1
|
Rahmé R, Resnick-Silverman L, Anguiano V, Campbell MJ, Fenaux P, Manfredi JJ. Mutant p53 regulates a distinct gene set by a mode of genome occupancy that is shared with wild type. EMBO Rep 2025; 26:1315-1343. [PMID: 39875582 PMCID: PMC11893899 DOI: 10.1038/s44319-025-00375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
To directly examine the interplay between mutant p53 or Mdm2 and wild type p53 in gene occupancy and expression, an integrated RNA-seq and ChIP-seq analysis was performed in vivo using isogenically matched mouse strains. Response to radiation was used as an endpoint to place findings in a biologically relevant context. Unexpectedly, mutant p53 and Mdm2 only inhibit a subset of wild type p53-mediated gene expression. In contrast to a dominant-negative or inhibitory role, the presence of either mutant p53 or Mdm2 actually enhances the occupancy of wild type p53 on many canonical targets. The C-terminal 19 amino acids of wild type p53 suppress the p53 response allowing for survival at sublethal doses of radiation. Further, the p53 mutant 172H is shown to occupy genes and regulate their expression via non-canonical means that are shared with wild type p53. This results in the heterozygous 172H/+ genotype having an expanded transcriptome compared to wild type p53 + /+.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université de Paris, Paris, France
| | - Lois Resnick-Silverman
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vincent Anguiano
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Pierre Fenaux
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Service Hématologie Seniors, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Comazzetto S, Cassidy DL, DeVilbiss AW, Jeffery EC, Ottesen BR, Reyes AR, Paul A, Bansal S, Xie SZ, Muh S, Mathews TP, Chen B, Zhao Z, Morrison SJ. Ascorbate deficiency increases quiescence and self-renewal in hematopoietic stem cells and multipotent progenitors. Blood 2025; 145:114-126. [PMID: 39437548 PMCID: PMC11738029 DOI: 10.1182/blood.2024024769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/07/2024] [Accepted: 09/07/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Ascorbate (vitamin C) limits hematopoietic stem cell (HSC) function and suppresses leukemia development, partly by promoting the function of the Tet2 tumor suppressor. In humans, ascorbate is obtained from the diet, whereas in mice, it is synthesized in the liver. In this study, we show that deletion of the Slc23a2 ascorbate transporter from hematopoietic cells depleted ascorbate to undetectable levels in HSCs and multipotent hematopoietic progenitors (MPPs) without altering the plasma ascorbate levels. Slc23a2 deficiency increased HSC reconstituting potential and self-renewal potential upon transplantation into irradiated mice. Slc23a2 deficiency also increased the reconstituting and self-renewal potentials of MPPs, conferring the ability to reconstitute irradiated mice long term. Slc23a2-deficient HSCs and MPPs divided much less frequently than control HSCs and MPPs. Increased self-renewal and reconstituting potential were observed particularly in quiescent Slc23a2-deficient HSCs and MPPs. The effect of Slc23a2 deficiency on MPP self-renewal was not mediated by reduced Tet2 function. Ascorbate thus regulates quiescence and restricts self-renewal potential in HSCs and MPPs such that ascorbate deficiency confers MPPs with long-term self-renewal potential.
Collapse
Affiliation(s)
- Stefano Comazzetto
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniel L Cassidy
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Andrew W DeVilbiss
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Elise C Jeffery
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bethany R Ottesen
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Amanda R Reyes
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Animesh Paul
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Suraj Bansal
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Muh
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas P Mathews
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Brandon Chen
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhiyu Zhao
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
3
|
Bai H, Liu X, Lin M, Meng Y, Tang R, Guo Y, Li N, Clarke MF, Cai S. Progressive senescence programs induce intrinsic vulnerability to aging-related female breast cancer. Nat Commun 2024; 15:5154. [PMID: 38886378 PMCID: PMC11183265 DOI: 10.1038/s41467-024-49106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Cancer incidence escalates exponentially with advancing age; however, the underlying mechanism remains unclear. In this study, we build a chronological molecular clock at single-cell transcription level with a mammary stem cell-enriched population to depict physiological aging dynamics in female mice. We find that the mammary aging process is asynchronous and progressive, initiated by an early senescence program, succeeded by an entropic late senescence program with elevated cancer associated pathways, vulnerable to cancer predisposition. The transition towards senescence program is governed by a stem cell factor Bcl11b, loss of which accelerates mammary ageing with enhanced DMBA-induced tumor formation. We have identified a drug TPCA-1 that can rejuvenate mammary cells and significantly reduce aging-related cancer incidence. Our findings establish a molecular portrait of progressive mammary cell aging and elucidate the transcriptional regulatory network bridging mammary aging and cancer predisposition, which has potential implications for the management of cancer prevalence in the aged.
Collapse
Affiliation(s)
- Huiru Bai
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaoqin Liu
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Meizhen Lin
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Yuan Meng
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Ruolan Tang
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Yajing Guo
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Li
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Michael F Clarke
- Institute of Stem Cell and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Shang Cai
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Comazzetto S, Cassidy DL, DeVilbiss AW, Jeffery EC, Ottesen BR, Reyes AR, Muh S, Mathews TP, Chen B, Zhao Z, Morrison SJ. Ascorbate depletion increases quiescence and self-renewal potential in hematopoietic stem cells and multipotent progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587574. [PMID: 38617357 PMCID: PMC11014518 DOI: 10.1101/2024.04.01.587574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Ascorbate (vitamin C) limits hematopoietic stem cell (HSC) function and suppresses leukemia development by promoting the function of the Tet2 tumor suppressor. In humans, ascorbate is obtained from the diet while in mice it is synthesized in the liver. In this study, we show that deletion of the Slc23a2 ascorbate transporter severely depleted ascorbate from hematopoietic cells. Slc23a2 deficiency increased HSC reconstituting potential and self-renewal potential upon transplantation into irradiated mice. Slc23a2 deficiency also increased the reconstituting and self-renewal potential of multipotent hematopoietic progenitors (MPPs), conferring the ability to long-term reconstitute irradiated mice. Slc23a2-deficient HSCs and MPPs divided much less frequently than control HSCs and MPPs. Increased self-renewal and reconstituting potential were observed particularly in quiescent Slc23a2-deficient HSCs and MPPs. The effect of Slc23a2 deficiency on MPP self-renewal was not mediated by reduced Tet2 function. Ascorbate thus regulates quiescence and restricts self-renewal potential in HSCs and MPPs such that ascorbate depletion confers MPPs with long-term self-renewal potential.
Collapse
Affiliation(s)
- Stefano Comazzetto
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel L. Cassidy
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew W. DeVilbiss
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elise C. Jeffery
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bethany R. Ottesen
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amanda R. Reyes
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sarah Muh
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P. Mathews
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Chen
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J. Morrison
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Lv M, Gong Y, Liu X, Wang Y, Wu Q, Chen J, Min Q, Zhao D, Li X, Chen D, Yang D, Yeerken D, Liu R, Li J, Zhang W, Zhan Q. CDK7-YAP-LDHD axis promotes D-lactate elimination and ferroptosis defense to support cancer stem cell-like properties. Signal Transduct Target Ther 2023; 8:302. [PMID: 37582812 PMCID: PMC10427695 DOI: 10.1038/s41392-023-01555-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
Reprogrammed cellular metabolism is essential for maintaining cancer stem cells (CSCs) state. Here, we report that mitochondrial D-lactate catabolism is a necessary initiating oncogenic event during tumorigenesis of esophageal squamous cell carcinoma (ESCC). We discover that cyclin-dependent kinase 7 (CDK7) phosphorylates nuclear Yes-associated protein 1 (YAP) at S127 and S397 sites and enhances its transcription function, which promotes D-lactate dehydrogenase (LDHD) protein expression. Moreover, LDHD is enriched significantly in ESCC-CSCs rather than differentiated tumor cells and high LDHD status is connected with poor prognosis in ESCC patients. Mechanistically, the CDK7-YAP-LDHD axis helps ESCC-CSCs escape from ferroptosis induced by D-lactate and generates pyruvate to satisfy energetic demands for their elevated self-renewal potential. Hence, we conclude that esophageal CSCs adopt a D-lactate elimination and pyruvate accumulation mode dependent on CDK7-YAP-LDHD axis, which drives stemness-associated hallmarks of ESCC-CSCs. Reasonably, targeting metabolic checkpoints may serve as an effective strategy for ESCC therapy.
Collapse
Affiliation(s)
- Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Ying Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dongyu Zhao
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Xianfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dongshao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Di Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Danna Yeerken
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Rui Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518036, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
6
|
Viragova S, Aparicio L, Palmerini P, Zhao J, Valencia Salazar LE, Schurer A, Dhuri A, Sahoo D, Moskaluk CA, Rabadan R, Dalerba P. Inverse agonists of retinoic acid receptor/retinoid X receptor signaling as lineage-specific antitumor agents against human adenoid cystic carcinoma. J Natl Cancer Inst 2023; 115:838-852. [PMID: 37040084 PMCID: PMC10323906 DOI: 10.1093/jnci/djad062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/13/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Adenoid cystic carcinoma (ACC) is a lethal malignancy of exocrine glands, characterized by the coexistence within tumor tissues of 2 distinct populations of cancer cells, phenotypically similar to the myoepithelial and ductal lineages of normal salivary epithelia. The developmental relationship linking these 2 cell types, and their differential vulnerability to antitumor treatments, remains unknown. METHODS Using single-cell RNA sequencing, we identified cell-surface markers (CD49f, KIT) that enabled the differential purification of myoepithelial-like (CD49fhigh/KITneg) and ductal-like (CD49flow/KIT+) cells from patient-derived xenografts (PDXs) of human ACCs. Using prospective xenotransplantation experiments, we compared the tumor-initiating capacity of the 2 cell types and tested whether one could differentiate into the other. Finally, we searched for signaling pathways with differential activation between the 2 cell types and tested their role as lineage-specific therapeutic targets. RESULTS Myoepithelial-like cells displayed higher tumorigenicity than ductal-like cells and acted as their progenitors. Myoepithelial-like and ductal-like cells displayed differential expression of genes encoding for suppressors and activators of retinoic acid signaling, respectively. Agonists of retinoic acid receptor (RAR) or retinoid X receptor (RXR) signaling (all-trans retinoic acid, bexarotene) promoted myoepithelial-to-ductal differentiation, whereas suppression of RAR/RXR signaling with a dominant-negative RAR construct abrogated it. Inverse agonists of RAR/RXR signaling (BMS493, AGN193109) displayed selective toxicity against ductal-like cells and in vivo antitumor activity against PDX models of human ACC. CONCLUSIONS In human ACCs, myoepithelial-like cells act as progenitors of ductal-like cells, and myoepithelial-to-ductal differentiation is promoted by RAR/RXR signaling. Suppression of RAR/RXR signaling is lethal to ductal-like cells and represents a new therapeutic approach against human ACCs.
