1
|
Silva GG, Vincenzi RA, de Araujo GG, Venceslau SJS, Rodrigues F. Siderite and vivianite as energy sources for the extreme acidophilic bacterium Acidithiobacillus ferrooxidans in the context of mars habitability. Sci Rep 2024; 14:14885. [PMID: 38937525 PMCID: PMC11211326 DOI: 10.1038/s41598-024-64246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
Past and present habitability of Mars have been intensely studied in the context of the search for signals of life. Despite the harsh conditions observed today on the planet, some ancient Mars environments could have harbored specific characteristics able to mitigate several challenges for the development of microbial life. In such environments, Fe2+ minerals like siderite (already identified on Mars), and vivianite (proposed, but not confirmed) could sustain a chemolithoautotrophic community. In this study, we investigate the ability of the acidophilic iron-oxidizing chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans to use these minerals as its sole energy source. A. ferrooxidans was grown in media containing siderite or vivianite under different conditions and compared to abiotic controls. Our experiments demonstrated that this microorganism was able to grow, obtaining its energy from the oxidation of Fe2+ that came from the solubilization of these minerals under low pH. Additionally, in sealed flasks without CO2, A. ferrooxidans was able to fix carbon directly from the carbonate ion released from siderite for biomass production, indicating that it could be able to colonize subsurface environments with little or no contact with an atmosphere. These previously unexplored abilities broaden our knowledge on the variety of minerals able to sustain life. In the context of astrobiology, this expands the list of geomicrobiological processes that should be taken into account when considering the habitability of environments beyond Earth, and opens for investigation the possible biological traces left on these substrates as biosignatures.
Collapse
Affiliation(s)
- Gabriel Gonçalves Silva
- Programa de Pós-Graduação Em Química, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Roberta Almeida Vincenzi
- Programa de Pós-Graduação Em Bioquímica E Biologia Molecular, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Gabriel Guarany de Araujo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Fabio Rodrigues
- Departamento de Química Fundamental, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Nikitczuk MP, Bebout GE, Geiger CA, Ota T, Kunihiro T, Mustard JF, Halldórsson SA, Nakamura E. Nitrogen Incorporation in Potassic and Micro- and Meso-Porous Minerals: Potential Biogeochemical Records and Targets for Mars Sampling. ASTROBIOLOGY 2022; 22:1293-1309. [PMID: 36074082 PMCID: PMC9618379 DOI: 10.1089/ast.2021.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
We measured the N concentrations and isotopic compositions of 44 samples of terrestrial potassic and micro- and meso-porous minerals and a small number of whole-rocks to determine the extent to which N is incorporated and stored during weathering and low-temperature hydrothermal alteration in Mars surface/near-surface environments. The selection of these minerals and other materials was partly guided by the study of altered volcanic glass from Antarctica and Iceland, in which the incorporation of N as NH4+ in phyllosilicates is indicated by correlated concentrations of N and the LILEs (i.e., K, Ba, Rb, Cs), with scatter likely related to the presence of exchanged, occluded/trapped, or encapsulated organic/inorganic N occurring within structural cavities (e.g., in zeolites). The phyllosilicates, zeolites, and sulfates analyzed in this study contain between 0 and 99,120 ppm N and have δ15Nair values of -34‰ to +65‰. Most of these minerals, and the few siliceous hydrothermal deposits that were analyzed, have δ15N consistent with the incorporation of biologically processed N during low-temperature hydrothermal or weathering processes. Secondary ion mass spectrometry on altered hyaloclastites demonstrates the residency of N in smectites and zeolites, and silica. We suggest that geological materials known on Earth to incorporate and store N and known to be abundant at, or near, the surface of Mars should be considered targets for upcoming Mars sample return with the intent to identify any signs of ancient or modern life.
Collapse
Affiliation(s)
- Matthew P. Nikitczuk
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Gray E. Bebout
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
- Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Japan
| | - Charles A. Geiger
- Universität Salzburg, Fachbereich Chemie und Physik der Materialien, Salzburg, Austria
| | - Tsutomu Ota
- Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Japan
| | - Takuya Kunihiro
- Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Japan
| | - John F. Mustard
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | - Sæmundur A. Halldórsson
- Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland
| | - Eizo Nakamura
- Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Japan
| |
Collapse
|
3
|
Touchette D, Altshuler I, Raymond-Bouchard I, Fernández-Martínez MÁ, Bourdages LJ, O'Connor B, Ricco AJ, Whyte LG. Microfluidics Microbial Activity MicroAssay: An Automated In Situ Microbial Metabolic Detection System. ASTROBIOLOGY 2022; 22:158-170. [PMID: 35049343 DOI: 10.1089/ast.2021.0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With no direct extant-life detection instrumentation included in a space mission since the 1970s, the advancement of new technologies to be included in future space missions is imperative. We developed, optimized, and tested a semi-automated prototype, the microfluidics Microbial Activity MicroAssay (μMAMA). This system metabolically characterizes and detects extant microbial life by way of metabolism-indicator redox dyes. We first evaluated the robustness and sensitivity of six redox dye/buffer combinations, and we then tested their responses to metabolic activity in astrobiological analog high-Arctic samples. We determined that the Biolog Inoculating Fluid (IF)-C and AlamarBlue buffered in IF-0a (aB-IF0a) dye/buffer combinations were optimal, as they detected metabolic activity from the fewest microbial cells (102 cells/mL) while maintaining efficacy over a broad physiochemical range of pH (0-13), temperature (-10°C to 37°C), salinity and perchlorate (tested up to 30%), and in the presence of a Mars regolith simulant (MMS-2). The μMAMA, which incorporated these redox dyes, detected extant active cold-adapted microbial life from high Arctic analog sites, including samples amended with substrates targeting chemolithoautotrophic metabolisms. Given μMAMA's small size (we estimate a complete planetary instrument could occupy as little as 3 L) and potential for automation, it could easily be incorporated into almost any landed platform for life detection missions.
