RNA molecules that are transcribed from DNA but are not translated into proteins. Studies over the past decades have revealed that ncRNAs can be classified into small RNAs, long non-coding RNAs and circular RNAs by genomic size and structure. Accumulated evidences have eludicated the critical roles of these non-coding transcripts in regulating gene expression through transcription and translation, thereby shaping cellular function and disease pathogenesis. Notably, recent studies have investigated the function of ncRNAs as competitive endogenous RNAs (ceRNAs) that sequester miRNAs and modulate mRNAs expression. The ceRNAs network emerges as a pivotal regulatory function, with significant implications in various diseases such as cancer and neurodegenerative disease. Therefore, we highlighted multiple bioinformatics tools and databases that aim to predict ceRNAs interaction. Furthermore, we discussed limitations of using current technologies and potential improvement for ceRNAs network detection. Understanding of the dynamic interplay within ceRNAs may advance the biological comprehension, as well as providing potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yulan Gao
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
Tian XJ, Zhang R, Ferro MV, Goetz H. Modeling ncRNA-Mediated Circuits in Cell Fate Decision: From Systems Biology to Synthetic Biology. Methods Mol Biol 2025; 2883:139-154. [PMID: 39702707 DOI: 10.1007/978-1-0716-4290-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Noncoding RNAs (ncRNAs) play critical roles in essential cell fate decisions. However, the exact molecular mechanisms underlying ncRNA-mediated bistable switches remain elusive and controversial. In recent years, systematic mathematical and quantitative experimental analyses have made significant contributions to elucidating the molecular mechanisms of controlling ncRNA-mediated cell fate decision processes. In this chapter, we review and summarize the general framework of mathematical modeling of ncRNA in a pedagogical way and the application of this general framework to real biological processes. We discuss the emerging properties resulting from the reciprocal regulation between mRNA, miRNA, and competing endogenous mRNA (ceRNA). We also explore the efforts within the synthetic biology approach to understand the fundamental design principles underlying cell fate decisions. Both the positive feedback loops between ncRNAs and transcription factors and the emerging properties from the miRNA-mRNA reciprocal regulation enable bistable switches to direct cell fate decisions.
Collapse
Affiliation(s)
- Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Manuela Vanegas Ferro
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Hanah Goetz
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
28
|
Das P, Alex R, Gowane GR, Vohra V, Paul D, Khan KD, Upadhyay A, De S, Ludri A. Chronic heat stress upregulates pyruvate metabolic process and gluconeogenesis but downregulates immune responses in Sahiwal cattle. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:195-208. [PMID: 39446186 DOI: 10.1007/s00484-024-02804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Climate change and growing population and their strain on animal production are the impending challenges that the developing countries, like India, need to tackle in the coming days. This study aimed to detect and analyze the uncharacterized variation in the gene expression patterns with the change of condition, from thermoneutral to chronic hot-humid, in the Sahiwal cattle, one of the best breeds of milk-producing cattle in India, known for being heat-tolerant. Using RNA-Seq analysis on peripheral blood mononuclear cells (PBMCs), 4021 differentially expressed mRNAs (2772 upregulated, 1249 downregulated) and 1303 differentially expressed long non-coding RNAs (769 upregulated, 534 downregulated) were identified, with the thresholds of false discovery rate < 0.05 and|log2(fold change)| > 2. Significantly (p-adjusted < 0.05) overrepresented Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathways were analyzed, revealing upregulation of processes like pyruvate metabolic process, gluconeogenesis, ion transmembrane transport, neuropeptide signaling pathway, and animal organ development, with genes like SHH, GRK1, CHRM3, CAMK2A, and HSPB7 were upregulated, while translation and immune responses, with genes like RPS3, EEF1A1, TNF, BoLA-DRB3, and UBB were downregulated. Analysis of cis-mRNAs of DE-lncRNAs showed presence of both up- and down-regulated cis-mRNAs for both up- and down-regulated lncRNAs indicating existence of positive and negative regulation of mRNA expression by lncRNAs. Managemental nudges that decrease metabolic heat generation, like betaine and chromium supplementation, and increase heat dissipation, like microenvironment cooling, should be utilized. This study highlights the role of pyruvate metabolism and gluconeogenesis in coping up with heat stress and offers an improved understanding of the heat stress response of Sahiwal cattle along with the genes and pathways responsible for it.
Collapse
Affiliation(s)
- Pradyut Das
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rani Alex
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Gopal Ramdasji Gowane
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vikas Vohra
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Dipankar Paul
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Kashif Dawood Khan
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Amritanshu Upadhyay
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sachinandan De
- Division of Animal Biotechnology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ashutosh Ludri
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
29
|
Estell C, West S. ZC3H4/Restrictor Exerts a Stranglehold on Pervasive Transcription. J Mol Biol 2025; 437:168707. [PMID: 39002716 DOI: 10.1016/j.jmb.2024.168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The regulation of transcription by RNA polymerase II (RNAPII) underpins all cellular processes and is perturbed in thousands of diseases. In humans, RNAPII transcribes ∼20000 protein-coding genes and engages in apparently futile non-coding transcription at thousands of other sites. Despite being so ubiquitous, this transcription is usually attenuated soon after initiation and the resulting products are immediately degraded by the nuclear exosome. We and others have recently described a new complex, "Restrictor", which appears to control such unproductive transcription. Underpinned by the RNA binding protein, ZC3H4, Restrictor curtails unproductive/pervasive transcription genome-wide. Here, we discuss these recent discoveries and speculate on some of the many unknowns regarding Restrictor function and mechanism.