Collapse
Affiliation(s)
- Sara Viragova
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Luis Aparicio
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Pierangela Palmerini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
| | - Junfei Zhao
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Luis E Valencia Salazar
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
| | - Alexandra Schurer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Anika Dhuri
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
- Rebecca and John Moores Comprehensive Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Christopher A Moskaluk
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Piero Dalerba
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Digestive and Liver Disease Research Center, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Ueda K. Review: MDMX plays a central role in leukemic transformation and may be a promising target for leukemia prevention strategies. Exp Hematol 2023:S0301-472X(23)00161-3. [PMID: 37086813 DOI: 10.1016/j.exphem.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Acute myeloid leukemia (AML) is a fatal disease resulting from preleukemic hematopoietic conditions including asymptomatic clonal hematopoiesis. The accumulation of genetic changes is one of the causes of leukemic transformation. However, nongenetic factors including the overexpression of specific genes also contribute to preleukemic to leukemic transition. Among them, the p53 inhibitor Murine Double Minute X (MDMX) plays crucial roles especially in leukemia initiation. MDMX is broadly overexpressed in vast majority of AML cases, including in hematopoietic stem/progenitor cell (HSPC) level. Recently, high expression of MDMX in HSPC has been shown to be associated with leukemic transformation in patients with myelodysplastic syndromes, and preclinical studies demonstrated that MDMX overexpression accelerates the transformation of preleukemic murine models, including models of clonal hematopoiesis. MDMX inhibition, through activation of cell-intrinsic p53 activity, shows antileukemic effects. However, the molecular mechanisms of MDMX in provoking leukemic transformation are complicated. Both p53-dependent and independent mechanisms are involved in the progression of the disease. This review discusses the canonical and noncanonical functions of MDMX and how these functions are involved in the maintenance, expansion, and progression to malignancy of preleukemic stem cells. Moreover, strategies on how leukemic transformation could possibly be prevented by targeting MDMX in preleukemic stem cells are discussed.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Fukushima 9601295, Japan; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
8
|
Xie X, Patnana PK, Frank D, Schütte J, Al-Matary Y, Künstner A, Busch H, Ahmed H, Liu L, Engel DR, Dührsen U, Rosenbauer F, Von Bubnoff N, Lenz G, Khandanpour C. Dose-dependent effect of GFI1 expression in the reconstitution and the differentiation capacity of HSCs. Front Cell Dev Biol 2023; 11:866847. [PMID: 37091981 PMCID: PMC10113925 DOI: 10.3389/fcell.2023.866847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
GFI1 is a transcriptional repressor and plays a pivotal role in regulating the differentiation of hematopoietic stem cells (HSCs) towards myeloid and lymphoid cells. Serial transplantation of Gfi1 deficient HSCs repopulated whole hematopoietic system but in a competitive setting involving wild-type HSCs, they lose this ability. The underlying mechanisms to this end are poorly understood. To better understand this, we used different mouse strains that express either loss of both Gfi1 alleles (Gfi1-KO), with reduced expression of GFI1 (GFI1-KD) or wild-type Gfi1/GFI1 (Gfi1-/GFI1-WT; corresponding to the mouse and human alleles). We observed that loss of Gfi1 or reduced expression of GFI1 led to a two to four fold lower number of HSCs (defined as Lin-Sca1+c-Kit+CD150+CD48-) compared to GFI1-WT mice. To study the functional influence of different levels of GFI1 expression on HSCs function, HSCs from Gfi1-WT (expressing CD45.1 + surface antigens) and HSCs from GFI1-KD or -KO (expressing CD45.2 + surface antigens) mice were sorted and co-transplanted into lethally irradiated host mice. Every 4 weeks, CD45.1+ and CD45.2 + on different lineage mature cells were analyzed by flow cytometry. At least 16 weeks later, mice were sacrificed, and the percentage of HSCs and progenitors including GMPs, CMPs and MEPs in the total bone marrow cells was calculated as well as their CD45.1 and CD45.2 expression. In the case of co-transplantation of GFI1-KD with Gfi1-WT HSCs, the majority of HSCs (81% ± 6%) as well as the majority of mature cells (88% ± 10%) originated from CD45.2 + GFI1-KD HSCs. In the case of co-transplantation of Gfi1-KO HSCs with Gfi1-WT HSCs, the majority of HSCs originated from CD45.2+ and therefore from Gfi1-KO (61% ± 20%); however, only a small fraction of progenitors and mature cells originated from Gfi1-KO HSCs (<1%). We therefore in summary propose that GFI1 has a dose-dependent role in the self-renewal and differentiation of HSCs.
Collapse
Affiliation(s)
- Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Daria Frank
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Judith Schütte
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Yahya Al-Matary
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Axel Künstner
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Helal Ahmed
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Longlong Liu
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Daniel R. Engel
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Frank Rosenbauer
- Institute for Molecular Tumor Biology, University Hospital Münster, Münster, Germany
| | - Nikolas Von Bubnoff
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
- *Correspondence: Cyrus Khandanpour,
| |
Collapse
|
9
|
Kosti J, Mervak T, Terebelo H. Extramedullary Myeloid Leukemia in the Setting of a Myeloproliferative Neoplasm. J Med Cases 2022; 13:561-568. [PMID: 36506761 PMCID: PMC9728152 DOI: 10.14740/jmc3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/04/2022] [Indexed: 11/28/2022] Open
Abstract
Extramedullary acute myeloid leukemia (EML), also known as myeloid sarcoma (MS), is an extramedullary solid mass derived from the proliferation of myeloblasts outside of the bone marrow. EML can present independently or concurrently with intramedullary acute myeloid leukemia (iAML). It can happen de novo or secondary to iAML, myeloproliferative neoplasm (MPN), chronic myelomonocytic leukemia (CMML), or myelodysplastic syndrome (MDS). We present a 57-year-old female with a history of Janus kinase 2 (JAK-2)-positive essential thrombocythemia (ET) evolving into EML in the setting of a persistent TP53 mutation. We discuss the essential diagnostic studies including tissue biopsy and fluorodeoxyglucose positron emission tomography/computed tomography (F-FDG PET/CT) imaging. We also investigate the significance of cytogenetics and next-generation sequencing (NGS) along with the unique pathogenesis, treatment and prognostic implications.
Collapse
Affiliation(s)
- Jorgena Kosti
- Department of Hematology and Oncology, Ascension Providence Hospital, Southfield, Michigan and Michigan State University, East Lansing, MI, USA,Corresponding Author: Jorgena Kosti, Department of Hematology and Oncology, Michigan State University, Ascension Providence, 22301 Foster Winter Drive, Southfield, Michigan, 48075, USA.
| | - Timothy Mervak
- Department of Pathology, Ascension Providence Hospital, Southfield, MI, USA
| | - Howard Terebelo
- Department of Hematology and Oncology, Ascension Providence Hospital, Southfield, Michigan and Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
Bahmad HF, Daher D, Aljamal AA, Elajami MK, Oh KS, Alvarez Moreno JC, Delgado R, Suarez R, Zaldivar A, Azimi R, Castellano A, Sackstein R, Poppiti RJ. Repurposing of Anticancer Stem Cell Drugs in Brain Tumors. J Histochem Cytochem 2021; 69:749-773. [PMID: 34165342 PMCID: PMC8647630 DOI: 10.1369/00221554211025482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
Brain tumors in adults may be infrequent when compared with other cancer etiologies, but they remain one of the deadliest with bleak survival rates. Current treatment modalities encompass surgical resection, chemotherapy, and radiotherapy. However, increasing resistance rates are being witnessed, and this has been attributed, in part, to cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells that reside within the tumor bulk and have the capacity for self-renewal and can differentiate and proliferate into multiple cell lineages. Studying those CSCs enables an increasing understanding of carcinogenesis, and targeting CSCs may overcome existing treatment resistance. One approach to weaponize new drugs is to target these CSCs through drug repurposing which entails using drugs, which are Food and Drug Administration-approved and safe for one defined disease, for a new indication. This approach serves to save both time and money that would otherwise be spent in designing a totally new therapy. In this review, we will illustrate drug repurposing strategies that have been used in brain tumors and then further elaborate on how these approaches, specifically those that target the resident CSCs, can help take the field of drug repurposing to a new level.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Darine Daher
- Faculty of Medicine, American University of
Beirut, Beirut, Lebanon
| | - Abed A. Aljamal
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Mohamad K. Elajami
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Kei Shing Oh
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Ruben Delgado
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Richard Suarez
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Ana Zaldivar
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Roshanak Azimi
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Amilcar Castellano
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Robert Sackstein
- Department of Translational Medicine,
Translational Glycobiology Institute, Herbert Wertheim College of Medicine,
Florida International University, Miami, Florida
| | - Robert J. Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
11
|
Fortin J, Bassi C, Ramachandran P, Li WY, Tian R, Zarrabi I, Hill G, Snow BE, Haight J, Tobin C, Hodgson K, Wakeham A, Stambolic V, Mak TW. Concerted roles of PTEN and ATM in controlling hematopoietic stem cell fitness and dormancy. J Clin Invest 2021; 131:131698. [PMID: 33444287 PMCID: PMC7919727 DOI: 10.1172/jci131698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
In order to sustain proficient life-long hematopoiesis, hematopoietic stem cells (HSCs) must possess robust mechanisms to preserve their quiescence and genome integrity. DNA-damaging stress can perturb HSC homeostasis by affecting their survival, self-renewal, and differentiation. Ablation of the kinase ataxia telangiectasia mutated (ATM), a master regulator of the DNA damage response, impairs HSC fitness. Paradoxically, we show here that loss of a single allele of Atm enhances HSC functionality in mice. To explain this observation, we explored a possible link between ATM and the tumor suppressor phosphatase and tensin homolog (PTEN), which also regulates HSC function. We generated and analyzed a knockin mouse line (PtenS398A/S398A), in which PTEN cannot be phosphorylated by ATM. Similar to Atm+/-, PtenS398A/S398A HSCs have enhanced hematopoietic reconstitution ability, accompanied by resistance to apoptosis induced by genotoxic stress. Single-cell transcriptomic analyses and functional assays revealed that dormant PtenS398A/S398A HSCs aberrantly tolerate elevated mitochondrial activity and the accumulation of reactive oxygen species, which are normally associated with HSC priming for self-renewal or differentiation. Our results unveil a molecular connection between ATM and PTEN, which couples the response to genotoxic stress and dormancy in HSCs.
