1
|
Hebchen DM, Schröder K. Redox Signaling in Endosomes Using the Example of EGF Receptors: A Graphical Review. Antioxidants (Basel) 2024; 13:1215. [PMID: 39456468 PMCID: PMC11504029 DOI: 10.3390/antiox13101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Early endosomes represent first-line sorting compartments or even organelles for internalized molecules. They enable the transport of molecules or ligands to other compartments of the cell, such as lysosomes, for degradation or recycle them back to the membrane by various mechanisms. Moreover, early endosomes function as signaling and scaffolding platforms to initiate or prolong distinct signaling pathways. Accordingly, early endosomes have to be recognized as either part of a degradation or recycling pathway. The physical proximity of many ligand-binding receptors with other membrane-bound proteins or complexes such as NADPH oxidases may result in an interaction of second messengers, like reactive oxygen species (ROS) and early endosomes, that promote the correct recognition of individual early endosomes. In fact, redoxosomes comprise an endosomal subsection of signaling endosomes. One example of such potential interaction is epidermal growth factor receptor (EGFR) signaling. Here we summarize recent findings on EGFR signaling as a well-studied example for receptor trafficking and trans-activation and illustrate the interplay between cellular and endosomal ROS.
Collapse
Affiliation(s)
| | - Katrin Schröder
- Institute of Physiology, Medical Faculty, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| |
Collapse
|
2
|
Königshausen E, Zierhut UM, Ruetze M, Rump LC, Sellin L. A molecular mechanism for angiotensin II receptor blocker-mediated slit membrane protection: Angiotensin II increases nephrin endocytosis via AT1-receptor-dependent ERK 1/2 activation. FASEB J 2024; 38:e70018. [PMID: 39212304 DOI: 10.1096/fj.202400369r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Albuminuria is characterized by a disruption of the glomerular filtration barrier, which is composed of the fenestrated endothelium, the glomerular basement membrane, and the slit diaphragm. Nephrin is a major component of the slit diaphragm. Apart from hemodynamic effects, Ang II enhances albuminuria by β-Arrestin2-mediated nephrin endocytosis. Blocking the AT1 receptor with candesartan and irbesartan reduces the Ang II-mediated nephrin-β-Arrestin2 interaction. The inhibition of MAPK ERK 1/2 blocks Ang II-enhanced nephrin-β-Arrestin2 binding. ERK 1/2 signaling, which follows AT1 receptor activation, is mediated by G-protein signaling, EGFR transactivation, and β-Arrestin2 recruitment. A mutant AT1 receptor defective in EGFR transactivation and β-Arrestin2 recruitment reduces the Ang II-mediated increase in nephrin β-Arrestin2 binding. The mutation of β-Arrestin2K11,K12, critical for AT1 receptor binding, completely abrogates the interaction with nephrin, independent of Ang II stimulation. β-Arrestin2K11R,K12R does not influence nephrin cell surface expression. The data presented here deepen our molecular understanding of a blood-pressure-independent molecular mechanism of AT-1 receptor blockers (ARBs) in reducing albuminuria.