Collapse
Affiliation(s)
- Chris Estell
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Steven West
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
30
|
Moore JE, Pratt HE, Fan K, Phalke N, Fisher J, Elhajjajy SI, Andrews G, Gao M, Shedd N, Fu Y, Lacadie MC, Meza J, Ganna M, Choudhury E, Swofford R, Farrell NP, Pampari A, Ramalingam V, Reese F, Borsari B, Yu M, Wattenberg E, Ruiz-Romero M, Razavi-Mohseni M, Xu J, Galeev T, Beer MA, Guigó R, Gerstein M, Engreitz J, Ljungman M, Reddy TE, Snyder MP, Epstein CB, Gaskell E, Bernstein BE, Dickel DE, Visel A, Pennacchio LA, Mortazavi A, Kundaje A, Weng Z. An Expanded Registry of Candidate cis-Regulatory Elements for Studying Transcriptional Regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.26.629296. [PMID: 39763870 PMCID: PMC11703161 DOI: 10.1101/2024.12.26.629296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Mammalian genomes contain millions of regulatory elements that control the complex patterns of gene expression. Previously, The ENCODE consortium mapped biochemical signals across many cell types and tissues and integrated these data to develop a Registry of 0.9 million human and 300 thousand mouse candidate cis-Regulatory Elements (cCREs) annotated with potential functions1. We have expanded the Registry to include 2.35 million human and 927 thousand mouse cCREs, leveraging new ENCODE datasets and enhanced computational methods. This expanded Registry covers hundreds of unique cell and tissue types, providing a comprehensive understanding of gene regulation. Functional characterization data from assays like STARR-seq, MPRA, CRISPR perturbation, and transgenic mouse assays now cover over 90% of human cCREs, revealing complex regulatory functions. We identified thousands of novel silencer cCREs and demonstrated their dual enhancer/silencer roles in different cellular contexts. Integrating the Registry with other ENCODE annotations facilitates genetic variation interpretation and trait-associated gene identification, exemplified by discovering KLF1 as a novel causal gene for red blood cell traits. This expanded Registry is a valuable resource for studying the regulatory genome and its impact on health and disease.
Collapse
Affiliation(s)
- Jill E. Moore
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Henry E. Pratt
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kaili Fan
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan Fisher
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shaimae I. Elhajjajy
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Gregory Andrews
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mingshi Gao
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yu Fu
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Matthew C Lacadie
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jair Meza
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mohit Ganna
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Eva Choudhury
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ross Swofford
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Anusri Pampari
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Fairlie Reese
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
| | - Beatrice Borsari
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Michelle Yu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Eve Wattenberg
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Marina Ruiz-Romero
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, Catalonia, Spain
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jinrui Xu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Michael A. Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jesse Engreitz
- Department of Genetics, Stanford University, Stanford, CA, USA
- Basic Sciences and Engineering Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Timothy E. Reddy
- Duke Center for Statistical Genetics and Genomics, Duke University, Durham, NC, USA
- Division of Integrative Genomics, Department of Biostatistics Bioinformatics, Duke University Medical School, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, USA
| | | | | | | | | | - Diane E. Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ali Mortazavi
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
31
|
Liang WW, Müller S, Hart SK, Wessels HH, Méndez-Mancilla A, Sookdeo A, Choi O, Caragine CM, Corman A, Lu L, Kolumba O, Williams B, Sanjana NE. Transcriptome-scale RNA-targeting CRISPR screens reveal essential lncRNAs in human cells. Cell 2024; 187:7637-7654.e29. [PMID: 39532094 DOI: 10.1016/j.cell.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/09/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
Mammalian genomes host a diverse array of RNA that includes protein-coding and noncoding transcripts. However, the functional roles of most long noncoding RNAs (lncRNAs) remain elusive. Using RNA-targeting CRISPR-Cas13 screens, we probed how the loss of ∼6,200 lncRNAs impacts cell fitness across five human cell lines and identified 778 lncRNAs with context-specific or broad essentiality. We confirm their essentiality with individual perturbations and find that the majority of essential lncRNAs operate independently of their nearest protein-coding genes. Using transcriptome profiling in single cells, we discover that the loss of essential lncRNAs impairs cell-cycle progression and drives apoptosis. Many essential lncRNAs demonstrate dynamic expression across tissues during development. Using ∼9,000 primary tumors, we pinpoint those lncRNAs whose expression in tumors correlates with survival, yielding new biomarkers and potential therapeutic targets. This transcriptome-wide survey of functional lncRNAs advances our understanding of noncoding transcripts and demonstrates the potential of transcriptome-scale noncoding screens with Cas13.
Collapse
Affiliation(s)
- Wen-Wei Liang
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Simon Müller
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Sydney K Hart
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Alejandro Méndez-Mancilla
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Akash Sookdeo
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Olivia Choi
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Christina M Caragine
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Alba Corman
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Lu Lu
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Olena Kolumba
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Breanna Williams
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA.