Collapse
Affiliation(s)
- David Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Isabelle Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Miguel Ángel Fernández-Martínez
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Louis-Jacques Bourdages
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montréal, Québec, Canada
| | - Brady O'Connor
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | | | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| |
Collapse
|
4
|
Constraining the preservation of organic compounds in Mars analog nontronites after exposure to acid and alkaline fluids. Sci Rep 2020; 10:15097. [PMID: 32934272 PMCID: PMC7492362 DOI: 10.1038/s41598-020-71657-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/19/2020] [Indexed: 11/25/2022] Open
Abstract
The presence of organic matter in lacustrine mudstone sediments at Gale crater was revealed by the Mars Science Laboratory Curiosity rover, which also identified smectite clay minerals. Analogue experiments on phyllosilicates formed under low temperature aqueous conditons have illustrated that these are excellent reservoirs to host organic compounds against the harsh surface conditions of Mars. Here, we evaluate whether the capacity of smectites to preserve organic compounds can be influenced by a short exposure to different diagenetic fluids. We analyzed the stability of glycine embedded within nontronite samples previously exposed to either acidic or alkaline fluids (hereafter referred to as “treated nontronites”) under Mars-like surface conditions. Analyses performed using multiple techniques showed higher photodegradation of glycine in the acid-treated nontronite, triggered by decarboxylation and deamination processes. In constrast, our experiments showed that glycine molecules were preferably incorporated by ion exchange in the interlayer region of the alkali-treated nontronite, conferring them a better protection against the external conditions. Our results demonstrate that smectite previously exposed to fluids with different pH values influences how glycine is adsorbed into their interlayer regions, affecting their potential for preservation of organic compounds under contemporary Mars surface conditions.
Collapse
|
5
|
Abstract
To assess Mars’ potential for both harboring life and providing useable resources for future human exploration, it is of paramount importance to comprehend the water situation on the planet. Therefore, studies have been conducted to determine any evidence of past or present water existence on Mars. While the presence of abundant water on Mars very early in its history is widely accepted, on its modern form, only a fraction of this water can be found, as either ice or locked into the structure of Mars’ plentiful water-rich materials. Water on the planet is evaluated through various evidence such as rocks and minerals, Martian achondrites, low volume transient briny outflows (e.g., dune flows, reactivated gullies, slope streaks, etc.), diurnal shallow soil moisture (e.g., measurements by Curiosity and Phoenix Lander), geomorphic representation (possibly from lakes and river valleys), and groundwater, along with further evidence obtained by probe and rover discoveries. One of the most significant lines of evidence is for an ancient streambed in Gale Crater, implying ancient amounts of “vigorous” water on Mars. Long ago, hospitable conditions for microbial life existed on the surface of Mars, as it was likely periodically wet. However, its current dry surface makes it almost impossible as an appropriate environment for living organisms; therefore, scientists have recognized the planet’s subsurface environments as the best potential locations for exploring life on Mars. As a result, modern research has aimed towards discovering underground water, leading to the discovery of a large amount of underground ice in 2016 by NASA, and a subglacial lake in 2018 by Italian scientists. Nevertheless, the presence of life in Mars’ history is still an open question. In this unifying context, the current review summarizes results from a wide variety of studies and reports related to the history of water on Mars, as well as any related discussions on the possibility of living organism existence on the planet.
Collapse
|
6
|
Bishop JL, Gross C, Danielsen J, Parente M, Murchie SL, Horgan B, Wray JJ, Viviano C, Seelos FP. Multiple mineral horizons in layered outcrops at Mawrth Vallis, Mars, signify changing geochemical environments on early Mars. ICARUS 2020; 341:113634. [PMID: 34045770 PMCID: PMC8152300 DOI: 10.1016/j.icarus.2020.113634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Refined calibrations of CRISM images are enabling identification of smaller deposits of unique aqueous materials on Mars that reveal changing environmental conditions at the region surrounding Mawrth Vallis. Through characterization of these clay-sulfate assemblages and their association with the layered, phyllosilicate units of this region, more details of the aqueous geochemical history can be gleaned. A stratigraphy including five distinct mineral horizons is mapped using compositional data from CRISM over CTX and HRSC imagery across 100s of km and from CRISM over HiRISE imagery across 100s of meters. Transitions in mineralogic units were characterized using visible/near-infrared (VNIR) spectral properties and surface morphology. We identified and characterized complex "doublet" type spectral signatures with two bands between 2.2 and 2.3 μm at one stratigraphic horizon. Based on comparisons with terrestrial sites, the spectral "doublet" unit described here may reflect the remnants of a salty, evaporative period that existed on Mars during the transition from formation of Fe-rich phyllosilicates to Al-rich phyllosilicates. Layered outcrops observed at Mawrth Vallis are thicker than in other altered regions of Mars, but may represent processes that were more widespread in wet regions of the planet during its early history. The aqueous geochemical environments supporting the outcrops observed here include: (i) the formation of Fe3+-rich smectites in a warm and wet environment, (ii) overlain by a thin ferrous-bearing clay unit that could be associated with heating or reducing conditions, (iii) followed by a transition to salty and/or acidic alteration phases and sulfates (characterized by the spectral "doublet" shape) in an evaporative setting, (iv) formation of Al-rich phyllosilicates through pedogenesis or acid leaching, and (v) finally persistence of poorly crystalline aluminosilicates marking the end of the warm climate on early Mars. The "doublet" type units described here are likely composed of clay-sulfate assemblages formed in saline, acidic evaporative environments similar to those found in Western Australia and the Atacama desert. Despite the chemically extreme and variable waters present at these terrestrial, saline lake environments, active ecosystems are present; thus, these "doublet" type units may mark exciting areas for continued exploration important to astrobiology on Mars.
