1
|
Piper C, Green JBA. Cap-to-bell stage molar tooth morphogenesis occurs through proliferation-independent sulcus sharpening and condensation-associated tension in the dental papilla. J Anat 2024. [PMID: 39707152 DOI: 10.1111/joa.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/23/2024] Open
Abstract
The anatomy of molar teeth is important both functionally for chewing food and in evolutionary studies as a well-preserved species marker in the fossil record. Molar teeth begin to develop their characteristic biting-surface shape of cusps (peaks) and sulci (valleys) at the bell stage, when corresponding folds in the dental epithelium become apparent. Theories about the developmental mechanisms of cusp and sulcus morphogenesis have hitherto largely focused on the non-proliferating nature of the secondary enamel knots (EKs) at the cusp tips. EKs have been thought to direct cusp/sulcus formation by stimulating proliferative growth of the surrounding epithelium which, being confined within a capsule of condensed mesenchyme, bends by mechanical buckling. Here we show, using explant inhibition and cut-and-recoil experiments, that cap-to-bell morphogenesis is largely proliferation-independent (sulcus sharpening entirely so) and that tension in the mesenchyme of the dental papilla, immediately sub-adjacent to the cusps, rather than compression by the mesenchyme surrounding the whole structure, is what holds the structure in shape. Fine mapping of the degree of condensation shows that it is highest in the mesenchyme of the dental papilla and becomes progressively more focused to the cusp regions, consistent with a key role in cusp shaping. Together these findings overturn the prevailing models of molar morphogenesis, including both cusp and sulcus formation.
Collapse
Affiliation(s)
- Claire Piper
- Centre for Craniofacial Regeneration and Biology, King's College London, Guy's Hospital, London, UK
| | - Jeremy B A Green
- Centre for Craniofacial Regeneration and Biology, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
2
|
Tica J, Oliver Huidobro M, Zhu T, Wachter GKA, Pazuki RH, Bazzoli DG, Scholes NS, Tonello E, Siebert H, Stumpf MPH, Endres RG, Isalan M. A three-node Turing gene circuit forms periodic spatial patterns in bacteria. Cell Syst 2024; 15:1123-1132.e3. [PMID: 39626670 DOI: 10.1016/j.cels.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
Turing patterns are self-organizing systems that can form spots, stripes, or labyrinths. Proposed examples in tissue organization include zebrafish pigmentation, digit spacing, and many others. The theory of Turing patterns in biology has been debated because of their stringent fine-tuning requirements, where patterns only occur within a small subset of parameters. This has complicated the engineering of synthetic Turing gene circuits from first principles, although natural genetic Turing networks have been identified. Here, we engineered a synthetic genetic reaction-diffusion system where three nodes interact according to a non-classical Turing network with improved parametric robustness. The system reproducibly generated stationary, periodic, concentric stripe patterns in growing E. coli colonies. A partial differential equation model reproduced the patterns, with a Turing parameter regime obtained by fitting to experimental data. Our synthetic Turing system can contribute to nanotechnologies, such as patterned biomaterial deposition, and provide insights into developmental patterning programs. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Jure Tica
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Tong Zhu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Georg K A Wachter
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Roozbeh H Pazuki
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Dario G Bazzoli
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Natalie S Scholes
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Elisa Tonello
- Department of Mathematics, Kiel University, 24118 Kiel, Germany
| | - Heike Siebert
- Department of Mathematics, Kiel University, 24118 Kiel, Germany
| | - Michael P H Stumpf
- Melbourne Integrated Genomics, University of Melbourne, Melbourne, VIC 3010, Australia; School of BioScience, University of Melbourne, Melbourne, VIC 3010, Australia; School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robert G Endres
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
3
|
D'Addona LA, Bernal V, Gonzalez PN. Variation in Molar Size and Proportions in the Hominid Lineage: An Inter- and Intraspecific Approach. Integr Org Biol 2024; 6:obae041. [PMID: 39659484 PMCID: PMC11631436 DOI: 10.1093/iob/obae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
The implications of the inhibitory cascade (IC) model in dental diversification have been primarily studied at an interspecific or higher level. In contrast, the study of organisms with recent evolutionary divergence or at an interpopulational scale is still very limited. Here, we assess the effect of changes in molar size and the ratio of local activators to inhibitors on molar proportions based on a compilation of data of crown diameters of the first, second, and third lower and upper molars of extinct and extant hominids and modern human populations. The analysis of allometric changes between the size of each tooth and the size of the molar row shows a negative allometry in first molars (M1), isometric changes in second molars (M2), and a positive allometry in third molars (M3) in both hominin phylogeny and modern human populations. On the other hand, the proportions of lower and upper molars of several hominid species fall outside the morphospace defined by the IC model, while most of the modern human populations fall within the morphospace defined by the model as M1 > M2 > M3. We conclude that there is a phylogenetic structuring for molar size, particularly in the maxilla, with a trend toward mesial-to-distal reduction in the molar row area accompanied by allometric changes. Our findings also show the limitations of the IC model for explaining molar proportions in primates, particularly the variation in the relative size at the interspecific scale in the hominid lineage.
Collapse
Affiliation(s)
- L A D'Addona
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires CP 1900, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires CP C1425FQB, Argentina
| | - V Bernal
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires CP C1425FQB, Argentina
- Museo Histórico y Arqueológico “Ricardo Pascual Rosa,”Neuquén Q8320, Argentina
| | - P N Gonzalez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires CP C1425FQB, Argentina
- Estudios en Neurociencias y Sistemas Complejos, Buenos Aires CP 1882, Argentina
| |
Collapse
|
4
|
Chapple SA, Smith TM, Skinner MM. Testing the patterning cascade model of cusp development in Macaca fascicularis mandibular molars. Arch Oral Biol 2024; 167:106067. [PMID: 39146659 DOI: 10.1016/j.archoralbio.2024.106067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE Molar crown configuration plays an important role in systematics, and functional and comparative morphology. In particular, the number of cusps on primate molars is often used to identify fossil species and infer their phylogenetic relationships. However, this variability deserves renewed consideration as a number of studies now highlight important developmental mechanisms that may be responsible for the presence of molar cusps in some mammalian taxa. Experimental studies of rodent molars suggest that cusps form under a morphodynamic, patterning cascade model of development (PCM) that involve the iterative formation of enamel knots. This model posits that the size, shape and location of the first-forming cusps determines the presence and positioning of later-forming cusps. DESIGN Here we test whether variation in accessory cusp presence in 13 Macaca fascicularis mandibular second molars (M2s) is consistent with predictions of the PCM. Using micro-CT, we imaged these M2s and employed geometric morphometrics to examine whether shape variation in the enamel-dentine junction (EDJ) correlates with accessory cusp presence. RESULTS We find that accessory cusp patterning in macaque M2s is broadly consistent with the PCM. Molars with accessory cusps were larger in size and possessed shorter relative cusp heights compared to molars without accessory cusps. Peripheral cusp formation was also associated with more centrally positioned primary cusps, as predicted by the PCM. CONCLUSIONS While these results demonstrate that a patterning cascade model is broadly appropriate for interpreting cusp variation in Macaca fascicularis molars, it does not explain all manifestations of accessory cusp expression in this sample.
Collapse
Affiliation(s)
- Simon A Chapple
- School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NZ, United Kingdom.
| | - Tanya M Smith
- Griffith Centre for Social and Cultural Research and Australian Research Centre for Human Evolution, Griffith University, Southport, Queensland 4222, Australia
| | - Matthew M Skinner
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
5
|
Cai H, Melo D, Des Marais DL. Disentangling variational bias: the roles of development, mutation, and selection. Trends Genet 2024:S0168-9525(24)00230-0. [PMID: 39443198 DOI: 10.1016/j.tig.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
The extraordinary diversity and adaptive fit of organisms to their environment depends fundamentally on the availability of variation. While most population genetic frameworks assume that random mutations produce isotropic phenotypic variation, the distribution of variation available to natural selection is more restricted, as the distribution of phenotypic variation is affected by a range of factors in developmental systems. Here, we revisit the concept of developmental bias - the observation that the generation of phenotypic variation is biased due to the structure, character, composition, or dynamics of the developmental system - and argue that a more rigorous investigation into the role of developmental bias in the genotype-to-phenotype map will produce fundamental insights into evolutionary processes, with potentially important consequences on the relation between micro- and macro-evolution. We discuss the hierarchical relationships between different types of variational biases, including mutation bias and developmental bias, and their roles in shaping the realized phenotypic space. Furthermore, we highlight the challenges in studying variational bias and propose potential approaches to identify developmental bias using modern tools.
Collapse
Affiliation(s)
- Haoran Cai
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| | - Diogo Melo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - David L Des Marais
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
6
|
Nuño de la Rosa L, Müller GB. The legacy and evolvability of Pere Alberch's ideas. Interface Focus 2024; 14:20240011. [PMID: 39464645 PMCID: PMC11503022 DOI: 10.1098/rsfs.2024.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 09/04/2024] [Indexed: 10/29/2024] Open
Abstract
Pere Alberch played a pivotal role in shaping the field of evolutionary developmental biology during the 1980s and 1990s. Whereas initially his contributions were sidelined by the empirical advancements of the molecular revolution in developmental and evolutionary biology, his theoretical insights have left a lasting impact on the discipline. This article provides a comprehensive review of the legacy and evolvability of Alberch's ideas in contemporary evo-devo, which included the study of morphogenesis as the proper level of developmental causation, the interplay between developmental constraints and natural selection, the epistemic role of teratologies, the origin of evolutionary novelties and the concept of evolvability.