Collapse
Affiliation(s)
- Eva Königshausen
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Ulf M Zierhut
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Martin Ruetze
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Lars C Rump
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Lorenz Sellin
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
3
|
Diaz-Zegarra LA, Espejo MS, Ibañez AM, Rando ME, Pagola LE, De Giusti VC, Aiello EA. Activation of G Protein-Coupled Estrogen Receptor (GPER) Negatively Modulates Cardiac Excitation-Contraction Coupling (ECC) through the PI3K/NOS/NO Pathway. Int J Mol Sci 2024; 25:8993. [PMID: 39201679 PMCID: PMC11354384 DOI: 10.3390/ijms25168993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
The G-protein-coupled estrogen receptor (GPER) has been described to exert several cardioprotective effects. However, the exact mechanism involved in cardiac protection remains unclear. The aim of this study is to investigate the role of GPER activation on excitation-contraction coupling (ECC) and the possibility that such effect participates in cardioprotection. The cardiac myocytes of male Wistar rats were isolated with a digestive buffer and loaded with Fura-2-AM for the measurement of intracellular calcium transient (CaT). Sarcomere shortening (SS) and L-type calcium current (ICaL) were also registered. The confocal technique was used to measure nitric oxide (NO) production in cells loaded with DAF-FM-diacetate. Cardiac myocytes exposed to 17-β-estradiol (E2, 10 nM) or G-1 (1 μM) for fifteen minutes decreased CaT, SS, and ICaL. These effects were prevented using G-36 (antagonist of GPER, 1 μM), L-Name (NO synthase -NOS- inhibitor, 100 nM), or wortmannin (phosphoinositide-3-kinase -PI3K- inhibitor, 100 nM). Moreover, G1 increased NO production, and this effect was abolished in the presence of wortmannin. We concluded that the selective activation of GPER with E2 or G1 in the isolated cardiac myocytes of male rats induced a negative inotropic effect due to the reduction in ICaL and the decrease in CaT. Finally, the pathway that we proposed to be implicated in these effects is PI3K-NOS-NO.
Collapse
Affiliation(s)
- Leandro A. Diaz-Zegarra
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
| | - María S. Espejo
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
- Biomedicine Department, Health, Aarhus University, 8000 Aarhus, Midtjylland, Denmark
| | - Alejandro M. Ibañez
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
| | - Mónica E. Rando
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
| | - Lucia E. Pagola
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
| | - Verónica C. De Giusti
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
| | - Ernesto A. Aiello
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
| |
Collapse
|
4
|
Gu Y, Wang Z, Wang Y. Bispecific antibody drug conjugates: Making 1+1>2. Acta Pharm Sin B 2024; 14:1965-1986. [PMID: 38799638 PMCID: PMC11119582 DOI: 10.1016/j.apsb.2024.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024] Open
Abstract
Bispecific antibody‒drug conjugates (BsADCs) represent an innovative therapeutic category amalgamating the merits of antibody‒drug conjugates (ADCs) and bispecific antibodies (BsAbs). Positioned as the next-generation ADC approach, BsADCs hold promise for ameliorating extant clinical challenges associated with ADCs, particularly pertaining to issues such as poor internalization, off-target toxicity, and drug resistance. Presently, ten BsADCs are undergoing clinical trials, and initial findings underscore the imperative for ongoing refinement. This review initially delves into specific design considerations for BsADCs, encompassing target selection, antibody formats, and the linker-payload complex. Subsequent sections delineate the extant progress and challenges encountered by BsADCs, illustrated through pertinent case studies. The amalgamation of BsAbs with ADCs offers a prospective solution to prevailing clinical limitations of ADCs. Nevertheless, the symbiotic interplay among BsAb, linker, and payload necessitates further optimizations and coordination beyond a simplistic "1 + 1" to effectively surmount the extant challenges facing the BsADC domain.
Collapse
Affiliation(s)
- Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijia Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
5
|
Maldonado H, Savage BD, Barker HR, May U, Vähätupa M, Badiani RK, Wolanska KI, Turner CMJ, Pemmari T, Ketomäki T, Prince S, Humphries MJ, Ruoslahti E, Morgan MR, Järvinen TAH. Systemically administered wound-homing peptide accelerates wound healing by modulating syndecan-4 function. Nat Commun 2023; 14:8069. [PMID: 38057316 PMCID: PMC10700342 DOI: 10.1038/s41467-023-43848-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
CAR (CARSKNKDC) is a wound-homing peptide that recognises angiogenic neovessels. Here we discover that systemically administered CAR peptide has inherent ability to promote wound healing: wounds close and re-epithelialise faster in CAR-treated male mice. CAR promotes keratinocyte migration in vitro. The heparan sulfate proteoglycan syndecan-4 regulates cell migration and is crucial for wound healing. We report that syndecan-4 expression is restricted to epidermis and blood vessels in mice skin wounds. Syndecan-4 regulates binding and internalisation of CAR peptide and CAR-mediated cytoskeletal remodelling. CAR induces syndecan-4-dependent activation of the small GTPase ARF6, via the guanine nucleotide exchange factor cytohesin-2, and promotes syndecan-4-, ARF6- and Cytohesin-2-mediated keratinocyte migration. Finally, we show that genetic ablation of syndecan-4 in male mice eliminates CAR-induced wound re-epithelialisation following systemic administration. We propose that CAR peptide activates syndecan-4 functions to selectively promote re-epithelialisation. Thus, CAR peptide provides a therapeutic approach to enhance wound healing in mice; systemic, yet target organ- and cell-specific.