Collapse
Affiliation(s)
- Janice L. Bishop
- SETI Institute, Mountain View, CA, United States of America
- Freie Universität Berlin, Berlin, Germany
| | | | - Jacob Danielsen
- SETI Institute, Mountain View, CA, United States of America
- San Jose State University, San Jose, CA, United States of America
| | - Mario Parente
- University of Massachusetts at Amherst, Amherst, MA, United States of America
| | - Scott L. Murchie
- Johns Hopkins University Applied Physics Lab, Laurel, MD, United States of America
| | - Briony Horgan
- Purdue University, West Lafayette, IN, United States of America
| | - James J. Wray
- Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Christina Viviano
- Johns Hopkins University Applied Physics Lab, Laurel, MD, United States of America
| | - Frank P. Seelos
- Johns Hopkins University Applied Physics Lab, Laurel, MD, United States of America
| |
Collapse
|
7
|
Stüeken EE, Tino C, Arp G, Jung D, Lyons TW. Nitrogen isotope ratios trace high-pH conditions in a terrestrial Mars analog site. SCIENCE ADVANCES 2020; 6:eaay3440. [PMID: 32133401 PMCID: PMC7043907 DOI: 10.1126/sciadv.aay3440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
High-pH alkaline lakes are among the most productive ecosystems on Earth and prime targets in the search for life on Mars; however, a robust proxy for such settings does not yet exist. Nitrogen isotope fractionation resulting from NH3 volatilization at high pH has the potential to fill this gap. To validate this idea, we analyzed samples from the Nördlinger Ries, a Miocene impact crater lake that displayed pH values up to 9.8 as inferred from mineralogy and aqueous modeling. Our data show a peak in δ15N of +17‰ in the most alkaline facies, followed by a gradual decline to around +5‰, concurrent with the proposed decline in pH, highlighting the utility of nitrogen isotopes as a proxy for high-pH conditions. In combination with independent mineralogical indicators for high alkalinity, nitrogen isotopes can provide much-needed quantitative constraints on ancient atmospheric Pco2 (partial pressure of CO2) and thus climatic controls on early Earth and Mars.
Collapse
Affiliation(s)
- Eva E. Stüeken
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, Fife, KY16 9AL Scotland, UK
- Virtual Planetary Laboratory, University of Washington, Seattle, WA 98195, USA
| | - Christopher Tino
- Department of Earth Sciences, University of California, Riverside, CA 92521, USA
| | - Gernot Arp
- Georg-August-Universität Göttingen, Geowissenschaftliches Zentrum, Goldschmidtstrasse 3, 37077 Göttingen, Germany
| | - Dietmar Jung
- Bayerisches Landesamt für Umwelt, Geologischer Dienst, Hans-Högn-Straße 12, 95030 Hof/Saale, Germany
| | - Timothy W. Lyons
- Virtual Planetary Laboratory, University of Washington, Seattle, WA 98195, USA
- Department of Earth Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Sueoka Y, Yamashita S, Kouduka M, Suzuki Y. Deep Microbial Colonization in Saponite-Bearing Fractures in Aged Basaltic Crust: Implications for Subsurface Life on Mars. Front Microbiol 2019; 10:2793. [PMID: 31866969 PMCID: PMC6906187 DOI: 10.3389/fmicb.2019.02793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
One of the most promising planetary bodies that might harbor extraterrestrial life is Mars, given the presence of liquid water in the deep subsurface. The upper crust of Mars is mainly composed of >3.7-billion-year-old basaltic lava where heat-driven fluid circulation is negligible. The analogous crustal environment to the Martian subsurface is found in the Earth's oceanic crust composed of basaltic lava. The basaltic crust tends to cool down for 10–20-million-years after formation. However, microbial life in old cold basaltic lava is largely unknown even in the Earth's oceanic crust, because the lack of vigorous circulation prevents sampling of pristine crustal fluid from boreholes. Alternatively, it is important to investigate deep microbial life using pristine drill cores obtained from basaltic lava. We investigated a basaltic rock core sample with mineral-filled fractures drilled during Integral Ocean Drilling Project Expedition 329 that targeted 104-million-year-old oceanic crust. Mineralogical characterizations of fracture-infilling minerals revealed that fractures/veins were filled with Mg-rich smectite called saponite and calcium carbonate. The organic carbon content from the saponite-rich clay fraction in the core sample was 23 times higher than that from the bulk counterpart, which appears to be sufficient to supply energy and carbon sources to saponite-hosted life. Furthermore, a newly developed method to detect microbial cells in a thin-section of the saponite-bearing fracture revealed the dense colonization of SYBR-Green-I stained microbial cells spatially associated with saponite. These results suggest that the presence of saponite in old cold basaltic crust is favorable for microbial life. In addition to carbonaceous chondrite, saponite is a common product of low-temperature reactions between water and mafic minerals on Earth and Mars. It is therefore expected that deep saponite-bearing fractures could host extant life and/or the past life on Mars.