Collapse
Affiliation(s)
- Jerome Fortin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christian Bassi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Wanda Y. Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ruxiao Tian
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ida Zarrabi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Graham Hill
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Bryan E. Snow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Chantal Tobin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kelsey Hodgson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew Wakeham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tak W. Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Nita A, Muto Y, Katayama Y, Matsumoto A, Nishiyama M, Nakayama KI. The autism-related protein CHD8 contributes to the stemness and differentiation of mouse hematopoietic stem cells. Cell Rep 2021; 34:108688. [PMID: 33535054 DOI: 10.1016/j.celrep.2021.108688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/26/2020] [Accepted: 12/30/2020] [Indexed: 01/26/2023] Open
Abstract
Chromodomain helicase DNA-binding protein 8 (CHD8) is an ATP-dependent chromatin-remodeling factor that is encoded by the most frequently mutated gene in individuals with autism spectrum disorder. CHD8 is expressed not only in neural tissues but also in many other organs; however, its functions are largely unknown. Here, we show that CHD8 is highly expressed in and maintains the stemness of hematopoietic stem cells (HSCs). Conditional deletion of Chd8 specifically in mouse bone marrow induces cell cycle arrest, apoptosis, and a differentiation block in HSCs in association with upregulation of the expression of p53 target genes. A colony formation assay and bone marrow transplantation reveal that CHD8 deficiency also compromises the stemness of HSCs. Furthermore, additional ablation of p53 rescues the impaired stem cell function and differentiation block of CHD8-deficient HSCs. Our results thus suggest that the CHD8-p53 axis plays a key role in regulation of the stemness and differentiation of HSCs.
Collapse
Affiliation(s)
- Akihiro Nita
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshiharu Muto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| |
Collapse
|
13
|
Charruyer A, Weisenberger T, Li H, Khalifa A, Schroeder AW, Belzer A, Ghadially R. Decreased p53 is associated with a decline in asymmetric stem cell self-renewal in aged human epidermis. Aging Cell 2021; 20:e13310. [PMID: 33524216 PMCID: PMC7884041 DOI: 10.1111/acel.13310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/26/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
With age, the epidermis becomes hypoplastic and hypoproliferative. Hypoproliferation due to aging has been associated with decreased stem cell (SC) self‐renewal in multiple murine tissues. The fate of SC self‐renewal divisions can be asymmetric (one SC, one committed progenitor) or symmetric (two SCs). Increased asymmetric SC self‐renewal has been observed in inflammatory‐mediated hyperproliferation, while increased symmetric SC self‐renewal has been observed in cancers. We analyzed SC self‐renewal divisions in aging human epidermis to better understand the role of SCs in the hypoproliferation of aging. In human subjects, neonatal to 78 years, there was an age‐dependent decrease in epidermal basal layer divisions. The balance of SC self‐renewal shifted toward symmetric SC self‐renewal, with a decline in asymmetric SC self‐renewal. Asymmetric SC divisions maintain epidermal stratification, and this decrease may contribute to the hypoplasia of aging skin. P53 decreases in multiple tissues with age, and p53 has been shown to promote asymmetric SC self‐renewal. Fewer aged than adult ALDH+CD44+ keratinocyte SCs exhibited p53 expression and activity and Nutlin‐3 (a p53 activator) returned p53 activity as well as asymmetric SC self‐renewal divisions to adult levels. Nutlin‐3 increased Notch signaling (NICD, Hes1) and DAPT inhibition of Notch activation prevented Nutlin‐3 (p53)‐induced asymmetric SC self‐renewal divisions in aged keratinocytes. These studies indicate a role for p53 in the decreased asymmetric SC divisions with age and suggest that in aged keratinocytes, Notch is required for p53‐induced asymmetric SC divisions.
Collapse
Affiliation(s)
- Alexandra Charruyer
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
| | - Tracy Weisenberger
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
| | - Hang Li
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
| | - Ayman Khalifa
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
- Faculty of science Zagazig University Zagazig Egypt
| | | | - Annika Belzer
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
- Yale School of Medicine New Haven Connecticut USA
| | - Ruby Ghadially
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
| |
Collapse
|
14
|
van Weele LJ, Scheeren FA, Cai S, Kuo AH, Qian D, Ho WHD, Clarke MF. Depletion of Trp53 and Cdkn2a Does Not Promote Self-Renewal in the Mammary Gland but Amplifies Proliferation Induced by TNF-α. Stem Cell Reports 2021; 16:228-236. [PMID: 33482103 PMCID: PMC7878826 DOI: 10.1016/j.stemcr.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/08/2022] Open
Abstract
The mammary epithelium undergoes several rounds of extensive proliferation during the female reproductive cycle. Its expansion is a tightly regulated process, fueled by the mammary stem cells and these cells' unique property of self-renewal. Sufficient new cells have to be produced to maintain the integrity of a tissue, but excessive proliferation resulting in tumorigenesis needs to be prevented. Three well-known tumor suppressors, p53, p16INK4a, and p19ARF, have been connected to the limiting of stem cell self-renewal and proliferation. Here we investigate the roles of these three proteins in the regulation of self-renewal and proliferation of mammary epithelial cells. Using mammary epithelial-specific mouse models targeting Trp53 and Cdkn2a, the gene coding for p16INK4a and p19ARF, we demonstrate that p53, p16INK4a, and p19ARF do not play a significant role in the limitation of normal mammary epithelium self-renewal and proliferation, whereas in the presence of the inflammatory cytokine TNF-α, Trp53−/−Cdkn2a−/− mammary basal cells exhibit amplified proliferation. p53, p16INK4a, and p19ARF do not limit self-renewal of mammary epithelial cells p53, p16INK4a, and p19ARF do not limit proliferation of mammary epithelial cells TNF-α stimulates mammary basal cell organoid formation and proliferation Trp53−/−Cdkn2a−/− organoids are sensitized to TNF-α-induced proliferation
Collapse
Affiliation(s)
- Linda J van Weele
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ferenc A Scheeren
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Shang Cai
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Angera H Kuo
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - William H D Ho
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA; Department of Stem Cell Biotechnology, California State University Channel Islands, Camarillo, CA, USA
| | - Michael F Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Cui L, Moraga I, Lerbs T, Van Neste C, Wilmes S, Tsutsumi N, Trotman-Grant AC, Gakovic M, Andrews S, Gotlib J, Darmanis S, Enge M, Quake S, Hitchcock IS, Piehler J, Garcia KC, Wernig G. Tuning MPL signaling to influence hematopoietic stem cell differentiation and inhibit essential thrombocythemia progenitors. Proc Natl Acad Sci U S A 2021; 118:e2017849118. [PMID: 33384332 PMCID: PMC7812794 DOI: 10.1073/pnas.2017849118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thrombopoietin (TPO) and the TPO-receptor (TPO-R, or c-MPL) are essential for hematopoietic stem cell (HSC) maintenance and megakaryocyte differentiation. Agents that can modulate TPO-R signaling are highly desirable for both basic research and clinical utility. We developed a series of surrogate protein ligands for TPO-R, in the form of diabodies (DBs), that homodimerize TPO-R on the cell surface in geometries that are dictated by the DB receptor binding epitope, in effect "tuning" downstream signaling responses. These surrogate ligands exhibit diverse pharmacological properties, inducing graded signaling outputs, from full to partial TPO agonism, thus decoupling the dual functions of TPO/TPO-R. Using single-cell RNA sequencing and HSC self-renewal assays we find that partial agonistic diabodies preserved the stem-like properties of cultured HSCs, but also blocked oncogenic colony formation in essential thrombocythemia (ET) through inverse agonism. Our data suggest that dampening downstream TPO signaling is a powerful approach not only for HSC preservation in culture, but also for inhibiting oncogenic signaling through the TPO-R.
Collapse
Affiliation(s)
- Lu Cui
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Ignacio Moraga
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- School of Life Sciences, University of Dundee, Dundee DD15EH, United Kingdom
| | - Tristan Lerbs
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Camille Van Neste
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Stephan Wilmes
- School of Life Sciences, University of Dundee, Dundee DD15EH, United Kingdom
| | - Naotaka Tsutsumi
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Aaron Claudius Trotman-Grant
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Milica Gakovic
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- School of Life Sciences, University of Dundee, Dundee DD15EH, United Kingdom
| | - Sarah Andrews
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, YO10 5DD York, United Kingdom
| | - Jason Gotlib
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305
| | - Spyros Darmanis
- Department of Bioengineering, School of Bioengineering and Medicine, Stanford University, Stanford, CA 94305
- Microchemistry, Proteomics, Lipidomics and NGS Department Genentech Inc., South San Francisco, CA, 94080
| | - Martin Enge
- Department of Bioengineering, School of Bioengineering and Medicine, Stanford University, Stanford, CA 94305
- Department of Oncology-Pathology Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Stephen Quake
- Department of Bioengineering, School of Bioengineering and Medicine, Stanford University, Stanford, CA 94305
| | - Ian S Hitchcock
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, YO10 5DD York, United Kingdom
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - K Christopher Garcia
- HHMI, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Gerlinde Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305;
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
16
|
González-Gil C, Ribera J, Ribera JM, Genescà E. The Yin and Yang-Like Clinical Implications of the CDKN2A/ARF/CDKN2B Gene Cluster in Acute Lymphoblastic Leukemia. Genes (Basel) 2021; 12:genes12010079. [PMID: 33435487 PMCID: PMC7827355 DOI: 10.3390/genes12010079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant clonal expansion of lymphoid hematopoietic precursors that exhibit developmental arrest at varying stages of differentiation. Similar to what occurs in solid cancers, transformation of normal hematopoietic precursors is governed by a multistep oncogenic process that drives initiation, clonal expansion and metastasis. In this process, alterations in genes encoding proteins that govern processes such as cell proliferation, differentiation, and growth provide us with some of the clearest mechanistic insights into how and why cancer arises. In such a scenario, deletions in the 9p21.3 cluster involving CDKN2A/ARF/CDKN2B genes arise as one of the oncogenic hallmarks of ALL. Deletions in this region are the most frequent structural alteration in T-cell acute lymphoblastic leukemia (T-ALL) and account for roughly 30% of copy number alterations found in B-cell-precursor acute lymphoblastic leukemia (BCP-ALL). Here, we review the literature concerning the involvement of the CDKN2A/B genes as a prognosis marker of good or bad response in the two ALL subtypes (BCP-ALL and T-ALL). We compare frequencies observed in studies performed on several ALL cohorts (adult and child), which mainly consider genetic data produced by genomic techniques. We also summarize what we have learned from mouse models designed to evaluate the functional involvement of the gene cluster in ALL development and in relapse/resistance to treatment. Finally, we examine the range of possibilities for targeting the abnormal function of the protein-coding genes of this cluster and their potential to act as anti-leukemic agents in patients.