Collapse
Affiliation(s)
- Laura Nuño de la Rosa
- Department of Logic and Theoretical Philosophy, Complutense University of Madrid, Madrid, Spain
| | - Gerd B. Müller
- Theoretical Biology Unit, University of Vienna, Wien, Austria
- Konrad Lorenz Institute of Evolution and Cognition Research, Klosterneuburg, Austria
| |
Collapse
|
7
|
Harano T, Asahara M. Evolution of tooth morphological complexity and its association with the position of tooth eruption in the jaw in non-mammalian synapsids. PeerJ 2024; 12:e17784. [PMID: 39148681 PMCID: PMC11326432 DOI: 10.7717/peerj.17784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/30/2024] [Indexed: 08/17/2024] Open
Abstract
Heterodonty and complex molar morphology are important characteristics of mammals acquired during the evolution of early mammals from non-mammalian synapsids. Some non-mammalian synapsids had only simple, unicuspid teeth, whereas others had complex, multicuspid teeth. In this study, we reconstructed the ancestral states of tooth morphological complexity across non-mammalian synapsids to show that morphologically complex teeth evolved independently multiple times within Therapsida and that secondary simplification of tooth morphology occurred in some non-mammalian Cynodontia. In some mammals, secondary evolution of simpler teeth from complex molars has been previously reported to correlate with an anterior shift of tooth eruption position in the jaw, as evaluated by the dentition position relative to the ends of component bones used as reference points in the upper jaw. Our phylogenetic comparative analyses showed a significant correlation between an increase in tooth complexity and a posterior shift in the dentition position relative to only one of the three specific ends of component bones that we used as reference points in the upper jaw of non-mammalian synapsids. The ends of component bones depend on the shape and relative area of each bone, which appear to vary considerably among the synapsid taxa. Quantification of the dentition position along the anteroposterior axis in the overall cranium showed suggestive evidence of a correlation between an increase in tooth complexity and a posterior shift in the dentition position among non-mammalian synapsids. This correlation supports the hypothesis that a posterior shift of tooth eruption position relative to the morphogenetic fields that determine tooth form have contributed to the evolution of morphologically complex teeth in non-mammalian synapsids, if the position in the cranium represents a certain point in the morphogenetic fields.
Collapse
Affiliation(s)
- Tomohiro Harano
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Masakazu Asahara
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| |
Collapse
|
8
|
Kenessey DE, Stojanowski CM, Paul KS. Evaluating predictions of the patterning cascade model of crown morphogenesis in the human lower mixed and permanent dentition. PLoS One 2024; 19:e0304455. [PMID: 38935640 PMCID: PMC11210800 DOI: 10.1371/journal.pone.0304455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/13/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE The patterning cascade model of crown morphogenesis has been studied extensively in a variety of organisms to elucidate the evolutionary history surrounding postcanine tooth form. The current research is the first to use a large modern human sample to examine whether the crown configuration of lower deciduous and permanent molars aligns with expectations derived from the model. This study has two main goals: 1) to determine if metameric and antimeric pairs significantly differ in size, accessory trait expression, and relative intercusp spacing, and 2) assess whether the relative distance among early-forming cusps accounts for observed variation in accessory cusp expression. METHODS Tooth size, intercusp distance, and morphological trait expression data were collected from 3D scans of mandibular dental casts representing participants of the Harvard Solomon Islands Project. Paired tests were utilized to compare tooth size, accessory trait expression, and relative intercusp distance between diphyodont metameres and permanent antimeres. Proportional odds logistic regression was implemented to investigate how the odds of greater accessory cusp expression vary as a function of the distance between early-developing cusps. RESULTS/SIGNIFICANCE Comparing paired molars, significant differences were identified for tooth size and cusp 5 expression. Several relative intercusp distances emerged as important predictors of cusp 6 expression, however, results for cusp 5 and cusp 7 did not match expected patterns. These findings support previous quantitative genetic results and suggest the development of neighboring crown structures represents a zero-sum partitioning of cellular territory and resources. As such, this study contributes to a better understanding of the foundations of deciduous and permanent molar crown variation in humans.
Collapse
Affiliation(s)
- Dori E. Kenessey
- Department of Anthropology, U niversity of Nevada, Reno, Nevada, United States of America
| | - Christopher M. Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Kathleen S. Paul
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
9
|
Adasooriya D, Jeong JK, Kyeong M, Kan S, Kim J, Cho ES, Cho SW. Notum regulates the cusp and root patterns in mouse molar. Sci Rep 2024; 14:13633. [PMID: 38871845 PMCID: PMC11176191 DOI: 10.1038/s41598-024-64340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Notum is a direct target of Wnt/β-catenin signaling and plays a crucial role as a Wnt inhibitor within a negative feedback loop. In the tooth, Notum is known to be expressed in odontoblasts, and severe dentin defects and irregular tooth roots have been reported in Notum-deficient mice. However, the precise expression pattern of Notum in early tooth development, and the role of Notum in crown and root patterns remain elusive. In the present study, we identified a novel Notum expression in primary enamel knot (EK), secondary EKs, and dental papilla during tooth development. Notum-deficient mice exhibited enlarged secondary EKs, resulting in broader cusp tips, altered cusp patterns, and reduced concavity in crown outline. These alterations in crown outline led to a reduction in cervical tongue length, thereby inducing root fusion in Notum-deficient mice. Overall, these results suggest that the secondary EK size, regulated by the Wnt/Notum negative feedback loop, has a significant impact on the patterns of crown and root during tooth morphogenesis.
Collapse
Affiliation(s)
- Dinuka Adasooriya
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Ju-Kyung Jeong
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Korea
| | - Minjae Kyeong
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shiqi Kan
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jiwoo Kim
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Korea.
| | - Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
10
|
Blankenship-Sefczek EC, Goodman AH, Hubbe M, Hunter JP, Guatelli-Steinberg D. Nutritional supplementation, tooth crown size, and trait expression in individuals from Tezonteopan, Mexico. PLoS One 2024; 19:e0305123. [PMID: 38843220 PMCID: PMC11156277 DOI: 10.1371/journal.pone.0305123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Understanding how epigenetic factors impact dental phenotypes can help refine the use of teeth for elucidating biological relationships among human populations. We explored relationships among crown size, principal cusp spacing, and accessory cusp expression in maxillary dental casts of nutritionally supplemented (n = 34) and non-supplemented (n = 39) individuals from Tezonteopan, Mexico. We hypothesized that the non-supplemented group would exhibit smaller molar crowns and reduced intercusp spacing. Since intercusp spacing is thought to be more sensitive to epigenetic influences than crown size, we predicted that the supplemented and non-supplemented groups would differ more in the former than the latter. Previous work suggests that molar accessory cusp expression may be elevated under conditions of stress. We therefore expected evidence of greater Carabelli and Cusp 5 trait expression in the non-supplemented group. We further hypothesized that anterior teeth would be affected by nutritional stress during development, with the non-supplemented group having smaller anterior tooth crowns and therefore limited space to form the tuberculum dentale. Finally, we tested whether the presence of molar accessory traits followed predictions of the Patterning Cascade Model of tooth morphogenesis in the entire sample. Our results supported the expectation that cusp spacing would differ more than molar crown size between the two groups. Carabelli trait showed little evidence of frequency differences between groups, but some evidence of greater trait scores in the non-supplemented group. The non-supplemented group also showed evidence of greater Cusp 5 frequency and expression. In the central incisors and canines, there was strong evidence for smaller crown sizes and reduced tuberculum dentale frequency in the non-supplemented group. With both groups pooled together, there was strong evidence of closer mesiodistal distances among principal cusps in molars with accessory cusps, a finding that is consistent with the PCM. Overall, our findings suggest that nutritional stress may affect accessory cusp expression.
Collapse
Affiliation(s)
- Erin C. Blankenship-Sefczek
- Department of Oral Biology, School of Dentistry, Creighton University, Omaha, Nebraska, United States of America
- Department of Anthropology, The Ohio State University, Columbus, Ohio, United States of America
| | - Alan H. Goodman
- School of Natural Sciences, Hampshire College, Amherst, Massachusetts, United States of America
| | - Mark Hubbe
- Department of Anthropology, The Ohio State University, Columbus, Ohio, United States of America
| | - John P. Hunter
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Newark, Ohio, United States of America
| | | |
Collapse
|
11
|
Milocco L, Uller T. Utilizing developmental dynamics for evolutionary prediction and control. Proc Natl Acad Sci U S A 2024; 121:e2320413121. [PMID: 38530898 PMCID: PMC10998628 DOI: 10.1073/pnas.2320413121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding, predicting, and controlling the phenotypic consequences of genetic and environmental change is essential to many areas of fundamental and applied biology. In evolutionary biology, the generative process of development is a major source of organismal evolvability that constrains or facilitates adaptive change by shaping the distribution of phenotypic variation that selection can act upon. While the complex interactions between genetic and environmental factors during development may appear to make it impossible to infer the consequences of perturbations, the persistent observation that many perturbations result in similar phenotypes indicates that there is a logic to what variation is generated. Here, we show that a general representation of development as a dynamical system can reveal this logic. We build a framework that allows predicting the phenotypic effects of perturbations, and conditions for when the effects of perturbations of different origins are concordant. We find that this concordance is explained by two generic features of development, namely the dynamical dependence of the phenotype on itself and the fact that all perturbations must affect the developmental process to have an effect on the phenotype. We apply our theoretical framework to classical models of development and show that it can be used to predict the evolutionary response to selection using information of plasticity and to accelerate evolution in a desired direction. The framework we introduce provides a way to quantitatively interchange perturbations, opening an avenue of perturbation design to control the generation of variation.
