1
|
Torreggiani S, Castellan FS, Aksentijevich I, Beck DB. Somatic mutations in autoinflammatory and autoimmune disease. Nat Rev Rheumatol 2024; 20:683-698. [PMID: 39394526 DOI: 10.1038/s41584-024-01168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/13/2024]
Abstract
Somatic mutations (also known as acquired mutations) are emerging as common, age-related processes that occur in all cells throughout the body. Somatic mutations are canonically linked to malignant processes but over the past decade have been increasingly causally connected to benign diseases including rheumatic conditions. Here we outline the contribution of somatic mutations to complex and monogenic immunological diseases with a detailed review of unique aspects associated with such causes. Somatic mutations can cause early- or late-onset rheumatic monogenic diseases but also contribute to the pathogenesis of complex inflammatory and immune-mediated diseases, affect disease progression and define new clinical subtypes. Although even variants with a low variant allele fraction can be pathogenic, clonal dynamics could lead to changes over time in the proportion of mutant cells, with possible phenotypic consequences for the individual. Thus, somatic mutagenesis and clonal expansion have relevant implications in genetic testing and counselling. On the basis of both increased recognition of somatic diseases in clinical practice and improved technical and bioinformatic processes, we hypothesize that there will be an ever-expanding list of somatic mutations in various genes leading to inflammatory conditions, particularly in late-onset disease.
Collapse
Affiliation(s)
- Sofia Torreggiani
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Epidemiology and Human Genetics, Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Flore S Castellan
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Culver-Cochran AE, Hassan A, Hueneman K, Choi K, Ma A, VanCauwenbergh B, O'Brien E, Wunderlich M, Perentesis JP, Starczynowski DT. Chemotherapy resistance in acute myeloid leukemia is mediated by A20 suppression of spontaneous necroptosis. Nat Commun 2024; 15:9189. [PMID: 39448591 PMCID: PMC11502881 DOI: 10.1038/s41467-024-53629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Acute myeloid leukemia (AML) is a deadly hematopoietic malignancy. Although many patients achieve complete remission with standard induction therapy, a combination of cytarabine and anthracycline, ~40% of patients have induction failure. These refractory patients pose a treatment challenge, as they do not respond to salvage therapy or allogeneic stem cell transplant. Herein, we show that AML patients who experience induction failure have elevated expression of the NF-κB target gene tumor necrosis factor alpha-induced protein-3 (TNFAIP3/A20) and impaired necroptotic cell death. A20High AML are resistant to anthracyclines, while A20Low AML are sensitive. Loss of A20 in AML restores sensitivity to anthracycline treatment by inducing necroptosis. Moreover, A20 prevents necroptosis in AML by targeting the necroptosis effector RIPK1, and anthracycline-induced necroptosis is abrogated in A20High AML. These findings suggest that NF-κB-driven A20 overexpression plays a role in failed chemotherapy induction and highlights the potential of targeting an alternative cell death pathway in AML.
Collapse
MESH Headings
- Humans
- Necroptosis/drug effects
- Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
- Tumor Necrosis Factor alpha-Induced Protein 3/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- NF-kappa B/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Cell Line, Tumor
- Anthracyclines/pharmacology
- Cytarabine/pharmacology
- Cytarabine/therapeutic use
- Animals
- Female
- Male
- Mice
- Middle Aged
Collapse
Affiliation(s)
- Ashley E Culver-Cochran
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Aishlin Hassan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, USA
| | | | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, USA.
- Department of Cancer Biology, University of Cincinnati, Cincinnati, USA.
- University of Cincinnati Cancer Center, Cincinnati, USA.
| |
Collapse
|
3
|
Küppers R. Advances in Hodgkin lymphoma research. Trends Mol Med 2024:S1471-4914(24)00271-5. [PMID: 39443214 DOI: 10.1016/j.molmed.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Hodgkin lymphoma (HL) has been and still is the most enigmatic lymphoid malignancy in humans. Since the first molecular analysis of isolated Hodgkin and Reed-Sternberg (HRS) tumor cells of classic HL 30 years ago, substantial advances in our understanding of HL have been made. This review describes the cellular origin of HL, summarizes the current knowledge about the genetic lesions in HRS cells, and highlights the role of Epstein-Barr virus (EBV) in HL pathogenesis. Moreover, the pathobiological roles of altered gene expression and deregulated signaling pathways are discussed and key aspects of the HL microenvironment are presented.
Collapse
Affiliation(s)
- Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| |
Collapse
|
4
|
Dabbah-Krancher G, Ruchinskas A, Kallarakal MA, Lee KP, Bauman BM, Epstein B, Yin H, Krappmann D, Schaefer BC, Snow AL. A20 intrinsically influences human effector T-cell survival and function by regulating both NF-κB and JNK signaling. Eur J Immunol 2024:e2451245. [PMID: 39359035 DOI: 10.1002/eji.202451245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
A20 is a dual-function ubiquitin-editing enzyme that maintains immune homeostasis by restraining inflammation. Although A20 serves a similar negative feedback function for T-cell receptor (TCR) signaling, the molecular mechanisms utilized and their ultimate impact on human T-cell function remain unclear. TCR engagement triggers the assembly of the CARD11-BCL10-MALT1 (CBM) protein complex, a signaling platform that governs the activation of downstream transcription factors including NF-κB and c-Jun/AP-1. Utilizing WT and A20 knockout Jurkat T cells, we found that A20 is required to negatively regulate NF-κB and JNK. Utilizing a novel set of A20 mutants in NF-κB and AP-1-driven reporter systems, we discovered the ZnF7 domain is crucial for negative regulatory capacity, while deubiquitinase activity is dispensable. Successful inactivation of A20 in human primary effector T cells congruently conferred sustained NF-κB and JNK signaling, including enhanced upregulation of activation markers, and increased secretion of several cytokines including IL-9. Finally, loss of A20 in primary human T cells resulted in decreased sensitivity to restimulation-induced cell death and increased sensitivity to cytokine withdrawal-induced death. These findings demonstrate the importance of A20 in maintaining T-cell homeostasis via negative regulation of both NF-κB and JNK signaling.
Collapse
Affiliation(s)
- Gina Dabbah-Krancher
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Allison Ruchinskas
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Melissa A Kallarakal
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
| | - Katherine P Lee
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
| | - Bradly M Bauman
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Benjamin Epstein
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Hongli Yin
- Research Unit Signaling and Translation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Brian C Schaefer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C-2013 Bethesda, MD 20814, USA
| |
Collapse
|
5
|
Meriranta L, Sorri S, Huse K, Liu X, Spasevska I, Zafar S, Chowdhury I, Dufva O, Sahlberg E, Tandarić L, Karjalainen-Lindsberg ML, Hyytiäinen M, Varjosalo M, Myklebust JH, Leppä S. Disruption of KLHL6 Fuels Oncogenic Antigen Receptor Signaling in B-Cell Lymphoma. Blood Cancer Discov 2024; 5:331-352. [PMID: 38630892 PMCID: PMC11369598 DOI: 10.1158/2643-3230.bcd-23-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Pathomechanisms that activate oncogenic B-cell receptor (BCR) signaling in diffuse large B-cell lymphoma (DLBCL) are largely unknown. Kelch-like family member 6 (KLHL6) encoding a substrate-adapter for Cullin-3-RING E3 ubiquitin ligase with poorly established targets is recurrently mutated in DLBCL. By applying high-throughput protein interactome screens and functional characterization, we discovered that KLHL6 regulates BCR by targeting its signaling subunits CD79A and CD79B. Loss of physiologic KLHL6 expression pattern was frequent among the MCD/C5-like activated B-cell DLBCLs and was associated with higher CD79B levels and dismal outcome. Mutations in the bric-a-brac tramtrack broad domain of KLHL6 disrupted its localization and heterodimerization and increased surface BCR levels and signaling, whereas Kelch domain mutants had the opposite effect. Malfunctions of KLHL6 mutants extended beyond proximal BCR signaling with distinct phenotypes from KLHL6 silencing. Collectively, our findings uncover how recurrent mutations in KLHL6 alter BCR signaling and induce actionable phenotypic characteristics in DLBCL. Significance: Oncogenic BCR signaling sustains DLBCL cells. We discovered that Cullin-3-RING E3 ubiquitin ligase substrate-adapter KLHL6 targets BCR heterodimer (CD79A/CD79B) for ubiquitin-mediated degradation. Recurrent somatic mutations in the KLHL6 gene cause corrupt BCR signaling by disrupting surface BCR homeostasis. Loss of KLHL6 expression and mutant-induced phenotypes associate with targetable disease characteristics in B-cell lymphoma. See related commentary by Leveille et al. See related commentary by Corcoran et al.
Collapse
MESH Headings
- Humans
- Signal Transduction
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- CD79 Antigens/genetics
- CD79 Antigens/metabolism
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Mutation
- Cell Line, Tumor
- Carrier Proteins
Collapse
Affiliation(s)
- Leo Meriranta
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Selma Sorri
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Xiaonan Liu
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Ivana Spasevska
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sadia Zafar
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Iftekhar Chowdhury
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| | - Eerika Sahlberg
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Luka Tandarić
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | | | - Marko Hyytiäinen
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - June H. Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sirpa Leppä
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
6
|
Shi Y, Xu Y, Shen H, Jin J, Tong H, Xie W. Advances in biology, diagnosis and treatment of DLBCL. Ann Hematol 2024; 103:3315-3334. [PMID: 39017945 PMCID: PMC11358236 DOI: 10.1007/s00277-024-05880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL), with approximately 150,000 new cases worldwide each year, represent nearly 30% of all cases of non-Hodgkin lymphoma (NHL) and are phenotypically and genetically heterogeneous. A gene-expression profile (GEP) has identified at least three major subtypes of DLBCL, each of which has distinct clinical, biological, and genetic features: activated B-cell (ABC)-like DLBCL, germinal-center B-cell (GCB)-like DLBCL, and unclassified. Different origins are associated with different responses to chemotherapy and targeted agents. Despite DLBCL being a highly heterogeneous disease, more than 60% of patients with DLBCL can be cured after using rituximab combined with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) to inhibit the growth of cancer cells while targeting the CD20 receptor. In recent decades, the improvement of diagnostic levels has led to a refinement classification of DLBCL and the development of new therapeutic approaches. The objective of this review was to summarize the latest studies examining genetic lesions and therapies for DLBCL.
Collapse
Affiliation(s)
- Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yi Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Huafei Shen
- International Health Care Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Wanzhuo Xie
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
7
|
Ozen S, Aksentijevich I. The past 25 years in paediatric rheumatology: insights from monogenic diseases. Nat Rev Rheumatol 2024; 20:585-593. [PMID: 39112602 DOI: 10.1038/s41584-024-01145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/29/2024]
Abstract
The past 25 years have seen major novel developments in the field of paediatric rheumatology. The concept of autoinflammation was introduced to this field, and medicine more broadly, with studies of familial Mediterranean fever, the most common autoinflammatory disease globally. New data on the positive evolutionary selection of familial Mediterranean fever-associated genetic variants might be pertinent to mild gain-of-function variants reported in other disease-associated genes. Genetic studies have unveiled the complexity of human heritability to inflammation and flourishing data from rare monogenic disorders have contributed to a better understanding of general disease mechanisms in paediatric rheumatic conditions. Beyond genomics, the application of other 'omics' technologies, including transcriptomics, proteomics and metabolomics, has generated an enormous dataset that can be applied to the development of new therapies and in the practice of precision medicine. Novel biomarkers for monitoring disease activity and progression have also emerged. A surge in the development of targeted biologic therapies has led to durable remission and improved prognosis for many diseases that in the past caused major complications. Last but not least, the COVID-19 pandemic has affected paediatric rheumatology practice and has sparked new investigations into the link between viral infections and unregulated inflammatory responses in children.