Collapse
Affiliation(s)
- Celia González-Gil
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
| | - Jordi Ribera
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
| | - Josep Maria Ribera
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Eulàlia Genescà
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
- Correspondence: ; Tel.: +34-93-557-28-08
| |
Collapse
|
17
|
Mechanisms of Anticancer Therapy Resistance: The Role of Cancer Stem Cells. Int J Mol Sci 2020; 21:ijms21239006. [PMID: 33260802 PMCID: PMC7730979 DOI: 10.3390/ijms21239006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Despite incredible progress in anticancer therapy development, resistance to therapy is the major factor limiting the cure of cancer patients [...].
Collapse
|
18
|
Ikonomi N, Kühlwein SD, Schwab JD, Kestler HA. Awakening the HSC: Dynamic Modeling of HSC Maintenance Unravels Regulation of the TP53 Pathway and Quiescence. Front Physiol 2020; 11:848. [PMID: 32848827 PMCID: PMC7411231 DOI: 10.3389/fphys.2020.00848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) provide all types of blood cells during the entire life of the organism. HSCs are mainly quiescent and can eventually enter the cell cycle to differentiate. HSCs are maintained and tightly regulated in a particular environment. The stem cell niche regulates dormancy and awakening. Deregulations of this interplay can lead to hematopoietic failure and diseases. In this paper, we present a Boolean network model that recapitulates HSC regulation in virtue of external signals coming from the niche. This Boolean network integrates and summarizes the current knowledge of HSC regulation and is based on extensive literature research. Furthermore, dynamic simulations suggest a novel systemic regulation of TP53 in homeostasis. Thereby, our model indicates that TP53 activity is balanced depending on external stimulations, engaging a regulatory mechanism involving ROS regulators and RAS activated transcription factors. Finally, we investigated different mouse models and compared them to in silico knockout simulations. Here, the model could recapitulate in vivo observed behaviors and thus sustains our results.
Collapse
Affiliation(s)
- Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Silke D Kühlwein
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| |
Collapse
|
19
|
Impaired Expression of Rearranged Immunoglobulin Genes and Premature p53 Activation Block B Cell Development in BMI1 Null Mice. Cell Rep 2020; 26:108-118.e4. [PMID: 30605667 PMCID: PMC6362848 DOI: 10.1016/j.celrep.2018.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/01/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022] Open
Abstract
B cell development is a highly regulated process that requires stepwise rearrangement of immunoglobulin genes to generate a functional B cell receptor (BCR). The polycomb group protein BMI1 is required for B cell development, but its function in developing B cells remains poorly defined. We demonstrate that BMI1 functions in a cell-autonomous manner at two stages during early B cell development. First, loss of BMI1 results in a differentiation block at the pro-B cell to pre-B cell transition due to the inability of BMI1-deficient cells to transcribe newly rearranged Igh genes. Accordingly, introduction of a pre-rearranged Igh allele partially restored B cell development in Bmi1−/− mice. In addition, BMI1 is required to prevent premature p53 signaling, and as a consequence, Bmi1−/− large pre-B cells fail to properly proliferate. Altogether, our results clarify the role of BMI1 in early B cell development and uncover an unexpected function of BMI1 during VDJ recombination. Cantor et al. identify a cell-autonomous role for the polycomb group protein BMI1 in early B cell development. At the pro-B cell to pre-B cell transition, BMI1 promotes the expression of newly rearranged Igh genes in pro-B cells and subsequently prevents premature p53 activation and enables large pre-B cell proliferation.
Collapse
|
20
|
Carvajal LA, Neriah DB, Senecal A, Benard L, Thiruthuvanathan V, Yatsenko T, Narayanagari SR, Wheat JC, Todorova TI, Mitchell K, Kenworthy C, Guerlavais V, Annis DA, Bartholdy B, Will B, Anampa JD, Mantzaris I, Aivado M, Singer RH, Coleman RA, Verma A, Steidl U. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci Transl Med 2019; 10:10/436/eaao3003. [PMID: 29643228 DOI: 10.1126/scitranslmed.aao3003] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/12/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022]
Abstract
The tumor suppressor p53 is often inactivated via its interaction with endogenous inhibitors mouse double minute 4 homolog (MDM4 or MDMX) or mouse double minute 2 homolog (MDM2), which are frequently overexpressed in patients with acute myeloid leukemia (AML) and other cancers. Pharmacological disruption of both of these interactions has long been sought after as an attractive strategy to fully restore p53-dependent tumor suppressor activity in cancers with wild-type p53. Selective targeting of this pathway has thus far been limited to MDM2-only small-molecule inhibitors, which lack affinity for MDMX. We demonstrate that dual MDMX/MDM2 inhibition with a stapled α-helical peptide (ALRN-6924), which has recently entered phase I clinical testing, produces marked antileukemic effects. ALRN-6924 robustly activates p53-dependent transcription at the single-cell and single-molecule levels and exhibits biochemical and molecular biological on-target activity in leukemia cells in vitro and in vivo. Dual MDMX/MDM2 inhibition by ALRN-6924 inhibits cellular proliferation by inducing cell cycle arrest and apoptosis in cell lines and primary AML patient cells, including leukemic stem cell-enriched populations, and disrupts functional clonogenic and serial replating capacity. Furthermore, ALRN-6924 markedly improves survival in AML xenograft models. Our study provides mechanistic insight to support further testing of ALRN-6924 as a therapeutic approach in AML and other cancers with wild-type p53.
Collapse
Affiliation(s)
- Luis A Carvajal
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Daniela Ben Neriah
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adrien Senecal
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lumie Benard
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Tatyana Yatsenko
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Swathi-Rao Narayanagari
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Justin C Wheat
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tihomira I Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Charles Kenworthy
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jesus D Anampa
- Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ioannis Mantzaris
- Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amit Verma
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. .,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
21
|
Barbosa K, Li S, Adams PD, Deshpande AJ. The role of TP53 in acute myeloid leukemia: Challenges and opportunities. Genes Chromosomes Cancer 2019; 58:875-888. [DOI: 10.1002/gcc.22796] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| | - Sha Li
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| | - Peter D. Adams
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| |
Collapse
|
22
|
Affiliation(s)
- Michael F Clarke
- From the Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| |
Collapse
|
23
|
McRae HM, Voss AK, Thomas T. Are transplantable stem cells required for adult hematopoiesis? Exp Hematol 2019; 75:1-10. [PMID: 31175894 DOI: 10.1016/j.exphem.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem cells (HSCs) have been studied intensely for more than half a century. As a result, the properties of HSCs have become a paradigm of adult stem cell biology and function. The "classical" view of hematopoiesis suggests that the HSCs sit at the top of a hierarchy and that differentiation involves sequential production of multipotent and lineage committed progenitors with limited self-renewal capacity. This view of hematopoiesis is certainly valid after transplantation of HSCs, where, with appropriate support, a single HSC can regenerate the entire hematopoietic system of the recipient. However, it is not clear whether HSCs perform the same function during steady-state hematopoiesis. Indeed, studies have shown that the majority of classical HSCs are not required for ongoing steady-state adult hematopoiesis. Several reports suggest that steady-state hematopoiesis relies on highly proliferative cells with more lineage restricted characteristics, a finding that was not anticipated based on results from transplantation experiments. However, other studies indicate a more substantial HSC contribution. Nevertheless, the notion of HSCs as distinct from progenitors appears to be simplistic in view of ample evidence for heterogeneity within the stem cell compartment. In this review we discuss recent results and controversies surrounding HSCs.
Collapse
Affiliation(s)
- Helen M McRae
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
24
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
25
|
Asrij/OCIAD1 suppresses CSN5-mediated p53 degradation and maintains mouse hematopoietic stem cell quiescence. Blood 2019; 133:2385-2400. [PMID: 30952670 DOI: 10.1182/blood.2019000530] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
Inactivation of the tumor suppressor p53 is essential for unrestrained growth of cancers. However, only 11% of hematological malignancies have mutant p53. Mechanisms that cause wild-type p53 dysfunction and promote leukemia are inadequately deciphered. The stem cell protein Asrij/OCIAD1 is misexpressed in several human hematological malignancies and implicated in the p53 pathway and DNA damage response. However, Asrij function in vertebrate hematopoiesis remains unknown. We generated the first asrij null (knockout [KO]) mice and show that they are viable and fertile with no gross abnormalities. However, by 6 months, they exhibit increased peripheral blood cell counts, splenomegaly, and an expansion of bone marrow hematopoietic stem cells (HSCs) with higher myeloid output. HSCs lacking Asrij are less quiescent and more proliferative with higher repopulation potential as observed from serial transplantation studies. However, stressing KO mice with sublethal γ irradiation or multiple injections of 5-fluorouracil results in reduced survival and rapid depletion of hematopoietic stem/progenitor cells (HSPCs) by driving them into proliferative exhaustion. Molecular and biochemical analyses revealed increased polyubiquitinated protein levels, Akt/STAT5 activation and COP9 signalosome subunit 5 (CSN5)-mediated p53 ubiquitination, and degradation in KO HSPCs. Further, we show that Asrij sequesters CSN5 via its conserved OCIA domain, thereby preventing p53 degradation. In agreement, Nutlin-3 treatment of KO mice restored p53 levels and reduced high HSPC frequencies. Thus, we provide a new mouse model resembling myeloproliferative disease and identify a posttranslational regulator of wild-type p53 essential for maintaining HSC quiescence that could be a potential target for pharmacological intervention.
Collapse
|
26
|
Sikandar SS, Kuo AH, Kalisky T, Cai S, Zabala M, Hsieh RW, Lobo NA, Scheeren FA, Sim S, Qian D, Dirbas FM, Somlo G, Quake SR, Clarke MF. Role of epithelial to mesenchymal transition associated genes in mammary gland regeneration and breast tumorigenesis. Nat Commun 2017; 8:1669. [PMID: 29162812 PMCID: PMC5698470 DOI: 10.1038/s41467-017-01666-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
Previous studies have proposed that epithelial to mesenchymal transition (EMT) in breast cancer cells regulates metastasis, stem cell properties and chemo-resistance; most studies were based on in vitro culture of cell lines and mouse transgenic cancer models. However, the identity and function of cells expressing EMT-associated genes in normal murine mammary gland homeostasis and human breast cancer still remains under debate. Using in vivo lineage tracing and triple negative breast cancer (TNBC) patient derived xenografts we demonstrate that the repopulating capacity in normal mammary epithelial cells and tumorigenic capacity in TNBC is independent of expression of EMT-associated genes. In breast cancer, while a subset of cells with epithelial and mesenchymal phenotypes have stem cell activity, in many cells that have lost epithelial characteristics with increased expression of mesenchymal genes, have decreased tumor-initiating capacity and plasticity. These findings have implications for the development of effective therapeutic agents targeting tumor-initiating cells.