Collapse
Affiliation(s)
| | - Tobias Uller
- Department of Biology, Lund University, 223 62Lund, Sweden
| |
Collapse
|
12
|
Uller T, Milocco L, Isanta-Navarro J, Cornwallis CK, Feiner N. Twenty years on from Developmental Plasticity and Evolution: middle-range theories and how to test them. J Exp Biol 2024; 227:jeb246375. [PMID: 38449333 DOI: 10.1242/jeb.246375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In Developmental Plasticity and Evolution, Mary-Jane West-Eberhard argued that the developmental mechanisms that enable organisms to respond to their environment are fundamental causes of adaptation and diversification. Twenty years after publication of this book, this once so highly controversial claim appears to have been assimilated by a wealth of studies on 'plasticity-led' evolution. However, we suggest that the role of development in explanations for adaptive evolution remains underappreciated in this body of work. By combining concepts of evolvability from evolutionary developmental biology and quantitative genetics, we outline a framework that is more appropriate to identify developmental causes of adaptive evolution. This framework demonstrates how experimental and comparative developmental biology and physiology can be leveraged to put the role of plasticity in evolution to the test.
Collapse
Affiliation(s)
- Tobias Uller
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | | | | | | | | |
Collapse
|
13
|
Sudderick ZR, Glover JD. Periodic pattern formation during embryonic development. Biochem Soc Trans 2024; 52:75-88. [PMID: 38288903 PMCID: PMC10903485 DOI: 10.1042/bst20230197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
During embryonic development many organs and structures require the formation of series of repeating elements known as periodic patterns. Ranging from the digits of the limb to the feathers of the avian skin, the correct formation of these embryonic patterns is essential for the future form and function of these tissues. However, the mechanisms that produce these patterns are not fully understood due to the existence of several modes of pattern generation which often differ between organs and species. Here, we review the current state of the field and provide a perspective on future approaches to studying this fundamental process of embryonic development.
Collapse
Affiliation(s)
- Zoe R. Sudderick
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, U.K
| | - James D. Glover
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
14
|
González-Forero M. A mathematical framework for evo-devo dynamics. Theor Popul Biol 2024; 155:24-50. [PMID: 38043588 DOI: 10.1016/j.tpb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Natural selection acts on phenotypes constructed over development, which raises the question of how development affects evolution. Classic evolutionary theory indicates that development affects evolution by modulating the genetic covariation upon which selection acts, thus affecting genetic constraints. However, whether genetic constraints are relative, thus diverting adaptation from the direction of steepest fitness ascent, or absolute, thus blocking adaptation in certain directions, remains uncertain. This limits understanding of long-term evolution of developmentally constructed phenotypes. Here we formulate a general, tractable mathematical framework that integrates age progression, explicit development (i.e., the construction of the phenotype across life subject to developmental constraints), and evolutionary dynamics, thus describing the evolutionary and developmental (evo-devo) dynamics. The framework yields simple equations that can be arranged in a layered structure that we call the evo-devo process, whereby five core elementary components generate all equations including those mechanistically describing genetic covariation and the evo-devo dynamics. The framework recovers evolutionary dynamic equations in gradient form and describes the evolution of genetic covariation from the evolution of genotype, phenotype, environment, and mutational covariation. This shows that genotypic and phenotypic evolution must be followed simultaneously to yield a dynamically sufficient description of long-term phenotypic evolution in gradient form, such that evolution described as the climbing of a fitness landscape occurs in "geno-phenotype" space. Genetic constraints in geno-phenotype space are necessarily absolute because the phenotype is related to the genotype by development. Thus, the long-term evolutionary dynamics of developed phenotypes is strongly non-standard: (1) evolutionary equilibria are either absent or infinite in number and depend on genetic covariation and hence on development; (2) developmental constraints determine the admissible evolutionary path and hence which evolutionary equilibria are admissible; and (3) evolutionary outcomes occur at admissible evolutionary equilibria, which do not generally occur at fitness landscape peaks in geno-phenotype space, but at peaks in the admissible evolutionary path where "total genotypic selection" vanishes if exogenous plastic response vanishes and mutational variation exists in all directions of genotype space. Hence, selection and development jointly define the evolutionary outcomes if absolute mutational constraints and exogenous plastic response are absent, rather than the outcomes being defined only by selection. Moreover, our framework provides formulas for the sensitivities of a recurrence and an alternative method to dynamic optimization (i.e., dynamic programming or optimal control) to identify evolutionary outcomes in models with developmentally dynamic traits. These results show that development has major evolutionary effects.
Collapse
|
15
|
Selig KR. Hypoconulid loss in cercopithecins: Functional and developmental considerations. J Hum Evol 2024; 187:103479. [PMID: 38181576 DOI: 10.1016/j.jhevol.2023.103479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
Cercopithecins differ from papionins in lacking a M3 hypoconulid. Although this loss may be related to dietary differences, the functional and developmental ramifications of hypoconulid loss are currently unclear. The following makes use of dental topographic analysis to quantify shape variation in a sample of cercopithecin M3s, as well as in a sample of Macaca, which has a hypoconulid. To help understand the consequences of hypoconulid loss, Macaca M3s were virtually cropped to remove the hypoconulid and were also subjected to dental topographic analysis. The patterning cascade model and the inhibitory cascade model attempt to explain variation in cusp pattern and molar proportions, respectively. These models have both previously been used to explain patterns of variation in cercopithecines, but have not been examined in the context of hypoconulid loss. For example, previous work suggests that earlier developing cusps impact the development of later developing cusps (i.e., the hypoconulid) and that cercopithecines do not conform to the predictions of the inhibitory cascade model in that the size of the molars is not linear moving distally. Results of the current study suggest that the loss of the hypoconulid is associated with a reduction in dental topography among cercopithecins, which is potentially related to diet, although the connection to diet is not necessarily clear. Results also suggest that the loss of the hypoconulid can be explained by the patterning cascade model, and that hypoconulid loss explains the apparent lack of support for the inhibitory cascade model among cercopithecines. These findings highlight the importance of a holistic approach to studying variation in molar proportions and developmental models.
Collapse
Affiliation(s)
- Keegan R Selig
- Department of Evolutionary Anthropology, Duke University, Biological Sciences Building, 130 Science Drive, Durham, NC, 27708, USA.
| |
Collapse
|
16
|
Larson BT. Perspectives on Principles of Cellular Behavior from the Biophysics of Protists. Integr Comp Biol 2023; 63:1405-1421. [PMID: 37496203 PMCID: PMC10755178 DOI: 10.1093/icb/icad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Cells are the fundamental unit of biological organization. Although it may be easy to think of them as little more than the simple building blocks of complex organisms such as animals, single cells are capable of behaviors of remarkable apparent sophistication. This is abundantly clear when considering the diversity of form and function among the microbial eukaryotes, the protists. How might we navigate this diversity in the search for general principles of cellular behavior? Here, we review cases in which the intensive study of protists from the perspective of cellular biophysics has driven insight into broad biological questions of morphogenesis, navigation and motility, and decision making. We argue that applying such approaches to questions of evolutionary cell biology presents rich, emerging opportunities. Integrating and expanding biophysical studies across protist diversity, exploiting the unique characteristics of each organism, will enrich our understanding of general underlying principles.
Collapse
Affiliation(s)
- Ben T Larson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Snell-Rood EC, Ehlman SM. Developing the genotype-to-phenotype relationship in evolutionary theory: A primer of developmental features. Evol Dev 2023; 25:393-409. [PMID: 37026670 DOI: 10.1111/ede.12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
For decades, there have been repeated calls for more integration across evolutionary and developmental biology. However, critiques in the literature and recent funding initiatives suggest this integration remains incomplete. We suggest one way forward is to consider how we elaborate the most basic concept of development, the relationship between genotype and phenotype, in traditional models of evolutionary processes. For some questions, when more complex features of development are accounted for, predictions of evolutionary processes shift. We present a primer on concepts of development to clarify confusion in the literature and fuel new questions and approaches. The basic features of development involve expanding a base model of genotype-to-phenotype to include the genome, space, and time. A layer of complexity is added by incorporating developmental systems, including signal-response systems and networks of interactions. The developmental emergence of function, which captures developmental feedbacks and phenotypic performance, offers further model elaborations that explicitly link fitness with developmental systems. Finally, developmental features such as plasticity and developmental niche construction conceptualize the link between a developing phenotype and the external environment, allowing for a fuller inclusion of ecology in evolutionary models. Incorporating aspects of developmental complexity into evolutionary models also accommodates a more pluralistic focus on the causal importance of developmental systems, individual organisms, or agents in generating evolutionary patterns. Thus, by laying out existing concepts of development, and considering how they are used across different fields, we can gain clarity in existing debates around the extended evolutionary synthesis and pursue new directions in evolutionary developmental biology. Finally, we consider how nesting developmental features in traditional models of evolution can highlight areas of evolutionary biology that need more theoretical attention.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, Minnesota, USA
| | - Sean M Ehlman
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, Minnesota, USA
- SCIoI Excellence Cluster, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Humboldt University, Berlin, Germany
| |
Collapse
|
18
|
Milocco L, Uller T. A data-driven framework to model the organism-environment system. Evol Dev 2023; 25:439-450. [PMID: 37277921 DOI: 10.1111/ede.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Organisms modify their development and function in response to the environment. At the same time, the environment is modified by the activities of the organism. Despite the ubiquity of such dynamical interactions in nature, it remains challenging to develop models that accurately represent them, and that can be fitted using data. These features are desirable when modeling phenomena such as phenotypic plasticity, to generate quantitative predictions of how the system will respond to environmental signals of different magnitude or at different times, for example, during ontogeny. Here, we explain a modeling framework that represents the organism and environment as a single coupled dynamical system in terms of inputs and outputs. Inputs are external signals, and outputs are measurements of the system in time. The framework uses time-series data of inputs and outputs to fit a nonlinear black-box model that allows to predict how the system will respond to novel input signals. The framework has three key properties: it captures the dynamical nature of the organism-environment system, it can be fitted with data, and it can be applied without detailed knowledge of the system. We study phenotypic plasticity using in silico experiments and demonstrate that the framework predicts the response to novel environmental signals. The framework allows us to model plasticity as a dynamical property that changes in time during ontogeny, reflecting the well-known fact that organisms are more or less plastic at different developmental stages.