Collapse
Affiliation(s)
- Seza Ozen
- Department of Paediatric Rheumatology, Hacettepe University, Ankara, Turkey.
| | | |
Collapse
|
8
|
Mukohara F, Iwata K, Ishino T, Inozume T, Nagasaki J, Ueda Y, Suzawa K, Ueno T, Ikeda H, Kawase K, Saeki Y, Kawashima S, Yamashita K, Kawahara Y, Nakamura Y, Honobe-Tabuchi A, Watanabe H, Dansako H, Kawamura T, Suzuki Y, Honda H, Mano H, Toyooka S, Kawazu M, Togashi Y. Somatic mutations in tumor-infiltrating lymphocytes impact on antitumor immunity. Proc Natl Acad Sci U S A 2024; 121:e2320189121. [PMID: 39167601 PMCID: PMC11363295 DOI: 10.1073/pnas.2320189121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 08/23/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) exert clinical efficacy against various types of cancers by reinvigorating exhausted CD8+ T cells that can expand and directly attack cancer cells (cancer-specific T cells) among tumor-infiltrating lymphocytes (TILs). Although some reports have identified somatic mutations in TILs, their effect on antitumor immunity remains unclear. In this study, we successfully established 18 cancer-specific T cell clones, which have an exhaustion phenotype, from the TILs of four patients with melanoma. We conducted whole-genome sequencing for these T cell clones and identified various somatic mutations in them with high clonality. Among the somatic mutations, an SH2D2A loss-of-function frameshift mutation and TNFAIP3 deletion could activate T cell effector functions in vitro. Furthermore, we generated CD8+ T cell-specific Tnfaip3 knockout mice and showed that Tnfaip3 function loss in CD8+ T cell increased antitumor immunity, leading to remarkable response to PD-1 blockade in vivo. In addition, we analyzed bulk CD3+ T cells from TILs in additional 12 patients and identified an SH2D2A mutation in one patient through amplicon sequencing. These findings suggest that somatic mutations in TILs can affect antitumor immunity and suggest unique biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Fumiaki Mukohara
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama700-8558, Japan
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University, Okayama700-8558, Japan
| | - Kazuma Iwata
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama700-8558, Japan
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University, Okayama700-8558, Japan
| | - Takamasa Ishino
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama700-8558, Japan
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Takashi Inozume
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba260-8670, Japan
- Division of Cell Therapy, Chiba Cancer Research Institute, Chiba260-8717, Japan
- Department of Dermatology, University of Yamanashi, Yamanashi409-3898, Japan
| | - Joji Nagasaki
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama700-8558, Japan
| | - Youki Ueda
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama700-8558, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University, Okayama700-8558, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Hideki Ikeda
- Division of Cell Therapy, Chiba Cancer Research Institute, Chiba260-8717, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Katsushige Kawase
- Division of Cell Therapy, Chiba Cancer Research Institute, Chiba260-8717, Japan
- Department of Otorhinolaryngology/Head & Neck Surgery, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Yuka Saeki
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba260-8670, Japan
| | - Shusuke Kawashima
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba260-8670, Japan
- Division of Cell Therapy, Chiba Cancer Research Institute, Chiba260-8717, Japan
| | | | - Yu Kawahara
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba260-8670, Japan
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama350-1298, Japan
| | - Yasuhiro Nakamura
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama350-1298, Japan
| | | | - Hiroko Watanabe
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama700-8558, Japan
| | - Hiromichi Dansako
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama700-8558, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, University of Yamanashi, Yamanashi409-3898, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba277-8568, Japan
| | - Hiroaki Honda
- Department of Pathology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo162-8666, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University, Okayama700-8558, Japan
| | - Masahito Kawazu
- Division of Cell Therapy, Chiba Cancer Research Institute, Chiba260-8717, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama700-8558, Japan
- Division of Cell Therapy, Chiba Cancer Research Institute, Chiba260-8717, Japan
- Kindai University, Faculty of Medicine, Osaka-Sayama, Osaka589-0014, Japan
| |
Collapse
|
9
|
Schultheiß C, Paschold L, Mohebiany AN, Escher M, Kattimani YM, Müller M, Schmidt-Barbo P, Mensa-Vilaró A, Aróstegui JI, Boursier G, de Moreuil C, Hautala T, Willscher E, Jonas H, Chinchuluun N, Grosser B, Märkl B, Klapper W, Oommen PT, Gössling K, Hoffmann K, Tiegs G, Czernilofsky F, Dietrich S, Freeman A, Schwartz DM, Waisman A, Aksentijevich I, Binder M. A20 haploinsufficiency disturbs immune homeostasis and drives the transformation of lymphocytes with permissive antigen receptors. SCIENCE ADVANCES 2024; 10:eadl3975. [PMID: 39167656 PMCID: PMC11338232 DOI: 10.1126/sciadv.adl3975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Genetic TNFAIP3 (A20) inactivation is a classical somatic lymphoma lesion and the genomic trait in haploinsufficiency of A20 (HA20). In a cohort of 34 patients with HA20, we show that heterozygous TNFAIP3 loss skews immune repertoires toward lymphocytes with classical self-reactive antigen receptors typically found in B and T cell lymphomas. This skewing was mediated by a feed-forward tumor necrosis factor (TNF)/A20/nuclear factor κB (NF-κB) loop that shaped pre-lymphoma transcriptome signatures in clonally expanded B (CD81, BACH2, and NEAT1) or T (GATA3, TOX, and PDCD1) cells. The skewing was reversed by anti-TNF treatment but could also progress to overt lymphoma. Analysis of conditional TNFAIP3 knock-out mice reproduced the wiring of the TNF/A20/NF-κB signaling axis with permissive antigen receptors and suggested a distinct regulation in B and T cells. Together, patients with the genetic disorder HA20 provide an exceptional window into A20/TNF/NF-κB-mediated control of immune homeostasis and early steps of lymphomagenesis that remain clinically unrecognized.
Collapse
Affiliation(s)
- Christoph Schultheiß
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Lisa Paschold
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Alma Nazlie Mohebiany
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Moritz Escher
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Yogita Mallu Kattimani
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melanie Müller
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Paul Schmidt-Barbo
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
| | - Anna Mensa-Vilaró
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Juan Ignacio Aróstegui
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
| | - Guilaine Boursier
- Department of molecular and cytogenomics, Rare and Autoinflammatory Diseases Laboratory, CHU Montpellier, IRMB, University of Montpellier, INSERM, CEREMAIA, Montpellier, France
| | - Claire de Moreuil
- Department of Internal Medicine, CHU Brest, Université de Bretagne Occidentale, Brest, France
| | - Timo Hautala
- Research Unit of Biomedicine, University of Oulu and Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Edith Willscher
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Hanna Jonas
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Namuun Chinchuluun
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Bianca Grosser
- Institute for Pathology, University Medical Center Augsburg, Augsburg, Germany
| | - Bruno Märkl
- Institute for Pathology, University Medical Center Augsburg, Augsburg, Germany
| | - Wolfram Klapper
- Institute of Pathology, Hematopathology Section, and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Prasad Thomas Oommen
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katharina Gössling
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Katrin Hoffmann
- Institute for Human Genetics and Molecular Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Gisa Tiegs
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Czernilofsky
- Department of Medicine V, Hematology, Oncology, and Rheumatology, University of Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology, and Rheumatology, University of Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematolgy, Oncology, and Immunolgy, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Alexandra Freeman
- Laboratory of Clinical Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Daniella M. Schwartz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
| |
Collapse
|
10
|
Gao B, Qiao Y, Zhu S, Yang N, Zou SS, Liu YJ, Chen J. USP36 inhibits apoptosis by deubiquitinating cIAP1 and survivin in colorectal cancer cells. J Biol Chem 2024; 300:107463. [PMID: 38876304 PMCID: PMC11268115 DOI: 10.1016/j.jbc.2024.107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Chemotherapeutic agents for treating colorectal cancer (CRC) primarily induce apoptosis in tumor cells. The ubiquitin-proteasome system is critical for apoptosis regulation. Deubiquitinating enzymes (DUBs) remove ubiquitin from substrates to reverse ubiquitination. Although over 100 DUB members have been discovered, the biological functions of only a small proportion of DUBs have been characterized. Here, we aimed to systematically identify the DUBs that contribute to the development of CRC. Among the DUBs, ubiquitin-specific protease 36 (USP36) is upregulated in CRC. We showed that the knockdown of USP36 induces intrinsic and extrinsic apoptosis. Through gene silencing and coimmunoprecipitation techniques, we identified survivin and cIAP1 as USP36 targets. Mechanistically, USP36 binds and removes lysine-11-linked ubiquitin chains from cIAP1 and lysine-48-linked ubiquitin chains from survivin to abolish protein degradation. Overexpression of USP36 disrupts the formation of the XIAP-second mitochondria-derived activator of caspase complex and promotes receptor-interacting protein kinase 1 ubiquitination, validating USP36 as an inhibitor to intrinsic and extrinsic apoptosis through deubiquitinating survivin and cIAP1. Therefore, our results suggest that USP36 is involved in CRC progression and is a potential therapeutic target.
Collapse
Affiliation(s)
- Bao Gao
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuan Qiao
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Zhu
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ning Yang
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shan-Shan Zou
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yong-Jun Liu
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Jingtao Chen
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
11
|
Lundgren S, Myllymäki M, Järvinen T, Keränen MAI, Theodoropoulos J, Smolander J, Kim D, Salmenniemi U, Walldin G, Savola P, Kelkka T, Rajala H, Hellström-Lindberg E, Itälä-Remes M, Kankainen M, Mustjoki S. Somatic mutations associate with clonal expansion of CD8 + T cells. SCIENCE ADVANCES 2024; 10:eadj0787. [PMID: 38848368 PMCID: PMC11160466 DOI: 10.1126/sciadv.adj0787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Somatic mutations in T cells can cause cancer but also have implications for immunological diseases and cell therapies. The mutation spectrum in nonmalignant T cells is unclear. Here, we examined somatic mutations in CD4+ and CD8+ T cells from 90 patients with hematological and immunological disorders and used T cell receptor (TCR) and single-cell sequencing to link mutations with T cell expansions and phenotypes. CD8+ cells had a higher mutation burden than CD4+ cells. Notably, the biggest variant allele frequency (VAF) of non-synonymous variants was higher than synonymous variants in CD8+ T cells, indicating non-random occurrence. The non-synonymous VAF in CD8+ T cells strongly correlated with the TCR frequency, but not age. We identified mutations in pathways essential for T cell function and often affected lymphoid neoplasia. Single-cell sequencing revealed cytotoxic TEMRA phenotypes of mutated T cells. Our findings suggest that somatic mutations contribute to CD8+ T cell expansions without malignant transformation.
Collapse
Affiliation(s)
- Sofie Lundgren
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Mikko Myllymäki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Timo Järvinen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko A. I. Keränen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Jason Theodoropoulos
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Johannes Smolander
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Daehong Kim
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Urpu Salmenniemi
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Stem Cell Transplantation Unit, Turku University Hospital, Turku, Finland
| | - Gunilla Walldin
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Paula Savola
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Department of Clinical Chemistry, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tiina Kelkka
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Hanna Rajala
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Maija Itälä-Remes
- Stem Cell Transplantation Unit, Turku University Hospital, Turku, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
12
|
Kosydar S, Ansell SM. The biology of classical Hodgkin lymphoma. Semin Hematol 2024:S0037-1963(24)00059-3. [PMID: 38824068 DOI: 10.1053/j.seminhematol.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
Classical Hodgkin lymphoma (cHL) is distinguished by several important biological characteristics. The presence of Hodgkin Reed Sternberg (HRS) cells is a defining feature of this disease. The tumor microenvironment with relatively few HRS cells in an expansive infiltrate of immune cells is another key feature. Numerous cell-cell mediated interactions and a plethora of cytokines in the tumor microenvironment collectively work to promote HRS cell growth and survival. Aberrancy and constitutive activation of core signal transduction pathways are a hallmark trait of cHL. Genetic lesions contribute to these dysregulated pathways and evasion of the immune system through a variety of mechanisms is another notable feature of cHL. While substantial elucidation of the biology of cHL has enabled advancements in therapy, increased understanding in the future of additional mechanisms driving cHL may lead to new treatment opportunities.
