1
|
Paulchamy C, Vakkattuthundi Premji S, Shanmugam S. Methanogens and what they tell us about how life might survive on Mars. Crit Rev Biochem Mol Biol 2024; 59:337-362. [PMID: 39488737 DOI: 10.1080/10409238.2024.2418639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Space exploration and research are uncovering the potential for terrestrial life to survive in outer space, as well as the environmental factors that affect life during interplanetary transfer. The presence of methane in the Martian atmosphere suggests the possibility of methanogens, either extant or extinct, on Mars. Understanding how methanogens survive and adapt under space-exposed conditions is crucial for understanding the implications of extraterrestrial life. In this article, we discuss methanogens as model organisms for obtaining energy transducers and producing methane in a simulated Martian environment. We also explore the chemical evolution of cellular composition and growth maintenance to support survival in extraterrestrial environments. Neutral selective pressure is imposed on the chemical composition of cellular components to increase cell survival and reduce growth under physiological conditions. Energy limitation is an evolutionary driver of macromolecular polymerization, growth maintenance, and survival fitness of methanogens. Methanogens grown in a Martian environment may exhibit global alterations in their metabolic function and gene expression at the system scale. A space systems biology approach would further elucidate molecular survival mechanisms and adaptation to a drastic outer space environment. Therefore, identifying a genetically stable methanogenic community is essential for biomethane production from waste recycling to achieve sustainable space-life support functions.
Collapse
Affiliation(s)
- Chellapandi Paulchamy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Sreekutty Vakkattuthundi Premji
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Saranya Shanmugam
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
2
|
Chen C, Yi R, Igisu M, Sakaguchi C, Afrin R, Potiszil C, Kunihiro T, Kobayashi K, Nakamura E, Ueno Y, Antunes A, Wang A, Chandru K, Hao J, Jia TZ. Spectroscopic and Biophysical Methods to Determine Differential Salt-Uptake by Primitive Membraneless Polyester Microdroplets. SMALL METHODS 2023; 7:e2300119. [PMID: 37203261 DOI: 10.1002/smtd.202300119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/23/2023] [Indexed: 05/20/2023]
Abstract
α-Hydroxy acids are prebiotic monomers that undergo dehydration synthesis to form polyester gels, which assemble into membraneless microdroplets upon aqueous rehydration. These microdroplets are proposed as protocells that can segregate and compartmentalize primitive molecules/reactions. Different primitive aqueous environments with a variety of salts could have hosted chemistries that formed polyester microdroplets. These salts could be essential cofactors of compartmentalized prebiotic reactions or even directly affect protocell structure. However, fully understanding polyester-salt interactions remains elusive, partially due to technical challenges of quantitative measurements in condensed phases. Here, spectroscopic and biophysical methods are applied to analyze salt uptake by polyester microdroplets. Inductively coupled plasma mass spectrometry is applied to measure the cation concentration within polyester microdroplets after addition of chloride salts. Combined with methods to determine the effects of salt uptake on droplet turbidity, size, surface potential and internal water distribution, it was observed that polyester microdroplets can selectively partition salt cations, leading to differential microdroplet coalescence due to ionic screening effects reducing electrostatic repulsion forces between microdroplets. Through applying existing techniques to novel analyses related to primitive compartment chemistry and biophysics, this study suggests that even minor differences in analyte uptake can lead to significant protocellular structural change.
Collapse
Affiliation(s)
- Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Motoko Igisu
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Chie Sakaguchi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Rehana Afrin
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Tak Kunihiro
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Katsura Kobayashi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Eizo Nakamura
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Yuichiro Ueno
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8551, Japan
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau, SAR, China
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| | - Anna Wang
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW, 2052, Australia
- RNA Institute, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence for Synthetic Biology, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor, 43650, Malaysia
| | - Jihua Hao
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
- Deep Space Exploration Laboratory/CAS Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei, 230026, China
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| |
Collapse
|
3
|
Chaouche-Mechidal N, Stalport F, Caupos E, Mebold E, Azémard C, Szopa C, Coll P, Cottin H. Effects of UV and Calcium Perchlorates on Uracil Deposited on Strontium Fluoride Substrates at Mars Pressure and Temperature. ASTROBIOLOGY 2023; 23:959-978. [PMID: 37672714 DOI: 10.1089/ast.2022.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Organic matter is actively searched on Mars with current and future space missions as it is a key to detecting potential biosignatures. Given the current harsh environmental conditions at the surface of Mars, many organic compounds might not be preserved over a long period as they are exposed to energetic radiation such as ultraviolet light, which is not filtered above 190 nm by the martian atmosphere. Moreover, the presence of strong oxidizing species in the regolith, such as perchlorate salts, might enhance the photodegradation of organic compounds of astrobiological interest. Because current space instruments analyze samples collected in the upper surface layer, it is necessary to investigate the stability of organic matter at the surface of Mars. Previous experimental studies have shown that uracil, a molecule relevant to astrobiology, is quickly photolyzed when exposed to UV radiation under the temperature and pressure conditions of the martian surface with an experimental quantum efficiency of photodecomposition (φexp) of 0.30 ± 0.26 molecule·photon-1. Moreover, the photolysis of uracil leads to the formation of more stable photoproducts that were identified as uracil dimers. The present work aims to characterize the additional effect of calcium perchlorate detected on Mars on the degradation of uracil. Results show that the presence of calcium perchlorate enhances the photodecomposition of uracil with φexp = 12.3 ± 8.3 molecule·photon-1. Although some of the photoproducts formed during these experiments are common to those formed from pure uracil only, the Fourier transformation infrared (FTIR) detection of previously unseen chemical functions such as alkyne C ≡ C or nitrile C ≡ N has shown that additional chemical species are formed in the presence of calcium perchlorate in the irradiated sample. This implies that the effect of calcium perchlorate on the photolysis of uracil is not only kinetic but also related to the nature of the photoproducts formed.
Collapse
Affiliation(s)
- N Chaouche-Mechidal
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - F Stalport
- Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - E Caupos
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
- Ecole des Ponts, LEESU, F-77455 Champs-sur-Marne, France
| | - E Mebold
- Univ Paris Est Creteil, CNRS, OSU-EFLUVE, F-94010 Créteil, France
| | - C Azémard
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - C Szopa
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, 78280 Guyancourt, France
| | - P Coll
- Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - H Cottin
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| |
Collapse
|
4
|
Ferrari M, De Angelis S, De Sanctis MC, Frigeri A, Altieri F, Ammannito E, Formisano M, Vinogradoff V. Constraining the Rosalind Franklin Rover/Ma_MISS Instrument Capability in the Detection of Organics. ASTROBIOLOGY 2023; 23:691-704. [PMID: 37126783 DOI: 10.1089/ast.2022.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Mars Multispectral Imager for Subsurface Studies (Ma_MISS) instrument is a miniaturized visible and near-infrared spectrometer that is integrated into the drilling system of the ESA Rosalind Franklin rover, which is devoted to subsurface exploration on Mars. Ma_MISS will acquire spectral data on the Martian subsurface from excavated borehole walls. The spectral data collected by Ma_MISS on unexposed rocks will be crucial for determination of the composition of subsurface rocks and optical and physical properties of materials (i.e., grain size). Ma_MISS will further contribute to a reconstruction of the stratigraphic column and acquire data on subsurface geological processes. Ma_MISS data may also inform with regard to the presence of potential biomarkers in the subsurface, given the presence of organic matter that may affect some spectral parameters. In this framework, we performed a wide range of measurements using the laboratory model of the Ma_MISS to investigate mineral/organic mixtures in different proportions. We prepared mixtures by combining kaolinite and nontronite with glycine, asphaltite, polyoxymethylene, and benzoic acid. These organic compounds show different spectral characteristics in the visible and near-infrared; therefore their presence can be detected by the Ma_MISS instrument. Our results indicate that the Ma_MISS instrument can detect organic material down to abundances of around 1 wt %. In particular, the data collected on low-concentration mixtures show that, by analyzing sediments with a grain size smaller than the Ma_MISS spatial resolution, the instrument can still discern those points where organic matter is present from points with exclusive mineral composition. The results also show that a collection of multiple contiguous measurements on a hypothetical borehole wall could help indicate the presence of organic matter in clay-rich soils if present.
Collapse
Affiliation(s)
- M Ferrari
- Institute for Space Astrophysics and Planetology, IAPS-INAF, Rome, Italy
| | - S De Angelis
- Institute for Space Astrophysics and Planetology, IAPS-INAF, Rome, Italy
| | - M C De Sanctis
- Institute for Space Astrophysics and Planetology, IAPS-INAF, Rome, Italy
| | - A Frigeri
- Institute for Space Astrophysics and Planetology, IAPS-INAF, Rome, Italy
| | - F Altieri
- Institute for Space Astrophysics and Planetology, IAPS-INAF, Rome, Italy
| | | | - M Formisano
- Institute for Space Astrophysics and Planetology, IAPS-INAF, Rome, Italy
| | - V Vinogradoff
- Aix Marseille University, CNRS-UMR 7345, PIIM, Marseille, France
| |
Collapse
|
5
|
Rucker HR, Ely TD, LaRowe DE, Giovannelli D, Price RE. Quantifying the Bioavailable Energy in an Ancient Hydrothermal Vent on Mars and a Modern Earth-Based Analog. ASTROBIOLOGY 2023; 23:431-445. [PMID: 36862508 DOI: 10.1089/ast.2022.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Putative alkaline hydrothermal systems on Noachian Mars were potentially habitable environments for microorganisms. However, the types of reactions that could have fueled microbial life in such systems and the amount of energy available from them have not been quantitatively constrained. In this study, we use thermodynamic modeling to calculate which catabolic reactions could have supported ancient life in a saponite-precipitating hydrothermal vent system in the Eridania basin on Mars. To further evaluate what this could mean for microbial life, we evaluated the energy potential of an analog site in Iceland, the Strytan Hydrothermal Field. Results show that, of the 84 relevant redox reactions that were considered, the highest energy-yielding reactions in the Eridania hydrothermal system were dominated by methane formation. By contrast, Gibbs energy calculations carried out for Strytan indicate that the most energetically favorable reactions are CO2 and O2 reduction coupled to H2 oxidation. In particular, our calculations indicate that an ancient hydrothermal system within the Eridania basin could have been a habitable environment for methanogens using NH4+ as an electron acceptor. Differences in Gibbs energies between the two systems were largely determined by oxygen-its presence on Earth and absence on Mars. However, Strytan can serve as a useful analog for Eridania when studying methane-producing reactions that do not involve O2.
Collapse
Affiliation(s)
- Holly R Rucker
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Tucker D Ely
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- 39Alpha Research, Tempe, Arizona, USA
| | - Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Donato Giovannelli
- Department of Biology, University of Naples "Federico II," Naples, Italy
| | - Roy E Price
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
6
|
Li C, Xu Y, Yang Y, Wang L, Zhou C. Evolution of Chemical Bonding and Crystalline Swelling-Shrinkage of Montmorillonite upon Temperature Changes Probed by in Situ Fourier Transform Infrared Spectroscopy and X-ray Diffraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14227-14237. [PMID: 36321920 DOI: 10.1021/acs.langmuir.2c02236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Clay minerals are distributed in Earth's crust and troposphere and in Martian crust where temperature varies. Understanding the changes of chemical bonding and crystalline swelling-shrinkage of montmorillonite (Mnt) upon temperature changes is fundamental for studying its surface reactivity and interaction in specific surroundings. However, such an issue remains poorly understood. Here, in situ high- and low-temperature Fourier transform infrared (HT- and LT-FTIR) spectroscopy and X-ray diffraction (HT- and LT-XRD) were performed to study the evolution of chemical bonding and crystalline swelling-shrinkage of sodium-montmorillonite (NaMnt) upon temperature changes. The FTIR results show that the hydroxyl content in NaMnt decreased when the temperature increased from 20 to 700 °C, while it is independent of temperature from 0 to -150 °C. The formation of hydroxyls at the "broken" layer edges of NaMnt is related to adsorbed water molecules on the surfaces, and its content increased when the particle size of the NaMnt decreased. The water molecules in the interlayer space of NaMnt could bond to the tetrahedral sheet of NaMnt through Si2O-H2O bonds. HT- and LT-XRD results reveal that all of those water molecules in NaMnt were removed after heating to 100 °C in the heating chamber. The NaMnt was transformed from a state of monolayer interlayer water molecules at 20 °C to a dehydrated state at 100 °C, and then to a dehydroxylated state at 700 °C. Accordingly, the basal spacings of NaMnt were changed from 1.27 to 0.97 nm and then to 0.96 nm, respectively. When NaMnt was cooled from 20 to -268 °C, a crystalline swelling of NaMnt occurred with an increase of 0.03 nm of basal spacing. This work demonstrates that high/low temperature has a remarkable effect on the hydroxyls and the water molecules in NaMnt, which in turn affects its swelling-shrinkage performance. These findings provide some in-depth understanding of the changes of chemical bonding and crystalline swelling-shrinkage of montmorillonite upon temperature changes and the reasons behind these, which might be helpful for the design of engineering Mnt in high-/low-temperature applications.