Collapse
Affiliation(s)
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Chapple SA, Skinner MM. A tooth crown morphology framework for interpreting the diversity of primate dentitions. Evol Anthropol 2023; 32:240-255. [PMID: 37486115 DOI: 10.1002/evan.21994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 03/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
Variation in tooth crown morphology plays a crucial role in species diagnoses, phylogenetic inference, and the reconstruction of the evolutionary history of the primate clade. While a growing number of studies have identified developmental mechanisms linked to tooth size and cusp patterning in mammalian crown morphology, it is unclear (1) to what degree these are applicable across primates and (2) which additional developmental mechanisms should be recognized as playing important roles in odontogenesis. From detailed observations of lower molar enamel-dentine junction morphology from taxa representing the major primate clades, we outline multiple phylogenetic and developmental components responsible for crown patterning, and formulate a tooth crown morphology framework for the holistic interpretation of primate crown morphology. We suggest that adopting this framework is crucial for the characterization of tooth morphology in studies of dental development, discrete trait analysis, and systematics.
Collapse
Affiliation(s)
- Simon A Chapple
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Matthew M Skinner
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
20
|
Machado FA, Mongle CS, Slater G, Penna A, Wisniewski A, Soffin A, Dutra V, Uyeda JC. Rules of teeth development align microevolution with macroevolution in extant and extinct primates. Nat Ecol Evol 2023; 7:1729-1739. [PMID: 37652997 DOI: 10.1038/s41559-023-02167-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Macroevolutionary biologists have classically rejected the notion that higher-level patterns of divergence arise through microevolutionary processes acting within populations. For morphology, this consensus partly derives from the inability of quantitative genetics models to correctly predict the behaviour of evolutionary processes at the scale of millions of years. Developmental studies (evo-devo) have been proposed to reconcile micro- and macroevolution. However, there has been little progress in establishing a formal framework to apply evo-devo models of phenotypic diversification. Here we reframe this issue by asking whether using evo-devo models to quantify biological variation can improve the explanatory power of comparative models, thus helping us bridge the gap between micro- and macroevolution. We test this prediction by evaluating the evolution of primate lower molars in a comprehensive dataset densely sampled across living and extinct taxa. Our results suggest that biologically informed morphospaces alongside quantitative genetics models allow a seamless transition between the micro- and macroscales, whereas biologically uninformed spaces do not. We show that the adaptive landscape for primate teeth is corridor like, with changes in morphology within the corridor being nearly neutral. Overall, our framework provides a basis for integrating evo-devo into the modern synthesis, allowing an operational way to evaluate the ultimate causes of macroevolution.
Collapse
Affiliation(s)
- Fabio A Machado
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
| | - Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Graham Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Anna Penna
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Anna Wisniewski
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Anna Soffin
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| | - Vitor Dutra
- Department of Anthropology, Florida Atlantic University, Boca Raton, FL, USA
| | - Josef C Uyeda
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
21
|
Hartmann J, Mayor R. Self-organized collective cell behaviors as design principles for synthetic developmental biology. Semin Cell Dev Biol 2023; 141:63-73. [PMID: 35450765 DOI: 10.1016/j.semcdb.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Over the past two decades, molecular cell biology has graduated from a mostly analytic science to one with substantial synthetic capability. This success is built on a deep understanding of the structure and function of biomolecules and molecular mechanisms. For synthetic biology to achieve similar success at the scale of tissues and organs, an equally deep understanding of the principles of development is required. Here, we review some of the central concepts and recent progress in tissue patterning, morphogenesis and collective cell migration and discuss their value for synthetic developmental biology, emphasizing in particular the power of (guided) self-organization and the role of theoretical advances in making developmental insights applicable in synthesis.
Collapse
Affiliation(s)
- Jonas Hartmann
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
22
|
Zimm R, Berio F, Debiais-Thibaud M, Goudemand N. A shark-inspired general model of tooth morphogenesis unveils developmental asymmetries in phenotype transitions. Proc Natl Acad Sci U S A 2023; 120:e2216959120. [PMID: 37027430 PMCID: PMC10104537 DOI: 10.1073/pnas.2216959120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/07/2023] [Indexed: 04/08/2023] Open
Abstract
Developmental complexity stemming from the dynamic interplay between genetic and biomechanic factors canalizes the ways genotypes and phenotypes can change in evolution. As a paradigmatic system, we explore how changes in developmental factors generate typical tooth shape transitions. Since tooth development has mainly been researched in mammals, we contribute to a more general understanding by studying the development of tooth diversity in sharks. To this end, we build a general, but realistic, mathematical model of odontogenesis. We show that it reproduces key shark-specific features of tooth development as well as real tooth shape variation in small-spotted catsharks Scyliorhinus canicula. We validate our model by comparison with experiments in vivo. Strikingly, we observe that developmental transitions between tooth shapes tend to be highly degenerate, even for complex phenotypes. We also discover that the sets of developmental parameters involved in tooth shape transitions tend to depend asymmetrically on the direction of that transition. Together, our findings provide a valuable base for furthering our understanding of how developmental changes can lead to both adaptive phenotypic change and trait convergence in complex, phenotypically highly diverse, structures.
Collapse
Affiliation(s)
- Roland Zimm
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex07 69364, France
| | - Fidji Berio
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex07 69364, France
- Institut des Sciences de l’Evolution de Montpellier, University of Montpellier, CNRS, Institut de la Recherche pour le Développement, Montpellier34095, France
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution de Montpellier, University of Montpellier, CNRS, Institut de la Recherche pour le Développement, Montpellier34095, France
| | - Nicolas Goudemand
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex07 69364, France
| |
Collapse
|
23
|
Salazar-Ciudad I, Cano-Fernández H. Evo-devo beyond development: Generalizing evo-devo to all levels of the phenotypic evolution. Bioessays 2023; 45:e2200205. [PMID: 36739577 DOI: 10.1002/bies.202200205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/25/2022] [Accepted: 01/12/2023] [Indexed: 02/06/2023]
Abstract
A foundational idea of evo-devo is that morphological variation is not isotropic, that is, it does not occur in all directions. Instead, some directions of morphological variation are more likely than others from DNA-level variation and these largely depend on development. We argue that this evo-devo perspective should apply not only to morphology but to evolution at all phenotypic levels. At other phenotypic levels there is no development, but there are processes that can be seen, in analogy to development, as constructing the phenotype (e.g., protein folding, learning for behavior, etc.). We argue that to explain the direction of evolution two types of arguments need to be combined: generative arguments about which phenotypic variation arises in each generation and selective arguments about which of it passes to the next generation. We explain how a full consideration of the two types of arguments improves the explanatory power of evolutionary theory. Also see the video abstract here: https://youtu.be/Egbvma_uaKc.
Collapse
Affiliation(s)
- Isaac Salazar-Ciudad
- Centre de Recerca Matemàtica, Cerdanyola del Vallès, Spain.,Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hugo Cano-Fernández
- Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Kerekes-Máthé B, Mártha K, Bănescu C, O’Donnell MB, Brook AH. Genetic and Morphological Variation in Hypodontia of Maxillary Lateral Incisors. Genes (Basel) 2023; 14:231. [PMID: 36672972 PMCID: PMC9858681 DOI: 10.3390/genes14010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
(1) Background: Hypodontia has a multifactorial aetiology, in which genetic factors are a major component. Associated with this congenital absence, the formed teeth may show differences in size and shape, which may vary with the specific genetic variants and with the location of the missing teeth. The aims of the present study were to investigate a specific variant of MSX1, derive morphometric tooth measurements in a sample of patients with isolated maxillary lateral incisor agenesis and matched controls, and model the findings. (2) Methods: Genotyping of the MSX1 rs8670 genetic variant and morphometric measurements with a 2D image analysis method were performed for 26 hypodontia patients and 26 matched controls. (3) Results: The risk of upper lateral incisor agenesis was 6.9 times higher when the T allele was present. The morphometric parameters showed significant differences between hypodontia patients and controls and between the unilateral and bilateral agenesis cases. The most affected crown dimension in the hypodontia patients was the bucco-lingual dimension. In crown shape there was significant variation the Carabelli trait in upper first molars. (4) Conclusions: The MSX1 rs8670 variant was associated with variations in morphological outcomes. The new findings for compensatory interactions between the maxillary incisors indicate that epigenetic and environmental factors interact with this genetic variant. A single-level directional complex interactive network model incorporates the variations seen in this study.
Collapse
Affiliation(s)
- Bernadette Kerekes-Máthé
- Department of Morphology of Teeth and Dental Arches, Faculty of Dentistry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu-Mures, 540142 Targu-Mures, Romania
| | - Krisztina Mártha
- Department of Orthodontics, Faculty of Dentistry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu-Mures, 540142 Targu-Mures, Romania
| | - Claudia Bănescu
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu-Mures, 540142 Targu-Mures, Romania
| | | | - Alan H. Brook
- School of Dentistry, University of Adelaide, Adelaide, SA 5005, Australia
- Dental Institute, Barts and the London Medical Faculty, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
25
|
Abstract
The Turing model (or reaction-diffusion model), first published in 1952, is a mathematical model that can account for autonomy in the morphogenesis of organisms. Although initially controversial, the model has gradually gained wider acceptance among experimental embryologists due to the accumulation of experimental data to support it. More recently, this model and others based on it have been used not only to explain biological phenomena conceptually but also as working hypotheses for molecular-level experiments and as internal components of more-complex 3D models. In this Spotlight, I will provide a personal perspective from an experimental biologist on some of the recent developments of the Turing model.