Collapse
Affiliation(s)
- Yuri Sueoka
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Yamashita
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Iron-rich Smectite Formation in Subseafloor Basaltic Lava in Aged Oceanic Crust. Sci Rep 2019; 9:11306. [PMID: 31383916 PMCID: PMC6683296 DOI: 10.1038/s41598-019-47887-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/22/2019] [Indexed: 11/29/2022] Open
Abstract
Basalt weathering in oceanic crust controls long-term elemental cycling on Earth. It is unknown whether basalt weathering tends to continue in unsedimented oceanic crust with formation ages of >10–20 million years (Ma), when fluid circulation is restricted by the formation of secondary minerals in fractures/veins. We investigated basalt weathering in 13.5-, 33.5- and 104-Ma oceanic crust below the South Pacific Gyre by combining bulk and in-situ clay mineral characterisations. Here we show the formation of iron-rich smectite at the rims of fractures/veins in 33.5-Ma and 104-Ma core samples from depths as great as 121 metres below the seafloor. In contrast, iron-rich smectite formation was not observed in three 13.5-Ma core samples, which suggests that iron-rich smectite formation may be affected by the dilution of aqueous silica supplied from basalt dissolution by actively circulating fluid. As iron-rich smectite from the 33.5-Ma and 104-Ma core samples was more enriched in Mg and K than that typically found at hydrothermal mounds, iron-rich smectite formation appears to result from basalt weathering rather than hydrothermal alteration. Our results suggest that unsedimented basaltic basement is permeable and reactive to host microbial life in aged oceanic crust on Earth and possibly in the deep subsurface on Mars.
Collapse
|
10
|
Aerts JW, van Spanning RJM, Flahaut J, Molenaar D, Bland PA, Genge MJ, Ehrenfreund P, Martins Z. Microbial Communities in Sediments From Four Mildly Acidic Ephemeral Salt Lakes in the Yilgarn Craton (Australia) - Terrestrial Analogs to Ancient Mars. Front Microbiol 2019; 10:779. [PMID: 31133990 PMCID: PMC6512757 DOI: 10.3389/fmicb.2019.00779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/27/2019] [Indexed: 11/24/2022] Open
Abstract
The Yilgarn Craton in Australia has a large number of naturally occurring shallow ephemeral lakes underlain by a dendritic system of paleodrainage channels. Processes like evaporation, flooding, erosion, as well as inflow of saline, often acidic and ion-rich groundwater contribute to the (dynamic) nature of the lakes and the composition of the sediments. The region has previously been described as an analog environment for early Mars due to its geological and geophysical similarities. Here, we investigated sediment samples of four lake environments aimed at getting a fundamental understanding of the native microbial communities and the mineralogical and (bio)chemical composition of the sediments they are associated with. The dominant mineral phases in the sediments were quartz, feldspars and amphiboles, while halite and gypsum were the only evaporites detected. Element analysis revealed a rich and complex image, in which silicon, iron, and aluminum were the dominant ions, but relative high concentrations of trace elements such as strontium, chromium, zirconium, and barium were also found. The concentrations of organic carbon, nitrogen, and phosphorus were generally low. 16S amplicon sequencing on the Illumina platform showed the presence of diverse microbial communities in all four lake environments. We found that most of the communities were dominated by extremely halophilic Archaea of the Halobacteriaceae family. The dynamic nature of these lakes appears to influence the biological, biochemical, and geological components of the ecosystem to a large effect. Inter- and intra-lake variations in the distributions of microbial communities were significant, and could only to a minor degree be explained by underlying environmental conditions. The communities are likely significantly influenced by small scale local effects caused by variations in geological settings and dynamic interactions caused by aeolian transport and flooding and evaporation events.
Collapse
Affiliation(s)
- Joost W Aerts
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rob J M van Spanning
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jessica Flahaut
- Centre de Recherches Pétrographiques et Géochimiques, Centre National de la Recherche Scientifique/Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Douwe Molenaar
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Phil A Bland
- Department of Applied Geology, Curtin University, Perth, WA, Australia
| | - Matt J Genge
- Department of Earth Science and Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Pascale Ehrenfreund
- Leiden Observatory, Leiden University, Leiden, Netherlands.,Space Policy Institute, Elliott School of International Affairs, George Washington University, Washington, DC, United States
| | - Zita Martins
- Centro de Química-Física Molecular-Institute of Nanoscience and Nanotechnology (CQFM-IN), Institute for Bioengineering and Biosciences (iBB), Departamento de Engenharia Química, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Price A, Pearson VK, Schwenzer SP, Miot J, Olsson-Francis K. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism. Front Microbiol 2018; 9:513. [PMID: 29616015 PMCID: PMC5869265 DOI: 10.3389/fmicb.2018.00513] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1-3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate instrumentation.