| |
Collapse
|
32
|
Aguilar R, Mardones C, Moreno AA, Cepeda-Plaza M. A guide to RNA structure analysis and RNA-targeting methods. FEBS J 2024. [PMID: 39718192 DOI: 10.1111/febs.17368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
RNAs are increasingly recognized as promising therapeutic targets, susceptible to modulation by strategies that include targeting with small molecules, antisense oligonucleotides, deoxyribozymes (DNAzymes), or CRISPR/Cas13. However, while drug development for proteins follows well-established paths for rational design based on the accurate knowledge of their three-dimensional structure, RNA-targeting strategies are challenging since comprehensive RNA structures are yet scarce and challenging to acquire. Numerous methods have been developed to elucidate the secondary and three-dimensional structure of RNAs, including X-ray crystallography, cryo-electron microscopy, nuclear magnetic resonance, SHAPE, DMS, and bioinformatic methods, yet they have often revealed flexible transcripts and co-existing populations rather than single-defined structures. Thus, researchers aiming to target RNAs face a critical decision: whether to acquire the detailed structure of transcripts in advance or to adopt phenotypic screens or sequence-based approaches that are independent of the structure. Still, even in strategies that seem to rely only on the nucleotide sequence (like the design of antisense oligonucleotides), researchers may need information about the accessibility of the compounds to the folded RNA molecule. In this concise guide, we provide an overview for researchers interested in targeting RNAs: We start by revisiting current methodologies for defining secondary or three-dimensional RNA structure and then we explore RNA-targeting strategies that may or may not require an in-depth knowledge of RNA structure. We envision that complementary approaches may expedite the development of RNA-targeting molecules to combat disease.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Constanza Mardones
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Adrian A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | |
Collapse
|
33
|
Zhu L, Chen H, Yang S. LncSL: A Novel Stacked Ensemble Computing Tool for Subcellular Localization of lncRNA by Amino Acid-Enhanced Features and Two-Stage Automated Selection Strategy. Int J Mol Sci 2024; 25:13734. [PMID: 39769496 PMCID: PMC11678684 DOI: 10.3390/ijms252413734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Long non-coding RNA (lncRNA) is a non-coding RNA longer than 200 nucleotides, crucial for functions like cell cycle regulation and gene transcription. Accurate localization prediction from sequence information is vital for understanding lncRNA's biological roles. Computational methods offer an effective alternative to traditional experimental methods for annotating lncRNA subcellular positions. Existing machine learning-based methods are limited and often overlook regions with coding potential that affect the function of lncRNA. Therefore, we propose a new model called LncSL. For feature encoding, both lncRNA sequences and amino acid sequences from open reading frames (ORFs) are employed. And we selected the most suitable features by CatBoost and integrated them into a new feature set. Additionally, a voting process with seven feature selection algorithms identified the higher contributive features for training our final stacked model. Additionally, an automatic model selection strategy is constructed to find a better performance meta-model for assembling LncSL. This study specifically focuses on predicting the subcellular localization of lncRNA in the nucleus and cytoplasm. On two benchmark datasets called S1 and S2 datasets, LncSL outperformed existing methods by 6.3% to 12.3% in the Matthew's correlation coefficient on a balanced test dataset. On an unbalanced independent test dataset sourced from S1, LncSL improved by 4.7% to 18.6% in the Matthew's correlation coefficient, which further demonstrates that LncSL is superior to other compared methods. In all, this study presents an effective method for predicting lncRNA subcellular localization through enhancing sequence information, which is always overlooked by traditional methods, and addressing contributive meta-model selection problems, which can offer new insights for other bioinformatics problems.
Collapse
Affiliation(s)
| | | | - Sen Yang
- School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou 213164, China; (L.Z.); (H.C.)
| |
Collapse
|
34
|
Abedimanesh S, Safaralizadeh R, Jahanafrooz Z, Najafi S, Amini M, Nazarloo SS, Bahojb Mahdavi SZ, Baradaran B, Jebelli A, Mokhtarzadeh AA. Interaction of noncoding RNAs with hippo signaling pathway in cancer cells and cancer stem cells. Noncoding RNA Res 2024; 9:1292-1307. [PMID: 39045083 PMCID: PMC11263728 DOI: 10.1016/j.ncrna.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024] Open
Abstract
The Hippo signaling pathway has a regulatory function in the organogenesis process and cellular homeostasis, switching the cascade reactions of crucial kinases acts to turn off/on the Hippo pathway, altering the downstream gene expression and thereby regulating proliferation, apoptosis, or stemness. Disruption of this pathway can lead to the occurrence of various disorders and different types of cancer. Recent findings highlight the importance of ncRNAs, such as microRNA, circular RNA, and lncRNAs, in modulating the Hippo pathway. Defects in ncRNAs can disrupt Hippo pathway balance, increasing tumor cells, tumorigenesis, and chemotherapeutic resistance. This review summarizes ncRNAs' inhibitory or stimulatory role in - Hippo pathway regulation in cancer and stem cells. Identifying the relation between ncRNAs and the components of this pathway could pave the way for developing new biomarkers in the treatment and diagnosis of cancers.
Collapse
Affiliation(s)
- Saba Abedimanesh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Soltani Nazarloo
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
35
|
Kundu S, dos Santos Correia G, Lee YS, Ng S, Sykes L, Chan D, Lewis H, Brown RG, Kindinger L, Dell A, Feizi T, Haslam SM, Liu Y, Marchesi JR, MacIntyre DA, Bennett PR. Secretor status is a modifier of vaginal microbiota-associated preterm birth risk. Microb Genom 2024; 10:001323. [PMID: 39630497 PMCID: PMC11616779 DOI: 10.1099/mgen.0.001323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Mutations in the FUT2 gene that result in a lack of expression of histo-blood group antigens on secreted glycoproteins may shape the vaginal microbiota with consequences for birth outcome. To test this, we analysed the relationship between secretor status, vaginal microbiota and gestational length in an ethnically diverse cohort of 302 pregnant women, including 82 who delivered preterm. Lactobacillus gasseri and L. jensenii were found to have distinct co-occurrence patterns with other microbial taxa in non-secretors. Moreover, non-secretors with Lactobacillus spp. depleted high diversity vaginal microbiota in early pregnancy had significantly shorter gestational length than Lactobacillus spp. dominated non-secretors (mean of 241.54 days (sd=47.14) versus 266.21 (23.61); P-value=0.0251). Similar gestational length differences were observed between non-secretors with high vaginal diversity and secretors with Lactobacillus spp. dominance (mean of 262.52 days (SD=27.73); p-value=0.0439) or depletion (mean of 266.05 days (SD=20.81); p-value=0.0312). Our data highlight secretor status and blood-group antigen expression as being important mediators of vaginal microbiota-host interactions in the context of preterm birth risk.