Collapse
Affiliation(s)
- Shaheen S Sikandar
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Angera H Kuo
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Tomer Kalisky
- Department of Bioengineering, 318 Campus Drive, Stanford, CA, 94305, USA
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Shang Cai
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Maider Zabala
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Robert W Hsieh
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Neethan A Lobo
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Ferenc A Scheeren
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
- Department of Medical Oncology, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands
| | - Sopheak Sim
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Frederick M Dirbas
- Department of Surgery, Stanford University School of Medicine, Stanford Cancer Institute, 875 Blake Wilbur Drive, Rm CC2235, Stanford, CA, 94305, USA
| | - George Somlo
- City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Stephen R Quake
- Department of Bioengineering, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Michael F Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Lin X, Wei F, Whyte P, Tang D. BMI1 reduces ATR activation and signalling caused by hydroxyurea. Oncotarget 2017; 8:89707-89721. [PMID: 29163782 PMCID: PMC5685703 DOI: 10.18632/oncotarget.21111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/03/2017] [Indexed: 01/31/2023] Open
Abstract
BMI1 facilitates DNA damage response (DDR) induced by double strand DNA breaks; however, it remains unknown whether BMI1 functions in single strand DNA (ssDNA) lesions-initiated DDR. We report here that BMI1 reduces hydroxyurea-elicited ATR activation, thereby reducing the S-phase checkpoints. Hydroxyurea induces ssDNA lesions, which activate ATR through binding TOPBP1 as evidenced by phosphorylation of ATR at threonine 1989 (ATRpT1989). ATR subsequently phosphorylates H2AX at serine 139 (γH2AX) and CHK1 at serine 345 (CHK1pS345), leading to phosphorylation of CDK1 at tyrosine 15 (CDK1pY15) and S-phase arrest. BMI1 overexpression reduced γH2AX, CHK1pS345, CDK1pY15, S-phase arrest, and ATR activation in HU-treated MCF7 and DU145 cells, whereas BMI1 knockdown enhanced these events. BMI1 contains a ring finger, helix-turn, proline/serine domain and two nuclear localization signals (NLS). Individual deletion of these domains did not abolish BMI1-derived reductions of CHK1pS345 in MCF7 cells following HU exposure, suggesting that these structural features are not essential for BMI1 to attenuate ATR-mediated CHK1pS345. BMI1 interacts with both TOPBP1 and ATR. Furthermore, all of our BMI1 mutants associate with endogenous TOPBP1. It has previously been established that association of TOPBP1 and ATR is required for ATR activation. Thus, our results suggest that BMI1 decreases ATR activation through a mechanism that involves binding to TOPBP1 and/or ATR.
Collapse
Affiliation(s)
- Xiaozeng Lin
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada.,The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Fengxiang Wei
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada.,The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada.,The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital, Longgang District, Shenzhen, Guangdong, P.R. China
| | - Peter Whyte
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada.,The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| |
Collapse
|
28
|
Lawag AA, Napper JM, Hunter CA, Bacon NA, Deskins S, El-Hamdani M, Govender SL, Koc EC, Sollars VE. HSP90 Inhibition and Cellular Stress Elicits Phenotypic Plasticity in Hematopoietic Differentiation. Cell Reprogram 2017; 19:311-323. [PMID: 28910138 PMCID: PMC5650721 DOI: 10.1089/cell.2017.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer cells exist in a state of Darwinian selection using mechanisms that produce changes in gene expression through genetic and epigenetic alteration to facilitate their survival. Cellular plasticity, or the ability to alter cellular phenotype, can assist in survival of premalignant cells as they progress to full malignancy by providing another mechanism of adaptation. The connection between cellular stress and the progression of cancer has been established, although the details of the mechanisms have yet to be fully elucidated. The molecular chaperone HSP90 is often upregulated in cancers as they progress, presumably to allow cancer cells to deal with misfolded proteins and cellular stress associated with transformation. The objective of this work is to test the hypothesis that inhibition of HSP90 results in increased cell plasticity in mammalian systems that can confer a greater adaptability to selective pressures. The approach used is a murine in vitro model system of hematopoietic differentiation that utilizes a murine hematopoietic stem cell line, erythroid myeloid lymphoid (EML) clone 1, during their maturation from stem cells to granulocytic progenitors. During the differentiation protocol, 80%-90% of the cells die when placed in medium where the major growth factor is granulocyte-macrophage-colony stimulating factor. Using this selection point model, EML cells exhibit increases in cellular plasticity when they are better able to adapt to this medium and survive. Increases in cellular plasticity were found to occur upon exposure to geldanamycin to inhibit HSP90, when subjected to various forms of cellular stress, or inhibition of histone acetylation. Furthermore, we provide evidence that the cellular plasticity associated with inhibition of HSP90 in this model involves epigenetic mechanisms and is dependent upon high levels of stem cell factor signaling. This work provides evidence for a role of HSP90 and cellular stress in inducing phenotypic plasticity in mammalian systems that has new implications for cellular stress in progression and evolution of cancer.
Collapse
Affiliation(s)
- Abdalla A Lawag
- 1 Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University , Huntington, West Virginia
| | - Jennifer M Napper
- 2 Department of Natural Sciences, Shawnee State University , Portsmouth, Ohio
| | - Caroline A Hunter
- 1 Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University , Huntington, West Virginia
| | - Nickolas A Bacon
- 1 Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University , Huntington, West Virginia
| | - Seth Deskins
- 1 Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University , Huntington, West Virginia
| | - Manaf El-Hamdani
- 1 Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University , Huntington, West Virginia
| | - Sarah-Leigh Govender
- 1 Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University , Huntington, West Virginia
| | - Emine C Koc
- 1 Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University , Huntington, West Virginia
| | - Vincent E Sollars
- 1 Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University , Huntington, West Virginia
| |
Collapse
|
29
|
Abstract
Next-generation sequencing has revealed that more than 50% of human cancers harbour mutations in enzymes that are involved in chromatin organization. Tumour cells not only are activated by genetic and epigenetic alterations, but also routinely use epigenetic processes to ensure their escape from chemotherapy and host immune surveillance. Hence, a growing emphasis of recent drug discovery efforts has been on targeting the epigenome, including DNA methylation and histone modifications, with several new drugs being tested and some already approved by the US Food and Drug Administration (FDA). The future will see the increasing success of combining epigenetic drugs with other therapies. As epigenetic drugs target the epigenome as a whole, these true 'genomic medicines' lessen the need for precision approaches to individualized therapies.
Collapse
Affiliation(s)
- Peter A Jones
- Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Stephen Baylin
- Van Andel Research Institute, Grand Rapids, Michigan 49503, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21287, USA
| |
Collapse
|
30
|
Sheikh BN, Metcalf D, Voss AK, Thomas T. MOZ and BMI1 act synergistically to maintain hematopoietic stem cells. Exp Hematol 2017; 47:83-97.e8. [DOI: 10.1016/j.exphem.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 11/25/2022]
|
31
|
Tsuruta-Kishino T, Koya J, Kataoka K, Narukawa K, Sumitomo Y, Kobayashi H, Sato T, Kurokawa M. Loss of p53 induces leukemic transformation in a murine model of Jak2 V617F-driven polycythemia vera. Oncogene 2017; 36:3300-3311. [PMID: 28068330 DOI: 10.1038/onc.2016.478] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 02/07/2023]
Abstract
As leukemic transformation of myeloproliferative neoplasms (MPNs) worsens the clinical outcome, reducing the inherent risk of the critical event in MPN cases could be beneficial. Among genetic alterations concerning the transformation, the frequent one is TP53 mutation. Here we show that retroviral overexpression of Jak2 V617F mutant into wild-type p53 murine bone marrow cells induced polycythemia vera (PV) in the recipient mice, whereas Jak2 V617F-transduced p53-null mice developed lethal leukemia after the preceding PV phase. The leukemic mice had severe anemia, hepatosplenomegaly, pulmonary hemorrhage and expansion of dysplastic erythroid progenitors. Primitive leukemia cells (c-kit+Sca1+Lin- (KSL) and CD34-CD16/32-c-kit+Sca1-Lin- (megakaryocyte-erythroid progenitor; MEP)) and erythroid progenitors (CD71+) from Jak2 V617F-transduced p53-null leukemic mice had leukemia-initiating capacity, however, myeloid differentiated populations (Mac-1+) could not recapitulate the disease. Interestingly, recipients transplanted with CD71+ cells rapidly developed erythroid leukemia, which was in sharp contrast to leukemic KSL cells to cause lethal leukemia after the polycythemic state. The leukemic CD71+ cells were more sensitive to INCB18424, a potent JAK inhibitor, than KSL cells. p53 restoration could ameliorate Jak2 V617F-transduced p53-null erythroleukemia. Taken together, our results show that p53 loss is sufficient for inducing leukemic transformation in Jak2 V617F-positive MPN.
Collapse
Affiliation(s)
- T Tsuruta-Kishino
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - J Koya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - K Kataoka
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - K Narukawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Y Sumitomo
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Oncology Research Laboratories, Kyowa Hakko Kirin Co., Machida, Tokyo, Japan
| | - H Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - T Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - M Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Cell Therapy and Transplantation, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
32
|
Nucera S, Giustacchini A, Boccalatte F, Calabria A, Fanciullo C, Plati T, Ranghetti A, Garcia-Manteiga J, Cittaro D, Benedicenti F, Lechman ER, Dick JE, Ponzoni M, Ciceri F, Montini E, Gentner B, Naldini L. miRNA-126 Orchestrates an Oncogenic Program in B Cell Precursor Acute Lymphoblastic Leukemia. Cancer Cell 2016; 29:905-921. [PMID: 27300437 DOI: 10.1016/j.ccell.2016.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 01/12/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022]
Abstract
MicroRNA (miRNA)-126 is a known regulator of hematopoietic stem cell quiescence. We engineered murine hematopoiesis to express miRNA-126 across all differentiation stages. Thirty percent of mice developed monoclonal B cell leukemia, which was prevented or regressed when a tetracycline-repressible miRNA-126 cassette was switched off. Regression was accompanied by upregulation of cell-cycle regulators and B cell differentiation genes, and downregulation of oncogenic signaling pathways. Expression of dominant-negative p53 delayed blast clearance upon miRNA-126 switch-off, highlighting the relevance of p53 inhibition in miRNA-126 addiction. Forced miRNA-126 expression in mouse and human progenitors reduced p53 transcriptional activity through regulation of multiple p53-related targets. miRNA-126 is highly expressed in a subset of human B-ALL, and antagonizing miRNA-126 in ALL xenograft models triggered apoptosis and reduced disease burden.