Collapse
Affiliation(s)
- Alex Price
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Victoria K. Pearson
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Susanne P. Schwenzer
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Jennyfer Miot
- CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d’Histoire Naturelle, Université Pierre et Marie Curie – Sorbonne Universités, UMR 7590, Paris, France
| | - Karen Olsson-Francis
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
12
|
Peretyazhko TS, Niles PB, Sutter B, Morris RV, Agresti DG, Le L, Ming DW. Smectite formation in the presence of sulfuric acid: Implications for acidic smectite formation on early Mars. GEOCHIMICA ET COSMOCHIMICA ACTA 2018; 220:248-260. [PMID: 32801388 PMCID: PMC7427815 DOI: 10.1016/j.gca.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The excess of orbital detection of smectite deposits compared to carbonate deposits on the martian surface presents an enigma because smectite and carbonate formations are both favored alteration products of basalt under neutral to alkaline conditions. We propose that Mars experienced acidic events caused by sulfuric acid (H2SO4) that permitted phyllosilicate, but inhibited carbonate, formation. To experimentally verify this hypothesis, we report the first synthesis of smectite from Mars-analogue glass-rich basalt simulant (66 wt% glass, 32 wt% olivine, 2 wt% chromite) in the presence of H2SO4 under hydrothermal conditions (~200 °C). Smectites were analyzed by X-ray diffraction, Mossbauer spectroscopy, visible and near-infrared reflectance spectroscopy and electron microprobe to characterize mineralogy and chemical composition. Solution chemistry was determined by Inductively Coupled Plasma Mass Spectrometry. Basalt simulant suspensions in 11-42 mM H2SO4 were acidic with pH ≤ 2 at the beginning of incubation and varied from acidic (pH 1.8) to mildly alkaline (pH 8.4) at the end of incubation. Alteration of glass phase during reaction of the basalt simulant with H2SO4 led to formation of the dioctahedral smectite at final pH ~3 and trioctahedral smectite saponite at final pH ~4 and higher. Anhydrite and hematite formed in the final pH range from 1.8 to 8.4 while natroalunite was detected at pH 1.8. Hematite was precipitated as a result of oxidative dissolution of olivine present in Adirondack basalt simulant. Formation of secondary phases, including smectite, resulted in release of variable amounts of Si, Mg, Na and Ca while solubilization of Al and Fe was low. Comparison of mineralogical and solution chemistry data indicated that the type of smectite (i.e., dioctahedral vs trioctahedral) was likely controlled by Mg leaching from altering basalt and substantial Mg loss created favorable conditions for formation of dioctahedral smectite. We present a model for global-scale smectite formation on Mars via acid-sulfate conditions created by the volcanic outgassing of SO2 in the Noachian and early Hesperian.
Collapse
Affiliation(s)
| | - P B Niles
- NASA Johnson Space Center, Houston, TX 77058
| | - B Sutter
- Jacobs, NASA Johnson Space Center, Houston, TX 77058
| | - R V Morris
- NASA Johnson Space Center, Houston, TX 77058
| | - D G Agresti
- University of Alabama at Birmingham, Birmingham, AL 35294
| | - L Le
- Jacobs, NASA Johnson Space Center, Houston, TX 77058
| | - D W Ming
- NASA Johnson Space Center, Houston, TX 77058
| |
Collapse
|
13
|
Chemtob SM, Nickerson RD, Morris RV, Agresti DG, Catalano JG. Oxidative alteration of ferrous smectites and implications for the redox evolution of early Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2469-2488. [PMID: 32802700 PMCID: PMC7427814 DOI: 10.1002/2017je005331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface conditions on early Mars were likely anoxic, similar to early Earth, but the timing of the evolution to oxic conditions characteristic of contemporary Mars is unresolved. Ferrous trioctahedral smectites are the thermodynamically predicted products of anoxic basalt weathering, but orbital analyses of Noachian-aged terrains find primarily Fe3+-bearing clay minerals. Rover-based detection of Fe2+-bearing trioctahedral smectites at Gale Crater suggest that ferrous smectites are the unoxidized progenitors of orbitally-detected ferric smectites. To assess this pathway, we conducted ambient-temperature oxidative alteration experiments on four synthetic ferrous smectites having molar Fe/(Mg+Fe) from 1.00 to 0.33. Smectite suspension in air-saturated solutions produced incomplete oxidation (24-38% Fe3+/ΣFe). Additional smectite oxidation occurred upon re-exposure to air-saturated solutions after anoxic hydrothermal recrystallization, which accelerated cation and charge redistribution in the octahedral sheet. Oxidation was accompanied by contraction of the octahedral sheet (d(060) decreased from 1.53-1.56 Å to 1.52 Å), consistent with a shift towards dioctahedral structure. Ferrous smectite oxidation by aqueous hydrogen peroxide solutions resulted in nearly complete Fe2+ oxidation but also led to partial Fe3+ ejection from the structure, producing nanoparticulate hematite. Reflectance spectra of oxidized smectites were characterized by (Fe3+,Mg)2-OH bands at 2.28-2.30 μm, consistent with oxidative formation of dioctahedral nontronite. Accordingly, ferrous smectites are plausible precursors to observed ferric smectites on Mars, and their presence in late-Noachian sedimentary units suggests that anoxic conditions may have persisted on Mars beyond the Noachian.
Collapse
Affiliation(s)
- Steven M Chemtob
- Department of Earth and Environmental Sciences, Temple University, Philadelphia, PA 19122, U.S.A
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| | - Ryan D Nickerson
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| | | | - David G Agresti
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Jeffrey G Catalano
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| |
Collapse
|
14
|
Fairén AG, Gil‐Lozano C, Uceda ER, Losa‐Adams E, Davila AF, Gago‐Duport L. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:1855-1879. [PMID: 29104844 PMCID: PMC5656915 DOI: 10.1002/2016je005229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 08/13/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.