Collapse
Affiliation(s)
- Shigeru Kondo
- Osaka University, Faculty of Frontia Bioscience, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Harano T, Asahara M. The anteriorization of tooth position underlies the atavism of tooth morphology: Insights into the morphogenesis of mammalian molars. Evolution 2022; 76:2986-3000. [PMID: 36200621 DOI: 10.1111/evo.14637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/22/2023]
Abstract
The evolution and development of complex molars as a key innovation in mammals have long been of interest yet remain poorly understood. With reference to century-old theories and modern findings, we focused on the teeth of pinnipeds (Carnivora) and cetaceans (Cetartiodactyla), which are morphologically simple compared with those of other mammals, and thus can be considered a reversal toward the ancestral state of nonmammalian synapsids. By reconstructing the evolutionary history of tooth complexity for the phylogenies of Carnivora and Cetartiodactyla, we established that a secondary evolution of simple teeth from more complex molars has occurred independently multiple times. Our phylogenetic comparative analyses showed that a simplification in tooth morphology was correlated with a more anterior dentition position relative to the component bones of the upper jaw in both Carnivora and Cetartiodactyla. These results suggest that the anterior shift of tooth position relative to the morphogenetic fields present in the jaw contributed to the evolutionary simplification in molar morphology. Our findings provide insights into the developmental basis of complex mammalian dentition.
Collapse
Affiliation(s)
- Tomohiro Harano
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, 470-0195, Japan
| | - Masakazu Asahara
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, 470-0195, Japan
| |
Collapse
|
27
|
Wang Y, Stonehouse-Smith D, Cobourne MT, Green JBA, Seppala M. Cellular mechanisms of reverse epithelial curvature in tissue morphogenesis. Front Cell Dev Biol 2022; 10:1066399. [PMID: 36518538 PMCID: PMC9742543 DOI: 10.3389/fcell.2022.1066399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 08/24/2023] Open
Abstract
Epithelial bending plays an essential role during the multiple stages of organogenesis and can be classified into two types: invagination and evagination. The early stages of invaginating and evaginating organs are often depicted as simple concave and convex curves respectively, but in fact majority of the epithelial organs develop through a more complex pattern of curvature: concave flanked by convex and vice versa respectively. At the cellular level, this is far from a geometrical truism: locally cells must passively adapt to, or actively create such an epithelial structure that is typically composed of opposite and connected folds that form at least one s-shaped curve that we here, based on its appearance, term as "reverse curves." In recent years, invagination and evagination have been studied in increasing cellular detail. A diversity of mechanisms, including apical/basal constriction, vertical telescoping and extrinsic factors, all orchestrate epithelial bending to give different organs their final shape. However, how cells behave collectively to generate reverse curves remains less well-known. Here we review experimental models that characteristically form reverse curves during organogenesis. These include the circumvallate papillae in the tongue, crypt-villus structure in the intestine, and early tooth germ and describe how, in each case, reverse curves form to connect an invaginated or evaginated placode or opposite epithelial folds. Furthermore, by referring to the multicellular system that occur in the invagination and evagination, we attempt to provide a summary of mechanisms thought to be involved in reverse curvature consisting of apical/basal constriction, and extrinsic factors. Finally, we describe the emerging techniques in the current investigations, such as organoid culture, computational modelling and live imaging technologies that have been utilized to improve our understanding of the cellular mechanisms in early tissue morphogenesis.
Collapse
Affiliation(s)
- Yiran Wang
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Daniel Stonehouse-Smith
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
- Department of Orthodontics, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Martyn T. Cobourne
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
- Department of Orthodontics, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jeremy B. A. Green
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Maisa Seppala
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
- Department of Orthodontics, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
28
|
Dubied M, Montuire S, Navarro N. Functional constraints channel mandible shape ontogenies in rodents. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220352. [PMID: 36300135 PMCID: PMC9579770 DOI: 10.1098/rsos.220352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
In mammals, postnatal growth plays an essential role in the acquisition of the adult shape. During this period, the mandible undergoes many changing functional constraints, leading to spatialization of bone formation and remodelling to accommodate various dietary and behavioural changes. The interactions between the bone, muscles and teeth drive this developmental plasticity, which, in turn, could lead to convergences in the developmental processes constraining the directionality of ontogenies, their evolution and thus the adult shape variation. To test the importance of the interactions between tissues in shaping the ontogenetic trajectories, we compared the mandible shape at five postnatal stages on three rodents: the house mouse, the Mongolian gerbil and the golden hamster, using geometric morphometrics. After an early shape differentiation, by both longer gestation and allometric scaling in gerbils or early divergence of postnatal ontogeny in hamsters in comparison with the mouse, the ontogenetic trajectories appear more similar around weaning. The changes in muscle load associated with new food processing and new behaviours at weaning seem to impose similar physical constraints on the mandible, driving the convergences of the ontogeny at that stage despite an early anatomical differentiation. Nonetheless, mice present a rather different timing compared with gerbils or hamsters.
Collapse
Affiliation(s)
- Morgane Dubied
- Biogéosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, 6 bd Gabriel, 21000 Dijon, France
| | - Sophie Montuire
- Biogéosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, 6 bd Gabriel, 21000 Dijon, France
- EPHE, PSL University, 75014 Paris, France
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, 6 bd Gabriel, 21000 Dijon, France
- EPHE, PSL University, 75014 Paris, France
| |
Collapse
|
29
|
Vitek NS, McDaniel SF, Bloch JI. Microevolutionary variation in molar morphology of Onychomys leucogaster decoupled from genetic structure. Evolution 2022; 76:2032-2048. [PMID: 35872621 DOI: 10.1111/evo.14576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 01/22/2023]
Abstract
In neutral models of quantitative trait evolution, both genetic and phenotypic divergence scale as random walks, producing a correlation between the two measures. However, complexity in the genotype-phenotype map may alter the correlation between genotypic and phenotypic divergence, even when both are evolving neutrally or nearly so. Understanding this correlation between phenotypic and genetic variation is critical for accurately interpreting the fossil record. This study compares the geographic structure and scaling of morphological variation of the shape of the first lower molar of 77 individuals of the northern grasshopper mouse Onychomys leucogaster to genome-wide SNP variation in the same sample. We found strong genetic structure but weak or absent morphological structure indicating that the scaling of each type of variation is decoupled from one another. Low PST values relative to FST values are consistent with a lack of morphological divergence in contrast to genetic divergence between groups. This lack of phenotypic structure and the presence of notable within-sample phenotypic variance are consistent with uniform selection or constraints on molar shape across a wide geographic and environmental range. Over time, this kind of decoupling may result in patterns of phenotypic stasis masking underlying genetic patterns.
Collapse
Affiliation(s)
- Natasha S Vitek
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611.,Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Stuart F McDaniel
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Jonathan I Bloch
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611
| |
Collapse
|
30
|
Brun-Usan M, Zimm R, Uller T. Beyond genotype-phenotype maps: Toward a phenotype-centered perspective on evolution. Bioessays 2022; 44:e2100225. [PMID: 35863907 DOI: 10.1002/bies.202100225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022]
Abstract
Evolutionary biology is paying increasing attention to the mechanisms that enable phenotypic plasticity, evolvability, and extra-genetic inheritance. Yet, there is a concern that these phenomena remain insufficiently integrated within evolutionary theory. Understanding their evolutionary implications would require focusing on phenotypes and their variation, but this does not always fit well with the prevalent genetic representation of evolution that screens off developmental mechanisms. Here, we instead use development as a starting point, and represent it in a way that allows genetic, environmental and epigenetic sources of phenotypic variation to be independent. We show why this representation helps to understand the evolutionary consequences of both genetic and non-genetic phenotype determinants, and discuss how this approach can instigate future areas of empirical and theoretical research.
Collapse
Affiliation(s)
- Miguel Brun-Usan
- Department of Biology, Lund University, 22362, Lund, Sweden.,Institute for Life Sciences/Electronics and Computer Science, University of Southampton, SO17 1BJ, Southampton, UK
| | - Roland Zimm
- Ecole Normale Supérieure de Lyon, Institute de Génomique Fonctionnelle de Lyon, Lyon, France
| | - Tobias Uller
- Institute for Life Sciences/Electronics and Computer Science, University of Southampton, SO17 1BJ, Southampton, UK
| |
Collapse
|
31
|
Escárcega-Bobadilla MV, Maldonado-Domínguez M, Romero-Ávila M, Zelada-Guillén GA. Turing patterns by supramolecular self-assembly of a single salphen building block. iScience 2022; 25:104545. [PMID: 35747384 PMCID: PMC9209723 DOI: 10.1016/j.isci.2022.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
In the 1950s, Alan Turing showed that concerted reactions and diffusion of activating and inhibiting chemical species can autonomously generate patterns without previous positional information, thus providing a chemical basis for morphogenesis in Nature. However, access to these patterns from only one molecular component that contained all the necessary information to execute agonistic and antagonistic signaling is so far an elusive goal, since two or more participants with different diffusivities are a must. Here, we report on a single-molecule system that generates Turing patterns arrested in the solid state, where supramolecular interactions are used instead of chemical reactions, whereas diffusional differences arise from heterogeneously populated self-assembled products. We employ a family of hydroxylated organic salphen building blocks based on a bis-Schiff-base scaffold with portions responsible for either activation or inhibition of assemblies at different hierarchies through purely supramolecular reactions, only depending upon the solvent dielectric constant and evaporation as fuel.