Collapse
Affiliation(s)
- Silvia Nucera
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy
| | - Alice Giustacchini
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Francesco Boccalatte
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy
| | - Cristiana Fanciullo
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Tiziana Plati
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy
| | - Anna Ranghetti
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy
| | - Jose Garcia-Manteiga
- Centre for Translational Genomics and Bioinformatics, IRCSS Ospedale San Raffaele, 20132 Milan, Italy
| | - Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, IRCSS Ospedale San Raffaele, 20132 Milan, Italy
| | | | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Maurilio Ponzoni
- Vita Salute San Raffaele University, 20132 Milan, Italy; Pathology Unit, IRCSS Ospedale San Raffaele, 20132 Milan, Italy
| | - Fabio Ciceri
- Vita Salute San Raffaele University, 20132 Milan, Italy; Hematology and Bone Marrow Transplantation Unit, IRCSS Ospedale San Raffaele, 20132 Milan, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy; Hematology and Bone Marrow Transplantation Unit, IRCSS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
33
|
p19ARF is a critical mediator of both cellular senescence and an innate immune response associated with MYC inactivation in mouse model of acute leukemia. Oncotarget 2016; 6:3563-77. [PMID: 25784651 PMCID: PMC4414137 DOI: 10.18632/oncotarget.2969] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/17/2014] [Indexed: 11/30/2022] Open
Abstract
MYC-induced T-ALL exhibit oncogene addiction. Addiction to MYC is a consequence of both cell-autonomous mechanisms, such as proliferative arrest, cellular senescence, and apoptosis, as well as non-cell autonomous mechanisms, such as shutdown of angiogenesis, and recruitment of immune effectors. Here, we show, using transgenic mouse models of MYC-induced T-ALL, that the loss of either p19ARF or p53 abrogates the ability of MYC inactivation to induce sustained tumor regression. Loss of p53 or p19ARF, influenced the ability of MYC inactivation to elicit the shutdown of angiogenesis; however the loss of p19ARF, but not p53, impeded cellular senescence, as measured by SA-beta-galactosidase staining, increased expression of p16INK4A, and specific histone modifications. Moreover, comparative gene expression analysis suggested that a multitude of genes involved in the innate immune response were expressed in p19ARF wild-type, but not null, tumors upon MYC inactivation. Indeed, the loss of p19ARF, but not p53, impeded the in situ recruitment of macrophages to the tumor microenvironment. Finally, p19ARF null-associated gene signature prognosticated relapse-free survival in human patients with ALL. Therefore, p19ARF appears to be important to regulating cellular senescence and innate immune response that may contribute to the therapeutic response of ALL.
Collapse
|
34
|
Guirguis AA, Slape CI, Failla LM, Saw J, Tremblay CS, Powell DR, Rossello F, Wei A, Strasser A, Curtis DJ. PUMA promotes apoptosis of hematopoietic progenitors driving leukemic progression in a mouse model of myelodysplasia. Cell Death Differ 2016; 23:1049-59. [PMID: 26742432 DOI: 10.1038/cdd.2015.159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 10/07/2015] [Accepted: 10/30/2015] [Indexed: 11/10/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is characterized by ineffective hematopoiesis with resultant cytopenias. Increased apoptosis and aberrantly functioning progenitors are thought to contribute to this phenotype. As is the case for other malignancies, overcoming apoptosis is believed to be important in progression toward acute myeloid leukemia (AML). Using the NUP98-HOXD13 (NHD13) transgenic mouse model of MDS, we previously reported that overexpression of the anti-apoptotic protein BCL2, blocked apoptosis and improved cytopenias, paradoxically, delaying leukemic progression. To further understand this surprising result, we examined the role of p53 and its pro-apoptotic effectors, PUMA and NOXA in NHD13 mice. The absence of p53 or PUMA but not NOXA reduced apoptosis and expanded the numbers of MDS-repopulating cells. Despite a similar effect on apoptosis and cell numbers, the absence of p53 and PUMA had diametrically opposed effects on progression to AML: absence of p53 accelerated leukemic progression, while absence of PUMA significantly delayed progression. This may be explained in part by differences in cellular responses to DNA damage. The absence of p53 led to higher levels of γ-H2AX (indicative of persistent DNA lesions) while PUMA-deficient NHD13 progenitors resolved DNA lesions in a manner comparable to wild-type cells. These results suggest that targeting PUMA may improve the cytopenias of MDS without a detrimental effect on leukemic progression thus warranting further investigation.
Collapse
Affiliation(s)
- A A Guirguis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
| | - C I Slape
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - L M Failla
- Bone Marrow Research Laboratories, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - J Saw
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - C S Tremblay
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - D R Powell
- Bioinformatics Platform, Monash University, Clayton, VIC, Australia.,School of Biomedical Sciences, Faculty of Biomedical and Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - F Rossello
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - A Wei
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
| | - A Strasser
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia
| | - D J Curtis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Wang Z, Chen CC, Chen W. CD150(-) Side Population Defines Leukemia Stem Cells in a BALB/c Mouse Model of CML and Is Depleted by Genetic Loss of SIRT1. Stem Cells 2015; 33:3437-51. [PMID: 26466808 DOI: 10.1002/stem.2218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 08/12/2015] [Accepted: 09/02/2015] [Indexed: 11/11/2022]
Abstract
Leukemia stem cells (LSCs) of chronic myeloid leukemia (CML) are refractory to tyrosine kinase inhibitor treatment, persist in the residual disease, and are important source for disease recurrence. Better understanding CML LSCs will help devise new strategies to eradicate these cells. The BALB/c mouse model of CML using retroviral bone marrow transduction and transplantation is a widely used mouse model system for CML, but LSCs in this model are poorly characterized. Here, we show that lineage negative CD150(-) side population (CD150(-)SP), but not CD150(+)SP, are CML LSCs in this model, although both CD150(-)SP and CD150(+)SP cells are enriched for long-term hematopoietic stem cells in normal BALB/c mice. We previously showed that BCR-ABL transformation activates protein lysine deacetylase SIRT1 and inhibition of SIRT1 sensitizes CML stem/progenitor cells to tyrosine kinase inhibitors by acetylating and activating p53. In this study, we demonstrate that SIRT1 homozygous knockout substantially reduces CD150(-)SP CML LSCs, and compromises the maintenance of CML LSCs in the BALB/c model. We identified several molecular alterations in CD150(-)SP LSCs that included the elevated expression of cyclin-dependent kinase Cdk6 facilitating LSC activation and significantly reduced p53 expression. SIRT1 knockout suppressed Cdk6 expression and likely increases p53 protein functions through deacetylation without increasing its expression. Our results shed novel insight into CML LSCs and support a crucial role of SIRT1 in CML LSCs. Our study also provides a novel means for assessing new agents to eradicate CML LSCs.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Ching-Cheng Chen
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - WenYong Chen
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, USA
| |
Collapse
|
36
|
Pietras EM, Reynaud D, Kang YA, Carlin D, Calero-Nieto FJ, Leavitt AD, Stuart JM, Göttgens B, Passegué E. Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions. Cell Stem Cell 2015; 17:35-46. [PMID: 26095048 PMCID: PMC4542150 DOI: 10.1016/j.stem.2015.05.003] [Citation(s) in RCA: 489] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/06/2015] [Accepted: 05/13/2015] [Indexed: 01/07/2023]
Abstract
Despite great advances in understanding the mechanisms underlying blood production, lineage specification at the level of multipotent progenitors (MPPs) remains poorly understood. Here, we show that MPP2 and MPP3 are distinct myeloid-biased MPP subsets that work together with lymphoid-primed MPP4 cells to control blood production. We find that all MPPs are produced in parallel by hematopoietic stem cells (HSCs), but with different kinetics and at variable levels depending on hematopoietic demands. We also show that the normally rare myeloid-biased MPPs are transiently overproduced by HSCs in regenerating conditions, hence supporting myeloid amplification to rebuild the hematopoietic system. This shift is accompanied by a reduction in self-renewal activity in regenerating HSCs and reprogramming of MPP4 fate toward the myeloid lineage. Our results support a dynamic model of blood development in which HSCs convey lineage specification through independent production of distinct lineage-biased MPP subsets that, in turn, support lineage expansion and differentiation.
Collapse
Affiliation(s)
- Eric M Pietras
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Damien Reynaud
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yoon-A Kang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniel Carlin
- Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 94720, USA
| | - Fernando J Calero-Nieto
- Cambridge University Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Andrew D Leavitt
- Departments of Medicine and Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joshua M Stuart
- Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 94720, USA
| | - Berthold Göttgens
- Cambridge University Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Emmanuelle Passegué
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Gonzalez-Valdes I, Hidalgo I, Bujarrabal A, Lara-Pezzi E, Padron-Barthe L, Garcia-Pavia P, Gómez-del Arco P, Gomez P, Redondo JM, Ruiz-Cabello JM, Jimenez-Borreguero LJ, Enriquez JA, de la Pompa JL, Hidalgo A, Gonzalez S. Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence. Nat Commun 2015; 6:6473. [PMID: 25751743 PMCID: PMC5603726 DOI: 10.1038/ncomms7473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/30/2015] [Indexed: 12/14/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the most frequent cause of heart failure and the leading indication for heart transplantation. Here we show that epigenetic regulator and central transcriptional instructor in adult stem cells, Bmi1, protects against DCM by repressing cardiac senescence. Cardiac-specific Bmi1 deletion induces the development of DCM, which progresses to lung congestion and heart failure. In contrast, Bmi1 overexpression in the heart protects from hypertrophic stimuli. Transcriptome analysis of mouse and human DCM samples indicates that p16INK4a derepression, accompanied by a senescence-associated secretory phenotype (SASP), is linked to severely impaired ventricular dimensions and contractility. Genetic reduction of p16INK4a levels reverses the pathology of Bmi1-deficient hearts. In parabiosis assays, the paracrine senescence response underlying the DCM phenotype does not transmit to healthy mice. As senescence is implicated in tissue repair and the loss of regenerative potential in aging tissues, these findings suggest a source for cardiac rejuvenation. The epigenetic factor Bmi1 regulates self-renewal of many adult stem cells, but its role in heart function is unknown. Here the authors show that Bmi1 prevents cardiac senescence by inhibiting the tumor suppressor protein p16INK4a in adult mice, protecting them from dilated cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- I Gonzalez-Valdes
- Stem Cell Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - I Hidalgo
- Stem Cell Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - A Bujarrabal
- Stem Cell Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - E Lara-Pezzi
- Molecular Regulation of Heart Development and Disease Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - L Padron-Barthe
- 1] Molecular Regulation of Heart Development and Disease Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain [2] Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla, 1, E-28222 Madrid, Spain
| | - P Garcia-Pavia
- Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla, 1, E-28222 Madrid, Spain
| | | | - P Gomez
- Gene Regulation in Cardiovascular Remodelling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - J M Redondo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - J M Ruiz-Cabello
- Advanced Imaging Unit, Ciber de Enfermedades respiratorias and UCM, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - L J Jimenez-Borreguero
- Advanced Imaging Unit, Ciber de Enfermedades respiratorias and UCM, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - J A Enriquez
- Functional Genetics of the Oxidative Phosphorylation System, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - J L de la Pompa
- Intercellular Signaling In Cardiovascular Development and Disease Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - A Hidalgo
- Imaging the Cardiovascular Inflammation and the Immune Response, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - S Gonzalez
- Stem Cell Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| |
Collapse
|
38
|
β-Arrestin1 promotes the self-renewal of the leukemia-initiating cell-enriched subpopulation in B-lineage acute lymphoblastic leukemia related to DNMT1 activity. Cancer Lett 2015; 357:170-178. [DOI: 10.1016/j.canlet.2014.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/20/2022]
|
39
|
Burchert A. Maintaining low BCR-ABL signaling output to restrict CML progression and enable persistence. Curr Hematol Malig Rep 2014; 9:9-16. [PMID: 24500518 PMCID: PMC3930845 DOI: 10.1007/s11899-013-0196-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deregulated BCR-ABL oncogenic activity leads to transformation, oncogene addiction and drives disease progression in chronic myeloid leukemia (CML). Inhibition of BCR-ABL using Abl-specific kinase inhibitors (TKI) such as imatinib induces remarkable clinical responses. However, approximately only less than 15 % of all chronic-phase CML patients will remain relapse-free after discontinuation of imatinib in deep molecular remission. It is not well understood why persisting CML cells survive under TKI therapy without developing clonal evolution and frank TKI resistance. BCR-ABL expression level may be critically involved. Whereas higher BCR-ABL expression has been described as a pre-requisite for malignant CML stem cell transformation and CML progression to blast crisis, recent evidence suggests that during persistence TKI select for CML precursors with low BCR-ABL expression. Genetic, translational and clinical evidence is discussed to suggest that TKI-induced maintenance of low BCR-ABL signaling output may be potently tumor suppressive, because it abrogates oncogenic addiction.