Collapse
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC‐INTA)MadridSpain
- Department of AstronomyCornell UniversityIthacaNew YorkUSA
| | | | - Esther R. Uceda
- Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
| | | | | | | |
Collapse
|
15
|
Fairén AG, Losa-Adams E, Gil-Lozano C, Gago-Duport L, Uceda ER, Squyres SW, Rodríguez JAP, Davila AF, McKay CP. Tracking the weathering of basalts on Mars using lithium isotope fractionation models. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS : G(3) 2015; 16:1172-1197. [PMID: 27642264 PMCID: PMC5008203 DOI: 10.1002/2015gc005748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/24/2015] [Indexed: 06/06/2023]
Abstract
Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt-forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium-7Li and 6Li-have a large relative mass difference (∼15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary minerals-the source of Li-and on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's history.
Collapse
Affiliation(s)
- Alberto G Fairén
- Centro de Astrobiología Madrid Spain; Department of Astronomy Cornell University Ithaca New York USA
| | | | | | - Luis Gago-Duport
- Departamento de Geociencias Marinas Universidad de Vigo Vigo Spain
| | - Esther R Uceda
- Departamento de Biología Molecular Universidad Autónoma de Madrid Madrid Spain
| | | | - J Alexis P Rodríguez
- Space Science and Astrobiology Division NASA Ames Research Center Mountain View California USA
| | | | - Christopher P McKay
- Space Science and Astrobiology Division NASA Ames Research Center Mountain View California USA
| |
Collapse
|
16
|
Martin D, Cockell CS. PELS (Planetary Environmental Liquid Simulator): a new type of simulation facility to study extraterrestrial aqueous environments. ASTROBIOLOGY 2015; 15:111-118. [PMID: 25651097 DOI: 10.1089/ast.2014.1240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Investigations of other planetary bodies, including Mars and icy moons such as Enceladus and Europa, show that they may have hosted aqueous environments in the past and may do so even today. Therefore, a major challenge in astrobiology is to build facilities that will allow us to study the geochemistry and habitability of these extraterrestrial environments. Here, we describe a simulation facility (PELS: Planetary Environmental Liquid Simulator) with the capability for liquid input and output that allows for the study of such environments. The facility, containing six separate sample vessels, allows for statistical replication of samples. Control of pressure, gas composition, UV irradiation conditions, and temperature allows for the precise replication of aqueous conditions, including subzero brines under martian atmospheric conditions. A sample acquisition system allows for the collection of both liquid and solid samples from within the chamber without breaking the atmospheric conditions, enabling detailed studies of the geochemical evolution and habitability of past and present extraterrestrial environments. The facility we describe represents a new frontier in planetary simulation-continuous flow-through simulation of extraterrestrial aqueous environments.
Collapse
Affiliation(s)
- Derek Martin
- School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | | |
Collapse
|
17
|
Bridges JC, Schwenzer SP, Leveille R, Westall F, Wiens RC, Mangold N, Bristow T, Edwards P, Berger G. Diagenesis and clay mineral formation at Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2015; 120:1-19. [PMID: 26213668 PMCID: PMC4508961 DOI: 10.1002/2014je004757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 05/22/2023]
Abstract
The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10-50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100-1000, pH of ∽7.5-12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.
Collapse
Affiliation(s)
- J C Bridges
- Space Research Centre, Department of Physics and Astronomy, University of LeicesterLeicester, UK
- Correspondence to: J. C. Bridges,,
| | - S P Schwenzer
- Department of Physical Sciences, Open UniversityMilton Keynes, UK
| | - R Leveille
- Department of Earth and Planetary Science, McGill UniversityMontreal, Quebec, Canada
| | - F Westall
- Centre de Biophysique Moléculaire, CNRSOrléans CEDEX2, France
| | - R C Wiens
- Space Remote Sensing, Los Alamos National LaboratoryLos Alamos, New Mexico, USA
| | - N Mangold
- Laboratoire Planétologie et Géodynamique de Nantes, LPGN/CNRS UMR6112 and Université de NantesNantes, France
| | - T Bristow
- Exobiology Branch, NASA Ames Research CenterMoffett Field, California, USA
| | - P Edwards
- Space Research Centre, Department of Physics and Astronomy, University of LeicesterLeicester, UK
| | - G Berger
- IRAP (CNRS-Univ. P. Sabatier)Toulouse, France
| |
Collapse
|
18
|
Ruesch O, Poulet F, Vincendon M, Bibring JP, Carter J, Erkeling G, Gondet B, Hiesinger H, Ody A, Reiss D. Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Gualtieri AF, Viani A, Sgarbi G, Lusvardi G. In vitro biodurability of the product of thermal transformation of cement-asbestos. JOURNAL OF HAZARDOUS MATERIALS 2012; 205-206:63-71. [PMID: 22257569 DOI: 10.1016/j.jhazmat.2011.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 05/31/2023]
Abstract
To safely recycle the product of the thermal transformation of cement-asbestos as secondary raw material, its toxicity potential should be assessed by in vitro biodurability tests. In this work, the acellular in vitro biodurability of the products of transformation of cement-asbestos at 1200 °C (named KRY·AS) was tested using both inorganic and organic simulated lung fluids at pH 4.5. The dissolution kinetics were followed using chemical, mineralogical and microstructural analyses. The total dissolution time estimated from the experiments with inorganic HCl diluted solution is one order of magnitude higher than that determined from the experiments with buffered Gamble solution (253 days vs. 20 days). The key parameter determining the difference in dissolution rate turns out to be the solidus/liquidus ratio which prompts a fast saturation of the solution with monosilicic acid. The calculated dissolution rate constants showed that the biodurability in vitro of KRY·AS is much lower with respect to that of standard chrysotile asbestos (total estimated dissolution time of 20 days vs. 298 days, respectively). This proves a low potential toxicity of this secondary raw material.