Collapse
Affiliation(s)
| | - Stephen M Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
13
|
Li MY, Chong LC, Duns G, Lytle A, Woolcock B, Jiang A, Telenius A, Ben-Neriah S, Nawaz W, Slack GW, Elisia I, Viganò E, Aoki T, Healy S, Krystal G, Venturutti L, Scott DW, Steidl C. TRAF3 loss-of-function reveals the noncanonical NF-κB pathway as a therapeutic target in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 2024; 121:e2320421121. [PMID: 38662551 PMCID: PMC11067025 DOI: 10.1073/pnas.2320421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Here, we report recurrent focal deletions of the chr14q32.31-32 locus, including TRAF3, a negative regulator of NF-κB signaling, in de novo diffuse large B cell lymphoma (DLBCL) (24/324 cases). Integrative analysis revealed an association between TRAF3 copy number loss with accumulation of NIK, the central noncanonical (NC) NF-κB kinase, and increased NC NF-κB pathway activity. Accordingly, TRAF3 genetic ablation in isogenic DLBCL model systems caused upregulation of NIK and enhanced NC NF-κB downstream signaling. Knockdown or pharmacological inhibition of NIK in TRAF3-deficient cells differentially impaired their proliferation and survival, suggesting an acquired onco-addiction to NC NF-κB. TRAF3 ablation also led to exacerbated secretion of the immunosuppressive cytokine IL-10. Coculturing of TRAF3-deficient DLBCL cells with CD8+ T cells impaired the induction of Granzyme B and interferon (IFN) γ, which were restored following neutralization of IL-10. Our findings corroborate a direct relationship between TRAF3 genetic alterations and NC NF-κB activation, and highlight NIK as a potential therapeutic target in a defined subset of DLBCL.
Collapse
Affiliation(s)
- Michael Y. Li
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Lauren C. Chong
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Gerben Duns
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Andrew Lytle
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Bruce Woolcock
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Aixiang Jiang
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Adèle Telenius
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Waqas Nawaz
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Ingrid Elisia
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Elena Viganò
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Tomohiro Aoki
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Shannon Healy
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Gerald Krystal
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Leandro Venturutti
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| |
Collapse
|
14
|
Karri U, Harasimowicz M, Carpio Tumba M, Schwartz DM. The Complexity of Being A20: From Biological Functions to Genetic Associations. J Clin Immunol 2024; 44:76. [PMID: 38451381 DOI: 10.1007/s10875-024-01681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
A20, encoded by TNFAIP3, is a critical negative regulator of immune activation. A20 is a ubiquitin editing enzyme with multiple domains, each of which mediates or stabilizes a key ubiquitin modification. A20 targets diverse proteins that are involved in pleiotropic immunologic pathways. The complexity of A20-mediated immunomodulation is illustrated by the varied effects of A20 deletion in different cell types and disease models. Clinically, the importance of A20 is highlighted by its extensive associations with human disease. A20 germline variants are associated with a wide range of inflammatory diseases, while somatic mutations promote development of B cell lymphomas. More recently, the discovery of A20 haploinsufficiency (HA20) has provided real world evidence for the role of A20 in immune cell function. Originally described as an autosomal dominant form of Behcet's disease, HA20 is now considered a complex inborn error of immunity with a broad spectrum of immunologic and clinical phenotypes.
Collapse
Affiliation(s)
- Urekha Karri
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Magdalena Harasimowicz
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Manuel Carpio Tumba
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Daniella M Schwartz
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
Kawaji‐Kanayama Y, Tsukamoto T, Nakano M, Tokuda Y, Nagata H, Mizuhara K, Katsuragawa‐Taminishi Y, Isa R, Fujino T, Matsumura‐Kimoto Y, Mizutani S, Shimura Y, Taniwaki M, Tashiro K, Kuroda J. miR-17-92 cluster-BTG2 axis regulates B-cell receptor signaling in mantle cell lymphoma. Cancer Sci 2024; 115:452-464. [PMID: 38050664 PMCID: PMC10859618 DOI: 10.1111/cas.16027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
B-cell receptor (BCR) signaling is critically activated and stable for mantle cell lymphoma (MCL), but the underlying mechanism of the activated BCR signaling pathway is not clear. The pathogenic basis of miR-17-92 cluster remains unclear although the oncogenic microRNA (miRNA) miR-17-92 cluster is highly expressed in patients with MCL. We revealed that miR-17-92 cluster overexpression is partly dependent on SOX11 expression and chromatin acetylation of MIR17HG enhancer regions. Moreover, miR-17-92 cluster regulates not only cell proliferation but BCR signaling activation in MCL cell lines. To comprehensively identify miR-17-92 cluster target genes, we performed pulldown-seq, where target RNA of miRNA was captured using the biotinylated miRNA mimics and magnetic bead-coated streptavidin, and quantified using next-generation sequencing. The pulldown-seq identified novel miRNA target genes, including tumor suppressors such as BTG2 (miR-19b), CDKN2A (miR-17), SYNE1 (miR-20a), TET2 (miR-18, miR-19b, and miR-92a), TNFRSF10A (miR-92a), and TRAF3 (miR-17). Notably, the gene expression profile data of patients with MCL revealed that BTG2 expression was negatively associated with that of BCR signature genes, and low BTG2 expression was associated with poor overall survival. Moreover, BTG2 silencing in MCL cell lines significantly induced BCR signaling overactivation and cell proliferation. Our results suggest an oncogenic role of miR-17-92 cluster-activating BCR signaling throughout BTG2 deregulation in MCL. Furthermore, this may contribute to the prediction of the therapeutic efficacy and improved outcomes of MCL.
Collapse
Affiliation(s)
- Yuka Kawaji‐Kanayama
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Taku Tsukamoto
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Masakazu Nakano
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Yuichi Tokuda
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroaki Nagata
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Kentaro Mizuhara
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yoko Katsuragawa‐Taminishi
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Reiko Isa
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Takahiro Fujino
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yayoi Matsumura‐Kimoto
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
- Department of HematologyJapan Community Health Care Organization, Kyoto Kuramaguchi Medical CenterKyotoJapan
| | - Shinsuke Mizutani
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yuji Shimura
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Masafumi Taniwaki
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
- Department of HematologyAiseikai Yamashina HospitalKyotoJapan
- Center for Molecular Diagnostic and TherapeuticsKyoto Prefectural University of MedicineKyotoJapan
| | - Kei Tashiro
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Junya Kuroda
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
16
|
Gomez F, Fisk B, McMichael JF, Mosior M, Foltz JA, Skidmore ZL, Duncavage EJ, Miller CA, Abel H, Li YS, Russler-Germain DA, Krysiak K, Watkins MP, Ramirez CA, Schmidt A, Martins Rodrigues F, Trani L, Khanna A, Wagner JA, Fulton RS, Fronick CC, O'Laughlin MD, Schappe T, Cashen AF, Mehta-Shah N, Kahl BS, Walker J, Bartlett NL, Griffith M, Fehniger TA, Griffith OL. Ultra-Deep Sequencing Reveals the Mutational Landscape of Classical Hodgkin Lymphoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:2312-2330. [PMID: 37910143 PMCID: PMC10648575 DOI: 10.1158/2767-9764.crc-23-0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified >95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL. SIGNIFICANCE Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient.
Collapse
Affiliation(s)
- Felicia Gomez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Bryan Fisk
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Joshua F. McMichael
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Matthew Mosior
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Jennifer A. Foltz
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Zachary L. Skidmore
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Eric J. Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Christopher A. Miller
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Haley Abel
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Yi-Shan Li
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - David A. Russler-Germain
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Kilannin Krysiak
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Marcus P. Watkins
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Cody A. Ramirez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Alina Schmidt
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Fernanda Martins Rodrigues
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Lee Trani
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Ajay Khanna
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Julia A. Wagner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Robert S. Fulton
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Catrina C. Fronick
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Michelle D. O'Laughlin
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Timothy Schappe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Amanda F. Cashen
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Neha Mehta-Shah
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Brad S. Kahl
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Jason Walker
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nancy L. Bartlett
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Malachi Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| | - Todd A. Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Obi L. Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
17
|
Gupta S, Craig JW. Classic Hodgkin lymphoma in young people. Semin Diagn Pathol 2023; 40:379-391. [PMID: 37451943 DOI: 10.1053/j.semdp.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Classic Hodgkin lymphoma (CHL) is a unique form of lymphoid cancer featuring a heterogeneous tumor microenvironment and a relative paucity of malignant Hodgkin and Reed-Sternberg (HRS) cells with characteristic phenotype. Younger individuals (children, adolescents and young adults) are affected as often as the elderly, producing a peculiar bimodal age-incidence profile that has generated immense interest in this disease and its origins. Decades of epidemiological investigations have documented the populations most susceptible and identified multiple risk factors that can be broadly categorized as either biological or environmental in nature. Most risk factors result in overt immunodeficiency or confer more subtle alterations to baseline health, physiology or immune function. Epstein Barr virus, however, is both a risk factor and well-established driver of lymphomagenesis in a significant subset of cases. Epigenetic changes, along with the accumulation of somatic driver mutations and cytogenetic abnormalities are required for the malignant transformation of germinal center-experienced HRS cell precursors. Chromosomal instability and the influence of endogenous mutational processes are critical in this regard, by impacting genes involved in key signaling pathways that promote the survival and proliferation of HRS cells and their escape from immune destruction. Here we review the principal features, known risk factors and lymphomagenic mechanisms relevant to newly diagnosed CHL, with an emphasis on those most applicable to young people.
Collapse
Affiliation(s)
- Srishti Gupta
- Department of Pathology, University of Virginia Health System, 1215 Lee Street, 3rd Floor Hospital Expansion Room 3032, PO Box 800904, Charlottesville, VA 22908, USA
| | - Jeffrey W Craig
- Department of Pathology, University of Virginia Health System, 1215 Lee Street, 3rd Floor Hospital Expansion Room 3032, PO Box 800904, Charlottesville, VA 22908, USA.
| |
Collapse
|
18
|
Li WS, Zhang QQ, Li Q, Liu SY, Yuan GQ, Pan YW. Innate immune response restarts adaptive immune response in tumors. Front Immunol 2023; 14:1260705. [PMID: 37781382 PMCID: PMC10538570 DOI: 10.3389/fimmu.2023.1260705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
The imbalance of immune response plays a crucial role in the development of diseases, including glioblastoma. It is essential to comprehend how the innate immune system detects tumors and pathogens. Endosomal and cytoplasmic sensors can identify diverse cancer cell antigens, triggering the production of type I interferon and pro-inflammatory cytokines. This, in turn, stimulates interferon stimulating genes, enhancing the presentation of cancer antigens, and promoting T cell recognition and destruction of cancer cells. While RNA and DNA sensing of tumors and pathogens typically involve different receptors and adapters, their interaction can activate adaptive immune response mechanisms. This review highlights the similarity in RNA and DNA sensing mechanisms in the innate immunity of both tumors and pathogens. The aim is to enhance the anti-tumor innate immune response, identify regions of the tumor that are not responsive to treatment, and explore new targets to improve the response to conventional tumor therapy and immunotherapy.
Collapse
Affiliation(s)
- Wen-shan Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Qing-qing Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Qiao Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Shang-yu Liu
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guo-qiang Yuan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ya-wen Pan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
19
|
Jayawant E, Pack A, Clark H, Kennedy E, Ghodke A, Jones J, Pepper C, Pepper A, Mitchell S. NF-κB fingerprinting reveals heterogeneous NF-κB composition in diffuse large B-cell lymphoma. Front Oncol 2023; 13:1181660. [PMID: 37333821 PMCID: PMC10272839 DOI: 10.3389/fonc.2023.1181660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Improving treatments for Diffuse Large B-Cell Lymphoma (DLBCL) is challenged by the vast heterogeneity of the disease. Nuclear factor-κB (NF-κB) is frequently aberrantly activated in DLBCL. Transcriptionally active NF-κB is a dimer containing either RelA, RelB or cRel, but the variability in the composition of NF-κB between and within DLBCL cell populations is not known. Results Here we describe a new flow cytometry-based analysis technique termed "NF-κB fingerprinting" and demonstrate its applicability to DLBCL cell lines, DLBCL core-needle biopsy samples, and healthy donor blood samples. We find each of these cell populations has a unique NF-κB fingerprint and that widely used cell-of-origin classifications are inadequate to capture NF-κB heterogeneity in DLBCL. Computational modeling predicts that RelA is a key determinant of response to microenvironmental stimuli, and we experimentally identify substantial variability in RelA between and within ABC-DLBCL cell lines. We find that when we incorporate NF-κB fingerprints and mutational information into computational models we can predict how heterogeneous DLBCL cell populations respond to microenvironmental stimuli, and we validate these predictions experimentally. Discussion Our results show that the composition of NF-κB is highly heterogeneous in DLBCL and predictive of how DLBCL cells will respond to microenvironmental stimuli. We find that commonly occurring mutations in the NF-κB signaling pathway reduce DLBCL's response to microenvironmental stimuli. NF-κB fingerprinting is a widely applicable analysis technique to quantify NF-κB heterogeneity in B cell malignancies that reveals functionally significant differences in NF-κB composition within and between cell populations.