Collapse
Affiliation(s)
- Horacio Maldonado
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bryan D Savage
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Harlan R Barker
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Ulrike May
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Maria Vähätupa
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Rahul K Badiani
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katarzyna I Wolanska
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Craig M J Turner
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Toini Pemmari
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Tuomo Ketomäki
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Stuart Prince
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Erkki Ruoslahti
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA and Center for Nanomedicine, University of California (UCSB), Santa Barbara, CA, USA
| | - Mark R Morgan
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Tero A H Järvinen
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland.
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA and Center for Nanomedicine, University of California (UCSB), Santa Barbara, CA, USA.
| |
Collapse
|
6
|
Liu A, Xie H, Tian F, Bai P, Weng H, Liu Y, Liu W, Tang L, You H, Zhou N, Shu X. ESCRT-III Component CHMP4C Attenuates Cardiac Hypertrophy by Targeting the Endo-Lysosomal Degradation of EGFR. Hypertension 2023; 80:2674-2686. [PMID: 37846580 DOI: 10.1161/hypertensionaha.123.21427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Cardiac hypertrophy and subsequent heart failure impose a considerable burden on public health worldwide. Impaired protein degradation, especially endo-lysosome-mediated degradation of membrane proteins, is associated with cardiac hypertrophy progression. CHMP4C (charged multivesicular body protein 4C), a critical constituent of multivesicular bodies, is involved in cellular trafficking and signaling. However, the specific role of CHMP4C in the progression of cardiac hypertrophy remains largely unknown. METHODS Mouse models with CHMP4C knockout or cardiadc-specific overexpression were subjected to transverse aortic constriction surgery for 4 weeks. Cardiac morphology and function were assessed through histological staining and echocardiography. Confocal imaging and coimmunoprecipitation assays were performed to identify the direct target of CHMP4C. An EGFR (epidermal growth factor receptor) inhibitor was administrated to determine whether effects of CHMP4C on cardiac hypertrophy were EGFR dependent. RESULTS CHMP4C was significantly upregulated in both pressure-overloaded mice and spontaneously hypertensive rats. Compared with wild-type mice, CHMP4C deficiency exacerbated transverse aortic constriction-induced cardiac hypertrophy, whereas CHMP4C overexpression in cardiomyocytes attenuated cardiac dysfunction. Mechanistically, the effect of CHMP4C on cardiac hypertrophy relied on the EGFR signaling pathway. Fluorescent staining and coimmunoprecipitation assays confirmed that CHMP4C interacts directly with EGFR and promotes lysosome-mediated degradation of activated EGFR, thus attenuating cardiac hypertrophy. Notably, an EGFR inhibitor canertinib counteracted the exacerbation of cardiac hypertrophy induced by CHMP4C knockdown in vitro and in vivo. CONCLUSIONS CHMP4C represses cardiac hypertrophy by modulating lysosomal degradation of EGFR and is a potential therapeutic candidate for cardiac hypertrophy.