Collapse
Affiliation(s)
- Cunjun Li
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou310014, China
- College of Materials Science and Engineering, Guilin University of Technology, 12 Jian Gan Road, Guilin541004, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, 12 Jian Gan Road, Guilin541004, China
| | - Yanqi Xu
- College of Materials Science and Engineering, Guilin University of Technology, 12 Jian Gan Road, Guilin541004, China
| | - Yan Yang
- Institute of Geology and Geophysics, School of Earth Sciences, Zhejiang University, 148 Tian Mu Shan Road, Hangzhou310027, China
| | - Linjiang Wang
- College of Materials Science and Engineering, Guilin University of Technology, 12 Jian Gan Road, Guilin541004, China
| | - Chunhui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou310014, China
- Qing Yang Institute for Industrial Minerals, Industry Park, You Hua Township, Qingyang242804, China
- Engineering Research Center of Nonmetallic Minerals of Zhejiang Province, Zhejiang Institute of Geology and Mineral Resources, 58 Ti Yu Chang Road, Hangzhou310007, China
| |
Collapse
|
7
|
Nikitczuk MP, Bebout GE, Geiger CA, Ota T, Kunihiro T, Mustard JF, Halldórsson SA, Nakamura E. Nitrogen Incorporation in Potassic and Micro- and Meso-Porous Minerals: Potential Biogeochemical Records and Targets for Mars Sampling. ASTROBIOLOGY 2022; 22:1293-1309. [PMID: 36074082 PMCID: PMC9618379 DOI: 10.1089/ast.2021.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
We measured the N concentrations and isotopic compositions of 44 samples of terrestrial potassic and micro- and meso-porous minerals and a small number of whole-rocks to determine the extent to which N is incorporated and stored during weathering and low-temperature hydrothermal alteration in Mars surface/near-surface environments. The selection of these minerals and other materials was partly guided by the study of altered volcanic glass from Antarctica and Iceland, in which the incorporation of N as NH4+ in phyllosilicates is indicated by correlated concentrations of N and the LILEs (i.e., K, Ba, Rb, Cs), with scatter likely related to the presence of exchanged, occluded/trapped, or encapsulated organic/inorganic N occurring within structural cavities (e.g., in zeolites). The phyllosilicates, zeolites, and sulfates analyzed in this study contain between 0 and 99,120 ppm N and have δ15Nair values of -34‰ to +65‰. Most of these minerals, and the few siliceous hydrothermal deposits that were analyzed, have δ15N consistent with the incorporation of biologically processed N during low-temperature hydrothermal or weathering processes. Secondary ion mass spectrometry on altered hyaloclastites demonstrates the residency of N in smectites and zeolites, and silica. We suggest that geological materials known on Earth to incorporate and store N and known to be abundant at, or near, the surface of Mars should be considered targets for upcoming Mars sample return with the intent to identify any signs of ancient or modern life.
Collapse
Affiliation(s)
- Matthew P. Nikitczuk
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Gray E. Bebout
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
- Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Japan
| | - Charles A. Geiger
- Universität Salzburg, Fachbereich Chemie und Physik der Materialien, Salzburg, Austria
| | - Tsutomu Ota
- Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Japan
| | - Takuya Kunihiro
- Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Japan
| | - John F. Mustard
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | - Sæmundur A. Halldórsson
- Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland
| | - Eizo Nakamura
- Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Japan
| |
Collapse
|
8
|
Ritter B, Diederich-Leicher JL, Binnie SA, Stuart FM, Wennrich V, Bolten A, Dunai TJ. Impact of CaSO 4-rich soil on Miocene surface preservation and Quaternary sinuous to meandering channel forms in the hyperarid Atacama Desert. Sci Rep 2022; 12:17951. [PMID: 36289432 PMCID: PMC9606260 DOI: 10.1038/s41598-022-22787-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
The Atacama Desert is the driest and oldest desert on Earth. Despite the abundance evidence for long-term landscape stability, there are subtle signs of localised fluvial erosion and deposition since the onset of hyperaridity in the rock record. In the dry core of the Atacama Desert, pluvial episodes allowed antecedent drainage to incise into uplifting fault scarps, which in turn generated sinuous to meandering channels. Incision of ancient alluvial fan surfaces occurred during intermittent fluvial periods, albeit without signs of surface erosion. Fluvial incision during predominantly hyperarid climate periods is evident from these channels in unconsolidated alluvium. The absence of dense vegetation to provide bank stability and strength led us to investigate the potential role of regionally ubiquitous CaSO4-rich surface cover. This has enabled the preservation of Miocene surfaces and we hypothesize that it provided the required bank stability by adding strength to the upper decimetre to meter of incised alluvium to allow high sinuosity of stream channels to form during pluvial episodes in the Quaternary.
Collapse
Affiliation(s)
- Benedikt Ritter
- grid.6190.e0000 0000 8580 3777Institute of Geology & Mineralogy, University of Cologne, Cologne, Germany
| | - Julia L. Diederich-Leicher
- grid.6190.e0000 0000 8580 3777Institute of Geology & Mineralogy, University of Cologne, Cologne, Germany
| | - Steven A. Binnie
- grid.6190.e0000 0000 8580 3777Institute of Geology & Mineralogy, University of Cologne, Cologne, Germany
| | - Finlay M. Stuart
- grid.224137.10000 0000 9762 0345Isotope Geosciences Unit, Scottish Universities Environmental Research Centre, East Kilbride, UK
| | - Volker Wennrich
- grid.6190.e0000 0000 8580 3777Institute of Geology & Mineralogy, University of Cologne, Cologne, Germany
| | - Andreas Bolten
- grid.6190.e0000 0000 8580 3777Institute of Geography, University of Cologne, Cologne, Germany
| | - Tibor J. Dunai
- grid.6190.e0000 0000 8580 3777Institute of Geology & Mineralogy, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
A genetically encoded system for oxygen generation in living cells. Proc Natl Acad Sci U S A 2022; 119:e2207955119. [PMID: 36215519 DOI: 10.1073/pnas.2207955119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxygen plays a key role in supporting life on our planet. It is particularly important in higher eukaryotes where it boosts bioenergetics as a thermodynamically favorable terminal electron acceptor and has important roles in cell signaling and development. Many human diseases stem from either insufficient or excessive oxygen. Despite its fundamental importance, we lack methods with which to manipulate the supply of oxygen with high spatiotemporal resolution in cells and in organisms. Here, we introduce a genetic system, SupplemeNtal Oxygen Released from ChLorite (SNORCL), for on-demand local generation of molecular oxygen in living cells, by harnessing prokaryotic chlorite O2-lyase (Cld) enzymes that convert chlorite (ClO2-) into molecular oxygen (O2) and chloride (Cl-). We show that active Cld enzymes can be targeted to either the cytosol or mitochondria of human cells, and that coexpressing a chlorite transporter results in molecular oxygen production inside cells in response to externally added chlorite. This first-generation system allows fine temporal and spatial control of oxygen production, with immediate research applications. In the future, we anticipate that technologies based on SNORCL will have additional widespread applications in research, biotechnology, and medicine.
Collapse
|
10
|
Osterhout JT, Schopf JW, Kudryavtsev AB, Czaja AD, Williford KH. Deep-UV Raman Spectroscopy of Carbonaceous Precambrian Microfossils: Insights into the Search for Past Life on Mars. ASTROBIOLOGY 2022; 22:1239-1254. [PMID: 36194869 DOI: 10.1089/ast.2021.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The current strategy for detecting evidence of ancient life on Mars-a primary goal of NASA's ongoing Mars 2020 mission-is based largely on knowledge of Precambrian life and of its preservation in Earth's early rock record. The fossil record of primitive microorganisms consists mainly of stromatolites and other microbially influenced sedimentary structures, which occasionally preserve microfossils or other geochemical traces of life. Raman spectroscopy is an invaluable tool for identifying such signs of life and is routinely performed on Precambrian microfossils to help establish their organic composition, degree of thermal maturity, and biogenicity. The Mars 2020 rover, Perseverance, is equipped with a deep-ultraviolet (UV) Raman spectrometer as part of the SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) instrument, which will be used in part to characterize the preservation of organic matter in the ancient sedimentary rocks of Jezero crater and therein search for possible biosignatures. To determine the deep-UV Raman spectra characteristic of ancient microbial fossils, this study analyzes individual microfossils from 14 Precambrian cherts using deep-UV (244 nm) Raman spectroscopy. Spectra obtained were measured and calibrated relative to a graphitic standard and categorized according to the morphology and depositional environment of the fossil analyzed and its Raman-indicated thermal maturity. All acquired spectra of the fossil kerogens include a considerably Raman-enhanced and prominent first-order Raman G-band (∼1600 cm-1), whereas its commonly associated D-band (∼1350 cm-1) is restricted to specimens of lower thermal maturity (below greenschist facies) that thus have the less altered biosignature indicative of relatively well-preserved organic matter. If comparably preserved, similar characteristics would be expected to be exhibited by microfossils or ancient organic matter in rock samples collected and cached on Mars in preparation for future sample return to Earth.
Collapse
Affiliation(s)
- Jeffrey T Osterhout
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USA
- Center for the Study of Evolution and the Origin of Life, University of California, Los Angeles, California, USA
| | - J William Schopf
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USA
- Center for the Study of Evolution and the Origin of Life, University of California, Los Angeles, California, USA
| | - Anatoliy B Kudryavtsev
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USA
- Center for the Study of Evolution and the Origin of Life, University of California, Los Angeles, California, USA
| | - Andrew D Czaja
- Department of Geology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kenneth H Williford
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
11
|
Seaton KM, Cable ML, Stockton AM. Analytical Chemistry Throughout This Solar System. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:197-219. [PMID: 35300527 DOI: 10.1146/annurev-anchem-061020-125416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the greatest and most long-lived scientific pursuits of humankind has been to discover and study the planetary objects comprising our solar system. Information gained from solar system observations, via both remote sensing and in situ measurements, is inherently constrained by the analytical (often chemical) techniques we employ in these endeavors. The past 50 years of planetary science missions have resulted in immense discoveries within and beyond our solar system, enabled by state-of-the-art analytical chemical instrument suites on board these missions. In this review, we highlight and discuss some of the most impactful analytical chemical instruments flown on planetary science missions within the last 20 years, including analytical techniques ranging from remote spectroscopy to in situ chemical separations. We first highlight mission-based remote and in situ spectroscopic techniques, followed by in situ separation and mass spectrometry analyses. The results of these investigations are discussed, and their implications examined, from worlds as close as Venus and familiar as Mars to as far away and exotic as Titan. Instruments currently in development for planetary science missions in the near future are also discussed, as are the promises their capabilities bring. Analytical chemistry is critical to understanding what lies beyond Earth in our solar system, and this review seeks to highlight how questions, analytical tools, and answers have intersected over the past 20 years and their implications for the near future.
Collapse
Affiliation(s)
- Kenneth Marshall Seaton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA;
| | - Morgan Leigh Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
12
|
Velbel MA, Cockell CS, Glavin DP, Marty B, Regberg AB, Smith AL, Tosca NJ, Wadhwa M, Kminek G, Meyer MA, Beaty DW, Carrier BL, Haltigin T, Hays LE, Agee CB, Busemann H, Cavalazzi B, Debaille V, Grady MM, Hauber E, Hutzler A, McCubbin FM, Pratt LM, Smith CL, Summons RE, Swindle TD, Tait KT, Udry A, Usui T, Westall F, Zorzano MP. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR). ASTROBIOLOGY 2022; 22:S112-S164. [PMID: 34904892 DOI: 10.1089/ast.2021.0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The NASA/ESA Mars Sample Return (MSR) Campaign seeks to establish whether life on Mars existed where and when environmental conditions allowed. Laboratory measurements on the returned samples are useful if what is measured is evidence of phenomena on Mars rather than of the effects of sterilization conditions. This report establishes that there are categories of measurements that can be fruitful despite sample sterilization and other categories that cannot. Sterilization kills living microorganisms and inactivates complex biological structures by breaking chemical bonds. Sterilization has similar effects on chemical bonds in non-biological compounds, including abiotic or pre-biotic reduced carbon compounds, hydrous minerals, and hydrous amorphous solids. We considered the sterilization effects of applying dry heat under two specific temperature-time regimes and the effects of γ-irradiation. Many measurements of volatile-rich materials are sterilization sensitive-they will be compromised by either dehydration or radiolysis upon sterilization. Dry-heat sterilization and γ-irradiation differ somewhat in their effects but affect the same chemical elements. Sterilization-sensitive measurements include the abundances and oxidation-reduction (redox) states of redox-sensitive elements, and isotope abundances and ratios of most of them. All organic molecules, and most minerals and naturally occurring amorphous materials that formed under habitable conditions, contain at least one redox-sensitive element. Thus, sterilization-sensitive evidence about ancient life on Mars and its relationship to its ancient environment will be severely compromised if the samples collected by Mars 2020 rover Perseverance cannot be analyzed in an unsterilized condition. To ensure that sterilization-sensitive measurements can be made even on samples deemed unsafe for unsterilized release from containment, contingency instruments in addition to those required for curation, time-sensitive science, and the Sample Safety Assessment Protocol would need to be added to the Sample Receiving Facility (SRF). Targeted investigations using analogs of MSR Campaign-relevant returned-sample types should be undertaken to fill knowledge gaps about sterilization effects on important scientific measurements, especially if the sterilization regimens eventually chosen are different from those considered in this report. Executive Summary A high priority of the planned NASA/ESA Mars Sample Return Campaign is to establish whether life on Mars exists or existed where and when allowed by paleoenvironmental conditions. To answer these questions from analyses of the returned samples would require measurement of many different properties and characteristics by multiple and diverse instruments. Planetary Protection requirements may determine that unsterilized subsamples cannot be safely released to non-Biosafety Level-4 (BSL-4) terrestrial laboratories. Consequently, it is necessary to determine what, if any, are the negative effects that sterilization might have on sample integrity, specifically the fidelity of the subsample properties that are to be measured. Sample properties that do not survive sterilization intact should be measured on unsterilized subsamples, and the Sample Receiving Facility (SRF) should support such measurements. This report considers the effects that sterilization of subsamples might have on the science goals of the MSR Campaign. It assesses how the consequences of sterilization affect the scientific usefulness of the subsamples and hence our ability to conduct high-quality science investigations. We consider the sterilization effects of (a) the application of dry heat under two temperature-time regimes (180°C for 3 hours; 250°C for 30 min) and (b) γ-irradiation (1 MGy), as provided to us by the NASA and ESA Planetary Protection Officers (PPOs). Measurements of many properties of volatile-rich materials are sterilization sensitive-they would be compromised by application of either sterilization mode to the subsample. Such materials include organic molecules, hydrous minerals (crystalline solids), and hydrous amorphous (non-crystalline) solids. Either proposed sterilization method would modify the abundances, isotopes, or oxidation-reduction (redox) states of the six most abundant chemical elements in biological molecules (i.e., carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulphur, CHNOPS), and of other key redox-sensitive elements that