Collapse
Affiliation(s)
- Martha V Escárcega-Bobadilla
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Mauricio Maldonado-Domínguez
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Mexico City, Mexico.,Department of Computational Chemistry, J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Margarita Romero-Ávila
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Gustavo A Zelada-Guillén
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
32
|
A method to predict the response to directional selection using a Kalman filter. Proc Natl Acad Sci U S A 2022; 119:e2117916119. [PMID: 35867739 DOI: 10.1073/pnas.2117916119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Predicting evolution remains challenging. The field of quantitative genetics provides predictions for the response to directional selection through the breeder's equation, but these predictions can have errors. The sources of these errors include omission of traits under selection, inaccurate estimates of genetic variance, and nonlinearities in the relationship between genetic and phenotypic variation. Previous research showed that the expected value of these prediction errors is often not zero, so predictions are systematically biased. Here, we propose that this bias, rather than being a nuisance, can be used to improve the predictions. We use this to develop a method to predict evolution, which is built on three key innovations. First, the method predicts change as the breeder's equation plus a bias term. Second, the method combines information from the breeder's equation and from the record of past changes in the mean to predict change using a Kalman filter. Third, the parameters of the filter are fitted in each generation using a learning algorithm on the record of past changes. We compare the method to the breeder's equation in two artificial selection experiments, one using the wing of the fruit fly and another using simulations that include a complex mapping of genotypes to phenotypes. The proposed method outperforms the breeder's equation, particularly when traits under selection are omitted from the analysis, when data are noisy, and when additive genetic variance is estimated inaccurately or not estimated at all. The proposed method is easy to apply, requiring only the trait means over past generations.
Collapse
|
33
|
Morita W, Morimoto N, Otsu K, Miura T. Stripe and spot selection in cusp patterning of mammalian molar formation. Sci Rep 2022; 12:9149. [PMID: 35701484 PMCID: PMC9197828 DOI: 10.1038/s41598-022-13539-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Tooth development is governed largely by epithelial-mesenchymal interactions and is mediated by numerous signaling pathways. This type of morphogenetic processes has been explained by reaction-diffusion systems, especially in the framework of a Turing model. Here we focus on morphological and developmental differences between upper and lower molars in mice by modeling 2D pattern formation in a Turing system. Stripe vs. spot patterns are the primary types of variation in a Turing model. We show that the complexity of the cusp cross-sections can distinguish between stripe vs. spot patterns, and mice have stripe-like upper and spot-like lower molar morphologies. Additionally, our computational modeling that incorporates empirical data on tooth germ growth traces the order of cusp formation and relative position of the cusps in upper and lower molars in mice. We further propose a hypothetical framework of developmental mechanism that could help us understand the evolution of the highly variable nature of mammalian molars associated with the acquisition of the hypocone and the increase of lophedness.
Collapse
Affiliation(s)
- Wataru Morita
- Department of Anthropology, National Museum of Nature and Science, Ibaraki, Japan.
| | - Naoki Morimoto
- Laboratory of Physical Anthropology, Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
34
|
Thiery AP, Standing AS, Cooper RL, Fraser GJ. An epithelial signalling centre in sharks supports homology of tooth morphogenesis in vertebrates. eLife 2022; 11:73173. [PMID: 35536602 PMCID: PMC9249395 DOI: 10.7554/elife.73173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Development of tooth shape is regulated by the enamel knot signalling centre, at least in mammals. Fgf signalling regulates differential proliferation between the enamel knot and adjacent dental epithelia during tooth development, leading to formation of the dental cusp. The presence of an enamel knot in non-mammalian vertebrates is debated given differences in signalling. Here, we show the conservation and restriction of fgf3, fgf10, and shh to the sites of future dental cusps in the shark (Scyliorhinus canicula), whilst also highlighting striking differences between the shark and mouse. We reveal shifts in tooth size, shape, and cusp number following small molecule perturbations of canonical Wnt signalling. Resulting tooth phenotypes mirror observed effects in mammals, where canonical Wnt has been implicated as an upstream regulator of enamel knot signalling. In silico modelling of shark dental morphogenesis demonstrates how subtle changes in activatory and inhibitory signals can alter tooth shape, resembling developmental phenotypes and cusp shapes observed following experimental Wnt perturbation. Our results support the functional conservation of an enamel knot-like signalling centre throughout vertebrates and suggest that varied tooth types from sharks to mammals follow a similar developmental bauplan. Lineage-specific differences in signalling are not sufficient in refuting homology of this signalling centre, which is likely older than teeth themselves.
Collapse
Affiliation(s)
- Alexandre P Thiery
- Department of Animal and Plant Sciences, King's College London, London, United Kingdom
| | - Ariane S Standing
- Department of Biology, University of Florida, Gainesville, United States
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, United States
| |
Collapse
|
35
|
Bermúdez de Castro JM, García-Campos C, Sarmiento S, Martinón-Torres M. The protoconid: a key cusp in lower molars. Evidence from a recent modern human population. Ann Hum Biol 2022; 49:145-151. [PMID: 35521995 DOI: 10.1080/03014460.2022.2074539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND The molar (M) size sequence in the genus Homo is decreasing and the general pattern in Homo sapiens is M1 > M2 > M3. AIM To gain a better understanding of the reduction patterns of molar components (cusps), we aim to assess the area of the protoconid, the phylogenetically oldest cusp of the lower molars. SUBJECT AND METHODS We measured the protoconid and the total crown area in the scaled photographs of a recent modern human sample of lower molars (76 males and 39 females). The values were statistically analysed. RESULTS The absolute size of the protoconid increases significantly between M1 and M2/M3, whereas the relative size of this cusp increases significantly from M1 to M3. In the latter, reduction or disappearance of the cusps of the talonid is common. CONCLUSIONS The results can be explained in the framework of the patterning cascade model. As the first cusp to appear developmentally, the protoconid forms in response to signals from the primary enamel knot, likely contributing to its stability. Inhibitory signals emitted during the protoconid formation may lead to the reduction or disappearance of the talonid cusps, if these do not have enough time to form before the end of the molar morphogenetic process.
Collapse
Affiliation(s)
- José María Bermúdez de Castro
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH). Paseo de la Sierra de Atapuerca 3, 09002, Burgos, Spain.,Anthropology Department, University College London, London, UK
| | - Cecilia García-Campos
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH). Paseo de la Sierra de Atapuerca 3, 09002, Burgos, Spain
| | - Susana Sarmiento
- Universidad Isabel I, Calle de Fernán González, 76, 09003 Burgos, Spain
| | - María Martinón-Torres
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH). Paseo de la Sierra de Atapuerca 3, 09002, Burgos, Spain.,Anthropology Department, University College London, London, UK
| |
Collapse
|
36
|
Evolution and development of the mammalian multicuspid teeth. J Oral Biosci 2022; 64:165-175. [DOI: 10.1016/j.job.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022]
|
37
|
Feiner N, Brun-Usan M, Andrade P, Pranter R, Park S, Menke DB, Geneva AJ, Uller T. A single locus regulates a female-limited color pattern polymorphism in a reptile. SCIENCE ADVANCES 2022; 8:eabm2387. [PMID: 35263124 PMCID: PMC11633106 DOI: 10.1126/sciadv.abm2387] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Animal coloration is often expressed in periodic patterns that can arise from differential cell migration, yet how these processes are regulated remains elusive. We show that a female-limited polymorphism in dorsal patterning (diamond/chevron) in the brown anole is controlled by a single Mendelian locus. This locus contains the gene CCDC170 that is adjacent to, and coexpressed with, the Estrogen receptor-1 gene, explaining why the polymorphism is female limited. CCDC170 is an organizer of the Golgi-microtubule network underlying a cell's ability to migrate, and the two segregating alleles encode structurally different proteins. Our agent-based modeling of skin development demonstrates that, in principle, a change in cell migratory behaviors is sufficient to switch between the two morphs. These results suggest that CCDC170 might have been co-opted as a switch between color patterning morphs, likely by modulating cell migratory behaviors.
Collapse
Affiliation(s)
| | | | - Pedro Andrade
- CIBIO/InBIO Research Centre in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Robin Pranter
- Department of Biology, Lund University, Lund, Sweden
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - Anthony J. Geneva
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University–Camden, Camden, NJ, USA
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
38
|
Milocco L, Salazar-Ciudad I. Evolution of the G Matrix under Nonlinear Genotype-Phenotype Maps. Am Nat 2022; 199:420-435. [DOI: 10.1086/717814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lisandro Milocco
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Isaac Salazar-Ciudad
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Centre de Recerca Matemàtica, Barcelona, Spain; and Genomics, Bioinformatics, and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Hernández U, Posadas-Vidales L, Espinosa-Soto C. On the effects of the modularity of gene regulatory networks on phenotypic variability and its association with robustness. Biosystems 2021; 212:104586. [PMID: 34971735 DOI: 10.1016/j.biosystems.2021.104586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
Biological adaptations depend on natural selection sorting out those individuals that exhibit characters fit to their environment. Selection, in turn, depends on the phenotypic variation present in a population. Thus, evolutionary outcomes depend, to a certain extent, on the kind of variation that organisms can produce through random genetic perturbation, that is, their phenotypic variability. Moreover, the properties of developmental mechanisms that produce the organisms affect their phenotypic variability. Two of these properties are modularity and robustness. Modularity is the degree to which interactions occur mostly within groups of the system's elements and scarcely between elements in different groups. Robustness is the propensity of a system to endure perturbations while preserving its phenotype. In this paper, we used a model of gene regulatory networks (GRNs) to study the relationship between modularity and robustness in developmental processes and how modularity affects the variation that random genetic mutations produce in the expression patterns of GRNs. Our results show that modularity and robustness are correlated in multifunctional GRNs and that selection for one of these properties affects the other as well. We contend that these observations may help to understand why modularity and robustness are widespread in biological systems. Additionally, we found that modular networks tend to produce new expression patterns with subtle changes localized in the expression of a few groups of genes. This effect in the phenotypic variability of modular GRNs may bear important consequences for adaptive evolution: it may help to adjust the expression of one group of genes at a time, with few alterations on other previously evolved expression patterns.