Collapse
Affiliation(s)
- Samit Kundu
- March of Dimes European Prematurity Research Centre, Imperial College London, London, UK
| | - Gonçalo dos Santos Correia
- March of Dimes European Prematurity Research Centre, Imperial College London, London, UK
- Institute for Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Yun S. Lee
- March of Dimes European Prematurity Research Centre, Imperial College London, London, UK
| | - Sherrianne Ng
- March of Dimes European Prematurity Research Centre, Imperial College London, London, UK
- Institute for Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Lynne Sykes
- March of Dimes European Prematurity Research Centre, Imperial College London, London, UK
- Institute for Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
- Imperial College Healthcare NHS Trust, Parasol Foundation for Women’s Health, London, UK
| | - Denise Chan
- Institute for Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Holly Lewis
- Institute for Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Richard G. Brown
- Institute for Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Lindsay Kindinger
- Institute for Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute for Women’s Health, University College London, London, UK
| | - Anne Dell
- March of Dimes European Prematurity Research Centre, Imperial College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Ten Feizi
- March of Dimes European Prematurity Research Centre, Imperial College London, London, UK
- Glycosciences Laboratory, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Stuart M. Haslam
- March of Dimes European Prematurity Research Centre, Imperial College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Yan Liu
- March of Dimes European Prematurity Research Centre, Imperial College London, London, UK
- Glycosciences Laboratory, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Julian R. Marchesi
- March of Dimes European Prematurity Research Centre, Imperial College London, London, UK
- Division of Digestive Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - David A. MacIntyre
- March of Dimes European Prematurity Research Centre, Imperial College London, London, UK
- Institute for Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Phillip R. Bennett
- March of Dimes European Prematurity Research Centre, Imperial College London, London, UK
- Institute for Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
36
|
Nickerson JA, Momen-Heravi F. Long non-coding RNAs: roles in cellular stress responses and epigenetic mechanisms regulating chromatin. Nucleus 2024; 15:2350180. [PMID: 38773934 PMCID: PMC11123517 DOI: 10.1080/19491034.2024.2350180] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Most of the genome is transcribed into RNA but only 2% of the sequence codes for proteins. Non-coding RNA transcripts include a very large number of long noncoding RNAs (lncRNAs). A growing number of identified lncRNAs operate in cellular stress responses, for example in response to hypoxia, genotoxic stress, and oxidative stress. Additionally, lncRNA plays important roles in epigenetic mechanisms operating at chromatin and in maintaining chromatin architecture. Here, we address three lncRNA topics that have had significant recent advances. The first is an emerging role for many lncRNAs in cellular stress responses. The second is the development of high throughput screening assays to develop causal relationships between lncRNAs across the genome with cellular functions. Finally, we turn to recent advances in understanding the role of lncRNAs in regulating chromatin architecture and epigenetics, advances that build on some of the earliest work linking RNA to chromatin architecture.
Collapse
Affiliation(s)
- Jeffrey A Nickerson
- Division of Genes & Development, Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Fatemeh Momen-Heravi
- College of Dental Medicine, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
Gan Y, Wang L, Liu G, Guo X, Zhou Y, Chang K, Zhang Z, Yan F, Liu Q, Chen B. Transposable Elements Contribute to the Regulation of Long Noncoding RNAs in Drosophila melanogaster. INSECTS 2024; 15:950. [PMID: 39769552 PMCID: PMC11678190 DOI: 10.3390/insects15120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Background: Transposable elements (TEs) and noncoding sequences are major components of the genome, yet their functional contributions to long noncoding RNAs (lncRNAs) are not well understood. Although many lncRNAs originating from TEs (TE-lncRNAs) have been identified across various organisms, their characteristics and regulatory roles, particularly in insects, remain largely unexplored. This study integrated multi-omics data to investigate TE-lncRNAs in D. melanogaster, focusing on the influence of transposons across different omics levels. Results: We identified 16,118 transposons overlapping with lncRNA sequences that constitute 2119 TE-lncRNAs (40.4% of all lncRNAs) using 256 public RNA-seq samples and 15 lncRNA-seq samples of Drosophila S2 cells treated with heavy metals. Of these, 67.2% of TE-lncRNAs contain more than one TE. The LTR/Gypsy family was the most common transposon insertion. Transposons preferred to insert into promoters, transcription starting sites, and intronic regions, especially in chromosome ends. Compared with lncRNAs, TE-lncRNAs showed longer lengths, a lower conservation, and lower levels but a higher specificity of expression. Multi-omics data analysis revealed positive correlations between transposon insertions and chromatin openness at the pre-transcriptional level. Notably, a total of 516 TE-lncRNAs provided transcriptional factor binding sites through transposon insertions. The regulatory network of a key transcription factor was rewired by transposons, potentially recruiting other transcription factors to exert regulatory functions under heavy metal stress. Additionally, 99 TE-lncRNAs were associated with m6A methylation modification sites, and 115 TE-lncRNAs potentially provided candidate small open reading frames through transposon insertions. Conclusions: Our data analysis demonstrated that TEs contribute to the regulation of lncRNAs. TEs not only promote the transcriptional regulation of lncRNAs, but also facilitate their post-transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
- Yuli Gan
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Lingyan Wang
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
| | - Guoxian Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Xiruo Guo
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; (Y.Z.); (Z.Z.)
| | - Kexin Chang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China; (K.C.); (F.Y.)
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; (Y.Z.); (Z.Z.)
| | - Fang Yan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China; (K.C.); (F.Y.)
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Bing Chen
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| |
Collapse
|
38
|
Feghaly C, Challita R, Hadir HB, Mobayed T, Bitar TA, Harbi M, Ghorayeb H, El-Hassan R, Bodgi L. Bladder Cancer Treatments in the Age of Personalized Medicine: A Comprehensive Review of Potential Radiosensitivity Biomarkers. Biomark Insights 2024; 19:11772719241297168. [PMID: 39512649 PMCID: PMC11542137 DOI: 10.1177/11772719241297168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Bladder cancer is one of the most frequently diagnosed cancers in men. While cystectomy remains the primary treatment, advances in radiotherapy and chemotherapy have highlighted the value of bladder-preserving strategies, which can also enhance patients' quality of life. Despise these advances, around 20% of patients may still require salvage cystectomy due to tumor radioresistance. This underscores the need to develop radiosensitivity predictive assays. Radiotherapy acts by inducing DNA damage, primarily through DNA double-strand breaks, which can significantly affect treatment outcomes if left unrepaired. In addition to activating DNA repair pathways, the response to radiation also involves the tumor microenvironment, cell death pathways, immune responses and different types of cell death and proliferation receptors. In recent years, personalized medicine, which tailors treatments to individual patients, has gained increasing attention in cancer care. The development of chemo- and radiosensitivity predictive assays has become a key focus of cancer research. Despite the potential impact of such assays on bladder cancer treatment, there is still no reliable test that can help clinicians and informs patients in choosing the best treatment. This review aims to highlight studies that attempted to characterize bladder cancer radiosensitivity and to discuss the potential biomarkers that could be used to develop bladder cancer radiosensitivity predictive assays.