include iron (Fe), other first-row transition elements (FRTE), and cerium (Ce). As a result of these modifications, such evidence of Mars' life, paleoenvironmental history, potential habitability, and potential biosignatures would be corrupted or destroyed. Modifications of the abundances of some noble gases in samples heated during sterilization would also reset scientifically important radioisotope geochronometers and atmospheric-evolution measurements. Sterilization is designed to render terminally inactive (kill) all living microorganisms and inactivate complex biological structures (including bacterial spores, viruses, and prions). Sterilization processes do so by breaking certain pre-sterilization chemical bonds (including strong C-C, C-O, C-N, and C-H bonds of predominantly covalent character, as well as weaker hydrogen and van der Waals bonds) and forming different bonds and compounds, disabling the biological function of the pre-sterilization chemical compound. The group finds the following: No sterilization process could destroy the viability of cells whilst still retaining molecular structures completely intact. This applies not only to the organic molecules of living organisms, but also to most organic molecular biosignatures of former life (molecular fossils). As a matter of biological principle, any sterilization process would result in the loss of biological and paleobiological information, because this is the mechanism by which sterilization is achieved. Thus, almost all life science investigations would be compromised by sterilizing the subsample by either mode. Sterilization by dry heat at the proposed temperatures would lead to changes in many of the minerals and amorphous solids that are most significant for the study of paleoenvironments, habitability, potential biosignatures, and the geologic context of life-science observations. Gamma-(γ-)irradiation at even sub-MGy doses induces radiolysis of water. The radiolysis products (e.g., free radicals) react with redox-sensitive chemical species of interest for the study of paleoenvironments, habitability, and potential biosignatures, thereby adversely affecting measurements of those species. Heat sterilization and radiation also have a negative effect on CHNOPS and redox-sensitive elements. MSPG2 was unable to identify with confidence any measurement of abundances or oxidation-reduction states of CHNOPS elements, other redox-sensitive elements (e.g., Fe and other FRTE; Ce), or their isotopes that would be affected by only one, but not both, of the considered sterilization methods. Measurements of many attributes of volatile-rich subsamples are sterilization sensitive to both heat and γ-irradiation. Such a measurement is not useful to Mars science if what remains in the subsample is evidence of sterilization conditions and effects instead of evidence of conditions on Mars. Most measurements relating to the detection of evidence for extant or extinct life are sterilization sensitive. Many measurements other than those for life-science seek to retrieve Mars' paleoenvironmental information from the abundances or oxidation-reduction states of CHNOPS elements, other redox-sensitive elements, or their isotopes (and some noble gases) in returned samples. Such measurements inform scientific interpretations of (paleo)atmosphere composition and evolution, (paleo)surface water origin and chemical evolution, potential (paleo)habitability, (paleo)groundwater-porewater solute chemistry, origin and evolution, potential biosignature preservation, metabolic element or isotope fractionation, and the geologic, geochronological, and geomorphic context of life-sciences observations. Most such measurements are also sterilization sensitive. The sterilization-sensitive attributes cannot be meaningfully measured in any such subsample that has been sterilized by heat or γ-irradiation. Unless such subsamples are deemed biohazard-safe for release to external laboratories in unsterilized form, all such measurements must be made on unsterilized samples in biocontainment. An SRF should have the capability to carry out scientific investigations that are sterilization-sensitive to both PPO-provided sterilization methods (Figure SE1). The following findings have been recognized in the Report. Full explanations of the background, scope, and justification precede the presentation of each Finding in the Section identified for that Finding. One or more Findings follow our assessment of previous work on the effects of each provided sterilization method on each of three broad categories of measurement types-biosignatures of extant or ancient life, geological evidence of paleoenvironmental conditions, and gases. Findings are designated Major if they explicitly refer to both PPO-provided sterilization methods or have specific implications for the functionalities that need to be supported within an SRF. FINDING SS-1: More than half of the measurements described by iMOST for investigation into the presence of (mostly molecular) biosignatures (iMOST Objectives 2.1, 2.2 and 2.3) in returned martian samples are sterilization-sensitive and therefore cannot be performed with acceptable analytical precision or sensitivity on subsamples sterilized either by heat or by γ-irradiation at the sterilization parameters supplied to MSPG2. That proportion rises to 86% of the measurements specific to the investigation of extant or recent life (iMOST Objective 2.3) (see Section 2.5). This Finding supersedes Finding #4 of the MSPG Science in Containment report (MSPG, 2019). FINDING SS-2: Almost three quarters (115 out of 160; 72%) of the measurements described by iMOST for science investigations not associated with Objective 2 but associated with Objectives concerning geological phenomena that include past interactions with the hydrosphere (Objectives 1 and 3) and the atmosphere (Objective 4) are sterilization-tolerant and therefore can (generally) be performed with acceptable analytical precision or sensitivity on subsamples sterilized either by heat or by γ-irradiation at the sterilization parameters supplied to MSPG2 (see Section 2.5). This Finding supports Finding #6 of the MSPG Science in Containment report (MSPG, 2019). MSPG2 endorses the previously proposed strategy of conducting as many measurements as possible outside the SRF where the option exists. FINDING SS-3: Suggested strategies for investigating the potential for extant life in returned martian samples lie in understanding biosignatures and, more importantly, the presence of nucleic acid structures (DNA/RNA) and possible agnostic functionally similar information-bearing polymers. A crucial observation is that exposure of microorganisms to temperatures associated with sterilization above those typical of a habitable surface or subsurface environment results in a loss of biological information. If extant life is a target for subsample analysis, sterilization of material via dry heat would likely compromise any such analysis (see Section 3.2). FINDING SS-4: Suggested strategies for investigating the potential for extant life in returned martian samples lie in understanding biosignatures, including the presence of nucleic acid structures (DNA/RNA) and possible agnostic functionally similar information-bearing polymers. A crucial observation is that exposure of microorganisms to γ-radiation results in a loss of biological information through molecular damage and/or destruction. If extant life is a target for subsample analysis, sterilization of material via γ-radiation would likely compromise any such analysis (see Section 3.3). FINDING SS-5: Suggested strategies for investigating biomolecules in returned martian samples lie in detection of a variety of complex molecules, including peptides, proteins, DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), as well as compounds associated with cell membranes such as lipids, sterols, and fatty acids and their geologically stable reaction products (hopanes, steranes, etc.) and possible agnostic functionally similar information-bearing polymers. Exposure to temperatures above MSR Campaign-Level Requirements for sample temperature, up to and including sterilization temperatures, results in a loss of biological information. If the presence of biosignatures is a target for subsample analysis, sterilization of material via dry heat would likely compromise any such analysis (see Section 4.2). FINDING SS-6: Suggested strategies for investigating biomolecules in returned martian samples lie in detection of a variety of complex molecules, including peptides, proteins, DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), and compounds associated with cell membranes such as lipids, sterols and fatty acids and their geologically stable reaction products (hopanes, steranes, etc.) and possible agnostic functionally similar information-bearing polymers. Exposure to radiation results in a loss of biological information. If the presence of biosignatures is a target for subsample analysis, sterilization of material via γ-irradiation would likely compromise any such analysis (see Section 4.3). [Figure: see text] MAJOR FINDING SS-7: The use of heat or γ-irradiation sterilization should be avoided for subsamples intended to be used for organic biosignature investigations (for extinct or extant life). Studies of organic molecules from extinct or extant life (either indigenous or contaminants, viable or dead cells) or even some organic molecules derived from abiotic chemistry cannot credibly be done on subsamples that have been sterilized by any means. The concentrations of amino acids and other reduced organic biosignatures in the returned martian samples may also be so low that additional heat and/or γ-irradiation sterilization would reduce their concentrations to undetectable levels. It is a very high priority that these experiments be done on unsterilized subsamples inside containment (see Section 4.4). FINDING SS-8: Solvent extraction and acid hydrolysis at ∼100°C of unsterilized martian samples will inactivate any biopolymers in the extract and would not require additional heat or radiation treatment for the subsamples to be rendered sterile. Hydrolyzed extracts should be safe for analysis of soluble free organic molecules outside containment and may provide useful information about their origin for biohazard assessments; this type of approach, if approved, is strongly preferred and endorsed (see Section 4.4). FINDING SS-9: Minerals and amorphous materials formed by low temperature processes on Mars are highly sensitive to thermal alteration, which leads to irreversible changes in composition and/or structure when heated. Exposure to temperatures above MSR Campaign-Level Requirements for sample temperature, up to and including sterilization temperatures, has the potential to alter them from their as-received state. Sterilization by dry heat at the proposed sterilization temperatures would lead to changes in many of the minerals that are most significant for the study of paleoenvironments, habitability, and potential biosignatures or biosignature hosts. It is crucial that the returned samples are not heated to temperatures above which mineral transitions occur (see Section 5.3). FINDING SS-10: Crystal structure, major and non-volatile minor element abundances, and stoichiometric compositions of minerals are unaffected by γ-irradiation of up to 0.3-1 MGy, but crystal structures are completely destroyed at 130 MGy. Measurements of these specific properties cannot be acquired from subsamples γ-irradiated at the notional 1 MGy dose-they are sterilization-sensitive (see Section 5.4). FINDING SS-11: Sterilization by γ-irradiation (even at sub-MGy doses) results in significant changes to the redox state of elements bound within a mineral lattice. Redox-sensitive elements include Fe and other first-row transition elements (FRTE) as well as C, H, N, O, P and S. Almost all minerals and naturally occurring amorphous materials that formed under habitable conditions, including the ambient paleotemperatures of Mars' surface or shallow subsurface, contain at least one of these redox-sensitive elements. Therefore, measurements and investigations of the listed properties of such geological materials are sterilization sensitive and should not be performed on γ-irradiated subsamples (see Section 5.4). FINDING SS-12: A significant fraction of investigations that focus on high-temperature magmatic and impact-related processes, their chronology, and the chronology of Mars' geophysical evolution are sterilization-tolerant. While there may be a few analyses involved in such investigations that could be affected to some degree by heat sterilization, most of these analyses would not be affected by sterilization involving γ-irradiation (see Section 5.6). MAJOR FINDING SS-13: Scientific investigations of materials containing hydrous or otherwise volatile-rich minerals and/or X-ray amorphous materials that formed or were naturally modified at low (Mars surface-/near-surface) temperature are sterilization-sensitive in that they would be compromised by changes in the abundances, redox states, and isotopes of CHNOPS and other volatiles (e.g., noble gases for chronometry), FRTE, and Ce, and cannot be performed on subsamples that have been sterilized by either dry heat or γ-irradiation (see Section 5.7). MAJOR FINDING SS-14: It would be far preferable to work on sterilized gas samples outside of containment, if the technical issues can all be worked out, than to build and operate a large gas chemistry laboratory inside containment. Depending on their reactivity (or inertness), gases extracted from sample tubes could be sterilized by dry heat or γ-irradiation and analyzed outside containment. Alternatively, gas samples could be filtered through an inert grid and the filtered gas analyzed outside containment (see Section 6.5). MAJOR FINDING SS-15: It is fundamental to the campaign-level science objectives of the Mars Sample Return Campaign that the SRF support characterization of samples returned from Mars that contain organic matter and/or minerals formed under habitable conditions that include the ambient paleotemperatures of Mars' surface or subsurface (<∼200°C)-such as most clays, sulfates, and carbonates-in laboratories on Earth in their as-received-at-the-SRF condition (see Section 7.1). MAJOR FINDING SS-16: The search for any category of potential biosignature would be adversely affected by either of the proposed sterilization methods (see Section 7.1). MAJOR FINDING SS-17: Carbon, hydrogen, nitrogen, oxygen, sulfur, phosphorus, and other volatiles would be released from a subsample during the sterilization step. The heat and γ-ray sterilization chambers should be able to monitor weight loss from the subsample during sterilization. Any gases produced in the sample headspace and sterilization chamber during sterilization should be captured and contained for future analyses of the chemical and stable isotopic compositions of the evolved elements and compounds for all sterilized subsamples to characterize and document fully any sterilization-induced alteration and thereby recover some important information that would otherwise be lost (see Section 7.2). This report shows that most of the sterilization-sensitive iMOST measurement types are among either the iMOST objectives for life detection and life characterization (half or more of the measurements for life-science sub-objectives are critically sterilization sensitive) or the iMOST objectives for inferring paleoenvironments, habitability, preservation of potential biosignatures, and the geologic context of life-science observations (nearly half of the measurements for sub-objectives involving geological environments, habitability, potential biosignature preservation, and gases/volatiles are critically sterilization sensitive) (Table 2; see Beaty et al., 2019 for the full lists of iMOST objectives, goals, investigations, and sample measurement types). Sterilization-sensitive science about ancient life on Mars and its relationship to its ancient environment will be severely impaired or lost if the samples collected by Perseverance cannot be analyzed in an unsterilized condition. Summary: ○The SRF should have the capability to carry out or otherwise support scientific investigations that are sensitive to both PPO-provided sterilization methods. ○Measurements of most life-sciences and habitability-related (paleoenvironmental) phenomena are sensitive to both PPO-provided sterilization modes. (Major Finding SS-7, SS-15, SS-16 and Finding SS-1, SS-3, SS-4, SS-5, SS-6, SS-9, SS-11, SS-13) If subsamples for sterilization-sensitive measurement cannot be deemed safe for release, then additional contingency analytical capabilities are needed in the SRF to complete MSR Campaign measurements of sterilization-sensitive sample properties on unsterilized samples in containment (Figure SE1, below). ○Measurements of high-temperature (low-volatile) phenomena are tolerant of both PPO-provided sterilization modes (Finding SS-12). Subsamples for such measurements may be sterilized and released to laboratories outside containment without compromising the scientific value of the measurements. ○Capturing, transporting, and analyzing gases is important and will require careful design of apparatus. Doing so for volatiles present as headspace gases and a dedicated atmosphere sample will enable important atmospheric science (Major Finding SS-14). Similarly, capturing and analyzing gases evolved during subsample sterilization (i.e., gas from the sterilization chamber) would compensate for some sterilization-induced loss of science data from volatile-rich solid (geological) subsamples (Finding SS-14, SS-17; other options incl. SS-8).