Collapse
Affiliation(s)
- U Hernández
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, Mexico
| | - L Posadas-Vidales
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, Mexico
| | - C Espinosa-Soto
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, Mexico.
| |
Collapse
|
40
|
Boughner JC, Marchiori DF, Packota GV. Unexpected variation of human molar size patterns. J Hum Evol 2021; 161:103072. [PMID: 34628299 DOI: 10.1016/j.jhevol.2021.103072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
A tenet of mammalian, including primate dental evolution, is the Inhibitory Cascade Model, where first molar (M1) size predicts in a linear cline the size and onset time of the second (M2) and third (M3) molars: a larger M1 portends a progressively smaller and later-developing M2 and M3. In contemporary modern Homo sapiens, later-developing M3s are less likely to erupt properly. The Inhibitory Cascade Model is also used to predict molar sizes of extinct taxa, including fossil Homo. The extent to which Inhibitory Cascade Model predictions hold in contemporary H. sapiens molars is unclear, including whether this tenet informs about molar initiation, development, and eruption. We tested these questions here. In our radiographic sample of 323 oral quadrants and molar rows from contemporary humans based on mesiodistal crown lengths, we observed the distribution of molar proportions with a central tendency around parity (M1 = M2 = M3) that parsed into 13 distinct molar size ratio patterns. These patterns presented at different frequencies (e.g., M1 > M2 > M3 in about one-third of cases) that reflected whether the molar row was located in the maxilla or mandible and included both linear (e.g., M1 < M2 < M3) and nonlinear molar size ratio progressions (e.g., M1 > M2 < M3). Up to four patterns were found in the same subject's mouth. Lastly, M1 size alone does not predict M3 size, developmental timing, or eruption; rather, M2 size is integral to predicting M3 size. Our study indicates that human molar size is genetically 'softwired' and sensitive to factors local to the human upper jaw vs. lower jaw. The lack of a single stereotypical molar size ratio for contemporary H. sapiens suggests that predictions of fossil H. sapiens molar sizes using the Inhibitory Cascade Model must be made with caution.
Collapse
Affiliation(s)
- Julia C Boughner
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Denver F Marchiori
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Garnet V Packota
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Health Sciences Building, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
41
|
Chevin LM, Leung C, Le Rouzic A, Uller T. Using phenotypic plasticity to understand the structure and evolution of the genotype-phenotype map. Genetica 2021; 150:209-221. [PMID: 34617196 DOI: 10.1007/s10709-021-00135-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Deciphering the genotype-phenotype map necessitates relating variation at the genetic level to variation at the phenotypic level. This endeavour is inherently limited by the availability of standing genetic variation, the rate of spontaneous mutation to novo genetic variants, and possible biases associated with induced mutagenesis. An interesting alternative is to instead rely on the environment as a source of variation. Many phenotypic traits change plastically in response to the environment, and these changes are generally underlain by changes in gene expression. Relating gene expression plasticity to the phenotypic plasticity of more integrated organismal traits thus provides useful information about which genes influence the development and expression of which traits, even in the absence of genetic variation. We here appraise the prospects and limits of such an environment-for-gene substitution for investigating the genotype-phenotype map. We review models of gene regulatory networks, and discuss the different ways in which they can incorporate the environment to mechanistically model phenotypic plasticity and its evolution. We suggest that substantial progress can be made in deciphering this genotype-environment-phenotype map, by connecting theory on gene regulatory network to empirical patterns of gene co-expression, and by more explicitly relating gene expression to the expression and development of phenotypes, both theoretically and empirically.
Collapse
Affiliation(s)
- Luis-Miguel Chevin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
| | - Christelle Leung
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Arnaud Le Rouzic
- Laboratoire Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
42
|
Paul KS, Stojanowski CM, Hughes T, Brook A, Townsend GC. The genetic architecture of anterior tooth morphology in a longitudinal sample of Australian twins and families. Arch Oral Biol 2021; 129:105168. [PMID: 34174590 DOI: 10.1016/j.archoralbio.2021.105168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study presents a quantitative genetic analysis of human anterior dental morphology in a longitudinal sample of known genealogy. The primary aim of this work is to generate a suite of genetic correlations within and between deciduous and permanent characters to access patterns of integration across the diphyodont dental complex. DESIGN Data were recorded from casted tooth crowns representing participants of a long-term Australian twin and family study (deciduous n = 290, permanent n = 339). Morphological trait expression was observed and scored following Arizona State University Dental Anthropology System standards. Bivariate genetic correlations were estimated using maximum likelihood variance decomposition models in SOLAR v.8.1.1. RESULTS Genetic correlation estimates indicate high levels of integration between antimeres but low to moderate levels among traits within a tooth row. Only 9% of deciduous model comparisons were significant, while pleiotropy was indicated for one third of permanent trait pairs. Canine characters stood out as strongly integrated, especially in the deciduous dentition. For homologous characters across dentitions (e.g., deciduous i1 shoveling and permanent I1 shoveling), ∼70% of model comparisons yielded significant genetic correlations. CONCLUSIONS Patterns of genetic correlation suggest a morphological canine module that spans the primary and secondary dentition. Results also point to the existence of a genetic mechanism conserving morphology across the diphyodont dental complex, such that paired deciduous and permanent traits are more strongly integrated than characters within individual tooth rows/teeth.
Collapse
Affiliation(s)
- Kathleen S Paul
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, United States.
| | - Christopher M Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, United States
| | - Toby Hughes
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Alan Brook
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; Barts and the London Dental Institute, Queen Mary University of London, London, E1, UK
| | - Grant C Townsend
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
43
|
Developmental influence on evolutionary rates and the origin of placental mammal tooth complexity. Proc Natl Acad Sci U S A 2021; 118:2019294118. [PMID: 34083433 PMCID: PMC8202019 DOI: 10.1073/pnas.2019294118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Interactions during development among genes, cells, and tissues can favor the more frequent generation of some trait variants compared with others. This developmental bias has often been considered to constrain adaptation, but its exact influence on evolution is poorly understood. Using computer simulations of development, we provide evidence that molecules promoting the formation of mammalian tooth cusps could help accelerate tooth complexity evolution. Only relatively small developmental changes were needed to derive the more complex, rectangular upper molar typical of early placental mammals from the simpler triangular ancestral pattern. Development may therefore have enabled the relatively fast divergence of the early placental molar dentition. Development has often been viewed as a constraining force on morphological adaptation, but its precise influence, especially on evolutionary rates, is poorly understood. Placental mammals provide a classic example of adaptive radiation, but the debate around rate and drivers of early placental evolution remains contentious. A hallmark of early dental evolution in many placental lineages was a transition from a triangular upper molar to a more complex upper molar with a rectangular cusp pattern better specialized for crushing. To examine how development influenced this transition, we simulated dental evolution on “landscapes” built from different parameters of a computational model of tooth morphogenesis. Among the parameters examined, we find that increases in the number of enamel knots, the developmental precursors of the tooth cusps, were primarily influenced by increased self-regulation of the molecular activator (activation), whereas the pattern of knots resulted from changes in both activation and biases in tooth bud growth. In simulations, increased activation facilitated accelerated evolutionary increases in knot number, creating a lateral knot arrangement that evolved at least ten times on placental upper molars. Relatively small increases in activation, superimposed on an ancestral tritubercular molar growth pattern, could recreate key changes leading to a rectangular upper molar cusp pattern. Tinkering with tooth bud geometry varied the way cusps initiated along the posterolingual molar margin, suggesting that small spatial variations in ancestral molar growth may have influenced how placental lineages acquired a hypocone cusp. We suggest that development could have enabled relatively fast higher-level divergence of the placental molar dentition.
Collapse
|
44
|
DiFrisco J, Jaeger J. Homology of process: developmental dynamics in comparative biology. Interface Focus 2021; 11:20210007. [PMID: 34055306 PMCID: PMC8086918 DOI: 10.1098/rsfs.2021.0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Comparative biology builds up systematic knowledge of the diversity of life, across evolutionary lineages and levels of organization, starting with evidence from a sparse sample of model organisms. In developmental biology, a key obstacle to the growth of comparative approaches is that the concept of homology is not very well defined for levels of organization that are intermediate between individual genes and morphological characters. In this paper, we investigate what it means for ontogenetic processes to be homologous, focusing specifically on the examples of insect segmentation and vertebrate somitogenesis. These processes can be homologous without homology of the underlying genes or gene networks, since the latter can diverge over evolutionary time, while the dynamics of the process remain the same. Ontogenetic processes like these therefore constitute a dissociable level and distinctive unit of comparison requiring their own specific criteria of homology. In addition, such processes are typically complex and nonlinear, such that their rigorous description and comparison requires not only observation and experimentation, but also dynamical modelling. We propose six criteria of process homology, combining recognized indicators (sameness of parts, morphological outcome and topological position) with novel ones derived from dynamical systems modelling (sameness of dynamical properties, dynamical complexity and evidence for transitional forms). We show how these criteria apply to animal segmentation and other ontogenetic processes. We conclude by situating our proposed dynamical framework for homology of process in relation to similar research programmes, such as process structuralism and developmental approaches to morphological homology.
Collapse
Affiliation(s)
- James DiFrisco
- Institute of Philosophy, KU Leuven, 3000 Leuven, Belgium
| | - Johannes Jaeger
- Complexity Science Hub (CSH) Vienna, Josefstädter Strasse 39, 1080 Vienna, Austria
| |
Collapse
|
45
|
Solaymani S, Nezafat NB, Ţălu Ş, Shafiekhani A, Dalouji V, Amiri A, Rezaee S, Morozov IA. Atomic force microscopy studies of enamel, inner enamel, dentin, and cementum in canine teeth. Microsc Res Tech 2021; 84:1098-1105. [PMID: 33405274 DOI: 10.1002/jemt.23668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 10/07/2020] [Accepted: 11/22/2020] [Indexed: 02/05/2023]
Abstract
The main goal of the present work is to explore the three dimensional (3-D) atomic force microscopy (AFM) images of human teeth and investigating their micromorphology. For this purpose, 10 fresh and permanent canine teeth were selected from a group of 40-year-old men who were candidate for the experimental processes. Afterward, they were all applied for studying the morphology of their hard tissues. The tapping mode of AFM was used to characterize the surface micromorphology on the square areas of 1 μm × 1 μm (512 × 512 pts). AFM results and surface stereometric analysis indicate the relationships between the micromorphology of the surface and the structural properties of these tissues across the length scales. As can be seen, the surface of cementum has the most irregular topography (D = 2.87 ± 0.01) while the most regular topography (D = 2.43 ± 0.01) is found in dentin. Furthermore, the more and less regularity of the surface have been found in inner enamel (Sq = 26.26 nm) and dentin (Sq = 41.28 nm), respectively. Stereometric and fractal analyses give valuable information about human canine teeth via 3-D micromorphology.