Collapse
|
20
|
Maura F, Ziccheddu B, Xiang JZ, Bhinder B, Rosiene J, Abascal F, Maclachlan KH, Eng KW, Uppal M, He F, Zhang W, Gao Q, Yellapantula VD, Trujillo-Alonso V, Park SI, Oberley MJ, Ruckdeschel E, Lim MS, Wertheim GB, Barth MJ, Horton TM, Derkach A, Kovach AE, Forlenza CJ, Zhang Y, Landgren O, Moskowitz CH, Cesarman E, Imielinski M, Elemento O, Roshal M, Giulino-Roth L. Molecular Evolution of Classic Hodgkin Lymphoma Revealed Through Whole-Genome Sequencing of Hodgkin and Reed Sternberg Cells. Blood Cancer Discov 2023; 4:208-227. [PMID: 36723991 PMCID: PMC10150291 DOI: 10.1158/2643-3230.bcd-22-0128] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/02/2023] Open
Abstract
The rarity of malignant Hodgkin and Reed Sternberg (HRS) cells in classic Hodgkin lymphoma (cHL) limits the ability to study the genomics of cHL. To circumvent this, our group has previously optimized fluorescence-activated cell sorting to purify HRS cells. Using this approach, we now report the whole-genome sequencing landscape of HRS cells and reconstruct the chronology and likely etiology of pathogenic events leading to cHL. We identified alterations in driver genes not previously described in cHL, APOBEC mutational activity, and the presence of complex structural variants including chromothripsis. We found that high ploidy in cHL is often acquired through multiple, independent chromosomal gains events including whole-genome duplication. Evolutionary timing analyses revealed that structural variants enriched for RAG motifs, driver mutations in B2M, BCL7A, GNA13, and PTPN1, and the onset of AID-driven mutagenesis usually preceded large chromosomal gains. This study provides a temporal reconstruction of cHL pathogenesis. SIGNIFICANCE Previous studies in cHL were limited to coding sequences and therefore not able to comprehensively decipher the tumor complexity. Here, leveraging cHL whole-genome characterization, we identify driver events and reconstruct the tumor evolution, finding that structural variants, driver mutations, and AID mutagenesis precede chromosomal gains. This article is highlighted in the In This Issue feature, p. 171.
Collapse
Affiliation(s)
- Francesco Maura
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Bachisio Ziccheddu
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Jenny Z. Xiang
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Bhavneet Bhinder
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Joel Rosiene
- Weill Cornell Medical College, New York, New York
| | - Federico Abascal
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Kylee H. Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth Wha Eng
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Manik Uppal
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Feng He
- Weill Cornell Medical College, New York, New York
| | - Wei Zhang
- Weill Cornell Medical College, New York, New York
| | - Qi Gao
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Venkata D. Yellapantula
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology and Laboratory Medicine at Children's Hospital Los Angeles, Los Angeles, California
| | | | - Sunita I. Park
- Department of Pathology, Children's Hospital of Atlanta, Atlanta, Georgia
| | | | | | - Megan S. Lim
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Gerald B. Wertheim
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Matthew J. Barth
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Terzah M. Horton
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Andriy Derkach
- Department of Epidemiology and Statistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Yanming Zhang
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ola Landgren
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Craig H. Moskowitz
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | | | - Marcin Imielinski
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Olivier Elemento
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Mikhail Roshal
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
21
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
22
|
Minderman M, Lantermans HC, Grüneberg LJ, Cillessen SAGM, Bende RJ, van Noesel CJM, Kersten MJ, Pals ST, Spaargaren M. MALT1-dependent cleavage of CYLD promotes NF-κB signaling and growth of aggressive B-cell receptor-dependent lymphomas. Blood Cancer J 2023; 13:37. [PMID: 36922488 PMCID: PMC10017792 DOI: 10.1038/s41408-023-00809-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
The paracaspase mucosa-associated lymphoid tissue 1 (MALT1) is a protease and scaffold protein essential in propagating B-cell receptor (BCR) signaling to NF-κB. The deubiquitinating enzyme cylindromatosis (CYLD) is a recently discovered MALT1 target that can negatively regulate NF-κB activation. Here, we show that low expression of CYLD is associated with inferior prognosis of diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) patients, and that chronic BCR signaling propagates MALT1-mediated cleavage and, consequently, inactivation and rapid proteasomal degradation of CYLD. Ectopic overexpression of WT CYLD or a MALT1-cleavage resistant mutant of CYLD reduced phosphorylation of IκBα, repressed transcription of canonical NF-κB target genes and impaired growth of BCR-dependent lymphoma cell lines. Furthermore, silencing of CYLD expression rendered BCR-dependent lymphoma cell lines less sensitive to inhibition of NF-κΒ signaling and cell proliferation by BCR pathway inhibitors, e.g., the BTK inhibitor ibrutinib, indicating that these effects are partially mediated by CYLD. Taken together, our findings identify an important role for MALT1-mediated CYLD cleavage in BCR signaling, NF-κB activation and cell proliferation, which provides novel insights into the underlying molecular mechanisms and clinical potential of inhibitors of MALT1 and ubiquitination enzymes as promising therapeutics for DLBCL, MCL and potentially other B-cell malignancies.
Collapse
Affiliation(s)
- Marthe Minderman
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Hildo C Lantermans
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Leonie J Grüneberg
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Saskia A G M Cillessen
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, location VU University, Amsterdam, Netherlands
| | - Richard J Bende
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Marie José Kersten
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Steven T Pals
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands.
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands.
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Spoerl S, Erber R, Gerken M, Taxis J, Ludwig N, Nieberle F, Biermann N, Geppert CI, Ettl T, Hartmann A, Beckhove P, Reichert TE, Spanier G, Spoerl S. A20 as a Potential New Tool in Predicting Recurrence and Patient's Survival in Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15030675. [PMID: 36765630 PMCID: PMC9913673 DOI: 10.3390/cancers15030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
A20, known as a potent inhibitor of NF-κB signaling, has been characterized in numerous clinical as well as preclinical studies. Recently, especially in various malignant diseases, the prognostic and therapeutic relevance of A20 was investigated. In oral squamous cell carcinoma (OSCC) however, the characterization of A20 is uncharted territory. We analyzed a tissue microarray (TMA) of 229 surgically-treated OSCC patients (2003-2013). Immunohistochemical (IHC) stainings were performed for A20 and CD3; additionally, standard haematoxylin-eosin staining was applied. IHC findings were correlated with a comprehensive dataset, comprising clinical and pathohistological information. A20 expression was analyzed in tumor cells as well as in tumor infiltrating lymphocytes (TILs) and correlated with the overall survival (OS) and recurrence-free survival (RFS) using uni- and multivariable Cox regression. The median follow-up time was 10.9 years and the A20 expression was significantly decreased in CD3+ TILs compared to mucosa-infiltrating lymphocytes (MILs). In the Kaplan-Meier analyses, higher A20 expression in TILs was correlated with better OS (p = 0.017) and RFS (p = 0.020). In the multivariable survival analysis, A20 overexpression correlated with improved OS (HR: 0.582; 95% CI 0.388-0.873, p = 0.009) and RFS (HR 0.605; 95% CI 0.411-0.889, p = 0.011). Our results indicate a novel prognostic role for A20 in OSCC. Due to its elevated expression in TILs, further research is highly desirable, which therefore could offer new therapeutic opportunities for patients suffering from OSCC.
Collapse
Affiliation(s)
- Steffen Spoerl
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence: ; Tel.: +49-941-944-6340; Fax: +49-941-944-6342
| | - Ramona Erber
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Michael Gerken
- Tumor Center, Institute for Quality Management and Health Services Research, University of Regensburg, 93053 Regensburg, Germany
| | - Juergen Taxis
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nils Ludwig
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Felix Nieberle
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Niklas Biermann
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Carol Immanuel Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Tobias Ettl
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Philipp Beckhove
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany
| | - Torsten E. Reichert
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Gerrit Spanier
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Silvia Spoerl
- Department of Internal Medicine 5—Haematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
24
|
Wakatsuki R, Hatai Y, Okamoto K, Kaneko S, Shimbo A, Irabu H, Shimizu M, Kanegane H, Ono M. An infant with A20 haploinsufficiency presenting with periodic fever syndrome: A case report. Int J Rheum Dis 2023; 26:973-976. [PMID: 36641803 DOI: 10.1111/1756-185x.14564] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/30/2022] [Indexed: 01/16/2023]
Abstract
A20 haploinsufficiency (HA20) is an early-onset autoinflammatory disease caused by loss-of-function variants of the TNFAIP3 gene, which encodes the protein A20. HA20 is typically characterized by Behçet's disease-like clinical symptoms, and patients usually present with a family history. Herein, we report a case of HA20 in a pediatric patient, presenting with periodic fever, abdominal pain, and vomiting, with no family history. This patient also harbored a novel heterozygous frameshift variant c.677del (p.Pro226LeufsTer2) of TNFAIP3. We initiated treatment with an anti-tumor necrosis factor-α agent that did not induce symptom resolution; we thus administered combination therapy, including prednisolone. Remission was then successfully achieved. We suggest that HA20 should be considered when an autoinflammatory disease is suspected and periodic fever syndrome is present, even in the absence of a family history of HA20 or Behçet's disease-like symptoms.
Collapse
Affiliation(s)
- Ryosuke Wakatsuki
- Department of Pediatrics, Tokyo Bay Urayasu Ichikawa Medical Center, Chiba, Japan
| | - Yoshiho Hatai
- Department of Pediatrics, Tokyo Bay Urayasu Ichikawa Medical Center, Chiba, Japan
| | - Kentaro Okamoto
- Department of Pediatric Surgery, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Shuya Kaneko
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Asami Shimbo
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitoshi Irabu
- Department of Community Pediatrics, Perinatal, and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Shimizu
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Ono
- Department of Pediatrics, Tokyo Bay Urayasu Ichikawa Medical Center, Chiba, Japan
| |
Collapse
|
25
|
Nagao T, Yoshifuji K, Sadato D, Motomura Y, Saito M, Yamamoto K, Yamamoto K, Nogami A. Establishment and characterization of a new activated B-cell-like DLBCL cell line, TMD12. Exp Hematol 2022; 116:37-49. [PMID: 36191884 DOI: 10.1016/j.exphem.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022]
Abstract
We report the establishment of a novel activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL) cell line, designated as TMD12, from a patient with highly refractory DLBCL. ABC-DLBCL is a subtype with a relatively unfavorable prognosis that was originally categorized using gene expression profiling according to its cell of origin. TMD12 cells were isolated from the pleural effusion of the patient at relapse and passaged continuously in vitro for >4 years. The cells displayed cluster of differentiation (CD)19, CD20, CD22, CD38, human leukocyte antigen-DR isotype, and κ positivity and CD5, CD10, CD23, and λ negativity, as detected using flow cytometric analysis. The chromosomal karyotypic analysis, including the spectral karyotyping method, confirmed t(1;19)(q21:q13.1), del(6q23), gain of chromosome 18, and other abnormalities. Mutation analyses, including whole-exome sequencing, revealed that TMD12 cells harbored mutations in MYD88 and CD79B, indicating an ABC subtype. TMD12 cells exhibited chronic active B-cell receptor signaling and constitutive activation of the nuclear factor κB pathway, which is typically associated with sensitivity to a specific Bruton tyrosine kinase inhibitor, ibrutinib. Intriguingly, TMD12 cells displayed moderate resistance to ibrutinib and lacked activation of Janus kinase/signal transducers and activators of transcription 3 signaling, another hallmark of this DLBCL subtype. Treatment with an inhibitor against tumor progression locus 2 (TPL2), a multifunctional intracellular kinase that is activated particularly downstream of Toll-like receptors or MYD88 and IκB kinase α/β (IKKα/β), suppressed the proliferation of TMD12 cells, implying the possible involvement of the TPL2-p105 pathway in the tumorigenesis of ABC-DLBCL. Because only a limited number of ABC-DLBCL cell lines are currently available, TMD12 cells might provide a useful tool in the search for novel druggable targets for this intractable lymphoma.