Collapse
Affiliation(s)
- Andreas Burchert
- Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Gießen and Marburg (UKGM), Campus Marburg, 35043, Marburg, Germany,
| |
Collapse
|
40
|
Abstract
Multipotent long-term repopulating hematopoietic stem cells (LT-HSCs) can self-renew or differentiate into the less primitive short-term repopulating stem cells (ST-HSCs), which themselves produce progenitors that ensure the daily supply of all essential blood components. The Polycomb group (PcG) protein BMI1 is essential for the activity of both HSCs and progenitor cells. Although BMI1 operates by suppressing the Ink4a/Arf locus in progenitors and ST-HSCs, the mechanisms through which this gene regulates the activity of LT-HSCs remain poorly understood. Toward this goal, we isolated BMI1-containing protein complexes and identified UBAP2L as a novel BMI1-interacting protein. We also showed that UBAP2L is preferentially expressed in mouse and human HSC-enriched populations when compared with more mature cell types, and that this gene is essential for the activity of LT-HSCs. In contrast to what is observed for Bmi1 knockdown, we found that UBAP2L depletion does not affect the Ink4a/Arf locus. Given that we demonstrated that BMI1 overexpression is able to rescue the deleterious effects of Ubap2l downregulation on LT-HSC activity and that UBAP2L is part of a PcG subcomplex comprising BMI1, we propose a model in which at least 2 different BMI1-containing PcG complexes regulate HSC activity, which are distinguishable by the presence of UBAP2L.
Collapse
|
41
|
Wei F, Ojo D, Lin X, Wong N, He L, Yan J, Xu S, Major P, Tang D. BMI1 attenuates etoposide-induced G2/M checkpoints via reducing ATM activation. Oncogene 2014; 34:3063-75. [PMID: 25088203 DOI: 10.1038/onc.2014.235] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
Abstract
The BMI1 protein contributes to stem cell pluripotency and oncogenesis via multiple functions, including its newly identified role in DNA damage response (DDR). Although evidence clearly demonstrates that BMI1 facilitates the repair of double-stranded breaks via homologous recombination (HR), it remains unclear how BMI1 regulates checkpoint activation during DDR. We report here that BMI1 has a role in G2/M checkpoint activation in response to etoposide (ETOP) treatment. Ectopic expression of BMI1 in MCF7 breast cancer and DU145 prostate cancer cells significantly reduced ETOP-induced G2/M arrest. Conversely, knockdown of BMI1 in both lines enhanced the arrest. Consistent with ETOP-induced activation of the G2/M checkpoints via the ATM pathway, overexpression and knockdown of BMI1, respectively, reduced and enhanced ETOP-induced phosphorylation of ATM at serine 1981 (ATM pS1981). Furthermore, the phosphorylation of ATM targets, including γH2AX, threonine 68 (T68) on CHK2 (CHK2 pT68) and serine 15 (S15) on p53 were decreased in overexpression and increased in knockdown BMI1 cells in response to ETOP. In line with the requirement of NBS1 in ATM activation, we were able to show that BMI1 associates with NBS1 and that this interaction altered the binding of NBS1 with ATM. BMI1 consists of a ring finger (RF), helix-turn-helix-turn-helix-turn (HT), proline/serine (PS) domain and two nuclear localization signals (NLS). Although deletion of either RF or HT did not affect the association of BMI1 with NBS1, the individual deletions of PS and one NLS (KRMK) robustly reduced the interaction. Stable expression of these BMI1 mutants decreased ETOP-induced ATM pS1981 and CHK2 pT68, but not ETOP-elicited γH2AX in MCF7 cells. Furthermore, ectopic expression of BMI1 in non-transformed breast epithelial MCF10A cells also compromised ETOP-initiated ATM pS1981 and γH2AX. Taken together, we provide compelling evidence that BMI1 decreases ETOP-induced G2/M checkpoint activation via reducing NBS1-mediated ATM activation.
Collapse
Affiliation(s)
- F Wei
- 1] Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada [2] Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada [3] The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada [4] The Genetics Laboratory, Institute of Women and Children's Health, Longgang District, Shenzhen, Guangdong, P.R. China
| | - D Ojo
- 1] Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada [2] Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada [3] The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - X Lin
- 1] Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada [2] Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada [3] The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - N Wong
- 1] Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada [2] Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada [3] The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - L He
- 1] Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada [2] Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada [3] The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada [4] Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
| | - J Yan
- 1] Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada [2] Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada [3] The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - S Xu
- 1] Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada [2] Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada [3] The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - P Major
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - D Tang
- 1] Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada [2] Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada [3] The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| |
Collapse
|
42
|
Koike H, Ueno Y, Naito T, Shiina T, Nakata S, Ouchi R, Obana Y, Sekine K, Zheng YW, Takebe T, Isono KI, Koseki H, Taniguchi H. Ring1B promotes hepatic stem/progenitor cell expansion through simultaneous suppression of Cdkn1a and Cdkn2a in mice. Hepatology 2014; 60:323-33. [PMID: 24497168 DOI: 10.1002/hep.27046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/08/2014] [Accepted: 01/31/2014] [Indexed: 01/08/2023]
Abstract
UNLABELLED Polycomb-group (PcG) proteins play crucial roles in self-renewal of stem cells by suppressing a host of genes through histone modifications. Identification of the downstream genes of PcG proteins is essential for elucidation of the molecular mechanisms of stem cell self-renewal. However, little is known about the PcG target genes in tissue stem cells. We found that the PcG protein, Ring1B, which regulates expression of various genes through monoubiquitination of histone H2AK119, is essential for expansion of hepatic stem/progenitor cells. In mouse embryos with a conditional knockout of Ring1B, we found that the lack of Ring1B inhibited proliferation and differentiation of hepatic stem/progenitor cells and thereby inhibited hepatic organogenesis. These events were characterized by derepression of cyclin-dependent kinase inhibitors (CDKIs) Cdkn1a and Cdkn2a, known negative regulators of cell proliferation. We conducted clonal culture experiments with hepatic stem/progenitor cells to investigate the individual genetic functions of Ring1B, Cdkn1a, and Cdkn2a. The data showed that the cell-cycle inhibition caused by Ring1B depletion was reversed when Cdkn1a and Cdkn2a were suppressed simultaneously, but not when they were suppressed individually. CONCLUSION Our results show that expansion of hepatic stem/progenitor cells requires Ring1B-mediated epigenetic silencing of Cdkn1a and Cdkn2a, demonstrating that Ring1B simultaneously regulates multiple CDKIs in tissue stem/progenitor cells.
Collapse
Affiliation(s)
- Hiroyuki Koike
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chung WM, Chang WC, Chen L, Lin TY, Chen LC, Hung YC, Ma WL. Ligand-independent androgen receptors promote ovarian teratocarcinoma cell growth by stimulating self-renewal of cancer stem/progenitor cells. Stem Cell Res 2014; 13:24-35. [PMID: 24793306 DOI: 10.1016/j.scr.2014.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/30/2014] [Accepted: 04/07/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian teratocarcinoma (OVTC) arises from germ cells and contains a high percentage of cancer stem/progenitor cells (CSPCs), which promote cancer development through their ability to self-renew. Androgen and androgen receptor (androgen/AR) signaling has been reported to participate in cancer stemness in some types of cancer; however, this phenomenon has never been studied in OVTC. METHODS Ovarian teratocarcinoma cell line PA1 was manipulated to overexpress or knockdown AR by lentiviral deliver system. After analyzing of AR expression in PA1 cells, cell growth assay was assessed at every given time point. In order to determine ligand effect on AR actions, luciferase assay was performed to evaluate endogenous and exogenous AR function in PA1 cells. CD133 stem cell marker antibody was used to identify CSPCs in PA1 cells, and AR expression level in enriched CSPCs was determined. To assess AR effects on CD133+ population progression, stem cell functional assays (side population, sphere formation assay, CD133 expression) were used to analyze role of AR in PA1 CSPCs. In tissue specimen, immunohistochemistry staining was used to carry out AR and CD133 staining in normal and tumor tissue. RESULTS We examined androgen/AR signaling in OVTC PA1 cells, a CSPCs-rich cell line, and found that AR, but not androgen, promoted cell growth. We also examined the effects of AR on CSPCs characteristics and found that AR expression was more abundant in CD133+ cells, a well-defined ovarian cancer stem/progenitor marker, than in CD133- populations. Moreover, results of the sphere formation assay revealed that AR expression was required to maintain CSPCs populations. Interestingly, this AR-governed self-renewal capacity of CSPCs was only observed in CD133+ cells. In addition, we found that AR-mediated CSPCs enrichment was accompanied by down-regulation of p53 and p16. Finally, co-expression of AR and CD133 was more abundant in OVTC lesions than in normal ovarian tissue. CONCLUSION The results of this study suggest that AR itself might play a ligand-independent role in the development of OVTC.