Collapse
Affiliation(s)
- Charbel Feghaly
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rafka Challita
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hanine Bou Hadir
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tala Mobayed
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tarek Al Bitar
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohammad Harbi
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hala Ghorayeb
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Rana El-Hassan
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Larry Bodgi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
- U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon-Bérard, Inserm, Lyon, France
| |
Collapse
|
39
|
Liu S, Quan Z, Liang J, Wang F, Yan H, Wang Z, Tang B, Qin X. LINC02466 promotes the progression of hepatocellular carcinoma through the mTOR pathway. Discov Oncol 2024; 15:623. [PMID: 39503938 PMCID: PMC11541976 DOI: 10.1007/s12672-024-00999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/26/2024] [Indexed: 11/09/2024] Open
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) LINC02466 is an lncRNA newly linked to the adverse outcomes in primary liver cancer patients, and its crucial involvement in the disease's escalation. Decoding the specific role of LINC02466 in HCC progression is of great significance to provide a potential therapeutic target for HCC. METHODS RT-qPCR and Western Blot techniques was used to analyze the expression levels of LINC02466 in both malignant and surrounding healthy liver tissues. CCK8 assays and colony formation experiments indicates the LINC02466's effect on the proliferation rates of liver cancer cells. Flow cytometry was pivotal in revealing its significant influence on the cell cycle of these cells. Kaplan-Meier survival analysis with log-rank tests were employed. RESULTS The suppression of LINC02466 markedly reduces the stemness attributes of liver cancer cells, indicating a potential therapeutic target. LINC02466 overexpression significantly increased tumor growth rates and final volumes. Further research indicated that LINC02466 significantly influences liver cancer progression through regulating the mTOR signaling pathway. CONCLUSION LINC02466 regulating cell proliferation, the cell cycle, and stemness characteristics via the mTOR pathway, suggesting LINC02466 as a potential therapeutic target for primary liver cancer.
Collapse
Affiliation(s)
- Shiqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Zhipeng Quan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jiaming Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Fuqiang Wang
- Department of Gastrointestinal Surgery and Hepatobiliary Surgery and Department of Critical Care Medicine, Guilin Medical University, Affiliated Hospital, Guilin, 541001, Guangxi, People's Republic of China
| | - Hao Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Zhenran Wang
- Department of Gastrointestinal Surgery and Hepatobiliary Surgery and Department of Critical Care Medicine, Guilin Medical University, Affiliated Hospital, Guilin, 541001, Guangxi, People's Republic of China.
| | - Bo Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Xuebin Qin
- Department of Gastrointestinal Surgery and Hepatobiliary Surgery and Department of Critical Care Medicine, Guilin Medical University, Affiliated Hospital, Guilin, 541001, Guangxi, People's Republic of China.
| |
Collapse
|
40
|
Peng X, Li S, Zeng A, Song L. Regulatory function of glycolysis-related lncRNAs in tumor progression: Mechanism, facts, and perspectives. Biochem Pharmacol 2024; 229:116511. [PMID: 39222714 DOI: 10.1016/j.bcp.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Altered metabolism is a hallmark of cancer, and reprogramming of energy metabolism, known as the "Warburg effect", has long been associated with cancer. Cancer cells use the process of glycolysis to quickly manufacture energy from glucose, pyruvic acid, and lactate, which in turn accelerates the growth of cancer and glycolysis becomes a key target for anti-cancer therapies. Recent groundbreaking discoveries regarding long noncoding RNAs (lncRNAs) have opened a new chapter in the mechanism of cancer occurrence. It is widely recognized that lncRNAs regulate energy metabolism through glycolysis in cancer cells. LncRNAs have been demonstrated to engage in several cancer processes such as proliferation, apoptosis, migration, invasion, and chemoresistance, whereas glycolysis is enhanced or inhibited by the dysregulation of lncRNAs. As a result, cancer survival and development are influenced by different signaling pathways. In this review, we summarize the roles of lncRNAs in a variety of cancers and describe the mechanisms underlying their role in glycolysis. Additionally, the predictive potential of glycolysis and lncRNAs in cancer therapy is discussed.
Collapse
Affiliation(s)
- Xinyi Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China
| | - Shuhao Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, P.R. China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China.
| |
Collapse
|
41
|
Wade H, Pan K, Zhang B, Zheng W, Su Q. Mechanistic role of long non-coding RNAs in the pathogenesis of metabolic dysfunction-associated steatotic liver disease and fibrosis. EGASTROENTEROLOGY 2024; 2:e100115. [PMID: 39872125 PMCID: PMC11729351 DOI: 10.1136/egastro-2024-100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease, encompasses a broad range of hepatic metabolic disorders primarily characterised by the disruption of hepatic lipid metabolism, hepatic lipid accumulation and steatosis. Severe cases of MASLD might progress to metabolic dysfunction-associated steatohepatitis, characterised by hepatic inflammation, hepatocyte ballooning degeneration, activation of hepatic stellate cells (HSCs) and fibrogenesis. It may further progress to hepatocellular carcinoma. In the liver, long non-coding RNAs (lncRNAs) target multiple metabolic pathways in hepatocytes, HSCs, and Kupffer cells at different stages of MASLD and liver fibrosis. In this study, we overview recent findings on the potential role of lncRNAs in the pathogenesis of MASLD and liver fibrosis via modulation of de novo lipid synthesis, fatty acid β-oxidation, lipotoxicity, oxidative stress, metabolic inflammation, mammalian target of rapamycin signalling, apoptosis, ubiquitination and fibrogenesis. We critically assess the literature reports that investigate the complex interplay between lncRNA, microRNA and key mediators in liver injury, in both human participants and animal models of MASLD and liver fibrosis. We also highlight the therapeutic potential of lncRNAs in chronic liver diseases.