Collapse
Affiliation(s)
- Ao Liu
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Huilin Xie
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Fangyan Tian
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China (F.T.)
| | - Peiyuan Bai
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Haobo Weng
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Yu Liu
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Wen Liu
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Lu Tang
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Hongmin You
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China (H.Y.)
| | - Nianwei Zhou
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Xianhong Shu
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- epartment of Echocardiography, Shanghai Xuhui District Central Hospital, China (X.S.)
| |
Collapse
|
7
|
Sakaji K, Ebrahimiazar S, Harigae Y, Ishibashi K, Sato T, Yoshikawa T, Atsumi GI, Sung CH, Saito M. MAST4 promotes primary ciliary resorption through phosphorylation of Tctex-1. Life Sci Alliance 2023; 6:e202301947. [PMID: 37726137 PMCID: PMC10509483 DOI: 10.26508/lsa.202301947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
The primary cilium undergoes cell cycle-dependent assembly and disassembly. Dysregulated ciliary dynamics are associated with several pathological conditions called ciliopathies. Previous studies showed that the localization of phosphorylated Tctex-1 at Thr94 (T94) at the ciliary base critically regulates ciliary resorption by accelerating actin remodeling and ciliary pocket membrane endocytosis. Here, we show that microtubule-associated serine/threonine kinase family member 4 (MAST4) is localized at the primary cilium. Suppressing MAST4 blocks serum-induced ciliary resorption, and overexpressing MAST4 accelerates ciliary resorption. Tctex-1 binds to the kinase domain of MAST4, in which the R503 and D504 residues are key to MAST4-mediated ciliary resorption. The ciliary resorption and the ciliary base localization of phospho-(T94)Tctex-1 are blocked by the knockdown of MAST4 or the expression of the catalytic-inactive site-directed MAST4 mutants. Moreover, MAST4 is required for Cdc42 activation and Rab5-mediated periciliary membrane endocytosis during ciliary resorption. These results support that MAST4 is a novel kinase that regulates ciliary resorption by modulating the ciliary base localization of phospho-(T94)Tctex-1. MAST4 is a potential new target for treating ciliopathies causally by ciliary resorption defects.
Collapse
Affiliation(s)
- Kensuke Sakaji
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sara Ebrahimiazar
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Harigae
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichi Ishibashi
- Department of Molecular Physiology and Pathology, School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Takeya Sato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gen-Ichi Atsumi
- Department of Molecular Physiology and Pathology, School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Physiology and Pathology, School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
8
|
You H, Li J, Li Y, Wang W, Yu Z, Liu J, Liu X, Ding L. Absorption of egg white hydrolysate in the intestine: Clathrin-dependent endocytosis as the main transport route. Food Res Int 2023; 173:113480. [PMID: 37803802 DOI: 10.1016/j.foodres.2023.113480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
This paper aimed to investigate the in vivo absorption of egg white hydrolysate (EWH) in rats and the transport route across the intestinal epithelium. Results showed that the level of plasma peptide-bound amino acid (PAA) of the EWH-supplemented rats (EWH-R) was determined to be 2012.18 ± 300.98 μmol/L, 10.72% higher than that of the control group, and was significantly positively correlated to that of EWH. Thirty-three egg white-derived peptides were successfully identified from the plasma of EWH-R, and 20 of them were found in both EWH-R plasma and EWH, indicating that these peptides tend to be absorbed through the intestinal epithelium in intact forms into the blood circulation. In addition, 637 up-regulated and 577 down-regulated genes in Caco-2 cells incubated with EWH were detected by RNA-sequencing and the clathrin-dependent endocytosis was the most enriched pathway in KEGG analysis. EWH significantly increased the mRNA levels of the key genes involved in the clathrin-dependent endocytosis but these changes would be inhibited by the clathrin-dependent endocytosis inhibitor of chlorpromazine. Moreover, the transepithelial transport of EWH across Caco-2 cell monolayers was significantly reduced by chlorpromazine. This study provided molecular-level evidence for the first time that clathrin-dependent endocytosis might be the main transport route of EWH in the intestinal epithelium.
Collapse
Affiliation(s)
- Haixi You
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Juanrui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yiju Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Wei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Zhipeng Yu
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jingbo Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Long Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
9
|
Bai S, Song J, Pu H, Yu Y, Song W, Chen Z, Wang M, Campbell-Valois FX, Wong WL, Cai Q, Wan M, Zhang C, Bai Y, Feng X. Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular Staphylococcus aureus Eradication. J Am Chem Soc 2023; 145:23372-23384. [PMID: 37838963 DOI: 10.1021/jacs.3c09587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.