Collapse
Affiliation(s)
- Toshikage Nagao
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Kota Yoshifuji
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daichi Sadato
- Clinical Research Support Center, Tokyo Metropolitan Center and Infection Disease Center, Komagome Hospital, Tokyo, Japan
| | - Yotaro Motomura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makiko Saito
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kurara Yamamoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Ayako Nogami
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Laboratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
26
|
Pasqualucci L, Klein U. NF-κB Mutations in Germinal Center B-Cell Lymphomas: Relation to NF-κB Function in Normal B Cells. Biomedicines 2022; 10:2450. [PMID: 36289712 PMCID: PMC9599362 DOI: 10.3390/biomedicines10102450] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Most B cell lymphomas arise from the oncogenic transformation of B cells that have undergone the germinal center (GC) reaction of the T cell-dependent immune response, where high-affinity memory B cells and plasma cells are generated. The high proliferation of GC B cells coupled with occasional errors in the DNA-modifying processes of somatic hypermutation and class switch recombination put the cell at a risk to obtain transforming genetic aberrations, which may activate proto-oncogenes or inactivate tumour suppressor genes. Several subtypes of GC lymphomas harbor genetic mutations leading to constitutive, aberrant activation of the nuclear factor-κB (NF-κB) signaling pathway. In normal B cells, NF-κB has crucial biological roles in development and physiology. GC lymphomas highjack these activities to promote tumour-cell growth and survival. It has become increasingly clear that the separate canonical and non-canonical routes of the NF-κB pathway and the five downstream NF-κB transcription factors have distinct functions in the successive stages of GC B-cell development. These findings may have direct implications for understanding how aberrant NF-κB activation promotes the genesis of various GC lymphomas corresponding to the developmentally distinct GC B-cell subsets. The knowledge arising from these studies may be explored for the development of precision medicine approaches aimed at more effective treatments of the corresponding tumours with specific NF-κB inhibitors, thus reducing systemic toxicity. We here provide an overview on the patterns of genetic NF-κB mutations encountered in the various GC lymphomas and discuss the consequences of aberrant NF-κB activation in those malignancies as related to the biology of NF-κB in their putative normal cellular counterparts.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics, Department of Pathology & Cell Biology, The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
27
|
Basta DW, Vong M, Beshimova A, Nakamura BN, Rusu I, Kattah MG, Shao L. A20 Restricts NOS2 Expression and Intestinal Tumorigenesis in a Mouse Model of Colitis-Associated Cancer. GASTRO HEP ADVANCES 2022; 2:96-107. [PMID: 36636264 PMCID: PMC9833806 DOI: 10.1016/j.gastha.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Colon cancer can occur sporadically or in the setting of chronic inflammation, such as in patients with inflammatory bowel disease. We previously showed that A20, a critical negative regulator of tumor necrosis factor signal transduction, could regulate sporadic colon cancer development. In this report, we investigate whether A20 also acts as a tumor suppressor in a model of colitis-associated cancer. METHODS Colitis and colitis-associated tumors were induced in wild-type and A20 intestinal epithelial cell-specific knockout (A20dIEC) mice using dextran sodium sulfate and azoxymethane. Clinicopathologic markers of inflammation were assessed in conjunction with colonic tumor burden. Gene expression analyses and immunohistochemistry were performed on colonic tissue and intestinal enteroids. Nitric oxide (NO) production and activity were assessed in whole colonic lysates and mouse embryonic fibroblasts. RESULTS A20dIEC mice develop larger tumors after treatment with dextran sodium sulfate and azoxymethane than wild-type mice. In addition to elevated markers of inflammation, A20dIEC mice have significantly enhanced expression of inducible nitric oxide synthase (iNOS), a well-known driver of neoplasia. Enhanced iNOS expression is associated with the formation of reactive nitrogen species and DNA damage. Loss of A20 also enhances NO-dependent cell death directly. CONCLUSION Mechanistically, we propose that A20 normally restricts tumor necrosis factor-induced nuclear factor kappa B-dependent production of iNOS in intestinal epithelial cells, thereby protecting against colitis-associated tumorigenesis. We also propose that A20 plays a direct role in regulating NO-dependent cell death.
Collapse
Affiliation(s)
- David W Basta
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Mandy Vong
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Adolat Beshimova
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Brooke N Nakamura
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Iulia Rusu
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Michael G Kattah
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Ling Shao
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| |
Collapse
|
28
|
IRF4 as an Oncogenic Master Transcription Factor. Cancers (Basel) 2022; 14:cancers14174314. [PMID: 36077849 PMCID: PMC9454692 DOI: 10.3390/cancers14174314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Master transcription factors regulate essential developmental processes and cellular maintenance that characterize cell identity. Many of them also serve as oncogenes when aberrantly expressed or activated. IRF4 is one of prime examples of oncogenic master transcription factors that has been implicated in various mature lymphoid neoplasms. IRF4 forms unique regulatory circuits and induces oncogenic transcription programs through the interactions with upstream pathways and binding partners. Abstract IRF4 is a transcription factor in the interferon regulatory factor (IRF) family. Since the discovery of this gene, various research fields including immunology and oncology have highlighted the unique characteristics and the importance of IRF4 in several biological processes that distinguish it from other IRF family members. In normal lymphocyte development and immunity, IRF4 mediates critical immune responses via interactions with upstream signaling pathways, such as the T-cell receptor and B-cell receptor pathways, as well as their binding partners, which are uniquely expressed in each cell type. On the other hand, IRF4 acts as an oncogene in various mature lymphoid neoplasms when abnormally expressed. IRF4 induces several oncogenes, such as MYC, as well as genes that characterize each cell type by utilizing its ability as a master regulator of immunity. IRF4 and its upstream factor NF-κB form a transcriptional regulatory circuit, including feedback and feedforward loops, to maintain the oncogenic transcriptional program in malignant lymphoid cells. In this review article, we provide an overview of the molecular functions of IRF4 in mature lymphoid neoplasms and highlight its upstream and downstream pathways, as well as the regulatory circuits mediated by IRF4.
Collapse
|
29
|
Yang FM, Shen L, Fan DD, Bai Y, Li B, Lee J. YAP9/A20 complex suppresses proinflammatory responses and provides novel anti-inflammatory therapeutic potentials. Front Immunol 2022; 13:914381. [PMID: 36045678 PMCID: PMC9420849 DOI: 10.3389/fimmu.2022.914381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Innate anti-inflammatory mechanisms are essential for immune homeostasis and can present opportunities to intervene inflammatory diseases. In this report, we found that YAP isoform 9 (YAP9) is an essential negative regulator of the potent inflammatory stimuli such as TNFα, IL-1β, and LPS. YAP9 constitutively interacts with another anti-inflammatory regulator A20 (TNFAIP3) to suppress inflammatory responses, but A20 and YAP can function only in the presence of the other. YAP9 uses a short stretch of amino acids in the proline-rich domain (PRD) and transactivation domain (TAD) suppress the inflammatory signaling while A20 mainly uses the zinc finger domain 7 (ZF7). Cell-penetrating synthetic PRD, TAD, and ZF7 peptides act as YAP9 and A20 mimetics respectively to suppress the proinflammatory responses at the cellular level and in mice. Our data uncover a novel anti-inflammatory axis and anti-inflammatory agents that can be developed to treat acute or chronic conditions where TNFα, IL-1β, or LPS plays a key role in initiating and/or perpetuating inflammation.
Collapse
|
30
|
Gammaherpesvirus-mediated repression reveals EWSR1 to be a negative regulator of B cell responses. Proc Natl Acad Sci U S A 2022; 119:e2123362119. [PMID: 35921433 PMCID: PMC9371696 DOI: 10.1073/pnas.2123362119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The germinal center (GC) plays a central role in the generation of antigen-specific B cells and antibodies. Tight regulation of the GC is essential due to the inherent risks of tumorigenesis and autoimmunity posed by inappropriate GC B cell processes. Gammaherpesviruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) utilize numerous armaments to drive infected naïve B cells, independent of antigen, through GC reactions to expand the latently infected B cell population and establish a stable latency reservoir. We previously demonstrated that the MHV68 microRNA (miRNA) mghv-miR-M1-7-5p represses host EWSR1 (Ewing sarcoma breakpoint region 1) to promote B cell infection. EWSR1 is a transcription and splicing regulator that is recognized for its involvement as a fusion protein in Ewing sarcoma. A function for EWSR1 in B cell responses has not been previously reported. Here, we demonstrate that 1) B cell-specific deletion of EWSR1 had no effect on generation of mature B cell subsets or basal immunoglobulin levels in naïve mice, 2) repression or ablation of EWSR1 in B cells promoted expansion of MHV68 latently infected GC B cells, and 3) B cell-specific deletion of EWSR1 during a normal immune response to nonviral antigen resulted in significantly elevated numbers of antigen-specific GC B cells, plasma cells, and circulating antibodies. Notably, EWSR1 deficiency did not affect the proliferation or survival of GC B cells but instead resulted in the generation of increased numbers of precursor GC B cells. Cumulatively, these findings demonstrate that EWSR1 is a negative regulator of B cell responses.
Collapse
|
31
|
Beck DB, Werner A, Kastner DL, Aksentijevich I. Disorders of ubiquitylation: unchained inflammation. Nat Rev Rheumatol 2022; 18:435-447. [PMID: 35523963 PMCID: PMC9075716 DOI: 10.1038/s41584-022-00778-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 12/31/2022]
Abstract
Ubiquitylation is an essential post-translational modification that regulates intracellular signalling networks by triggering proteasomal substrate degradation, changing the activity of substrates or mediating changes in proteins that interact with substrates. Hundreds of enzymes participate in reversible ubiquitylation of proteins, some acting globally and others targeting specific proteins. Ubiquitylation is essential for innate immune responses, as it facilitates rapid regulation of inflammatory pathways, thereby ensuring sufficient but not excessive responses. A growing number of inborn errors of immunity are attributed to dysregulated ubiquitylation. These genetic disorders exhibit broad clinical manifestations, ranging from susceptibility to infection to autoinflammatory and/or autoimmune features, lymphoproliferation and propensity to malignancy. Many autoinflammatory disorders result from disruption of components of the ubiquitylation machinery and lead to overactivation of innate immune cells. An understanding of the disorders of ubiquitylation in autoinflammatory diseases could enable the development of novel management strategies.
Collapse
Affiliation(s)
- David B Beck
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Human Genetics and Genomics, New York University, New York, NY, USA
- Division of Rheumatology, Department of Medicine, New York University, New York, NY, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Amanda S, Tan TK, Iida S, Sanda T. Lineage- and Stage-specific Oncogenicity of IRF4. Exp Hematol 2022; 114:9-17. [PMID: 35908629 DOI: 10.1016/j.exphem.2022.07.300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
Dysregulation of transcription factor genes represents a unique molecular etiology of hematological malignancies. A number of transcription factors that play a role in hematopoietic cell development, lymphocyte activation or their maintenance have been identified as oncogenes or tumor suppressors. Many of them exert oncogenic abilities in a context-dependent manner by governing the key transcriptional program unique to each cell type. IRF4, a member of the interferon regulatory factor (IRF) family, acts as an essential regulator of the immune system and is a prime example of a stage-specific oncogene. The expression and oncogenicity of IRF4 are restricted to mature lymphoid neoplasms, while IRF4 potentially serves as a tumor suppressor in other cellular contexts. This is in marked contrast to its immediate downstream target, MYC, which can cause cancers in a variety of tissues. In this review article, we provide an overview of the roles of IRF4 in the development of the normal immune system and lymphoid neoplasms and discuss the potential mechanisms of lineage- and stage-specific oncogenicity of IRF4.