Collapse
Affiliation(s)
- Wei-Min Chung
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan; Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Chun Chang
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Lumin Chen
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan; Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Tze-Yi Lin
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Liang-Chi Chen
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Yao-Ching Hung
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan; Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan.
| | - Wen-Lung Ma
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan; Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan.
| |
Collapse
|
44
|
It takes two to tango, a dance between the cells of origin and cancer stem cells in the Drosophila larval brain. Semin Cell Dev Biol 2014; 28:63-9. [PMID: 24631354 DOI: 10.1016/j.semcdb.2014.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/03/2014] [Indexed: 01/12/2023]
Abstract
During malignant transformation the cells of origin give rise to cancer stem cells which possess the capacity to undergo limitless rounds of self-renewing division, regenerating themselves while producing more tumor cells. Within normal tissues, a limitless self-renewal capacity is unique to the stem cells, which divide asymmetrically to produce more restricted progenitors. Accumulating evidence suggests that misregulation of the self-renewal machinery in stem cell progeny can lead to tumorigenesis, but how it influences the properties of the resulting tumors remains unclear. Studies of the type II neural stem cell (neuroblast) lineages in the Drosophila larval brain have identified a regulatory cascade that promotes commitment to a progenitor cell identity by restricting their response to the self-renewal machinery. Brain tumor (Brat) and Numb initiate this cascade by asymmetrically extinguishing the activity of the self-renewal factors. Subsequently, Earmuff (Erm) and the SWI/SNF complex stably restrict the competence of the progenitor cell to respond to reactivation of self-renewal mechanisms. Together, this cascade programs the progenitor cell to undergo limited rounds of division, generating exclusive differentiated progeny. Here we review how defects in this cascade lead to tumor initiation and how inhibiting the self-renewal mechanisms may be an effective strategy to block CSC expansion.
Collapse
|
45
|
Sherr CJ. Ink4-Arf locus in cancer and aging. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:731-41. [PMID: 22960768 PMCID: PMC3434949 DOI: 10.1002/wdev.40] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three tumor suppressor genes at the small (<50 kb) INK4-ARF (CDKN2A/B) locus on human chromosome 9p21 coordinate a signaling network that depends on the activities of the retinoblastoma (RB) protein and the p53 transcription factor. Disruption of this circuitry, frequently by codeletion of INK4-ARF, is a hallmark of cancer, begging the question of why the intimate genetic linkage of these tumor suppressor genes has been maintained in mammals despite the risk of their coinactivation. The INK4-ARF locus is not highly expressed under normal physiologic conditions in young mammals, but its induction becomes more pronounced as animals age. Notably, INK4-ARF is actively silenced en bloc in embryonic, fetal, and adult stem cells but becomes poised to respond to oncogenic stress signals as stem cells lose their self-renewal capacity and differentiate, thereby providing a potent barrier to tumor formation. Epigenetic remodeling of the locus as a whole provides a mechanism for coordinating the activities of RB and p53. A hypothesis is that the INK4-ARF locus may have evolved to physiologically restrict the self-renewal capacities and numbers of stem and progenitor cells with the attendant consequence of limiting tissue regenerative capacity, particularly as animals age. Deletion of INK4-ARF contributes to the aberrant self-renewal capacity of tumor cells and occurs frequently in many forms of human cancer.
Collapse
Affiliation(s)
- Charles J Sherr
- Howard Hughes Medical Institute, Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
46
|
Parikh N, Hilsenbeck S, Creighton CJ, Dayaram T, Shuck R, Shinbrot E, Xi L, Gibbs RA, Wheeler DA, Donehower LA. Effects of TP53 mutational status on gene expression patterns across 10 human cancer types. J Pathol 2014; 232:522-33. [PMID: 24374933 DOI: 10.1002/path.4321] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 01/13/2023]
Abstract
Mutations in the TP53 tumour suppressor gene occur in half of all human cancers, indicating its critical importance in inhibiting cancer development. Despite extensive studies, the mechanisms by which mutant p53 enhances tumour progression remain only partially understood. Here, using data from the Cancer Genome Atlas (TCGA), genomic and transcriptomic analyses were performed on 2256 tumours from 10 human cancer types. We show that tumours with TP53 mutations have altered gene expression profiles compared to tumours retaining two wild-type TP53 alleles. Among 113 known p53-up-regulated target genes identified from cell culture assays, 10 were consistently up-regulated in at least eight of 10 cancer types that retain both copies of wild-type TP53. RPS27L, CDKN1A (p21(CIP1)) and ZMAT3 were significantly up-regulated in all 10 cancer types retaining wild-type TP53. Using this p53-based expression analysis as a discovery tool, we used cell-based assays to identify five novel p53 target genes from genes consistently up-regulated in wild-type p53 cancers. Global gene expression analyses revealed that cell cycle regulatory genes and transcription factors E2F1, MYBL2 and FOXM1 were disproportionately up-regulated in many TP53 mutant cancer types. Finally, > 93% of tumours with a TP53 mutation exhibited greatly reduced wild-type p53 messenger expression, due to loss of heterozygosity or copy neutral loss of heterozygosity, supporting the concept of p53 as a recessive tumour suppressor. The data indicate that tumours with wild-type TP53 retain some aspects of p53-mediated growth inhibitory signalling through activation of p53 target genes and suppression of cell cycle regulatory genes.
Collapse
Affiliation(s)
- Neha Parikh
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Le Bouteiller M, Souilhol C, Beck-Cormier S, Stedman A, Burlen-Defranoux O, Vandormael-Pournin S, Bernex F, Cumano A, Cohen-Tannoudji M. Notchless-dependent ribosome synthesis is required for the maintenance of adult hematopoietic stem cells. ACTA ACUST UNITED AC 2013; 210:2351-69. [PMID: 24062412 PMCID: PMC3804936 DOI: 10.1084/jem.20122019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conditional deletion of Notchless leads to rapid deletion and exhaustion of HSCs and early progenitor cells, whereas committed progenitor cells survive as a result of differences in ribosomal biogenesis. Blood cell production relies on the coordinated activities of hematopoietic stem cells (HSCs) and multipotent and lineage-restricted progenitors. Here, we identify Notchless (Nle) as a critical factor for HSC maintenance under both homeostatic and cytopenic conditions. Nle deficiency leads to a rapid and drastic exhaustion of HSCs and immature progenitors and failure to maintain quiescence in HSCs. In contrast, Nle is dispensable for cycling-restricted progenitors and differentiated cells. In yeast, Nle/Rsa4 is essential for ribosome biogenesis, and we show that its role in pre-60S subunit maturation has been conserved in the mouse. Despite its implication in this basal cellular process, Nle deletion affects ribosome biogenesis only in HSCs and immature progenitors. Ribosome biogenesis defects are accompanied by p53 activation, which causes their rapid exhaustion. Collectively, our findings establish an essential role for Nle in HSC and immature progenitor functions and uncover previously unsuspected differences in ribosome biogenesis that distinguish stem cells from restricted progenitor populations.
Collapse
Affiliation(s)
- Marie Le Bouteiller
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, F-75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Resilient and resourceful: genome maintenance strategies in hematopoietic stem cells. Exp Hematol 2013; 41:915-23. [PMID: 24067363 DOI: 10.1016/j.exphem.2013.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 01/08/2023]
Abstract
Blood homeostasis is maintained by a rare population of quiescent hematopoietic stem cells (HSCs) that self-renew and differentiate to give rise to all lineages of mature blood cells. In contrast to most other blood cells, HSCs are preserved throughout life, and the maintenance of their genomic integrity is therefore paramount to ensure normal blood production and to prevent leukemic transformation. HSCs are also one of the few blood cells that truly age and exhibit severe functional decline in old organisms, resulting in impaired blood homeostasis and increased risk for hematologic malignancies. In this review, we present the strategies used by HSCs to cope with the many genotoxic insults that they commonly encounter. We briefly describe the DNA-damaging insults that can affect HSC function and the mechanisms that are used by HSCs to prevent, survive, and repair DNA lesions. We also discuss an apparent paradox in HSC biology, in which the genome maintenance strategies used by HSCs to protect their function in fact render them vulnerable to the acquisition of damaging genetic aberrations.
Collapse
|
49
|
Weiss CN, Ito K. DNA damage response, redox status and hematopoiesis. Blood Cells Mol Dis 2013; 52:12-8. [PMID: 24041596 DOI: 10.1016/j.bcmd.2013.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 12/15/2022]
Abstract
The ability of hematopoietic stem cells (HSCs) to self-renew and differentiate into progenitors is essential for homeostasis of the hematopoietic system. The longevity of HSCs makes them vulnerable to accumulating DNA damage, which may be leukemogenic or result in senescence and cell death. Additionally, the ability of HSCs to self-renew and differentiate allows DNA damage to spread throughout the hematologic system, leaving the organism vulnerable to disease. In this review we discuss cell fate decisions made in the face of DNA damage and other cellular stresses, and the role of reactive oxygen species in the long-term maintenance of HSCs and their DNA damage response.
Collapse
Affiliation(s)
- Cary N Weiss
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology and Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
50
|
Adorno M, Sikandar S, Mitra SS, Kuo A, Nicolis Di Robilant B, Haro-Acosta V, Ouadah Y, Quarta M, Rodriguez J, Qian D, Reddy VM, Cheshier S, Garner CC, Clarke MF. Usp16 contributes to somatic stem-cell defects in Down's syndrome. Nature 2013; 501:380-4. [PMID: 24025767 PMCID: PMC3816928 DOI: 10.1038/nature12530] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 08/05/2013] [Indexed: 12/25/2022]
Abstract
Down syndrome (DS) results from full or partial trisomy of chromosome 21. However, the consequences of the underlying gene-dosage imbalance on adult tissues remain poorly understood. Here we show that in Ts65Dn mice, trisomic for 132 genes homologous to HSA21, triplication of Usp16 reduces self-renewal of hematopoietic stem cells and expansion of mammary epithelial cells, neural progenitors, and fibroblasts. Moreover, Usp16 is associated with decreased ubiquitination of Cdkn2a and accelerated senescence in Ts65Dn fibroblasts. Usp16 can remove ubiquitin from H2AK119, a critical mark for the maintenance of multiple somatic tissues. Downregulation of Usp16, either by mutation of a single normal USP16 allele or by shRNAs, largely rescues all these defects. Furthermore, in human tissues overexpression of USP16 reduces the expansion of normal fibroblasts and post-natal neural progenitors while downregulation of USP16 partially rescues the proliferation defects of DS fibroblasts. Taken together, these results suggest that USP16 plays an important role in antagonizing the self-renewal and/or senescence pathways in Down syndrome and could serve as an attractive target to ameliorate some of the associated pathologies.
Collapse
Affiliation(s)
- Maddalena Adorno
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|