Collapse
Affiliation(s)
- Henry Wade
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| | - Kaichao Pan
- Endocrinology Group, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA
| | - Bingrui Zhang
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| | - Wenhua Zheng
- Faculty of Health Science, University of Macau, Macau, China
| | - Qiaozhu Su
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
42
|
Schmeing S, Hart P'. Challenges in Therapeutically Targeting the RNA-Recognition Motif. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1877. [PMID: 39668490 PMCID: PMC11638515 DOI: 10.1002/wrna.1877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
The RNA recognition motif (RRM) is the most common RNA binding domain found in the human proteome. RRM domains provide RNA-binding proteins with sequence specific RNA recognition allowing them to participate in RNA-centric processes such as mRNA maturation, translation initiation, splicing, and RNA degradation. They are drivers of various diseases through overexpression or mutation, making them attractive therapeutic targets and addressing these proteins through their RRM domains with chemical compounds is gaining ever more attention. However, it is still very challenging to find selective and potent RNA-competitors due to the small size of the domain and high structural conservation of its RNA binding interface. Despite these challenges, a selection of compounds has been reported for several RRM containing proteins, but often with limited biophysical evidence and low selectivity. A solution to selectively targeting RRM domains might be through avoiding the RNA-binding surface altogether, but rather look for composite pockets formed with other proteins or for protein-protein interaction sites that regulate the target's activity but are less conserved. Alternative modalities, such as oligonucleotides, peptides, and molecular glues, are exciting new approaches to address these challenging targets and achieve the goal of therapeutic intervention at the RNA regulatory level.
Collapse
Affiliation(s)
- Stefan Schmeing
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
43
|
Kaur G, Perteghella T, Carbonell-Sala S, Gonzalez-Martinez J, Hunt T, Mądry T, Jungreis I, Arnan C, Lagarde J, Borsari B, Sisu C, Jiang Y, Bennett R, Berry A, Cerdán-Vélez D, Cochran K, Vara C, Davidson C, Donaldson S, Dursun C, González-López S, Gopal Das S, Hardy M, Hollis Z, Kay M, Montañés JC, Ni P, Nurtdinov R, Palumbo E, Pulido-Quetglas C, Suner MM, Yu X, Zhang D, Loveland JE, Albà MM, Diekhans M, Tanzer A, Mudge JM, Flicek P, Martin FJ, Gerstein M, Kellis M, Kundaje A, Paten B, Tress ML, Johnson R, Uszczynska-Ratajczak B, Frankish A, Guigó R. GENCODE: massively expanding the lncRNA catalog through capture long-read RNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620654. [PMID: 39554180 PMCID: PMC11565817 DOI: 10.1101/2024.10.29.620654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Accurate and complete gene annotations are indispensable for understanding how genome sequences encode biological functions. For twenty years, the GENCODE consortium has developed reference annotations for the human and mouse genomes, becoming a foundation for biomedical and genomics communities worldwide. Nevertheless, collections of important yet poorly-understood gene classes like long non-coding RNAs (lncRNAs) remain incomplete and scattered across multiple, uncoordinated catalogs, slowing down progress in the field. To address these issues, GENCODE has undertaken the most comprehensive lncRNAs annotation effort to date. This is founded on the manual annotation of full-length targeted long-read sequencing, on matched embryonic and adult tissues, of orthologous regions in human and mouse. Altogether 17,931 novel human genes (140,268 novel transcripts) and 22,784 novel mouse genes (136,169 novel transcripts) have been added to the GENCODE catalog representing a 2-fold and 6-fold increase in transcripts, respectively - the greatest increase since the sequencing of the human genome. Novel gene annotations display evolutionary constraints, have well-formed promoter regions, and link to phenotype-associated genetic variants. They greatly enhance the functional interpretability of the human genome, as they help explain millions of previously-mapped "orphan" omics measurements corresponding to transcription start sites, chromatin modifications and transcription factor binding sites. Crucially, our targeted design assigned human-mouse orthologs at a rate beyond previous studies, tripling the number of human disease-associated lncRNAs with mouse orthologs. The expanded and enhanced GENCODE lncRNA annotations mark a critical step towards deciphering the human and mouse genomes.