Collapse
Affiliation(s)
- Alessandro F Gualtieri
- Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, Via S. Eufemia 19, I-41100 Modena, Italy.
| | | | | | | |
Collapse
|
20
|
Abstract
Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.
Collapse
|
21
|
Cousins CR, Crawford IA. Volcano-ice interaction as a microbial habitat on Earth and Mars. ASTROBIOLOGY 2011; 11:695-710. [PMID: 21877914 DOI: 10.1089/ast.2010.0550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Volcano-ice interaction has been a widespread geological process on Earth that continues to occur to the present day. The interaction between volcanic activity and ice can generate substantial quantities of liquid water, together with steep thermal and geochemical gradients typical of hydrothermal systems. Environments available for microbial colonization within glaciovolcanic systems are wide-ranging and include the basaltic lava edifice, subglacial caldera meltwater lakes, glacier caves, and subsurface hydrothermal systems. There is widespread evidence of putative volcano-ice interaction on Mars throughout its history and at a range of latitudes. Therefore, it is possible that life on Mars may have exploited these habitats, much in the same way as has been observed on Earth. The sedimentary and mineralogical deposits resulting from volcano-ice interaction have the potential to preserve evidence of any indigenous microbial populations. These include jökulhlaup (subglacial outflow) sedimentary deposits, hydrothermal mineral deposits, basaltic lava flows, and subglacial lacustrine deposits. Here, we briefly review the evidence for volcano-ice interactions on Mars and discuss the geomicrobiology of volcano-ice habitats on Earth. In addition, we explore the potential for the detection of these environments on Mars and any biosignatures these deposits may contain.
Collapse
Affiliation(s)
- Claire R Cousins
- Department of Earth and Planetary Sciences, Birkbeck College, University of London, London, UK.
| | | |
Collapse
|
22
|
Wray JJ, Milliken RE, Dundas CM, Swayze GA, Andrews-Hanna JC, Baldridge AM, Chojnacki M, Bishop JL, Ehlmann BL, Murchie SL, Clark RN, Seelos FP, Tornabene LL, Squyres SW. Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003694] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Story S, Bowen BB, Benison KC, Schulze DG. Authigenic phyllosilicates in modern acid saline lake sediments and implications for Mars. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003687] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Fairén AG, Davila AF, Lim D, Bramall N, Bonaccorsi R, Zavaleta J, Uceda ER, Stoker C, Wierzchos J, Dohm JM, Amils R, Andersen D, McKay CP. Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. ASTROBIOLOGY 2010; 10:821-843. [PMID: 21087162 DOI: 10.1089/ast.2009.0440] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars.
Collapse
|
25
|
Warner N, Gupta S, Lin SY, Kim JR, Muller JP, Morley J. Late Noachian to Hesperian climate change on Mars: Evidence of episodic warming from transient crater lakes near Ares Vallis. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003522] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Meunier A, Petit S, Cockell CS, El Albani A, Beaufort D. The Fe-rich clay microsystems in basalt-komatiite lavas: importance of Fe-smectites for pre-biotic molecule catalysis during the Hadean eon. ORIGINS LIFE EVOL B 2010; 40:253-72. [PMID: 20213161 DOI: 10.1007/s11084-010-9205-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 01/11/2010] [Indexed: 11/29/2022]
Abstract
During the Hadean to early Archean period (4.5-3.5 Ga), the surface of the Earth's crust was predominantly composed of basalt and komatiite lavas. The conditions imposed by the chemical composition of these rocks favoured the crystallization of Fe-Mg clays rather than that of Al-rich ones (montmorillonite). Fe-Mg clays were formed inside chemical microsystems through sea weathering or hydrothermal alteration, and for the most part, through post-magmatic processes. Indeed, at the end of the cooling stage, Fe-Mg clays precipitated directly from the residual liquid which concentrated in the voids remaining in the crystal framework of the mafic-ultramafic lavas. Nontronite-celadonite and chlorite-saponite covered all the solid surfaces (crystals, glass) and are associated with tiny pyroxene and apatite crystals forming the so-called "mesostasis". The mesostasis was scattered in the lava body as micro-settings tens of micrometres wide. Thus, every square metre of basalt or komatiite rocks was punctuated by myriads of clay-rich patches, each of them potentially behaving as a single chemical reactor which could concentrate the organics diluted in the ocean water. Considering the high catalytic potentiality of clays, and particularly those of the Fe-rich ones (electron exchangers), it is probable that large parts of the surface of the young Earth participated in the synthesis of prebiotic molecules during the Hadean to early Archean period through innumerable clay-rich micro-settings in the massive parts and the altered surfaces of komatiite and basaltic lavas. This leads us to suggest that Fe,Mg-clays should be preferred to Al-rich ones (montmorillonite) to conduct experiments for the synthesis and the polymerisation of prebiotic molecules.