Collapse
Affiliation(s)
- Stella Amanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601 Japan
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore..
| |
Collapse
|
33
|
Genomic landscape of Epstein-Barr virus-positive extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue. Mod Pathol 2022; 35:938-945. [PMID: 34952945 DOI: 10.1038/s41379-021-01002-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022]
Abstract
Epstein-Barr virus (EBV)-positive extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue (MALT lymphomas) were initially described in solid organ transplant recipients, and, more recently, in other immunodeficiency settings. The overall prevalence of EBV-positive MALT lymphomas has not been established, and little is known with respect to their genomic characteristics. Eight EBV-positive MALT lymphomas were identified, including 1 case found after screening a series of 88 consecutive MALT lymphomas with EBER in situ hybridization (1%). The genomic landscape was assessed in 7 of the 8 cases with a targeted high throughput sequencing panel and array comparative genomic hybridization. Results were compared to published data for MALT lymphomas. Of the 8 cases, 6 occurred post-transplant, 1 in the setting of primary immunodeficiency, and 1 case was age-related. Single pathogenic/likely pathogenic mutations were identified in 4 of 7 cases, including mutations in IRF8, BRAF, TNFAIP3, and SMARCA4. Other than TNFAIP3, these genes are mutated in <3% of EBV-negative MALT lymphomas. Copy number abnormalities were identified in 6 of 7 cases with a median of 6 gains and 2 losses per case, including 4 cases with gains in regions encompassing several IRF family or interacting genes (IRF2BP2, IRF2, and IRF4). There was no evidence of trisomies of chromosomes 3 or 18. In summary, EBV-positive MALT lymphomas are rare and, like other MALT lymphomas, are usually genetically non-complex. Conversely, while EBV-negative MALT lymphomas typically show mutational abnormalities in the NF-κB pathway, other than the 1 TNFAIP3-mutated case, no other NF-κB pathway mutations were identified in the EBV-positive cases. EBV-positive MALT lymphomas often have either mutations or copy number abnormalities in IRF family or interacting genes, suggesting that this pathway may play a role in these lymphomas.
Collapse
|
34
|
Satou A, Takahara T, Nakamura S. An Update on the Pathology and Molecular Features of Hodgkin Lymphoma. Cancers (Basel) 2022; 14:cancers14112647. [PMID: 35681627 PMCID: PMC9179292 DOI: 10.3390/cancers14112647] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hodgkin lymphomas (HLs) include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent molecular findings in HLs have contributed to dramatic changes in the treatment and identification of tumor characteristics. For example, PD-1/PD-L1 blockade and brentuximab vedotin, an anti-CD30 antibody bearing a cytotoxic compound, are now widely used in patients with CHL. Biological continuity between NLPHL and T-cell/histiocyte-rich large B-cell lymphoma has been highlighted. An era of novel therapeutics for HL has begun. The aim of this paper is to review the morphologic, immunophenotypic, and molecular features of CHL and NLPHL, which must be understood for the development of novel therapeutics. Abstract Hodgkin lymphomas (HLs) are lymphoid neoplasms derived from B cells and consist histologically of large neoplastic cells known as Hodgkin and Reed–Sternberg cells and abundant reactive bystander cells. HLs include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent molecular analyses have revealed that an immune evasion mechanism, particularly the PD-1/PD-L1 pathway, plays a key role in the development of CHL. Other highlighted key pathways in CHL are NF-κB and JAK/STAT. These advances have dramatically changed the treatment for CHL, particularly relapsed/refractory CHL. For example, PD-1 inhibitors are now widely used in relapsed/refractory CHL. Compared with CHL, NLPHL is more characterized by preserved B cell features. Overlapping morphological and molecular features between NLPHL and T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) have been reported, and biological continuity between these two entities has been highlighted. Some THRLBCLs are considered to represent progression from NLPHLs. With considerable new understanding becoming available from molecular studies in HLs, therapies and classification of HLs are continually evolving. This paper offers a summary of and update on the pathological and molecular features of HLs for a better understanding of the diseases.
Collapse
Affiliation(s)
- Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan;
- Correspondence: ; Tel.: +81-561-62-3311; Fax: +81-561-61-3811
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan;
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya 466-8550, Japan;
| |
Collapse
|
35
|
Wu Y, Gu H, Bao Y, Lin T, Wang Z, Gu D, Shen H, Xian H, Fan Y, Mao R. USP7 sustains an active epigenetic program via stabilizing MLL2 and WDR5 in diffuse large B-cell lymphoma. Cell Biochem Funct 2022; 40:379-390. [PMID: 35411950 DOI: 10.1002/cbf.3702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
Abstract
Activated B-cell-like (ABC)-diffuse large B-cell lymphoma (ABC-DLBCL) is a common subtype of non-Hodgkin's lymphoma with poor prognosis. The survival of ABC-DLBCL relies on constitutive activation of BCR signaling, but the underlying molecular mechanism is not fully addressed. By mining The Cancer Genome Atlas database, we found that the expression of ubiquitin-specific protease 7 (USP7) is significantly elevated in three cancer types including DLBCL. Interestingly, unlike germinal center B-cell-like (GCB)-DLBCL, ABC-DLBCL shows upregulated expression of USP7. Inhibiting the enzymatic activity of USP7 (P22077) has a drastic effect on ABC-DLBCL, but not GCB-DLBCL cells. Compared to GCB-DLBCL, ABC-DLBCL cells show transcriptional upregulation of multiple components of BCR-signaling. USP7 inhibition significantly reduces the expression of upregulated components of BCR signaling. Mechanistically, USP7 inhibition greatly reduces the methylation of histone 3 on lysine 4 (H3K4me2), which is an epigenetic marker for active enhancers. USP7 inhibition greatly reduces the protein level of WDR5 and MLL2, key components of lysine-specific methyltransferase complex (complex of proteins associated with Set1 [COMPASS]). In ABC-DLBCL cells, USP7 stabilizes WDR5 and MLL2. In patients, the expression of USP7 is significantly associated with components of BCR signaling (LYN, SYK, BTK, PLCG2, PRKCB, MALT1, BCL10, and CARD11) and targets of BCR signaling (MYC and IRF4). In summary, we demonstrated an essential role of USP7 in ABC-DLBCL by organizing an oncogenic epigenetic program via stabilization of WDR5 and MLL2. Targeting USP7 might be a novel and efficient approach to treat patients with ABC-DLBCL and it might be better than targeting individual components such as BTK in BCR signaling.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Laboratory of Basic Medicine, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Hongyan Gu
- Department of Respiratory Medicine, Nantong Sixth People's Hospital, Nantong, Jiangsu, China
| | - Yuhua Bao
- Department of Emergency Medicine, The Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Ting Lin
- Laboratory of Basic Medicine, Medical College, Nantong University, Nantong, Jiangsu, China.,Department of Pathophysiology, Nantong University, Nantong, Jiangsu, China
| | - Zhenyu Wang
- Laboratory of Basic Medicine, Medical College, Nantong University, Nantong, Jiangsu, China.,Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Donghua Gu
- The Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Haoliang Shen
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Hua Xian
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Yihui Fan
- Laboratory of Basic Medicine, Medical College, Nantong University, Nantong, Jiangsu, China.,Department of Pathogenic Biology, Medical College, Nantong University, Nantong, Jiangsu, PR China
| | - Renfang Mao
- Laboratory of Basic Medicine, Medical College, Nantong University, Nantong, Jiangsu, China.,Department of Pathophysiology, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
36
|
Xie Z, Chen J, Xiao Z, Li Y, Yuan T, Li Y. TNFAIP3 alleviates pain in lumbar disc herniation rats by inhibiting the NF-κB pathway. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:80. [PMID: 35282077 PMCID: PMC8848453 DOI: 10.21037/atm-21-6499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
Abstract
Background It’s been reported that the tumor necrosis factor alpha inducible protein 3 (TNFAIP3) gene played an important role in the pathogenesis of autoimmune and chronic inflammation diseases. Moreover, in degenerative diseases of the lumbar spine the nuclear factor-κB (NF-κB) pathway is significantly activated. This study aimed to explore the role of the tumor necrosis protein-induced zinc finger protein A20 (A20) protein in degenerative diseases of the lumbar spine on the NF-κBp65 pathway. Methods A total of 96 rats were randomly divided into 4 groups. Lumbar disc herniation (DH) was set as a sham operation group (Sham group), DH + A20 group and DH + control group (Control group); measured changes in rat paw withdrawal threshold (PWT) and paw withdrawal latency (PWL); detected the proportion of apoptotic cells in a single nucleus pulposus cell suspension, analyzed the correlation between tumor necrosis factor-α (TNF-α) content and pain in DH rats, and the expression changes of NF-κB pathway in nucleus pulposus tissue. Results compared with the DH + Control group, the PWT and PWL of the DH + A20 group increased significantly (P<0.05); apoptosis in the DH + A20 group was significantly reduced (P<0.01); the nucleus pulposus tissue and serum levels of TNF-α and interleukin-6 (IL-6) in the DH + A20 rat group were significantly lower than those in the DH + Control group (P<0.05); the protein expression of rats in the DH + A20 group (p-p65) was significantly lower than that in the DH + Control group (P<0.05). Conclusions The pain of lumbar disc herniation rats is related to TNF-α, and overexpression of A20 protein can reduce the pain of lumbar disc herniation by inhibiting the NF-κB pathway. Keywords Lumbar disc herniation (lumbar DH); tumor necrosis factor-α (TNF-α); interleukin-6 (IL-6); tumor necrosis factor alpha inducible protein 3 (TNFAIP3)
Collapse
Affiliation(s)
- Zhaohui Xie
- Department of Pain, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jixiang Chen
- Department of Pain, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhengjun Xiao
- Department of Pain, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuqin Li
- Department of Pain, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tao Yuan
- Department of Pain, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yandong Li
- Department of Surgery, Shuguang Hospital, Zhangye, China
| |
Collapse
|
37
|
The Hodgkin Lymphoma Immune Microenvironment: Turning Bad News into Good. Cancers (Basel) 2022; 14:cancers14051360. [PMID: 35267668 PMCID: PMC8909875 DOI: 10.3390/cancers14051360] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
The classic Hodgkin lymphoma (cHL) tumor microenvironment (TME) is by far the most abundant component of tumors and is responsible for most of their biological and clinical characteristics. Recent advances in our knowledge of these networks in cellular interactions allow us to understand that the neoplastic Hodgkin and Reed Sternberg (HRS) cells, although they are in the minority, are the main architects of this dysregulated immune milieu. Here, we review the major changes that have happened in recent years: from TME as a helpless bystander, reflecting an ineffective immune response, to a dynamic tumor-promoting and immunosuppressive element. The HRS cells promote survival through interconnected intrinsic and extrinsic alterations, boosting pro-tumoral signaling pathways through genetic aberrations and autocrine growth signals, in parallel with abnormal cytokine secretion for the recruitment and selection of the best cell partners for this immunosuppressive TME. In turn, cHL is already proving to be the perfect model with which to address an immune checkpoint blockade. Preliminary data demonstrate the utility of druggable key signaling pathways in this ensemble, such as JAK-STAT, NF-κB, and others. In addition, myriad biomarkers predicting a response await validation by new in situ multiplex analytical methods, single-cell gene expression, and other techniques. Together, these components will define the functional phenotypes with which we will elucidate the molecular pathogenesis of the disease and improve the survival of patients who are refractory to conventional therapies.
Collapse
|
38
|
Abdelghany WM, El Husseiny NM, Fekry GH, Korayem OH, Helmy R. Study of Tumor Necrosis Factor-Alpha-Induced Protein 3 Gene Single-Nucleotide Variants in JAK2 V617F-Positive Myeloproliferative Disorders: A Case–Control Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background and Objectives: Myeloproliferative neoplasms (MPNs) are Philadelphia negative disorders involving polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF). Although JAK2 mutation is almost involved, other several mutations are linked to MPNs risk and prognosis. TNFAIP3 genetic mutations are related to several cancers and autoimmune diseases. Our study aimed to demonstrate the effects of rs2230926_T/G & rs5029939_C/G SNVs of TNFAIP3 gene on the risk and prognosis of JAK2 V617F positive MPNs.