Collapse
Affiliation(s)
- Michael A Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Charles S Cockell
- University of Edinburgh, Centre for Astrobiology, School of Physics and Astronomy, Edinburgh, UK
| | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | | | - Aaron B Regberg
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Alvin L Smith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Nicholas J Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| | - Meenakshi Wadhwa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Arizona State University, Tempe, Arizona, USA
| | | | - Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brandi Lee Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Carl B Agee
- University of New Mexico, Institute of Meteoritics, Albuquerque, New Mexico, USA
| | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | - Barbara Cavalazzi
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna, Italy
| | | | | | - Ernst Hauber
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | | | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Bloomington, Indiana, USA
| | - Caroline L Smith
- Natural History Museum, Department of Earth Sciences, London, UK
- University of Glasgow, School of Geographical and Earth Sciences, Glasgow, UK
| | - Roger E Summons
- Massachusetts Institute of Technology, Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | - Kimberly T Tait
- Royal Ontario Museum, Department of Natural History, Toronto, Ontario, Canada
| | - Arya Udry
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Tomohiro Usui
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| | - Maria-Paz Zorzano
- Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Spain
- University of Aberdeen, Department of Planetary Sciences, School of Geosciences, King's College, Aberdeen, UK
| |
Collapse
|
13
|
Singh D, Sinha RK, Singh P, Roy N, Mukherjee S. Astrobiological Potential of Fe/Mg Smectites with Special Emphasis on Jezero Crater, Mars 2020 Landing Site. ASTROBIOLOGY 2022; 22:579-597. [PMID: 35171004 DOI: 10.1089/ast.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Life is known to adapt in accordance with its surrounding environment and sustainable resources available to it. Since harsh conditions would have precluded any possible aerobic evolution of life at the martian surface, it is plausible that martian life, should it exist, would have evolved in such a way as to derive energy from more optimum resources. Iron is one of the most abundant elements present in the martian crust and occurs at about twice the amount present on Earth. Clay minerals contribute to about half the iron found in soils and sediments. On Earth, clay acts as an electron donor as well as an acceptor in the carbon cycles and thereby supports a wide variety of metabolic reactions. In this context, we consider the potential of Fe/Mg smectites, one of the most widely reported hydrated minerals on Mars, for preservation of macro- and microscopic biosignatures. We proceed by understanding the environmental conditions during the formation of smectites and various microbes and metabolic processes associated with them as indicated in Earth-based studies. We also explore the possibility of biosignatures and their identification within the Mars 2020 landing site (Jezero Crater) by using the astrobiological payloads on board the Perseverance rover.
Collapse
Affiliation(s)
- Deepali Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Priyadarshini Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nidhi Roy
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saumitra Mukherjee
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
14
|
In Situ FIB-TEM-TOF-SIMS Combination Technique: Application in the Analysis of Ultra-Light and Trace Elements in Phyllosilicates. MINERALS 2022. [DOI: 10.3390/min12050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
At present, a single technical method has difficulty in obtaining microscopic data of ultra-light elements, trace elements, and crystal structures in samples simultaneously. This work combined an in situ focused ion beam—transmission electron microscopy—time of flight secondary ion mass spectrometry (FTT) technique and analyzed the composition and crystal structure of four phyllosilicate samples. These materials were comprised of antigorite, clinochlore, and cookeite phases. An FIB sample preparation technique was found to provide a sample thickness suitable for TEM observations and a degree of surface roughness appropriate for TOF-SIMS analysis. In addition, the relative amounts and distributions of various elements could be obtained, as well as crystal structure data, such that the composition and crystal structure of each specimen were determined. The in situ FTT method demonstrated herein successfully combines the advantages of all three analytical techniques and offers unique advantages with regard to analyzing ultra-light and trace elements as well as the structural data of phyllosilicates.
Collapse
|
15
|
Development of Chaos Terrain as Subaqueous Slide Blocks in Galilaei Crater, Mars. REMOTE SENSING 2022. [DOI: 10.3390/rs14091998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chaos terrain, expressed as enigmatic blocky landscapes on Mars, has poorly understood origins. Several hypotheses have been put forward to explain chaos terrain formation, but none fully account for the morphologies observed in Galilaei crater, the focus of this study. Previously inferred to be a paleolake, Galilaei crater hosts chaos terrain composed of kilometer-scale, disorganized blocks around the southern and southeastern margin of the crater. Blocks are concentrated near the base of the crater wall, with blocks of decreasing size extending into the crater interior. The crater wall slope in regions where these chaos blocks are present is notably lower than in regions where blocks are absent. Based on the observed morphologies, we propose the chaos terrain in Galilaei crater formed by gravity-driven slope failure and down-slope transport as subaqueous landslides and mass flows, initiated at a time when the paleolake level was still high. We propose and discuss Earth analogs for the observed terrain and use mapping-constrained spatiotemporal relationships to reconstruct the sequence of landform development. Subaqueous landslides represent an uncommonly invoked mechanism to explain chaos terrain on Mars, reinforcing the idea that one mechanism cannot explain the diversity of this enigmatic terrain.
Collapse
|
16
|
Kloprogge JT(T, Hartman H. Clays and the Origin of Life: The Experiments. Life (Basel) 2022; 12:259. [PMID: 35207546 PMCID: PMC8880559 DOI: 10.3390/life12020259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
There are three groups of scientists dominating the search for the origin of life: the organic chemists (the Soup), the molecular biologists (RNA world), and the inorganic chemists (metabolism and transient-state metal ions), all of which have experimental adjuncts. It is time for Clays and the Origin of Life to have its experimental adjunct. The clay data coming from Mars and carbonaceous chondrites have necessitated a review of the role that clays played in the origin of life on Earth. The data from Mars have suggested that Fe-clays such as nontronite, ferrous saponites, and several other clays were formed on early Mars when it had sufficient water. This raised the question of the possible role that these clays may have played in the origin of life on Mars. This has put clays front and center in the studies on the origin of life not only on Mars but also here on Earth. One of the major questions is: What was the catalytic role of Fe-clays in the origin and development of metabolism here on Earth? First, there is the recent finding of a chiral amino acid (isovaline) that formed on the surface of a clay mineral on several carbonaceous chondrites. This points to the formation of amino acids on the surface of clay minerals on carbonaceous chondrites from simpler molecules, e.g., CO2, NH3, and HCN. Additionally, there is the catalytic role of small organic molecules, such as dicarboxylic acids and amino acids found on carbonaceous chondrites, in the formation of Fe-clays themselves. Amino acids and nucleotides adsorb on clay surfaces on Earth and subsequently polymerize. All of these observations and more must be subjected to strict experimental analysis. This review provides an overview of what has happened and is now happening in the experimental clay world related to the origin of life. The emphasis is on smectite-group clay minerals, such as montmorillonite and nontronite.
Collapse
Affiliation(s)
- Jacob Teunis (Theo) Kloprogge
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemistry, College of Arts and Sciences, University of the Philippines Visayas, Miagao 5023, Philippines
| | - Hyman Hartman
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
González Henao S, Karanauskas V, Drummond SM, Dewitt LR, Maloney CM, Mulu C, Weber JM, Barge LM, Videau P, Gaylor MO. Planetary Minerals Catalyze Conversion of a Polycyclic Aromatic Hydrocarbon to a Prebiotic Quinone: Implications for Origins of Life. ASTROBIOLOGY 2022; 22:197-209. [PMID: 35100015 DOI: 10.1089/ast.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrochemical environments and are disbursed into planetary environments via meteorites and extraterrestrial infall where they may interact with mineral phases to produce quinones important for origins of life. In this study, we assessed the potential of the phyllosilicates montmorillonite (MONT) and kaolinite (KAO), and the enhanced Mojave Mars Simulant (MMS) to convert the PAH anthracene (ANTH) to the biologically important 9,10-anthraquinone (ANTHQ). All studied mineral substrates mediate conversion over the temperature range assessed (25-500°C). Apparent rate curves for conversion were sigmoidal for MONT and KAO, but quadratic for MMS. Conversion efficiency maxima for ANTHQ were 3.06% ± 0.42%, 1.15% ± 0.13%, and 0.56% ± 0.039% for MONT, KAO, and MMS, respectively. We hypothesized that differential substrate binding and compound loss account for the apparent conversion kinetics observed. Apparent loss rate curves for ANTH and ANTHQ were exponential for all substrates, suggesting a pathway for wide distribution of both compounds in warmer prebiotic environments. These findings improve upon our previously reported ANTHQ conversion efficiency on MONT and provide support for a plausible scenario in which PAH-mineral interactions could have produced prebiotically relevant quinones in early Earth environments.
Collapse
Affiliation(s)
| | | | - Samuel M Drummond
- Department of Chemistry, Dakota State University, Madison, South Dakota, USA
| | - Lillian R Dewitt
- Department of Chemistry, Dakota State University, Madison, South Dakota, USA
| | | | - Christina Mulu
- Department of Chemistry, Dakota State University, Madison, South Dakota, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, Oregon, USA
| | - Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, South Dakota, USA
| |
Collapse
|
18
|
Tarnas JD, Stack KM, Parente M, Koeppel AHD, Mustard JF, Moore KR, Horgan BHN, Seelos FP, Cloutis EA, Kelemen PB, Flannery D, Brown AJ, Frizzell KR, Pinet P. Characteristics, Origins, and Biosignature Preservation Potential of Carbonate-Bearing Rocks Within and Outside of Jezero Crater. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006898. [PMID: 34824965 PMCID: PMC8597593 DOI: 10.1029/2021je006898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 05/20/2023]
Abstract
Carbonate minerals have been detected in Jezero crater, an ancient lake basin that is the landing site of the Mars 2020 Perseverance rover, and within the regional olivine-bearing (ROB) unit in the Nili Fossae region surrounding this crater. It has been suggested that some carbonates in the margin fractured unit, a rock unit within Jezero crater, formed in a fluviolacustrine environment, which would be conducive to preservation of biosignatures from paleolake-inhabiting lifeforms. Here, we show that carbonate-bearing rocks within and outside of Jezero crater have the same range of visible-to-near-infrared carbonate absorption strengths, carbonate absorption band positions, thermal inertias, and morphologies. Thicknesses of exposed carbonate-bearing rock cross-sections in Jezero crater are ∼75-90 m thicker than typical ROB unit cross-sections in the Nili Fossae region, but have similar thicknesses to ROB unit exposures in Libya Montes. These similarities in carbonate properties within and outside of Jezero crater is consistent with a shared origin for all of the carbonates in the Nili Fossae region. Carbonate absorption minima positions indicate that both Mg- and more Fe-rich carbonates are present in the Nili Fossae region, consistent with the expected products of olivine carbonation. These estimated carbonate chemistries are similar to those in martian meteorites and the Comanche carbonates investigated by the Spirit rover in Columbia Hills. Our results indicate that hydrothermal alteration is the most likely formation mechanism for non-deltaic carbonates within and outside of Jezero crater.
Collapse
Affiliation(s)
- J. D. Tarnas
- NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - K. M. Stack
- NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - M. Parente
- Department of Electrical and Computer EngineeringUniversity of Massachusetts at AmherstAmherstMAUSA
| | - A. H. D. Koeppel
- Department of Astronomy and Planetary ScienceNorthern Arizona UniversityFlagstaffAZUSA
| | - J. F. Mustard
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - K. R. Moore
- NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - B. H. N. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | - F. P. Seelos
- Johns Hopkins University Applied Physics LabLaurelMDUSA
| | - E. A. Cloutis
- Department of GeographyUniversity of WinnipegWinnipegMBCanada
| | - P. B. Kelemen
- Lahmont‐Doherty Earth Observatory, Columbia UniversityPalisadesNYUSA
| | - D. Flannery
- School of Earth and Atmospheric SciencesQueensland University of TechnologyBrisbaneQLDAustralia
| | | | - K. R. Frizzell
- Department of Earth and Planetary SciencesRutgers UniversityPiscatawayNJUSA
| | - P. Pinet
- Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
| |
Collapse
|
19
|
Merging Perspectives on Secondary Minerals on Mars: A Review of Ancient Water-Rock Interactions in Gale Crater Inferred from Orbital and In-Situ Observations. MINERALS 2021. [DOI: 10.3390/min11090986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Phyllosilicates, sulfates, and Fe oxides are the most prevalent secondary minerals detected on Mars from orbit and the surface, including in the Mars Science Laboratory Curiosity rover’s field site at Gale crater. These records of aqueous activity have been investigated in detail in Gale crater, where Curiosity’s X-ray diffractometer allows for direct observation and detailed characterization of mineral structure and abundance. This capability provides critical ground truthing to better understand how to interpret Martian mineralogy inferred from orbital datasets. Curiosity is about to leave behind phyllosilicate-rich strata for more sulfate-rich terrains, while the Mars 2020 Perseverance rover is in its early exploration of ancient sedimentary strata in Jezero crater. It is thus an appropriate time to review Gale crater’s mineral distribution from multiple perspectives, utilizing the range of chemical, mineralogical, and spectral measurements provided by orbital and in situ observations. This review compares orbital predictions of composition in Gale crater with higher fidelity (but more spatially restricted) in situ measurements by Curiosity, and we synthesize how this information contributes to our understanding of water-rock interaction in Gale crater. In the context of combining these disparate spatial scales, we also discuss implications for the larger understanding of martian surface evolution and the need for a wide range of data types and scales to properly reconstruct ancient geologic processes using remote methods.
Collapse
|
20
|
A Review of the Phyllosilicates in Gale Crater as Detected by the CheMin Instrument on the Mars Science Laboratory, Curiosity Rover. MINERALS 2021. [DOI: 10.3390/min11080847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Curiosity, the Mars Science Laboratory (MSL) rover, landed on Mars in August 2012 to investigate the ~3.5-billion-year-old (Ga) fluvio-lacustrine sedimentary deposits of Aeolis Mons (informally known as Mount Sharp) and the surrounding plains (Aeolis Palus) in Gale crater. After nearly nine years, Curiosity has traversed over 25 km, and the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on-board Curiosity has analyzed 30 drilled rock and three scooped soil samples to date. The principal strategic goal of the mission is to assess the habitability of Mars in its ancient past. Phyllosilicates are common in ancient Martian terrains dating to ~3.5–4 Ga and were detected from orbit in some of the lower strata of Mount Sharp. Phyllosilicates on Earth are important for harboring and preserving organics. On Mars, phyllosilicates are significant for exploration as they are hypothesized to be a marker for potential habitable environments. CheMin data demonstrate that ancient fluvio-lacustrine rocks in Gale crater contain up to ~35 wt. % phyllosilicates. Phyllosilicates are key indicators of past fluid–rock interactions, and variation in the structure and composition of phyllosilicates in Gale crater suggest changes in past aqueous environments that may have been habitable to microbial life with a variety of possible energy sources.