Collapse
Affiliation(s)
- Shahram Solaymani
- School of Physics, Institute for Research in Fundamental Sciences, Tehran, Iran
- Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | | | - Ştefan Ţălu
- Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Cluj-Napoca, Romania
| | - Azizollah Shafiekhani
- Department of Physics, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Vali Dalouji
- Department of Physics, Faculty of Science, Malayer University, Malayer, Iran
| | - Ali Amiri
- Department of Dentistry, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sahar Rezaee
- Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Ilya A Morozov
- Institute of Continuous Media Mechanics UB RAS, Perm, Russia
| |
Collapse
|
46
|
Saeki N, Inui-Yamamoto C, Kuraki M, Itoh S, Inubushi T, Okamoto M, Akiyama S, Wakisaka S, Abe M. Senescence-accelerated mouse prone 8 (SAMP8) mice exhibit reduced entoconid in the lower second molar. Arch Oral Biol 2021; 128:105172. [PMID: 34058725 DOI: 10.1016/j.archoralbio.2021.105172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The position and size of the major cusps in mammalian molars are arranged in a characteristic pattern that depends on taxonomy. In humans, the cusp which locates distally within each molar is smaller than the mesially located cusp, which is referred to as "distal reduction". Although this concept has been well-recognized, it is still unclear how this reduction occurs. Current study examined whether senescence-accelerating mouse prone 8 (SAMP8) mice could be a possible animal model for studying how the mammalian molar cusp size is determined. DESIGN SAMP8 mice were compared with parental control (SAMR1) mice. Microcomputed tomography images of young and aged mice were captured to observe molar cusp morphologies. Cusp height from cement-enamel junction and mesio-distal length of molars were measured. The statistical comparison of the measurements was performed by Mann-Whitney U test. RESULTS SAMP8 mice showed reduced development of the disto-lingual cusp (entoconid) of lower second molar when compared with SAMR1 mice. The enamel thickness and structure was disturbed at entoconid, and aged SAMP8 mice displayed severe wear of the entoconid in lower second molar. These phenotypes were observed on both sides of the lower second molar. CONCLUSIONS In addition to the general senescence phenotype observed in SAMP8 mice, this strain may genetically possess molar cusp phenotypes which is determined prenatally. Further, SAMP8 mice would be a potential model strain to study the genetic causes of the distal reduction of molar cusp size.
Collapse
Affiliation(s)
- Naoya Saeki
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan; Division of Special Care Dentistry, Osaka University Dental Hospital, Osaka, Japan
| | - Chizuko Inui-Yamamoto
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan
| | - Moe Kuraki
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan
| | - Shousaku Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Motoki Okamoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shigehisa Akiyama
- Division of Special Care Dentistry, Osaka University Dental Hospital, Osaka, Japan
| | - Satoshi Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan
| | - Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan.
| |
Collapse
|
47
|
Manrubia S, Cuesta JA, Aguirre J, Ahnert SE, Altenberg L, Cano AV, Catalán P, Diaz-Uriarte R, Elena SF, García-Martín JA, Hogeweg P, Khatri BS, Krug J, Louis AA, Martin NS, Payne JL, Tarnowski MJ, Weiß M. From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics. Phys Life Rev 2021; 38:55-106. [PMID: 34088608 DOI: 10.1016/j.plrev.2021.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves with a critical and constructive attitude into our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.
Collapse
Affiliation(s)
- Susanna Manrubia
- Department of Systems Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain; Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BiFi), Universidad de Zaragoza, Spain; UC3M-Santander Big Data Institute (IBiDat), Getafe, Madrid, Spain
| | - Jacobo Aguirre
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain; Centro de Astrobiología, CSIC-INTA, ctra. de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Sebastian E Ahnert
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK; The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK
| | | | - Alejandro V Cano
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pablo Catalán
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain; Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
| | - Ramon Diaz-Uriarte
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (UAM-CSIC), Madrid, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas, I(2)SysBio (CSIC-UV), València, Spain; The Santa Fe Institute, Santa Fe, NM, USA
| | | | - Paulien Hogeweg
- Theoretical Biology and Bioinformatics Group, Utrecht University, the Netherlands
| | - Bhavin S Khatri
- The Francis Crick Institute, London, UK; Department of Life Sciences, Imperial College London, London, UK
| | - Joachim Krug
- Institute for Biological Physics, University of Cologne, Köln, Germany
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Nora S Martin
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK; Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Joshua L Payne
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Marcel Weiß
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK; Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
48
|
Berio F, Debiais-Thibaud M. Evolutionary developmental genetics of teeth and odontodes in jawed vertebrates: a perspective from the study of elasmobranchs. JOURNAL OF FISH BIOLOGY 2021; 98:906-918. [PMID: 31820456 DOI: 10.1111/jfb.14225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Most extant vertebrates display a high variety of tooth and tooth-like organs (odontodes) that vary in shape, position over the body and nature of composing tissues. The development of these structures is known to involve similar genetic cascades and teeth and odontodes are believed to share a common evolutionary history. Gene expression patterns have previously been compared between mammalian and teleost tooth development but we highlight how the comparative framework was not always properly defined to deal with different tooth types or tooth developmental stages. Larger-scale comparative analyses also included cartilaginous fishes: sharks display oral teeth and dermal scales for which the gene expression during development started to be investigated in the small-spotted catshark Scyliorhinus canicula during the past decade. We report several descriptive approaches to analyse the embryonic tooth and caudal scale gene expressions in S. canicula. We compare these expressions wih the ones reported in mouse molars and teleost oral and pharyngeal teeth and highlight contributions and biases that arise from these interspecific comparisons. We finally discuss the evolutionary processes that can explain the observed intra and interspecific similarities and divergences in the genetic cascades involved in tooth and odontode development in jawed vertebrates.
Collapse
Affiliation(s)
- Fidji Berio
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
- University of Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR5242, 46 Allée d'Italie, Lyon, France
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
49
|
Evans AR, Pollock TI, Cleuren SGC, Parker WMG, Richards HL, Garland KLS, Fitzgerald EMG, Wilson TE, Hocking DP, Adams JW. A universal power law for modelling the growth and form of teeth, claws, horns, thorns, beaks, and shells. BMC Biol 2021; 19:58. [PMID: 33781258 PMCID: PMC8008625 DOI: 10.1186/s12915-021-00990-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background A major goal of evolutionary developmental biology is to discover general models and mechanisms that create the phenotypes of organisms. However, universal models of such fundamental growth and form are rare, presumably due to the limited number of physical laws and biological processes that influence growth. One such model is the logarithmic spiral, which has been purported to explain the growth of biological structures such as teeth, claws, horns, and beaks. However, the logarithmic spiral only describes the path of the structure through space, and cannot generate these shapes. Results Here we show a new universal model based on a power law between the radius of the structure and its length, which generates a shape called a ‘power cone’. We describe the underlying ‘power cascade’ model that explains the extreme diversity of tooth shapes in vertebrates, including humans, mammoths, sabre-toothed cats, tyrannosaurs and giant megalodon sharks. This model can be used to predict the age of mammals with ever-growing teeth, including elephants and rodents. We view this as the third general model of tooth development, along with the patterning cascade model for cusp number and spacing, and the inhibitory cascade model that predicts relative tooth size. Beyond the dentition, this new model also describes the growth of claws, horns, antlers and beaks of vertebrates, as well as the fangs and shells of invertebrates, and thorns and prickles of plants. Conclusions The power cone is generated when the radial power growth rate is unequal to the length power growth rate. The power cascade model operates independently of the logarithmic spiral and is present throughout diverse biological systems. The power cascade provides a mechanistic basis for the generation of these pointed structures across the tree of life. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00990-w.
Collapse
Affiliation(s)
- Alistair R Evans
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia. .,Geosciences, Museums Victoria, Melbourne, Victoria, 3001, Australia.
| | - Tahlia I Pollock
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Silke G C Cleuren
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - William M G Parker
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Hazel L Richards
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Kathleen L S Garland
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Erich M G Fitzgerald
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia.,Geosciences, Museums Victoria, Melbourne, Victoria, 3001, Australia
| | - Tim E Wilson
- School of Mathematical Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - David P Hocking
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia.,Geosciences, Museums Victoria, Melbourne, Victoria, 3001, Australia
| | - Justin W Adams
- Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
50
|
Du W, Bhojwani A, Hu JK. FACEts of mechanical regulation in the morphogenesis of craniofacial structures. Int J Oral Sci 2021; 13:4. [PMID: 33547271 PMCID: PMC7865003 DOI: 10.1038/s41368-020-00110-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
During embryonic development, organs undergo distinct and programmed morphological changes as they develop into their functional forms. While genetics and biochemical signals are well recognized regulators of morphogenesis, mechanical forces and the physical properties of tissues are now emerging as integral parts of this process as well. These physical factors drive coordinated cell movements and reorganizations, shape and size changes, proliferation and differentiation, as well as gene expression changes, and ultimately sculpt any developing structure by guiding correct cellular architectures and compositions. In this review we focus on several craniofacial structures, including the tooth, the mandible, the palate, and the cranium. We discuss the spatiotemporal regulation of different mechanical cues at both the cellular and tissue scales during craniofacial development and examine how tissue mechanics control various aspects of cell biology and signaling to shape a developing craniofacial organ.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Arshia Bhojwani
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|