Methods: Matched 2 groups in age, sex and race were enrolled in our research; 80 MPNs cases group and 130 normal healthy controls group with follow up of MPNs cases for 3 years. Taqman assay probes involved in real time polymerase chain reaction (PCR) were utilized for variants analysis.
Results: The rs2230926 & rs5029939 SNVs were in modest linkage disequilibrium (LD) in MPNs cases. The observed frequencies of G allele and its genotypes of both variants were more prevalent in MPNs patients than normal controls. The bleeding symptoms and the presence of splenomegaly were more existent in the heterozygous genotype and the combined G involved genotypes respectively. The overall survival (OS) was lower in G containing genotypes of both variants but the progression free survival (PFS) was affected only in rs5029939 SNV.
Conclusion: Our study revealed the association of G containing genotypes of both rs2230926 & rs5029939 SNVs to the increased MPNs incidence as well to poor clinical course and prognosis of JAK2 V617F positive MPNs disorders in Egyptian ethnic.
Collapse
|
39
|
Kuribayashi-Hamada Y, Ishibashi M, Tatsuguchi A, Asayama T, Takada-Okuyama N, Onodera-Kondo A, Moriya K, Igarashi T, Onose H, Tanosaki S, Yokose N, Yamaguchi H, Tamura H. Clinicopathologic characteristics and A20 mutation in primary thyroid lymphoma. J NIPPON MED SCH 2021; 89:301-308. [PMID: 34840214 DOI: 10.1272/jnms.jnms.2022_89-305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Primary thyroid lymphoma (PTL) is a rare disease frequently arising against a background of autoimmune thyroiditis. It has recently been reported that the inactivation of the NF-κB negative regulator A20 by deletion and/or mutation could be involved in the pathogenesis of subsets of B-cell lymphomas. This study investigated the clinicopathologic characteristics and A20 mutation in PTL. METHODS We analyzed the characteristics of 45 PTL patients (14 men and 31 women), with a median age of 71 (range, 35-90) years. A20 mutations were analyzed in DNA extracted from 20 samples consisting of 19 tumor tissues and 1 sample from Hashimoto's thyroiditis. RESULTS Thirty-five patients (82%) had a history of Hashimoto's thyroiditis and 29 (64%) had diffuse large B-cell lymphoma (DLBCL), presenting with larger tumors including bulky mass, elevated soluble interleukin-2 receptor levels, and longer history of Hashimoto's thyroiditis compared with mucosa-associated lymphoid tissue (MALT) lymphoma patients (n=16). A20 mutations were identified in 3 of 19 PTL patients (16%), 2 of 10 (20%) with DLBCL, and 1 of 9 (11%) with MALT lymphoma. Interestingly, all patients with A20 mutations had Hashimoto's thyroiditis. Furthermore, they had a common missense variant in exon 3 (rs2230926 380T>G; F127C), which is known to reduce the ability of A20 to inhibit NF-kB signaling. CONCLUSION Our study demonstrated that the histological features of PTL affect clinical outcomes, and that A20 mutations could be related to PTL pathogenesis in some patients with Hashimoto's thyroiditis.
Collapse
Affiliation(s)
| | - Mariko Ishibashi
- Department of Microbiology and Immunology, Nippon Medical School
| | | | | | | | | | | | | | | | - Sakae Tanosaki
- Division of Hematology, The Fraternity Memorial Hospital
| | - Norio Yokose
- Division of Hematology, Department of Medicine, Nippon Medical School Chiba Hokusoh Hospital
| | | | - Hideto Tamura
- Department of Hematology, Nippon Medical School.,Division of Diabetes, Endocrinology and Hematology, Department of Internal Medicine, Dokkyo Medical University Saitama Medical Center
| |
Collapse
|
40
|
Miller RM, Perciavalle MA, Mason EF, Yelvington BJ, Reddy NM. Exploiting Tumor Necrosis Factor Aberrations in Marginal Zone Lymphoma. JCO Precis Oncol 2021; 5:569-573. [DOI: 10.1200/po.20.00500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ryan M. Miller
- Department of Oncology Pharmacy, Vanderbilt University Medical Center, Nashville, TN
| | | | - Emily F. Mason
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN
| | - Bradley J. Yelvington
- Department of Oncology Pharmacy, Vanderbilt University Medical Center, Nashville, TN
| | - Nishitha M. Reddy
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
41
|
Kaji D, Kusakabe M, Sakata-Yanagimoto M, Makishima K, Suehara Y, Hattori K, Ota Y, Mitsuki T, Yuasa M, Kageyama K, Taya Y, Nishida A, Ishiwata K, Takagi S, Yamamoto H, Asano-Mori Y, Ubara Y, Izutsu K, Uchida N, Wake A, Taniguchi S, Yamamoto G, Chiba S. Retrospective analyses of other iatrogenic immunodeficiency-associated lymphoproliferative disorders in patients with rheumatic diseases. Br J Haematol 2021; 195:585-594. [PMID: 34558064 PMCID: PMC9290981 DOI: 10.1111/bjh.17824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/24/2023]
Abstract
Other iatrogenic immunodeficiency‐associated lymphoproliferative disorders (OIIA‐LPDs) occur in patients receiving immunosuppressive drugs for autoimmune diseases; however, their clinicopathological and genetic features remain unknown. In the present study, we analysed 67 patients with OIIA‐LPDs, including 36 with diffuse large B‐cell lymphoma (DLBCL)‐type and 19 with Hodgkin lymphoma (HL)‐type. After discontinuation of immunosuppressive drugs, regression without relapse was achieved in 22 of 58 patients. Spontaneous regression was associated with Epstein–Barr virus positivity in DLBCL‐type (P = 0·013). The 2‐year overall survival and progression‐free survival (PFS) at a median follow‐up of 32·4 months were 92·7% and 72·1% respectively. Furthermore, a significant difference in the 2‐year PFS was seen between patients with DLBCL‐type and HL‐type OIIA‐LPDs (81·0% vs. 40·9% respectively, P = 0·021). In targeted sequencing of 47 genes in tumour‐derived DNA from 20 DLBCL‐type OIIA‐LPD samples, histone‐lysine N‐methyltransferase 2D (KMT2D; eight, 40%) and tumour necrosis factor receptor superfamily member 14 (TNFRSF14; six, 30%) were the most frequently mutated genes. TNF alpha‐induced protein 3 (TNFAIP3) mutations were present in four patients (20%) with DLBCL‐type OIIA‐LPD. Cases with DLBCL‐type OIIA‐LPD harbouring TNFAIP3 mutations had shorter PFS and required early initiation of first chemotherapy. There were no significant factors for spontaneous regression or response rates according to the presence of mutations. Overall, OIIA‐LPDs, especially DLBCL‐types, showed favourable prognoses.
Collapse
Affiliation(s)
- Daisuke Kaji
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Manabu Kusakabe
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Kenichi Makishima
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuhito Suehara
- Department of Hematology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Keiichiro Hattori
- Department of Hematology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Yasunori Ota
- Department of Pathology, Research Hospital, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takashi Mitsuki
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | | | - Kosei Kageyama
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Yuki Taya
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Aya Nishida
- Department of Pathology, Research Hospital, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kazuya Ishiwata
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | | | | | | | - Yoshifumi Ubara
- Nephrology Center, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Koji Izutsu
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Atsushi Wake
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | | | - Go Yamamoto
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, University of Tsukuba Hospital, Ibaraki, Japan
| |
Collapse
|
42
|
Alsaadi M, Khan MY, Dalhat MH, Bahashwan S, Khan MU, Albar A, Almehdar H, Qadri I. Dysregulation of miRNAs in DLBCL: Causative Factor for Pathogenesis, Diagnosis and Prognosis. Diagnostics (Basel) 2021; 11:1739. [PMID: 34679437 PMCID: PMC8535125 DOI: 10.3390/diagnostics11101739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNA is a small non-coding RNA (sncRNA) involved in gene silencing and regulating post-transcriptional gene expression. miRNAs play an essential role in the pathogenesis of numerous diseases, including diabetes, cardiovascular diseases, viral diseases and cancer. Diffuse large B-cell lymphoma (DLBCL) is an aggressive non-Hodgkin's lymphoma (NHL), arising from different stages of B-cell differentiation whose pathogenesis involves miRNAs. Various viral and non-viral vectors are used as a delivery vehicle for introducing specific miRNA inside the cell. Adenoviruses are linear, double-stranded DNA viruses with 35 kb genome size and are extensively used in gene therapy. Meanwhile, Adeno-associated viruses accommodate up to 4.8 kb foreign genetic material and are favorable for transferring miRNA due to small size of miRNA. The genetic material is integrated into the DNA of the host cell by retroviruses so that only dividing cells are infected and stable expression of miRNA is achieved. Over the years, remarkable progress was made to understand DLBCL biology using advanced genomics and epigenomics technologies enabling oncologists to uncover multiple genetic mutations in DLBCL patients. These genetic mutations are involved in epigenetic modification, ability to escape immunosurveillance, impaired BCL6 and NF-κβ signaling pathways and blocking terminal differentiation. These pathways have since been identified and used as therapeutic targets for the treatment of DLBCL. Recently miRNAs were also identified to act either as oncogenes or tumor suppressors in DLBCL pathology by altering the expression levels of some of the known DLBCL related oncogenes. i.e., miR-155, miR-17-92 and miR-21 act as oncogenes by altering the expression levels of MYC, SHIP and FOXO1, respectively, conversely; miR-34a, mir-144 and miR-181a act as tumor suppressors by altering the expression levels of SIRT1, BCL6 and CARD11, respectively. Hundreds of miRNAs have already been identified as biomarkers in the prognosis and diagnosis of DLBCL because of their significant roles in DLBCL pathogenesis. In conclusion, miRNAs in addition to their role as biomarkers of prognosis and diagnosis could also serve as potential therapeutic targets for treating DLBCL.
Collapse
Affiliation(s)
- Mohammed Alsaadi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (M.A.); (M.Y.K.); (A.A.); (H.A.)
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia;
| | - Muhammad Yasir Khan
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (M.A.); (M.Y.K.); (A.A.); (H.A.)
- Vaccine and Immunotherapy Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Mahmood Hassan Dalhat
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia;
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia;
- Department of Hematology, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- King AbdulAziz University Hospital, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Uzair Khan
- Department of Health Sciences, City University of Science and Information Technology, Peshawar 25000, Pakistan;
| | - Abdulgader Albar
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (M.A.); (M.Y.K.); (A.A.); (H.A.)
- Department of Microbiology, Faculty of Medicine, Jeddah University, Jeddah 23218, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (M.A.); (M.Y.K.); (A.A.); (H.A.)
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (M.A.); (M.Y.K.); (A.A.); (H.A.)
| |
Collapse
|
43
|
Lei H, Wang J, Hu J, Zhu Q, Wu Y. Deubiquitinases in hematological malignancies. Biomark Res 2021; 9:66. [PMID: 34454635 PMCID: PMC8401176 DOI: 10.1186/s40364-021-00320-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Deubiquitinases (DUBs) are enzymes that control the stability, interactions or localization of most cellular proteins by removing their ubiquitin modification. In recent years, some DUBs, such as USP7, USP9X and USP10, have been identified as promising therapeutic targets in hematological malignancies. Importantly, some potent inhibitors targeting the oncogenic DUBs have been developed, showing promising inhibitory efficacy in preclinical models, and some have even undergone clinical trials. Different DUBs perform distinct function in diverse hematological malignancies, such as oncogenic, tumor suppressor or context-dependent effects. Therefore, exploring the biological roles of DUBs and their downstream effectors will provide new insights and therapeutic targets for the occurrence and development of hematological malignancies. We summarize the DUBs involved in different categories of hematological malignancies including leukemia, multiple myeloma and lymphoma. We also present the recent development of DUB inhibitors and their applications in hematological malignancies. Together, we demonstrate DUBs as potential therapeutic drug targets in hematological malignancies.