Collapse
|
21
|
Nakajima S, Nagata M, Ikehata A. Mechanism for enhancing the growth of mung bean seedlings under simulated microgravity. NPJ Microgravity 2021; 7:26. [PMID: 34267213 PMCID: PMC8282859 DOI: 10.1038/s41526-021-00156-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
To elucidate a mechanism for enhancing mung bean seedlings’ growth under microgravity conditions, we measured growth, gene expression, and enzyme activity under clinorotation (20 rpm), and compared data obtained to those grown under normal gravity conditions (control). An increase in fresh weight, water content, and lengths were observed in the clinostat seedlings, compared to those of the control seedlings. Real-time PCR showed that aquaporin expression and the amylase gene were upregulated under clinorotation. Additionally, seedlings under clinorotation exhibited a significantly higher amylase activity. Near-infrared image showed that there was no restriction of water evaporation from the seedlings under clinorotation. Therefore, these results indicate that simulated microgravity could induce water uptake, resulting in enhanced amylase activity and seedling growth. Upregulated aquaporin expression could be the first trigger for enhanced growth under clinorotation. We speculated that the seedlings under clinorotation do not use energy against gravitational force and consumed surplus energy for enhanced growth.
Collapse
Affiliation(s)
- Shusaku Nakajima
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan. .,Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan.
| | - Masayasu Nagata
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Akifumi Ikehata
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
22
|
Scheller EL, Swindle C, Grotzinger J, Barnhart H, Bhattacharjee S, Ehlmann BL, Farley K, Fischer WW, Greenberger R, Ingalls M, Martin PE, Osorio-Rodriguez D, Smith BP. Formation of Magnesium Carbonates on Earth and Implications for Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006828. [PMID: 34422534 PMCID: PMC8378241 DOI: 10.1029/2021je006828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/29/2021] [Indexed: 05/20/2023]
Abstract
Magnesium carbonates have been identified within the landing site of the Perseverance rover mission. This study reviews terrestrial analog environments and textural, mineral assemblage, isotopic, and elemental analyses that have been applied to establish formation conditions of magnesium carbonates. Magnesium carbonates form in five distinct settings: ultramafic rock-hosted veins, the matrix of carbonated peridotite, nodules in soil, alkaline lake, and playa deposits, and as diagenetic replacements within lime-and dolostones. Dominant textures include fine-grained or microcrystalline veins, nodules, and crusts. Microbial influences on formation are recorded in thrombolites, stromatolites, crinkly, and pustular laminites, spheroids, and filamentous microstructures. Mineral assemblages, fluid inclusions, and carbon, oxygen, magnesium, and clumped isotopes of carbon and oxygen have been used to determine the sources of carbon, magnesium, and fluid for magnesium carbonates as well as their temperatures of formation. Isotopic signatures in ultramafic rock-hosted magnesium carbonates reveal that they form by either low-temperature meteoric water infiltration and alteration, hydrothermal alteration, or metamorphic processes. Isotopic compositions of lacustrine magnesium carbonate record precipitation from lake water, evaporation processes, and ambient formation temperatures. Assessment of these features with similar analytical techniques applied to returned Martian samples can establish whether carbonates on ancient Mars were formed at high or low temperature conditions in the surface or subsurface through abiotic or biotic processes. The timing of carbonate formation processes could be constrained by 147Sm-143Nd isochron, U-Pb concordia, 207Pb-206Pb isochron radiometric dating as well as 3He, 21Ne, 22Ne, or 36Ar surface exposure dating of returned Martian magnesium carbonate samples.
Collapse
Affiliation(s)
- Eva L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Carl Swindle
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - John Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Holly Barnhart
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Surjyendu Bhattacharjee
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Bethany L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Ken Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Rebecca Greenberger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Miquela Ingalls
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Department of Geosciences, Pennsylvania State University, State College, PA, USA
| | - Peter E Martin
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Geological Sciences Department, University of Colorado Boulder, Boulder, CO, USA
| | - Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Ben P Smith
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
23
|
Clark BC, Kolb VM, Steele A, House CH, Lanza NL, Gasda PJ, VanBommel SJ, Newsom HE, Martínez-Frías J. Origin of Life on Mars: Suitability and Opportunities. Life (Basel) 2021; 11:539. [PMID: 34207658 PMCID: PMC8227854 DOI: 10.3390/life11060539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.
Collapse
Affiliation(s)
| | - Vera M. Kolb
- Department of Chemistry, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA;
| | - Christopher H. House
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16807, USA;
| | - Nina L. Lanza
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Patrick J. Gasda
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Scott J. VanBommel
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Horton E. Newsom
- Institute of Meteoritics, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 88033, USA;
| | | |
Collapse
|
24
|
Seaton KM, Cable ML, Stockton AM. Analytical Chemistry in Astrobiology. Anal Chem 2021; 93:5981-5997. [PMID: 33835785 DOI: 10.1021/acs.analchem.0c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This Feature introduces and discusses the findings of key analytical techniques used to study planetary bodies in our solar system in the search for life beyond Earth, future missions planned for high-priority astrobiology targets in our solar system, and the challenges we face in performing these investigations.
Collapse
Affiliation(s)
- Kenneth Marshall Seaton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| | - Morgan Leigh Cable
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Amanda Michelle Stockton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
25
|
Ruiz-Galende P, Fernández G, Torre-Fdez I, Aramendia J, Gomez-Nubla L, García-Florentino C, Castro K, Arana G, Madariaga JM. Characterization of sedimentary and volcanic rocks in Armintza outcrop (Biscay, Spain) and its implication for Oxia Planum (Mars) exploration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119443. [PMID: 33485243 DOI: 10.1016/j.saa.2021.119443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
The landing site of the next planetary mission lead by ESA (ExoMars 2022) will be Oxia Planum. This location has been chosen due to different reasons, among them, the existence of sedimentary rocks that could host remains of organic matter. The fact that this type of rocks coexists with volcanic ones makes of high importance the study of the processes and the possible interactions that could happen among them. Therefore, in this research work the Armintza outcrop (Biscay, North of Spain) is proposed as an Oxia Planum analogue since it has the dichotomy of volcanic and sedimentary rock layers that is expected on the landing site of the ExoMars 2022 mission. As Raman and visible near infrared spectroscopies will be in the payload of the rover of that mission, they have been used to characterize the samples collected in the Armintza outcrop. With the help of these techniques, feldspars (albite mainly) and phyllosilicates (kaolinite and dickite, together with micas and chlorite minerals) have been identified as the major products on the samples, together with some weathering products (carbonates, sulphates, oxides) and apatite. Moreover, remains of kerogen have been detected in the sedimentary layers in contact with the interlayered lava flows, confirming the capability of similar sedimentary-volcanic layers to trap and store organic remains for millions of years. After establishing which compounds have volcanic or sedimentary origin, and which must be considered alteration phases, we can consider Armintza as a good Oxia Planum analogue.
Collapse
Affiliation(s)
- P Ruiz-Galende
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain.
| | - G Fernández
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain
| | - I Torre-Fdez
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain
| | - J Aramendia
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain
| | - L Gomez-Nubla
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain
| | - C García-Florentino
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain
| | - K Castro
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain
| | - G Arana
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain
| | - J M Madariaga
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain
| |
Collapse
|
26
|
High-fidelity and high-resolution phase mapping of granites via confocal Raman imaging. Sci Rep 2021; 11:8022. [PMID: 33850215 PMCID: PMC8044247 DOI: 10.1038/s41598-021-87488-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
In physical sciences such as chemistry and earth sciences, specifically for characterization of minerals in a rock, automated, objective mapping methods based on elemental analysis have replaced traditional optical petrography. However, mineral phase maps obtained from these newer approaches rely on conversion of elemental compositions to mineralogical compositions and thus cannot distinguish mineral polymorphs. Secondly, these techniques often require laborious sample preparations such as sectioning, polishing, and coating which are time-consuming. Here, we develop a new Raman imaging protocol that is capable of mapping unpolished samples with an auto-focusing Z-mapping feature that allows direct fingerprinting of different polymorphs. Specifically, we report a new methodology for generating high fidelity phase maps by exploiting characteristic peak intensity ratios which can be extended to any multi-phase, heterogenous system. Collectively, these enhancements allow us to rapidly map an unpolished granite specimen (~ 2 × 2 mm) with an exceptionally high accuracy (> 97%) and an extremely fine spatial resolution (< 0.3-2 µm).
Collapse
|
27
|
Ojha L, Karunatillake S, Karimi S, Buffo J. Amagmatic hydrothermal systems on Mars from radiogenic heat. Nat Commun 2021; 12:1754. [PMID: 33741920 PMCID: PMC7979869 DOI: 10.1038/s41467-021-21762-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Long-lived hydrothermal systems are prime targets for astrobiological exploration on Mars. Unlike magmatic or impact settings, radiogenic hydrothermal systems can survive for >100 million years because of the Ga half-lives of key radioactive elements (e.g., U, Th, and K), but remain unknown on Mars. Here, we use geochemistry, gravity, topography data, and numerical models to find potential radiogenic hydrothermal systems on Mars. We show that the Eridania region, which once contained a vast inland sea, possibly exceeding the combined volume of all other Martian surface water, could have readily hosted a radiogenic hydrothermal system. Thus, radiogenic hydrothermalism in Eridania could have sustained clement conditions for life far longer than most other habitable sites on Mars. Water radiolysis by radiogenic heat could have produced H2, a key electron donor for microbial life. Furthermore, hydrothermal circulation may help explain the region's high crustal magnetic field and gravity anomaly.
Collapse
Affiliation(s)
- Lujendra Ojha
- Department of Earth and Planetary Sciences. Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Suniti Karunatillake
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, USA
| | - Saman Karimi
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jacob Buffo
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
28
|
The contribution of water radiolysis to marine sedimentary life. Nat Commun 2021; 12:1297. [PMID: 33637712 PMCID: PMC7910440 DOI: 10.1038/s41467-021-21218-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023] Open
Abstract
Water radiolysis continuously produces H2 and oxidized chemicals in wet sediment and rock. Radiolytic H2 has been identified as the primary electron donor (food) for microorganisms in continental aquifers kilometers below Earth's surface. Radiolytic products may also be significant for sustaining life in subseafloor sediment and subsurface environments of other planets. However, the extent to which most subsurface ecosystems rely on radiolytic products has been poorly constrained, due to incomplete understanding of radiolytic chemical yields in natural environments. Here we show that all common marine sediment types catalyse radiolytic H2 production, amplifying yields by up to 27X relative to pure water. In electron equivalents, the global rate of radiolytic H2 production in marine sediment appears to be 1-2% of the global organic flux to the seafloor. However, most organic matter is consumed at or near the seafloor, whereas radiolytic H2 is produced at all sediment depths. Comparison of radiolytic H2 consumption rates to organic oxidation rates suggests that water radiolysis is the principal source of biologically accessible energy for microbial communities in marine sediment older than a few million years. Where water permeates similarly catalytic material on other worlds, life may also be sustained by water radiolysis.
Collapse
|
29
|
Joint Hapke Model and Spatial Adaptive Sparse Representation with Iterative Background Purification for Martian Serpentine Detection. REMOTE SENSING 2021. [DOI: 10.3390/rs13030500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Visible and infrared imaging spectroscopy have greatly revolutionized our understanding of the diversity of minerals on Mars. Characterizing the mineral distribution on Mars is essential for understanding its geologic evolution and past habitability. The traditional handcrafted spectral index could be ambiguous as it may denote broad mineralogical classes, making this method unsuitable for definitive mineral investigation. In this work, the target detection technique is introduced for specific mineral mapping. We have developed a new subpixel mineral detection method by joining the Hapke model and spatially adaptive sparse representation method. Additionally, an iterative background dictionary purification strategy is proposed to obtain robust detection results. Laboratory hyperspectral image containing Mars Global Simulant and serpentine mixtures was used to evaluate and tailor the proposed method. Compared with the conventional target detection algorithms, including constrained energy minimization, matched filter, hierarchical constrained energy minimization, sparse representation for target detection, and spatially adaptive sparse representation method, the proposed algorithm has a significant improvement in accuracy about 30.14%, 29.67%, 29.41%, 9.13%, and 8.17%, respectively. Our algorithm can detect subpixel serpentine with an abundance as low as 2.5% in laboratory data. Then the proposed algorithm was applied to two well-studied Compact Reconnaissance Imaging Spectrometer for Mars images, which contain serpentine outcrops. Our results are not only consistent with the spatial distribution of Fe/Mg phyllosilicates derived by spectral indexes, but also denote what the specific mineral is. Experimental results show that the proposed algorithm enables the search for subpixel, low-abundance, and scientifically valuable mineral deposits.
Collapse
|
30
|
Murphy RJ, Van Kranendonk MJ, Baumgartner R, Ryan C. Biogenicity of Spicular Geyserite from Te Kopia, New Zealand: Integrated Petrography, High-Resolution Hyperspectral and Elemental Analysis. ASTROBIOLOGY 2021; 21:115-135. [PMID: 33085533 DOI: 10.1089/ast.2019.2067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hyperspectral and micro X-ray fluorescence (μXRF) imagery were used to derive maps of mineralogy and elemental chemistry from a sample of a siliceous hot spring deposit, or sinter, collected from a landslide breccia deposit at the base of the Paeroa fault, which bounds the eastern Taupo Rift at Te Kopia, Taupo Volcanic Zone, New Zealand. The sample is of a known biogenic sinter layer from a paleo-vent area of a recently extinct alkali chloride hot spring. The aim of the study was to distinguish it from other horizons derived from nonbiogenic sources, which is of relevance to early and extraterrestrial life research, specifically to help assess the potential reliability of morphology as an indicator of biology in the geological record. In particular, the distribution of opal, a common mineral in hot springs deposits that is known to preserve microbial features, and the relative abundances of Al-OH clay and water (OH and H2O) were mapped from hyperspectral imagery and element distributions defined by μXRF element mapping. Layers within the sinter sample composed of spicular geyserite-a type of micro-columnar stromatolite-showed contrasting mineralogy and water content in comparison with interspicular clastic sediment. Whereas clay was found to be concentrated in the interspicular sediment, high water contents characterized the spicules. μXRF imagery also showed differences in the composition of the two components of the spicule-bearing layers, with interspicular sediment being enriched in K, Ti, Fe, and Rb relative to the spicules, which are enriched in Ga. The contrasting nature of the mapped components highlights the detailed upward-branching nature of the spicules, identical to those found in living microstromatolites. These discriminants show that the spicular component can be discerned from the geological background through hyperspectral and μXRF mapping and used to define morphological features that may survive burial diagenesis and metamorphism as a biosignature in deep time rocks.