Collapse
Affiliation(s)
- Gazaldeep Kaur
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Tamara Perteghella
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF)
| | - Sílvia Carbonell-Sala
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Jose Gonzalez-Martinez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Tomasz Mądry
- Department of Computational Biology of Noncoding RNA, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Irwin Jungreis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Carme Arnan
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Julien Lagarde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Flomics Biotech, SL, Carrer de Roc Boronat 31, 08005 Barcelona, Catalonia, Spain
| | - Beatrice Borsari
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Cristina Sisu
- Department of Life Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ruth Bennett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andrew Berry
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Daniel Cerdán-Vélez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Kelly Cochran
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Covadonga Vara
- Hospital del Mar Research Institute, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Claire Davidson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sarah Donaldson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Silvia González-López
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF)
| | - Sasti Gopal Das
- Department of Computational Biology of Noncoding RNA, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Matthew Hardy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Zoe Hollis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mike Kay
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ramil Nurtdinov
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Emilio Palumbo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Carlos Pulido-Quetglas
- Department of Medical Oncology, Bern University Hospital, Murtenstrasse 35, 3008 Bern, Switzerland
- School of Biology and Environmental Science, University College Dublin, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Marie-Marthe Suner
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Xuezhu Yu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Dingyao Zhang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jane E Loveland
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - M Mar Albà
- Hospital del Mar Research Institute, Dr. Aiguader 88, Barcelona 08003, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, 2300 Delaware Avenue, University of California, Santa Cruz, CA 95060, USA
| | - Andrea Tanzer
- University of Vienna, Research Network Data Science, Kolingasse 14-16, 1090 Vienna, Austria
- University of Vienna, Faculty of Computer Science, Research Group Visualization and Data Analysis, Waehringerstrasse 29, 1090 Vienna, Austria
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, 2300 Delaware Avenue, University of California, Santa Cruz, CA 95060, USA
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Rory Johnson
- Department of Medical Oncology, Bern University Hospital, Murtenstrasse 35, 3008 Bern, Switzerland
- School of Biology and Environmental Science, University College Dublin, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Barbara Uszczynska-Ratajczak
- Department of Computational Biology of Noncoding RNA, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF)
| |
Collapse
|
44
|
Nath P, Bhuyan K, Bhattacharyya DK, Barah P. ETENLNC: An end to end lncRNA identification and analysis framework to facilitate construction of known and novel lncRNA regulatory networks. Comput Biol Chem 2024; 112:108140. [PMID: 38996755 DOI: 10.1016/j.compbiolchem.2024.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/22/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in the regulation of gene expression and maintenance of genomic integrity through various interactions with DNA, RNA, and proteins. The availability of large-scale sequence data from various high-throughput platforms has opened possibilities to identify, predict, and functionally annotate lncRNAs. As a result, there is a growing demand for an integrative computational framework capable of identifying known lncRNAs, predicting novel lncRNAs, and inferring the downstream regulatory interactions of lncRNAs at the genome-scale. We present ETENLNC (End-To-End-Novel-Long-NonCoding), a user-friendly, integrative, open-source, scalable, and modular computational framework for identifying and analyzing lncRNAs from raw RNA-Seq data. ETENLNC employs six stringent filtration steps to identify novel lncRNAs, performs differential expression analysis of mRNA and lncRNA transcripts, and predicts regulatory interactions between lncRNAs, mRNAs, miRNAs, and proteins. We benchmarked ETENLNC against six existing tools and optimized it for desktop workstations and high-performance computing environments using data from three different species. ETENLNC is freely available on GitHub: https://github.com/EvolOMICS-TU/ETENLNC.
Collapse
Affiliation(s)
- Prangan Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India
| | - Kaveri Bhuyan
- Department of Computer Science and Engineering, Tezpur University, Assam 784028, India; Department of Electrical Engineering, Tezpur University, Assam 784028, India
| | | | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India.
| |
Collapse
|
45
|
Peng Y, Long XD. The role of the ceRNA network mediated by lncRNA SNHG3 in the progression of cancer. Discov Oncol 2024; 15:514. [PMID: 39349640 PMCID: PMC11442963 DOI: 10.1007/s12672-024-01184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are a distinct class of RNAs with longer than 200 base pairs that are not translated into proteins. Small Nucleolar RNA Host Gene 3 (SNHG3) is a lncRNA and frequently dysregulated in various human cancers. OBJECTIVE This review provides a comprehensive analysis of current research on lncRNA SNHG3, focusing on its role within the competitive endogenous RNA (ceRNA) network and its implications in cancer. METHODS A systematic literature review was conducted using PubMed up to October 2023. The search strategy included keywords such as "lncRNA SNHG3", "competitive endogenous RNA", "cancer", and related terms. Studies were selected based on relevance to SNHG3's involvement in cancer pathogenesis and progression. RESULTS Disruptions in the ceRNA network involving lncRNA SNHG3 can impair normal cell growth and differentiation, significantly contributing to disease pathogenesis, particularly cancer. This review highlights SNHG3's substantial impact on various cancer processes and its potential as a diagnostic and therapeutic tool for aggressive cancers. CONCLUSION The findings underscore SNHG3's pivotal role in cancer prevention, diagnosis, and treatment, laying a foundation for future research in cancer management. Insights from this review emphasize the necessity for further exploration and development of SNHG3-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ying Peng
- Department of Pathology, the First Affiliated Hospital, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China
| | - Xi-Dai Long
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China.
- Department of Tumor Pathology, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Guangxi Zhuang Autonomous Region, Baise, 533000, China.
| |
Collapse
|
46
|
Griffith EC, West AE, Greenberg ME. Neuronal enhancers fine-tune adaptive circuit plasticity. Neuron 2024; 112:3043-3057. [PMID: 39208805 PMCID: PMC11550865 DOI: 10.1016/j.neuron.2024.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Neuronal activity-regulated gene expression plays a crucial role in sculpting neural circuits that underpin adaptive brain function. Transcriptional enhancers are now recognized as key components of gene regulation that orchestrate spatiotemporally precise patterns of gene transcription. We propose that the dynamics of enhancer activation uniquely position these genomic elements to finely tune activity-dependent cellular plasticity. Enhancer specificity and modularity can be exploited to gain selective genetic access to specific cell states, and the precise modulation of target gene expression within restricted cellular contexts enabled by targeted enhancer manipulation allows for fine-grained evaluation of gene function. Mounting evidence also suggests that enduring stimulus-induced changes in enhancer states can modify target gene activation upon restimulation, thereby contributing to a form of cell-wide metaplasticity. We advocate for focused exploration of activity-dependent enhancer function to gain new insight into the mechanisms underlying brain plasticity and cognitive dysfunction.