Collapse
Affiliation(s)
- Hu Lei
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jiaqi Wang
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiacheng Hu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Zhu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingli Wu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
44
|
Chauzeix J, Pastoret C, Donaty L, Gachard N, Fest T, Feuillard J, Rizzo D. A reduced panel of eight genes (ATM, SF3B1, NOTCH1, BIRC3, XPO1, MYD88, TNFAIP3, and TP53) as an estimator of the tumor mutational burden in chronic lymphocytic leukemia. Int J Lab Hematol 2021; 43:683-692. [PMID: 33325634 PMCID: PMC8451785 DOI: 10.1111/ijlh.13435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Mutational complexity or tumor mutational burden (TMB) influences the course of chronic lymphocytic leukemia (CLL). However, this information is not routinely used because TMB is usually obtained from whole genome or exome, or from large gene panel high-throughput sequencing. METHODS Here, we used the C-Harrel concordance index to determine the minimum panel of genes for which mutations predict treatment-free survival (TFS) as well as large resequencing panels. RESULTS An eight gene estimator was defined encompassing ATM, SF3B1, NOTCH1, BIRC3, XPO1, MYD88, TNFAIP3, and TP53. TMB estimated from either a large panel of genes or the eight gene estimator was increased in treated patients or in those with a short TFS (<2 years), unmutated IGHV gene or with an unfavorable karyotype. Being an independent prognostic parameter, any mutation in the eight gene estimator predicted a shorter TFS better than Binet stage and IGHV mutational status among patients with an apparently non-progressive disease (TFS >6 months). Strikingly, the eight gene estimator was also highly informative for patients with Binet stage A CLL or with a good prognosis karyotype. CONCLUSION These results suggest that the eight gene estimator, that is easily achievable by high-throughput resequencing, brings robust and valuable information that predicts evolution of untreated patients at diagnosis better than any other parameter.
Collapse
Affiliation(s)
- Jasmine Chauzeix
- Laboratoire d'Hématologie etUMR CNRS 7276/INSERM 1262CRIBLCentre de Biologie et de Recherche en SantéCHU et Université de LimogesLimogesFrance
| | - Cédric Pastoret
- InsermMICMAC ‐ UMR_S 1236CHU RennesUniversité Rennes 1RennesFrance
| | - Lucie Donaty
- Laboratoire d'Hématologie etUMR CNRS 7276/INSERM 1262CRIBLCentre de Biologie et de Recherche en SantéCHU et Université de LimogesLimogesFrance
| | - Nathalie Gachard
- Laboratoire d'Hématologie etUMR CNRS 7276/INSERM 1262CRIBLCentre de Biologie et de Recherche en SantéCHU et Université de LimogesLimogesFrance
| | - Thierry Fest
- InsermMICMAC ‐ UMR_S 1236CHU RennesUniversité Rennes 1RennesFrance
| | - Jean Feuillard
- Laboratoire d'Hématologie etUMR CNRS 7276/INSERM 1262CRIBLCentre de Biologie et de Recherche en SantéCHU et Université de LimogesLimogesFrance
| | - David Rizzo
- Laboratoire d'Hématologie etUMR CNRS 7276/INSERM 1262CRIBLCentre de Biologie et de Recherche en SantéCHU et Université de LimogesLimogesFrance
| |
Collapse
|
45
|
Immune Microenvironment Features and Dynamics in Hodgkin Lymphoma. Cancers (Basel) 2021; 13:cancers13143634. [PMID: 34298847 PMCID: PMC8304929 DOI: 10.3390/cancers13143634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary As happens in all neoplasms, the many reciprocal interactions taking place between neoplastic cells and the other reactive cells impact the course of the disease. Hodgkin Lymphoma is an haematologic malignancy where most of the pathological tissue is indeed composed by reactive cells and few neoplastic cells. Consequently, it represents an interesting subject for the description of the neoplastic and non-neoplastic cells interaction. In this review we report and discuss the more recent findings of microenvironmental studies about this disease. Abstract Classical Hodgkin’s lymphoma (cHL) accounts for 10% of all lymphoma diagnosis. The peculiar feature of the disease is the presence of large multinucleated Reed–Sternberg and mononuclear Hodgkin cells interspersed with a reactive microenvironment (ME). Due to the production of a large number of cytokines, Hodgkin cells (HCs) and Hodgkin Reed–Sternberg cells (HRSCs) attract and favour the expansion of different immune cell populations, modifying their functional status in order to receive prosurvival stimuli and to turn off the antitumour immune response. To this purpose HRSCs shape a biological niche by organizing the spatial distribution of cells in the ME. This review will highlight the contribution of the ME in the pathogenesis and prognosis of cHL and its role as a possible therapeutic target.
Collapse
|
46
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
47
|
Biology of Germinal Center B Cells Relating to Lymphomagenesis. Hemasphere 2021; 5:e582. [PMID: 34095765 PMCID: PMC8171379 DOI: 10.1097/hs9.0000000000000582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
The germinal center (GC) reaction is a key feature of adaptive humoral immunity. GCs represent the site where mature B cells refine their B-cell receptor (BCR) and are selected based on the newly acquired affinity for the antigen. In the GC, B cells undergo multiple cycles of proliferation, BCR remodeling by immunoglobulin somatic hypermutation (SHM), and affinity-based selection before emerging as effector memory B cells or antibody-secreting plasma cells. At least 2 histologically and functionally distinct compartments are identified in the GC: the dark zone (DZ) and the light zone (LZ). The proliferative burst and immunoglobulin remodeling by SHM occur prevalently in the DZ compartment. In the LZ, GC B cells undergo an affinity-based selection process that requires the interaction with the antigen and accessory cells. GC B cells are also targeted by class switch recombination, an additional mechanism of immunoglobulin remodeling that ensures the expression of diverse isotype classes. These processes are regulated by a complex network of transcription factors, epigenetic modifiers, and signaling pathways that act in concert with mechanisms of intra-GC B-cell trafficking. The same mechanisms underlying the unique ability of GC B cells to generate high affinity antibodies and ensure immunological memory are hijacked during lymphomagenesis and become powerful weapons for malignant transformation. This review will summarize the main processes and transcriptional networks that drive GC B-cell development and are relevant for human B-cell lymphomagenesis.
Collapse
|
48
|
Shi Y, Wang X, Wang J, Wang X, Zhou H, Zhang L. The dual roles of A20 in cancer. Cancer Lett 2021; 511:26-35. [PMID: 33933552 DOI: 10.1016/j.canlet.2021.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Abstract
A20 is a prototypical anti-inflammatory molecule that is linked to multiple human diseases, including cancers. The role of A20 as a tumor suppressor was first discovered in B cell lymphomas. Subsequent studies revealed the dual roles of A20 in solid cancers. This review focuses on the roles of A20 in different cancer types to demonstrate that the effects of A20 are cancer type-dependent. A20 plays antitumor roles in colorectal carcinomas and hepatocellular carcinomas, whereas A20 acts as an oncogene in breast cancers, gastric cancers and melanomas. Moreover, the roles of A20 in the setting of glioma therapy are context-dependent. The action mechanisms of A20 in different types of cancer are summarized. Additionally, the role of A20 in antitumor immunity is discussed. Furthermore, some open questions in this rapidly advancing field are proposed. Exploration of the actions and molecular mechanisms of A20 in cancer paves the way for the application of A20-targeting approaches in future cancer therapy.
Collapse
Affiliation(s)
- Yongyu Shi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Xinyu Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianing Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyan Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Lining Zhang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
49
|
Zhang L, Zhou S, Zhou T, Li X, Tang J. Potential of the tumor‑derived extracellular vesicles carrying the miR‑125b‑5p target TNFAIP3 in reducing the sensitivity of diffuse large B cell lymphoma to rituximab. Int J Oncol 2021; 58:31. [PMID: 33887878 PMCID: PMC8078569 DOI: 10.3892/ijo.2021.5211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common and aggressive form of non-Hodgkin's lymphoma. Extracellular vesicles (EVs) derived from cancer cells are known to modify the tumor microenvironment. The aim of the present study was to investigate the role of miR-125b-3p carried by EVs in DLBCL in vitro and in vivo. TNFAIP3 expression in patient lesions was measured and the upstream miR that regulates TNFAIP3 was predicted using the starBase database. EVs were isolated from DLBCL cells and identified. DLBCL cells were transfected with pcDNA to overexpress TNFAIP3 or inhibit miR-125b-5p expression, incubated with EVs, and treated with rituximab to compare cell growth and TNFAIP3/CD20 expression. DLBCL model mice were administered EVs, conditioned medium, and rituximab to observe changes in tumor size, volume, and weight. TNFAIP3 was downregulated in patients with DLBCL and its levels further decreased in patients with drug-resistant DLBCL. Overexpression of TNFAIP3 in DLBCL cells enhanced the inhibitory effect of rituximab and increased CD20 expression. miR-125b-5p targeted TNFAIP3. Inhibition of miR-125b-5p enhanced the inhibitory effect of rituximab in DLBCL cells. The EV-carried miR-125b-5p reduced the sensitivity of DLBCL cells to rituximab, which was averted by overexpression of TNFAIP3. EVs reduced the sensitivity of DLBCL model mice to rituximab via the miR-125b-5p/TNFAIP3 axis. The study findings indicate that the tumor-derived EVs carrying miR-125b-5p can enter DLBCL cells and target TNFAIP3, thus reducing the sensitivity of DLBCL to rituximab, which may provide a novel therapeutic approach for DLBCL.
Collapse
Affiliation(s)
- Li Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shixia Zhou
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoming Li
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Junling Tang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
50
|
Yu X, Li W, Deng Q, Liu H, Wang X, Hu H, Cao Y, Xu-Monette ZY, Li L, Zhang M, Lu Z, Young KH, Li Y. MYD88 L265P elicits mutation-specific ubiquitination to drive NF-κB activation and lymphomagenesis. Blood 2021; 137:1615-1627. [PMID: 33025009 PMCID: PMC7995293 DOI: 10.1182/blood.2020004918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023] Open
Abstract
Myeloid differentiation primary response protein 88 (MYD88) is a critical universal adapter that transduces signaling from Toll-like and interleukin receptors to downstream nuclear factor-κB (NF-κB). MYD88L265P (leucine changed to proline at position 265) is a gain-of-function mutation that occurs frequently in B-cell malignancies such as Waldenstrom macroglobulinemia. In this study, E3 ligase RING finger protein family 138 (RNF138) catalyzed K63-linked nonproteolytic polyubiquitination of MYD88L265P, resulting in enhanced recruitment of interleukin-1 receptor-associated kinases and elevated NF-κB activation. However, RNF138 had little effect on wild-type MYD88 (MYD88WT). With either RNF138 knockdown or mutation on MYD88 ubiquitination sites, MYD88L265P did not constitutively activate NF-κB. A20, a negative regulator of NF-κB signaling, mediated K48-linked polyubiquitination of RNF138 for proteasomal degradation. Depletion of A20 further augmented MYD88L265P-mediated NF-κB activation and lymphoma growth. Furthermore, A20 expression correlated negatively with RNF138 expression and NF-κB activation in lymphomas with MYD88L265P and in those without. Strikingly, RNF138 expression correlated positively with NF-κB activation in lymphomas with MYD88L265P, but not in those without it. Our study revealed a novel mutation-specific biochemical reaction that drives B-cell oncogenesis, providing a therapeutic opportunity for targeting oncogenic MYD88L265P, while sparing MYD88WT, which is critical to innate immunity.
Collapse
Affiliation(s)
- Xinfang Yu
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Wei Li
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qipan Deng
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Haidan Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xu Wang
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Hui Hu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Medical Laboratory, Central Hospital of Wuhan, Wuhan, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Zijun Y Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC
| | - Ling Li
- Department of Oncology, the First Affiliated Hospital, Zhengzhou University, Zhenzhou, China; and
- Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, the First Affiliated Hospital, Zhengzhou University, Zhenzhou, China; and
- Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Zhongxin Lu
- Department of Medical Laboratory, Central Hospital of Wuhan, Wuhan, China
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|