Collapse
Affiliation(s)
- Richard J Murphy
- Australian Centre for Field Robotics, Department of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, Sydney, Australia
| | - Martin J Van Kranendonk
- Australian Centre for Astrobiology, and School of Biological and Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Raphael Baumgartner
- Australian Centre for Astrobiology, and School of Biological and Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Chris Ryan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
| |
Collapse
|
31
|
Azua-Bustos A, Fairén AG, Silva CG, Carrizo D, Fernández-Martínez MÁ, Arenas-Fajardo C, Fernández-Sampedro M, Gil-Lozano C, Sánchez-García L, Ascaso C, Wierzchos J, Rampe EB. Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars. Sci Rep 2020; 10:19183. [PMID: 33154541 PMCID: PMC7645800 DOI: 10.1038/s41598-020-76302-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/16/2020] [Indexed: 01/21/2023] Open
Abstract
The modern Martian surface is unlikely to be habitable due to its extreme aridity among other environmental factors. This is the reason why the hyperarid core of the Atacama Desert has been studied as an analog for the habitability of Mars for more than 50 years. Here we report a layer enriched in smectites located just 30 cm below the surface of the hyperarid core of the Atacama. We discovered the clay-rich layer to be wet (a phenomenon never observed before in this region), keeping a high and constant relative humidity of 78% (aw 0.780), and completely isolated from the changing and extremely dry subaerial conditions characteristic of the Atacama. The smectite-rich layer is inhabited by at least 30 halophilic species of metabolically active bacteria and archaea, unveiling a previously unreported habitat for microbial life under the surface of the driest place on Earth. The discovery of a diverse microbial community in smectite-rich subsurface layers in the hyperarid core of the Atacama, and the collection of biosignatures we have identified within the clays, suggest that similar shallow clay deposits on Mars may contain biosignatures easily reachable by current rovers and landers.
Collapse
Affiliation(s)
- Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain.
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| | - Alberto G Fairén
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain.
- Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA.
| | | | - Daniel Carrizo
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
| | | | | | | | - Carolina Gil-Lozano
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
- Laboratory of Planetology and Geodynamics, Université de Nantes, 44322, Nantes, France
| | | | - Carmen Ascaso
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - Jacek Wierzchos
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - Elizabeth B Rampe
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| |
Collapse
|
32
|
Osinski G, Cockell C, Pontefract A, Sapers H. The Role of Meteorite Impacts in the Origin of Life. ASTROBIOLOGY 2020; 20:1121-1149. [PMID: 32876492 PMCID: PMC7499892 DOI: 10.1089/ast.2019.2203] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The conditions, timing, and setting for the origin of life on Earth and whether life exists elsewhere in our solar system and beyond represent some of the most fundamental scientific questions of our time. Although the bombardment of planets and satellites by asteroids and comets has long been viewed as a destructive process that would have presented a barrier to the emergence of life and frustrated or extinguished life, we provide a comprehensive synthesis of data and observations on the beneficial role of impacts in a wide range of prebiotic and biological processes. In the context of previously proposed environments for the origin of life on Earth, we discuss how meteorite impacts can generate both subaerial and submarine hydrothermal vents, abundant hydrothermal-sedimentary settings, and impact analogues for volcanic pumice rafts and splash pools. Impact events can also deliver and/or generate many of the necessary chemical ingredients for life and catalytic substrates such as clays as well. The role that impact cratering plays in fracturing planetary crusts and its effects on deep subsurface habitats for life are also discussed. In summary, we propose that meteorite impact events are a fundamental geobiological process in planetary evolution that played an important role in the origin of life on Earth. We conclude with the recommendation that impact craters should be considered prime sites in the search for evidence of past life on Mars. Furthermore, unlike other geological processes such as volcanism or plate tectonics, impact cratering is ubiquitous on planetary bodies throughout the Universe and is independent of size, composition, and distance from the host star. Impact events thus provide a mechanism with the potential to generate habitable planets, moons, and asteroids throughout the Solar System and beyond.
Collapse
Affiliation(s)
- G.R. Osinski
- Institute for Earth and Space Exploration, University of Western Ontario, London, Canada
- Department of Earth Sciences, University of Western Ontario, London, Canada
- Address correspondence to: Dr. Gordon Osinski, Department of Earth Sciences, 1151 Richmond Street, University of Western Ontario, London ON, N6A 5B7, Canada
| | - C.S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - A. Pontefract
- Department of Biology, Georgetown University, Washington, DC, USA
| | - H.M. Sapers
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
33
|
Schenk P, Scully J, Buczkowski D, Sizemore H, Schmidt B, Pieters C, Neesemann A, O'Brien D, Marchi S, Williams D, Nathues A, De Sanctis M, Tosi F, Russell CT, Castillo-Rogez J, Raymond C. Impact heat driven volatile redistribution at Occator crater on Ceres as a comparative planetary process. Nat Commun 2020; 11:3679. [PMID: 32778649 PMCID: PMC7417549 DOI: 10.1038/s41467-020-17184-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
Hydrothermal processes in impact environments on water-rich bodies such as Mars and Earth are relevant to the origins of life. Dawn mapping of dwarf planet (1) Ceres has identified similar deposits within Occator crater. Here we show using Dawn high-resolution stereo imaging and topography that Ceres' unique composition has resulted in widespread mantling by solidified water- and salt-rich mud-like impact melts with scattered endogenic pits, troughs, and bright mounds indicative of outgassing of volatiles and periglacial-style activity during solidification. These features are distinct from and less extensive than on Mars, indicating that Occator melts may be less gas-rich or volatiles partially inhibited from reaching the surface. Bright salts at Vinalia Faculae form thin surficial precipitates sourced from hydrothermal brine effusion at many individual sites, coalescing in several larger centers, but their ages are statistically indistinguishable from floor materials, allowing for but not requiring migration of brines from deep crustal source(s).
Collapse
Affiliation(s)
- P Schenk
- Lunar and Planetary Institute/USRA, Houston, TX, USA.
| | - J Scully
- Jet Propulsion Laboratory/Caltech, Pasadena, CA, USA
| | - D Buczkowski
- Johns Hopkins University-Applied Physics Laboratory, Laurel, MD, USA
| | - H Sizemore
- Planetary Science Institute, Tucson, AZ, USA
| | - B Schmidt
- Georgia Institute of Technology, Atlanta, GA, USA
| | - C Pieters
- Brown University Providence, Providence, RI, USA
| | | | - D O'Brien
- Planetary Science Institute, Tucson, AZ, USA
| | - S Marchi
- Southwest Research Institute, Boulder, CO, USA
| | - D Williams
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - A Nathues
- Max Planck Institute for Solar System Research, Goettingen, Germany
| | - M De Sanctis
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
| | - F Tosi
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
| | - C T Russell
- University of California, Los Angeles, CA, USA
| | | | - C Raymond
- Jet Propulsion Laboratory/Caltech, Pasadena, CA, USA
| |
Collapse
|
34
|
Mangold N, Dromart G, Ansan V, Salese F, Kleinhans MG, Massé M, Quantin-Nataf C, Stack KM. Fluvial Regimes, Morphometry, and Age of Jezero Crater Paleolake Inlet Valleys and Their Exobiological Significance for the 2020 Rover Mission Landing Site. ASTROBIOLOGY 2020; 20:994-1013. [PMID: 32466668 DOI: 10.1089/ast.2019.2132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Jezero crater has been selected as the landing site for the Mars 2020 Perseverance rover, because it contains a paleolake with two fan-deltas, inlet and outlet valleys. Using the data from the High Resolution Stereo Camera (HRSC) and the High Resolution Imaging Science Experiment (HiRISE), we conducted a quantitative geomorphological study of the inlet valleys of the Jezero paleolake. Results show that the strongest erosion is related to a network of deep valleys that cut into the highland bedrock well upstream of the Jezero crater and likely formed before the formation of the regional olivine-rich unit. In contrast, the lower sections of valleys display poor bedrock erosion and a lack of tributaries but are characterized by the presence of pristine landforms interpreted as fluvial bars from preserved channels, the discharge rates of which have been estimated at 103-104 m3s-1. The valleys' lower sections postdate the olivine-rich unit, are linked directly to the fan-deltas, and are thus formed in an energetic, late stage of activity. Although a Late Noachian age for the fan-deltas' formation is not excluded based on crosscutting relationships and crater counts, this indicates evidence of a Hesperian age with significant implications for exobiology.
Collapse
Affiliation(s)
- Nicolas Mangold
- Laboratoire Planétologie et Géodynamique, UMR6112 CNRS, Faculté des Sciences, Université de Nantes, Nantes, France
| | - Gilles Dromart
- Univ Lyon, ENSL, Univ Lyon 1, CNRS, LGL-TPE, Lyon, France
| | - Veronique Ansan
- Laboratoire Planétologie et Géodynamique, UMR6112 CNRS, Faculté des Sciences, Université de Nantes, Nantes, France
| | - Francesco Salese
- Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
- International Research School of Planetary Sciences, Università Gabriele D'Annunzio, Pescara, Italy
| | | | - Marion Massé
- Laboratoire Planétologie et Géodynamique, UMR6112 CNRS, Faculté des Sciences, Université de Nantes, Nantes, France
| | | | - Kathryn M Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
35
|
Aerts JW, Riedo A, Melton DJ, Martini S, Flahaut J, Meierhenrich UJ, Meinert C, Myrgorodska I, Lindner R, Ehrenfreund P. Biosignature Analysis of Mars Soil Analogs from the Atacama Desert: Challenges and Implications for Future Missions to Mars. ASTROBIOLOGY 2020; 20:766-784. [PMID: 32167834 DOI: 10.1089/ast.2019.2063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The detection of biosignatures on Mars is of outstanding interest in the current field of astrobiology and drives various fields of research, ranging from new sample collection strategies to the development of more sensitive detection techniques. Detailed analysis of the organic content in Mars analog materials collected from extreme environments on Earth improves the current understanding of biosignature preservation and detection under conditions similar to those of Mars. In this article, we examined the biological fingerprint of several locations in the Atacama Desert (Chile), which include different wet and dry, and intermediate to high elevation salt flats (also named salars). Liquid chromatography and multidimensional gas chromatography mass spectrometry measurement techniques were used for the detection and analysis of amino acids extracted from the salt crusts and sediments by using sophisticated extraction procedures. Illumina 16S amplicon sequencing was used for the identification of microbial communities associated with the different sample locations. Although amino acid load and organic carbon and nitrogen quantities were generally low, it was found that most of the samples harbored complex and versatile microbial communities, which were dominated by (extremely) halophilic microorganisms (most notably by species of the Archaeal family Halobacteriaceae). The dominance of salts (i.e., halites and sulfates) in the investigated samples leaves its mark on the composition of the microbial communities but does not appear to hinder the potential of life to flourish since it can clearly adapt to the higher concentrations. Although the Atacama Desert is one of the driest and harshest environments on Earth, it is shown that there are still sub-locations where life is able to maintain a foothold, and, as such, salt flats could be considered as interesting targets for future life exploration missions on Mars.
Collapse
Affiliation(s)
- Joost W Aerts
- Molecular Cell Biology, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| | - Andreas Riedo
- Astrobiology Laboratory, Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| | - Daniel J Melton
- Astrobiology Laboratory, Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| | - Simone Martini
- Astrobiology Laboratory, Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| | - Jessica Flahaut
- CRPG, CNRS/University of Lorraine, Vandoeuvre-les-Nancy, France
| | - Uwe J Meierhenrich
- CNRS, Institut de Chimie de Nice UMR 7272, Université Côte d'Azur, Nice, France
| | - Cornelia Meinert
- CNRS, Institut de Chimie de Nice UMR 7272, Université Côte d'Azur, Nice, France
| | | | - Robert Lindner
- Life Support and Physical Sciences Instrumentation Section, European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Pascale Ehrenfreund
- Astrobiology Laboratory, Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| |
Collapse
|
36
|
Costello LJ, Filiberto J, Crandall JR, Potter-McIntyre SL, Schwenzer SP, Miller MA, Hummer DR, Olsson-Francis K, Perl S. Habitability of Hydrothermal Systems at Jezero and Gusev Craters as Constrained by Hydrothermal Alteration of a Terrestrial Mafic Dike. CHEMIE DER ERDE : BEITRAGE ZUR CHEMISCHEN MINERALOGIE, PETROGRAPHIE UND GEOLOGIE 2020; 80:125613. [PMID: 33299255 PMCID: PMC7720477 DOI: 10.1016/j.chemer.2020.125613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
NASA's search for habitable environments has focused on alteration mineralogy of the Martian crust and the formation of hydrous minerals, because they reveal information about the fluid and environmental conditions from which they precipitated. Extensive work has focused on the formation of alteration minerals at low temperatures, with limited work investigating metamorphic or high-temperature alteration. We have investigated such a site as an analog for Mars: a mafic dike on the Colorado Plateau that was hydrothermally altered from contact with groundwater as it was emplaced in the porous and permeable Jurassic Entrada sandstone. Our results show evidence for fluid mobility removing Si and K but adding S, Fe, Ca, and possibly Mg to the system as alteration progresses. Mineralogically, all samples contain calcite, hematite, and kaolinite; with most samples containing minor anatase, barite, halite, and dolomite. The number of alteration minerals increase with alteration. The hydrothermal system that formed during interaction of the magma (heat source) and groundwater would have been a habitable environment once the system cooled below ~120° C. The mineral assemblage is similar to alteration minerals seen within the Martian crust from orbit, including those at Gusev and Jezero Craters. Therefore, based on our findings, and extrapolating them to the Martian crust, these sites may represent habitable environments which would call for further exploration and sample return of such hydrothermally altered igneous materials.