Collapse
Affiliation(s)
- Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| | | |
Collapse
|
47
|
Su X, Shi C, Liu F, Tan M, Wang Y, Zhu L, Chen Y, Yu M, Wang X, Liu J, Liu Y, Lin W, Fang Z, Sun Q, Zhou T, Lin A. HMPA: a pioneering framework for the noncanonical peptidome from discovery to functional insights. Brief Bioinform 2024; 25:bbae510. [PMID: 39413795 PMCID: PMC11483136 DOI: 10.1093/bib/bbae510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/01/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Advancements in peptidomics have revealed numerous small open reading frames with coding potential and revealed that some of these micropeptides are closely related to human cancer. However, the systematic analysis and integration from sequence to structure and function remains largely undeveloped. Here, as a solution, we built a workflow for the collection and analysis of proteomic data, transcriptomic data, and clinical outcomes for cancer-associated micropeptides using publicly available datasets from large cohorts. We initially identified 19 586 novel micropeptides by reanalyzing proteomic profile data from 3753 samples across 8 cancer types. Further quantitative analysis of these micropeptides, along with associated clinical data, identified 3065 that were dysregulated in cancer, with 370 of them showing a strong association with prognosis. Moreover, we employed a deep learning framework to construct a micropeptide-protein interaction network for further bioinformatics analysis, revealing that micropeptides are involved in multiple biological processes as bioactive molecules. Taken together, our atlas provides a benchmark for high-throughput prediction and functional exploration of micropeptides, providing new insights into their biological mechanisms in cancer. The HMPA is freely available at http://hmpa.zju.edu.cn.
Collapse
Affiliation(s)
- Xinwan Su
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Manman Tan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Linyu Zhu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Yu Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Meng Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Xinyi Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, 718 East Haizhou Rd., Haining, Zhejiang 314400, China
| | - Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310009, China
| | - Weiqiang Lin
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, Zhejiang 322000, China
| | - Zhaoyuan Fang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, 718 East Haizhou Rd., Haining, Zhejiang 314400, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
| | - Qiang Sun
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, Zhejiang 322000, China
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, Zhejiang 322000, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 828 Zhongxing Road, Xitang District, Jiashan, Zhejiang, 314100, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
48
|
Hu SL, Chen YL, Zhang LQ, Bai H, Yang JH, Li QZ. LncSTPred: a predictive model of lncRNA subcellular localization and decipherment of the biological determinants influencing localization. Front Mol Biosci 2024; 11:1452142. [PMID: 39301172 PMCID: PMC11411566 DOI: 10.3389/fmolb.2024.1452142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Introduction Long non-coding RNAs (lncRNAs) play crucial roles in genetic markers, genome rearrangement, chromatin modifications, and other biological processes. Increasing evidence suggests that lncRNA functions are closely related to their subcellular localization. However, the distribution of lncRNAs in different subcellular localizations is imbalanced. The number of lncRNAs located in the nucleus is more than ten times that in the exosome. Methods In this study, we propose a new oversampling method to construct a predictive dataset and develop a predictive model called LncSTPred. This model improves the Adaboost algorithm for subcellular localization prediction using 3-mer, 3-RF sequence, and minimum free energy structure features. Results and Discussion By using our improved Adaboost algorithm, better prediction accuracy for lncRNA subcellular localization was obtained. In addition, we evaluated feature importance by using the F-score and analyzed the influence of highly relevant features on lncRNAs. Our study shows that the ANA features may be a key factor for predicting lncRNA subcellular localization, which correlates with the composition of stems and loops in the secondary structure of lncRNAs.
Collapse
Affiliation(s)
- Si-Le Hu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Ying-Li Chen
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Lu-Qiang Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Hui Bai
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Jia-Hong Yang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Qian-Zhong Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| |
Collapse
|
49
|
Cheng Y, Liang Y, Tan X, Liu L. Host long noncoding RNAs in bacterial infections. Front Immunol 2024; 15:1419782. [PMID: 39295861 PMCID: PMC11408731 DOI: 10.3389/fimmu.2024.1419782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Bacterial infections remain a significant global health concern, necessitating a comprehensive understanding of the intricate host-pathogen interactions that play a critical role in the outcome of infectious diseases. Recent investigations have revealed that noncoding RNAs (ncRNAs) are key regulators of these complex interactions. Among them, long noncoding RNAs (lncRNAs) have gained significant attention because of their diverse regulatory roles in gene expression, cellular processes and the production of cytokines and chemokines in response to bacterial infections. The host utilizes lncRNAs as a defense mechanism to limit microbial pathogen invasion and replication. On the other hand, some host lncRNAs contribute to the establishment and maintenance of bacterial pathogen reservoirs within the host by promoting bacterial pathogen survival, replication, and dissemination. However, our understanding of host lncRNAs in the context of bacterial infections remains limited. This review focuses on the impact of host lncRNAs in shaping host-pathogen interactions, shedding light on their multifaceted functions in both host defense and bacterial survival, and paving the way for future research aimed at harnessing their regulatory potential for clinical applications.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Xuejuan Tan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
50
|
Lee DY. Emerging Circulating Biomarkers for Enhanced Cardiovascular Risk Prediction. J Lipid Atheroscler 2024; 13:262-279. [PMID: 39355403 PMCID: PMC11439747 DOI: 10.12997/jla.2024.13.3.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 06/06/2024] [Indexed: 10/03/2024] Open
Abstract
Cardiovascular disease (CVD) continues to be the primary cause of mortality worldwide, underscoring the importance of identifying additional cardiovascular risk factors. The consensus is that lipid levels alone do not fully reflect the status of atherosclerosis, thus necessitating extensive research on cardiovascular biomarkers. This review encompasses a wide spectrum of methodologies for identifying novel risk factors or biomarkers for CVD. Inflammation, oxidative stress, plaque instability, cardiac remodeling, and fibrosis play pivotal roles in CVD pathogenesis. We introduce and discuss several promising biomarkers-namely, osteocalcin, angiogenin, lipoprotein-associated phospholipase A2, growth differentiation factor 15, galectin-3, growth stimulation expressed gene 2, and microRNAs, all of which have potential implications in the assessment and management of cardiovascular risk.
Collapse
Affiliation(s)
- Da Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|