Collapse
Affiliation(s)
- Alain Meunier
- HydrASA University of Poitiers, Bât. Sciences Naturelles-FRE 3114 INSU-CNRS, 40 avenue du Recteur Pineau, 86022, Poitiers Cedex, France.
| | | | | | | | | |
Collapse
|
27
|
Ehlmann BL, Mustard JF, Swayze GA, Clark RN, Bishop JL, Poulet F, Des Marais DJ, Roach LH, Milliken RE, Wray JJ, Barnouin-Jha O, Murchie SL. Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003339] [Citation(s) in RCA: 383] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Stability against freezing of aqueous solutions on early Mars. Nature 2009; 459:401-4. [DOI: 10.1038/nature07978] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 03/16/2009] [Indexed: 11/08/2022]
|
29
|
Poulet F, Beaty DW, Bibring JP, Bish D, Bishop JL, Noe Dobrea E, Mustard JF, Petit S, Roach LH. Key scientific questions and key investigations from the first international conference on Martian phyllosilicates. ASTROBIOLOGY 2009; 9:257-267. [PMID: 19400732 DOI: 10.1089/ast.2009.0335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Minerals and their occurrences can tell us about the chemistry, pressure, and temperatures of past environments on Mars and thus allow inferences about the potential for habitability. Thanks to recent space exploration, a new vision is emerging wherein Mars hosted environmental conditions of potential astrobiological relevance. This epoch is identified by the presence of phyllosilicate-bearing deposits, which are generally contained in very ancient basement rocks. In October 2008, over 100 planetary scientists representing 11 countries met in Paris to assess and discuss the relevance of martian phyllosilicates. The conference was structured to promote the discussion and debate of key scientific questions and key essential investigations. The purpose of this report is to document the current state of knowledge related to martian phyllosilicates and to ascertain which questions remain to be addressed: What are the basic characteristics of the phyllosilicate minerals on Mars? What are the genetic mechanisms by which phyllosilicate minerals have formed on Mars? What is the relationship between the phyllosilicate minerals observed in martian meteorites and those detected from orbit? What are the implications of phyllosilicate-bearing rocks for the development of prebiotic chemistry and the preservation of biosignatures? The most promising investigations to address these questions are presented.
Collapse
Affiliation(s)
- François Poulet
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, Orsay, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ehlmann BL, Mustard JF, Murchie SL, Poulet F, Bishop JL, Brown AJ, Calvin WM, Clark RN, Marais DJD, Milliken RE, Roach LH, Roush TL, Swayze GA, Wray JJ. Orbital identification of carbonate-bearing rocks on Mars. Science 2009; 322:1828-32. [PMID: 19095939 DOI: 10.1126/science.1164759] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Geochemical models for Mars predict carbonate formation during aqueous alteration. Carbonate-bearing rocks had not previously been detected on Mars' surface, but Mars Reconnaissance Orbiter mapping reveals a regional rock layer with near-infrared spectral characteristics that are consistent with the presence of magnesium carbonate in the Nili Fossae region. The carbonate is closely associated with both phyllosilicate-bearing and olivine-rich rock units and probably formed during the Noachian or early Hesperian era from the alteration of olivine by either hydrothermal fluids or near-surface water. The presence of carbonate as well as accompanying clays suggests that waters were neutral to alkaline at the time of its formation and that acidic weathering, proposed to be characteristic of Hesperian Mars, did not destroy these carbonates and thus did not dominate all aqueous environments.
Collapse
Affiliation(s)
- Bethany L. Ehlmann
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| | - John F. Mustard
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Scott L. Murchie
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Francois Poulet
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Janice L. Bishop
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Adrian J. Brown
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Wendy M. Calvin
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Roger N. Clark
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| | - David J. Des Marais
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Ralph E. Milliken
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Leah H. Roach
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Ted L. Roush
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Gregg A. Swayze
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| | - James J. Wray
- Department of Geological Sciences, Brown University, Providence, RI02912, USA
- Johns Hopkins University/Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Institut d'Astrophysique Spatiale, Université Paris Sud 11, 91405 Orsay, France
- SETI Institute and NASA Ames Research Center, 515 North Whisman Road, Mountain View, CA 94043, USA
- Department of Geological Sciences and Engineering, University of Nevada, MS 172, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
31
|
Pham LBS, Karatekin O, Dehant V. Effects of meteorite impacts on the atmospheric evolution of Mars. ASTROBIOLOGY 2009; 9:45-54. [PMID: 19317624 DOI: 10.1089/ast.2008.0242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Early in its history, Mars probably had a denser atmosphere with sufficient greenhouse gases to sustain the presence of stable liquid water at the surface. Impacts by asteroids and comets would have played a significant role in the evolution of the martian atmosphere, not only by causing atmospheric erosion but also by delivering material and volatiles to the planet. We investigate the atmospheric loss and the delivery of volatiles with an analytical model that takes into account the impact simulation results and the flux of impactors given in the literature. The atmospheric loss and the delivery of volatiles are calculated to obtain the atmospheric pressure evolution. Our results suggest that the impacts alone cannot satisfactorily explain the loss of significant atmospheric mass since the Late Noachian (approximately 3.7-4 Ga). A period with intense bombardment of meteorites could have increased the atmospheric loss; but to explain the loss of a speculative massive atmosphere in the Late Noachian, other factors of atmospheric erosion and replenishment also need to be taken into account.
Collapse
|
32
|
Rossi AP, Neukum G, Pondrelli M, van Gasselt S, Zegers T, Hauber E, Chicarro A, Foing B. Large-scale spring deposits on Mars? ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003062] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
|