Collapse
Affiliation(s)
- Lacey J. Costello
- Southern Illinois University, Department of Geology, 1259 Lincoln Drive, Carbondale, IL 62901, USA
| | - Justin Filiberto
- Lunar and Planetary Institute, USRA, 3600 Bay Area Blvd., Houston, TX 77058, USA
| | - Jake R. Crandall
- Eastern Illinois University, Department of Geology and Geography, Physical Science Building, 600 Lincoln Ave., Charleston, IL 61920, USA
| | - Sally L. Potter-McIntyre
- Southern Illinois University, Department of Geology, 1259 Lincoln Drive, Carbondale, IL 62901, USA
| | - Susanne P. Schwenzer
- School of Environment, Earth, and Ecosystems Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Michael A. Miller
- Materials Engineering Department, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238, USA
| | - Daniel R. Hummer
- Southern Illinois University, Department of Geology, 1259 Lincoln Drive, Carbondale, IL 62901, USA
| | - Karen Olsson-Francis
- School of Environment, Earth, and Ecosystems Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Scott Perl
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109-8001, USA
| |
Collapse
|
37
|
Suzuki Y, Yamashita S, Kouduka M, Ao Y, Mukai H, Mitsunobu S, Kagi H, D'Hondt S, Inagaki F, Morono Y, Hoshino T, Tomioka N, Ito M. Deep microbial proliferation at the basalt interface in 33.5-104 million-year-old oceanic crust. Commun Biol 2020; 3:136. [PMID: 32242062 PMCID: PMC7118141 DOI: 10.1038/s42003-020-0860-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/27/2020] [Indexed: 11/09/2022] Open
Abstract
The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 1010 cells/cm3. Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water.
Collapse
Affiliation(s)
- Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Seiya Yamashita
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yutaro Ao
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Mukai
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Mantle Drilling Promotion Office, Institue for Marine-Earth Exploration and Engineering, JAMSTEC, Showa-machi 3173-25, Kanazawa-ku, Yokohama, 236-0001, Japan
| | - Satoshi Mitsunobu
- Department of Environmental Conservation, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Hiroyuki Kagi
- Geochemical Research Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Steven D'Hondt
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, RI, 02882, USA
| | - Fumio Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi, 783-8502, Japan.,Mantle Drilling Promotion Office, Institue for Marine-Earth Exploration and Engineering, JAMSTEC, Showa-machi 3173-25, Kanazawa-ku, Yokohama, 236-0001, Japan
| | - Yuki Morono
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi, 783-8502, Japan
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi, 783-8502, Japan
| | - Naotaka Tomioka
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi, 783-8502, Japan
| | - Motoo Ito
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi, 783-8502, Japan
| |
Collapse
|
38
|
Sun VZ, Milliken RE. Characterizing the Mineral Assemblages of Hot Spring Environments and Applications to Mars Orbital Data. ASTROBIOLOGY 2020; 20:453-474. [PMID: 31545076 DOI: 10.1089/ast.2018.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Certain martian hydrated silica deposits have been hypothesized to represent ancient hot spring environments, but many environments can produce hydrated silica on Earth. This study compares the mineral assemblages produced in terrestrial hot springs to those observed in silica-producing volcanic fumarolic environments to determine which diagnostic features of hot springs could be remotely sensed on Mars. We find that hot spring environments are more likely to produce geochemically mature silica (i.e., opal-CT and microcrystalline quartz) in addition to opal-A, whereas volcanic fumarolic environments tend to produce only opal-A, potentially reflecting differences in water-to-rock ratios. Neutral/alkaline hot springs contain few accessory minerals (typically calcite and Fe/Mg clays), while acidic hot springs commonly contain accessory kaolinite. By comparison, mineral assemblages at volcanic fumaroles contain protolith igneous minerals and a diversity of alteration minerals indicative of acidic conditions. Based on these terrestrial observations, the presence of opal-CT and/or microcrystalline quartz could be more diagnostic of a hot spring origin rather than a fumarolic origin, and accessory mineralogy could provide information on formation pH. On Mars, we observe that most orbital opal detections in outcrop are opal-A, sometimes accompanied by Fe/Mg clays, suggestive of neutral/alkaline conditions. However, these observations do not uniquely distinguish between hot springs and fumarolic environments, as opal-A can occur in both environments. Many martian silica detections occur in regionally extensive units, and sometimes in association with fluvial landforms suggesting a detrital or lower temperature authigenic origin. Thus, only a few martian opal detections may be mineralogically, spatially, and morphologically consistent with a hot spring origin. However, although it is difficult to unambiguously identify martian hot spring environments from orbital data sets, the orbital data are still valuable for identifying siliceous sites that are consistent with higher biosignature preservation potential, that is, sites with opal-A (not opal-CT), for future in situ investigations.
Collapse
Affiliation(s)
- Vivian Z Sun
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Ralph E Milliken
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island
| |
Collapse
|
39
|
Veneranda M, Manrique-Martinez JA, Lopez-Reyes G, Medina J, Torre-Fdez I, Castro K, Madariaga JM, Lantz C, Poulet F, Krzesińska AM, Hellevang H, Werner SC, Rull F. Spectroscopic study of olivine-bearing rocks and its relevance to the ExoMars rover mission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117360. [PMID: 31319272 DOI: 10.1016/j.saa.2019.117360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
We present the compositional analysis of three terrestrial analogues of Martian olivine-bearing rocks derived from both laboratory and flight-derived analytical instruments. In the first step, state-of-the-art spectroscopic (XRF, NIR and Raman) and diffractometric (XRD) laboratory systems were complementary used. Besides providing a detailed mineralogical and geochemical characterization of the samples, results comparison shed light on the advantages ensured by the combined use of Raman and NIR techniques, being these the spectroscopic instruments that will soon deploy (2021) on Mars as part of the ExoMars/ESA rover payload. In order to extrapolate valuable indicators of the mineralogical data that could derive from the ExoMars/Raman Laser Spectrometer (RLS), laboratory results were then compared with the molecular data gathered through the RLS ExoMars Simulator. Beside correctly identifying all major phases (feldspar, pyroxene and olivine), the RLS ExoMars Simulator confirmed the presence of additional minor compounds (i.e. hematite and apatite) that were not detected by complementary techniques. Furthermore, concerning the in-depth study of olivine grains, the RLS ExoMars simulator was able to effectively detect the shifting of the characteristic double peak around 820 and 850 cm-1, from which the FeMg content of the analyzed crystals can be extrapolated. Considering that olivine is one of the main mineral phases of the ExoMars landing site (Oxia Planum), this study suggests that the ExoMars/RLS system has the potential to provide detailed information about the elemental composition of olivine on Mars.
Collapse
Affiliation(s)
- Marco Veneranda
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain.
| | - Jose Antonio Manrique-Martinez
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain
| | - Guillermo Lopez-Reyes
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain
| | - Jesús Medina
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain
| | - Imanol Torre-Fdez
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Kepa Castro
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Cateline Lantz
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, France
| | - Francois Poulet
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, France
| | - Agata M Krzesińska
- Department of Geosciences, Centre for Earth Evolution and Dynamics, University of Oslo, Norway
| | - Helge Hellevang
- Department of Geosciences, Centre for Earth Evolution and Dynamics, University of Oslo, Norway
| | - Stephanie C Werner
- Department of Geosciences, Centre for Earth Evolution and Dynamics, University of Oslo, Norway
| | - Fernando Rull
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain
| |
Collapse
|
40
|
McLoughlin N, Grosch EG, Vullum PE, Guagliardo P, Saunders M, Wacey D. Critically testing olivine-hosted putative martian biosignatures in the Yamato 000593 meteorite-Geobiological implications. GEOBIOLOGY 2019; 17:691-707. [PMID: 31478592 DOI: 10.1111/gbi.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
On rocky planets such as Earth and Mars the serpentinization of olivine in ultramafic crust produces hydrogen that can act as a potential energy source for life. Direct evidence of fluid-rock interaction on Mars comes from iddingsite alteration veins found in martian meteorites. In the Yamato 000593 meteorite, putative biosignatures have been reported from altered olivines in the form of microtextures and associated organic material that have been compared to tubular bioalteration textures found in terrestrial sub-seafloor volcanic rocks. Here, we use a suite of correlative, high-sensitivity, in situ chemical, and morphological analyses to characterize and re-evaluate these microalteration textures in Yamato 000593, a clinopyroxenite from the shallow subsurface of Mars. We show that the altered olivine crystals have angular and micro-brecciated margins and are also highly strained due to impact-induced fracturing. The shape of the olivine microalteration textures is in no way comparable to microtunnels of inferred biological origin found in terrestrial volcanic glasses and dunites, and rather we argue that the Yamato 000593 microtextures are abiotic in origin. Vein filling iddingsite extends into the olivine microalteration textures and contains amorphous organic carbon occurring as bands and sub-spherical concentrations <300 nm across. We propose that a martian impact event produced the micro-brecciated olivine crystal margins that reacted with subsurface hydrothermal fluids to form iddingsite containing organic carbon derived from abiotic sources. These new data have implications for how we might seek potential biosignatures in ultramafic rocks and impact craters on both Mars and Earth.
Collapse
Affiliation(s)
| | - Eugene G Grosch
- Department of Geology, Rhodes University, Grahamstown, South Africa
| | - Per Erik Vullum
- SINTEF Materials and Chemistry, Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Paul Guagliardo
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Martin Saunders
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - David Wacey
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
41
|
Onstott T, Ehlmann B, Sapers H, Coleman M, Ivarsson M, Marlow J, Neubeck A, Niles P. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. ASTROBIOLOGY 2019; 19:1230-1262. [PMID: 31237436 PMCID: PMC6786346 DOI: 10.1089/ast.2018.1960] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/25/2019] [Indexed: 05/19/2023]
Abstract
Here we review published studies on the abundance and diversity of terrestrial rock-hosted life, the environments it inhabits, the evolution of its metabolisms, and its fossil biomarkers to provide guidance in the search for life on Mars. Key findings are (1) much terrestrial deep subsurface metabolic activity relies on abiotic energy-yielding fluxes and in situ abiotic and biotic recycling of metabolic waste products rather than on buried organic products of photosynthesis; (2) subsurface microbial cell concentrations are highest at interfaces with pronounced chemical redox gradients or permeability variations and do not correlate with bulk host rock organic carbon; (3) metabolic pathways for chemolithoautotrophic microorganisms evolved earlier in Earth's history than those of surface-dwelling phototrophic microorganisms; (4) the emergence of the former occurred at a time when Mars was habitable, whereas the emergence of the latter occurred at a time when the martian surface was not continually habitable; (5) the terrestrial rock record has biomarkers of subsurface life at least back hundreds of millions of years and likely to 3.45 Ga with several examples of excellent preservation in rock types that are quite different from those preserving the photosphere-supported biosphere. These findings suggest that rock-hosted life would have been more likely to emerge and be preserved in a martian context. Consequently, we outline a Mars exploration strategy that targets subsurface life and scales spatially, focusing initially on identifying rocks with evidence for groundwater flow and low-temperature mineralization, then identifying redox and permeability interfaces preserved within rock outcrops, and finally focusing on finding minerals associated with redox reactions and associated traces of carbon and diagnostic chemical and isotopic biosignatures. Using this strategy on Earth yields ancient rock-hosted life, preserved in the fossil record and confirmable via a suite of morphologic, organic, mineralogical, and isotopic fingerprints at micrometer scale. We expect an emphasis on rock-hosted life and this scale-dependent strategy to be crucial in the search for life on Mars.
Collapse
Affiliation(s)
- T.C. Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Address correspondence to: T.C. Onstott, Department of Geosciences, Princeton University,, Princeton, NJ 008544
| | - B.L. Ehlmann
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- B.L. Ehlmann, Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - H. Sapers
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - M. Coleman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Astrobiology Institute, Pasadena, California, USA
| | - M. Ivarsson
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - J.J. Marlow
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - A. Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - P. Niles
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
42
|
Aerts JW, van Spanning RJM, Flahaut J, Molenaar D, Bland PA, Genge MJ, Ehrenfreund P, Martins Z. Microbial Communities in Sediments From Four Mildly Acidic Ephemeral Salt Lakes in the Yilgarn Craton (Australia) - Terrestrial Analogs to Ancient Mars. Front Microbiol 2019; 10:779. [PMID: 31133990 PMCID: PMC6512757 DOI: 10.3389/fmicb.2019.00779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/27/2019] [Indexed: 11/24/2022] Open
Abstract
The Yilgarn Craton in Australia has a large number of naturally occurring shallow ephemeral lakes underlain by a dendritic system of paleodrainage channels. Processes like evaporation, flooding, erosion, as well as inflow of saline, often acidic and ion-rich groundwater contribute to the (dynamic) nature of the lakes and the composition of the sediments. The region has previously been described as an analog environment for early Mars due to its geological and geophysical similarities. Here, we investigated sediment samples of four lake environments aimed at getting a fundamental understanding of the native microbial communities and the mineralogical and (bio)chemical composition of the sediments they are associated with. The dominant mineral phases in the sediments were quartz, feldspars and amphiboles, while halite and gypsum were the only evaporites detected. Element analysis revealed a rich and complex image, in which silicon, iron, and aluminum were the dominant ions, but relative high concentrations of trace elements such as strontium, chromium, zirconium, and barium were also found. The concentrations of organic carbon, nitrogen, and phosphorus were generally low. 16S amplicon sequencing on the Illumina platform showed the presence of diverse microbial communities in all four lake environments. We found that most of the communities were dominated by extremely halophilic Archaea of the Halobacteriaceae family. The dynamic nature of these lakes appears to influence the biological, biochemical, and geological components of the ecosystem to a large effect. Inter- and intra-lake variations in the distributions of microbial communities were significant, and could only to a minor degree be explained by underlying environmental conditions. The communities are likely significantly influenced by small scale local effects caused by variations in geological settings and dynamic interactions caused by aeolian transport and flooding and evaporation events.
Collapse
Affiliation(s)
- Joost W Aerts
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rob J M van Spanning
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jessica Flahaut
- Centre de Recherches Pétrographiques et Géochimiques, Centre National de la Recherche Scientifique/Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Douwe Molenaar
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Phil A Bland
- Department of Applied Geology, Curtin University, Perth, WA, Australia
| | - Matt J Genge
- Department of Earth Science and Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Pascale Ehrenfreund
- Leiden Observatory, Leiden University, Leiden, Netherlands.,Space Policy Institute, Elliott School of International Affairs, George Washington University, Washington, DC, United States
| | - Zita Martins
- Centro de Química-Física Molecular-Institute of Nanoscience and Nanotechnology (CQFM-IN), Institute for Bioengineering and Biosciences (iBB), Departamento de Engenharia Química, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
43
|
Lowe DR, Bishop JL, Loizeau D, Wray JJ, Beyer RA. Deposition of >3.7 Ga clay-rich strata of the Mawrth Vallis Group, Mars, in lacustrine, alluvial, and aeolian environments. GEOLOGICAL SOCIETY OF AMERICA BULLETIN 2019; 132:17-30. [PMID: 33958812 PMCID: PMC8098079 DOI: 10.1130/b35185.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The presence of abundant phyllosilicate minerals in Noachian (>3.7 Ga) rocks on Mars has been taken as evidence that liquid water was stable at or near the surface early in martian history. This study investigates some of these clay-rich strata exposed in crater rim and inverted terrain settings in the Mawrth Vallis region of Mars. In Muara crater the 200-m-thick, clay-rich Mawrth Vallis Group (MVG) is subdivided into five informal units numbered 1 (base) to 5 (top). Unit 1 consists of interbedded sedimentary and volcanic or volcaniclastic units showing weak Fe/Mg-smectite alteration deposited in a range of subaerial depositional settings. Above a major unconformity eroded on Unit 1, the dark-toned sediments of Unit 2 and lower Unit 3 are inferred to represent mainly wind-blown sand. These are widely interlayered with and draped by thin layers of light-toned sediment representing fine suspended-load aeolian silt and clay. These sediments show extensive Fe/Mg-smectite alteration, probably reflecting subaerial weathering. Upper Unit 3 and units 4 and 5 are composed of well-layered, fine-grained sediment dominated by Al-phyllosilicates, kaolinite, and hydrated silica. Deposition occurred in a large lake or arm of a martian sea. In the inverted terrain 100 km to the NE, Unit 4 shows very young slope failures suggesting that the clay-rich sediments today retain a significant component of water ice. The MVG provides evidence for the presence of large, persistent standing bodies of water on early Mars as well as a complex association of flanking shoreline, alluvial, and aeolian systems. Some of the clays, especially the Fe/Mg smectites in upper units 1 and 2 appear to have formed through subaerial weathering whereas the aluminosilicates, kaolinite, and hydrated silica of units 3, 4, and 5 formed mainly through alteration of fine sediment in subaqueous environments.
Collapse
Affiliation(s)
- Donald R. Lowe
- Department of Geological Sciences, Stanford University, Stanford, California 94305-2115, USA
| | - Janice L. Bishop
- SETI & NASA-Ames Research Center, Mountain View, California, USA
| | - Damien Loizeau
- Université Claude Bernard Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL-TPE, F-69622, Villeurbanne, France
- Institut d’Astrophysique Spatiale, Université Paris Sud, F-91405 Orsay, France
| | - James J. Wray
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0340, USA
| | - Ross A. Beyer
- SETI & NASA-Ames Research Center, Mountain View, California, USA
| |
Collapse
|
44
|
Chan MA, Bowen BB, Corsetti FA, Farrand WH, Law ES, Newsom HE, Perl SM, Spear JR, Thompson DR. Exploring, Mapping, and Data Management Integration of Habitable Environments in Astrobiology. Front Microbiol 2019; 10:147. [PMID: 30891006 PMCID: PMC6412026 DOI: 10.3389/fmicb.2019.00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/21/2019] [Indexed: 11/17/2022] Open
Abstract
New approaches to blending geoscience, planetary science, microbiology-geobiology/ecology, geoinformatics and cyberinfrastructure technology disciplines in a holistic effort can be transformative to astrobiology explorations. Over the last two decades, overwhelming orbital evidence has confirmed the abundance of authigenic (in situ, formed in place) minerals on Mars. On Earth, environments where authigenic minerals form provide a substrate for the preservation of microbial life. Similarly, extraterrestrial life is likely to be preserved where crustal minerals can record and preserve the biochemical mechanisms (i.e., biosignatures). The search for astrobiological evidence on Mars has focused on identifying past or present habitable environments - places that could support some semblance of life. Thus, authigenic minerals represent a promising habitable environment where extraterrestrial life could be recorded and potentially preserved over geologic time scales. Astrobiology research necessarily takes place over vastly different scales; from molecules to viruses and microbes to those of satellites and solar system exploration, but the differing scales of analyses are rarely connected quantitatively. The mismatch between the scales of these observations- from the macro- satellite mineralogical observations to the micro- microbial observations- limits the applicability of our astrobiological understanding as we search for records of life beyond Earth. Each-scale observation requires knowledge of the geologic context and the environmental parameters important for assessing habitability. Exploration efforts to search for extraterrestrial life should attempt to quantify both the geospatial context and the temporal/spatial relationships between microbial abundance and diversity within authigenic minerals at multiple scales, while assimilating resolutions from satellite observations to field measurements to microscopic analyses. Statistical measures, computer vision, and the geospatial synergy of Geographic Information Systems (GIS), can allow analyses of objective data-driven methods to locate, map, and predict where the "sweet spots" of habitable environments occur at multiple scales. This approach of science information architecture or an "Astrobiology Information System" can provide the necessary maps to guide researchers to discoveries via testing, visualizing, documenting, and collaborating on significant data relationships that will advance explorations for evidence of life in our solar system and beyond.
Collapse
Affiliation(s)
- Marjorie A. Chan
- Department of Geology and Geophysics, The University of Utah, Salt Lake City, UT, United States
| | - Brenda B. Bowen
- Department of Geology and Geophysics, The University of Utah, Salt Lake City, UT, United States
| | - Frank A. Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | | | - Emily S. Law
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Horton E. Newsom
- Department Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Scott M. Perl
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - David R. Thompson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
45
|
Leask EK, Ehlmann BL, Dundar MM, Murchie SL, Seelos FP. Challenges in the Search for Perchlorate and Other Hydrated Minerals With 2.1-μm Absorptions on Mars. GEOPHYSICAL RESEARCH LETTERS 2018; 45:12180-12189. [PMID: 31536048 PMCID: PMC6750048 DOI: 10.1029/2018gl080077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/05/2018] [Indexed: 06/10/2023]
Abstract
UNLABELLED A previously unidentified artifact has been found in Compact Reconnaissance Imaging Spectrometer for Mars targeted I/F data. It exists in a small fraction (<0.05%) of pixels within 90% of images investigated and occurs in regions of high spectral/spatial variance. This artifact mimics real mineral absorptions in width and depth and occurs most often at 1.9 and 2.1 μm, thus interfering in the search for some mineral phases, including alunite, kieserite, serpentine, and perchlorate. A filtering step in the data processing pipeline, between radiance and I/F versions of the data, convolves narrow artifacts ("spikes") with real atmospheric absorptions in these wavelength regions to create spurious absorption-like features. The majority of previous orbital detections of alunite, kieserite, and serpentine we investigated can be confirmed using radiance and raw data, but few to none of the perchlorate detections reported in published literature remain robust over the 1.0- to 2.65-μm wavelength range. PLAIN LANGUAGE SUMMARY Many minerals can be identified with remote sensing data by their characteristic absorptions in visible-shortwave infrared data. This type of data has allowed geological interpretation of much of Mars' surface, using satellite-based observation. We have discovered an issue with the Compact Reconnaissance Imaging Spectrometer for Mars instrument's data processing pipeline. In ~ <0.05% of pixels in almost all images, noise in the data is smoothed in such a way that it mimics real mineral absorptions, falsely making it look as though certain minerals are present on Mars' surface. The vast majority of previously identified minerals are still confirmed after accounting for the artifact, but some to all perchlorate detections and a few serpentine detections were not confirmed, suggesting that the artifact created false detections. This means concentrated regions of perchlorate may not occur on Mars and so may not be available to generate possibly habitable salty liquid water at very cold temperatures.
Collapse
Affiliation(s)
- E. K. Leask
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - B. L. Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M. M. Dundar
- Computer and Information Sciences Department, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, USA
| | - S. L. Murchie
- Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland, USA
| | - F. P. Seelos
- Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland, USA
| |
Collapse
|
46
|
Fornaro T, Steele A, Brucato JR. Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars. Life (Basel) 2018; 8:life8040056. [PMID: 30400661 PMCID: PMC6315534 DOI: 10.3390/life8040056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022] Open
Abstract
Minerals might have played critical roles for the origin and evolution of possible life forms on Mars. The study of the interactions between the "building blocks of life" and minerals relevant to Mars mineralogy under conditions mimicking the harsh Martian environment may provide key insight into possible prebiotic processes. Therefore, this contribution aims at reviewing the most important investigations carried out so far about the catalytic/protective properties of Martian minerals toward molecular biosignatures under Martian-like conditions. Overall, it turns out that the fate of molecular biosignatures on Mars depends on a delicate balance between multiple preservation and degradation mechanisms, often regulated by minerals, which may take place simultaneously. Such a complexity requires more efforts in simulating realistically the Martian environment in order to better inspect plausible prebiotic pathways and shed light on the nature of the organic compounds detected both in meteorites and on the surface of Mars through in situ analysis.
Collapse
Affiliation(s)
- Teresa Fornaro
- Geophysical Laboratory of the Carnegie Institution for Science, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| | - Andrew Steele
- Geophysical Laboratory of the Carnegie Institution for Science, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| | - John Robert Brucato
- INAF-Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy.
| |
Collapse
|
47
|
Juntunen HL, Leinen LJ, Pitts BK, O'Hanlon SM, Theiling BP, Barge LM, Videau P, Gaylor MO. Investigating the Kinetics of Montmorillonite Clay-Catalyzed Conversion of Anthracene to 9,10-Anthraquinone in the Context of Prebiotic Chemistry. ORIGINS LIFE EVOL B 2018; 48:321-330. [PMID: 30203410 DOI: 10.1007/s11084-018-9562-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/28/2018] [Indexed: 11/25/2022]
Abstract
Carbonaceous meteorites contributed polycyclic aromatic hydrocarbons (PAHs) to the organic inventory of the primordial Earth where they may have reacted on catalytic clay mineral surfaces to produce quinones capable of functioning as redox species in emergent biomolecular systems. To address the feasibility of this hypothesis, we assessed the kinetics of anthracene (1) conversion to 9,10-anthraquinone (2) in the presence of montmorillonite clay (MONT) over the temperature range 25 to 250 °C. Apparent rates of conversion were concentration independent and displayed a sigmoidal relationship with temperature, and conversion efficiencies ranged from 0.027 to 0.066%. Conversion was not detectable in the absence of MONT or a sufficiently high oxidation potential (in this case, molecular oxygen (O2)). These results suggest a scenario in which meteoritic 1 and MONT interactions could yield biologically important quinones in prebiotic planetary environments.
Collapse
Affiliation(s)
- Hope L Juntunen
- Department of Biology, Dakota State University, Madison, SD, 57042, USA
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Briann K Pitts
- Department of Biology, Dakota State University, Madison, SD, 57042, USA
| | - Samantha M O'Hanlon
- School of Psychological Science, Oregon State University, Corvallis, OR, 97331, USA
| | | | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Patrick Videau
- Department of Biology, Dakota State University, Madison, SD, 57042, USA.
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA.
| | - Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA.
| |
Collapse
|
48
|
Abstract
Silica polymorphs, such as quartz, tridymite, cristobalite, coesite, stishovite, seifertite, baddeleyite-type SiO2, high-pressure silica glass, moganite, and opal, have been found in lunar and/or martian rocks by macro-microanalyses of the samples and remote-sensing observations on the celestial bodies. Because each silica polymorph is stable or metastable at different pressure and temperature conditions, its appearance is variable depending on the occurrence of the lunar and martian rocks. In other words, types of silica polymorphs provide valuable information on the igneous process (e.g., crystallization temperature and cooling rate), shock metamorphism (e.g., shock pressure and temperature), and hydrothermal fluid activity (e.g., pH and water content), implying their importance in planetary science. Therefore, this article focused on reviewing and summarizing the representative and important investigations of lunar and martian silica from the viewpoints of its discovery from lunar and martian materials, the formation processes, the implications for planetary science, and the future prospects in the field of “micro-mineralogy”.
Collapse
|
49
|
Near-Infrared Spectroscopy of Hydrothermal versus Low-Grade Metamorphic Chlorites. MINERALS 2018. [DOI: 10.3390/min8060259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Cannon KM, Parman SW, Mustard JF. Primordial clays on Mars formed beneath a steam or supercritical atmosphere. Nature 2018; 552:88-91. [PMID: 29219967 DOI: 10.1038/nature24657] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/18/2017] [Indexed: 11/09/2022]
Abstract
On Mars, clay minerals are widespread in terrains that date back to the Noachian period (4.1 billion to 3.7 billion years ago). It is thought that the Martian basaltic crust reacted with liquid water during this time to form hydrated clay minerals. Here we propose, however, that a substantial proportion of these clays was formed when Mars' primary crust reacted with a dense steam or supercritical atmosphere of water and carbon dioxide that was outgassed during magma ocean cooling. We present experimental evidence that shows rapid clay formation under conditions that would have been present at the base of such an atmosphere and also deeper in the porous crust. Furthermore, we explore the fate of a primordial clay-rich layer with the help of a parameterized crustal evolution model; we find that the primordial clay is locally disrupted by impacts and buried by impact-ejected material and by erupted volcanic material, but that it survives as a mostly coherent layer at depth, with limited surface exposures. These exposures are similar to those observed in remotely sensed orbital data from Mars. Our results can explain the present distribution of many clays on Mars, and the anomalously low density of the Martian crust in comparison with expectations.
Collapse
Affiliation(s)
- Kevin M Cannon
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912, USA.,Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Stephen W Parman
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912, USA
| | - John F Mustard
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|