Collapse
Affiliation(s)
- Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yue Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
10
|
York HM, Joshi K, Wright CS, Kreplin LZ, Rodgers SJ, Moorthi UK, Gandhi H, Patil A, Mitchell CA, Iyer-Biswas S, Arumugam S. Deterministic early endosomal maturations emerge from a stochastic trigger-and-convert mechanism. Nat Commun 2023; 14:4652. [PMID: 37532690 PMCID: PMC10397212 DOI: 10.1038/s41467-023-40428-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Endosomal maturation is critical for robust and timely cargo transport to specific cellular compartments. The most prominent model of early endosomal maturation involves a phosphoinositide-driven gain or loss of specific proteins on individual endosomes, emphasising an autonomous and stochastic description. However, limitations in fast, volumetric imaging long hindered direct whole cell-level measurements of absolute numbers of maturation events. Here, we use lattice light-sheet imaging and bespoke automated analysis to track individual very early (APPL1-positive) and early (EEA1-positive) endosomes over the entire population, demonstrating that direct inter-endosomal contact drives maturation between these populations. Using fluorescence lifetime, we show that this endosomal interaction is underpinned by asymmetric binding of EEA1 to very early and early endosomes through its N- and C-termini, respectively. In combination with agent-based simulation which supports a 'trigger-and-convert' model, our findings indicate that APPL1- to EEA1-positive maturation is driven not by autonomous events but by heterotypic EEA1-mediated interactions, providing a mechanism for temporal and population-level control of maturation.
Collapse
Affiliation(s)
- Harrison M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia.
| | - Kunaal Joshi
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Charles S Wright
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Laura Z Kreplin
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Samuel J Rodgers
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Ullhas K Moorthi
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Hetvi Gandhi
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Abhishek Patil
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Christina A Mitchell
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Srividya Iyer-Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia.
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton/Melbourne, VIC, 3800, Australia.
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC, 3800, Australia.
- Single Molecule Science, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
11
|
Wang Y, Ren L, Bai H, Jin Q, Zhang L. Exosome-Autophagy Crosstalk in Enveloped Virus Infection. Int J Mol Sci 2023; 24:10618. [PMID: 37445802 DOI: 10.3390/ijms241310618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Exosomes, which are extracellular vesicles (EVs) predominantly present in bodily fluids, participate in various physiological processes. Autophagy, an intracellular degradation mechanism, eliminates proteins and damaged organelles by forming double-membrane autophagosomes. These autophagosomes subsequently merge with lysosomes for target degradation. The interaction between autophagy and endosomal/exosomal pathways can occur at different stages, exerting significant influences on normal physiology and human diseases. The interplay between exosomes and the autophagy pathway is intricate. Exosomes exhibit a cytoprotective role by inducing intracellular autophagy, while autophagy modulates the biogenesis and degradation of exosomes. Research indicates that exosomes and autophagy contribute to the infection process of numerous enveloped viruses. Enveloped viruses, comprising viral nucleic acid, proteins, or virions, can be encapsulated within exosomes and transferred between cells via exosomal transport. Consequently, exosomes play a crucial role in the infection of certain viral diseases. This review presents recent findings on the interplay between exosomes and autophagy, as well as their implications in the infection of enveloped viruses, thereby offering valuable insights into the pathogenesis and vaccine research of enveloped virus infection.
Collapse
Affiliation(s)
- Yuqi Wang
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| | - Linzhu Ren
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| | - Haocheng Bai
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| | - Qing Jin
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| | - Liying Zhang
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| |
Collapse
|
12
|
Wilson B, Flett C, Gemperle J, Lawless C, Hartshorn M, Hinde E, Harrison T, Chastney M, Taylor S, Allen J, Norman JC, Zacharchenko T, Caswell PT. Proximity labelling identifies pro-migratory endocytic recycling cargo and machinery of the Rab4 and Rab11 families. J Cell Sci 2023; 136:jcs260468. [PMID: 37232246 PMCID: PMC10323252 DOI: 10.1242/jcs.260468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Endocytic recycling controls the return of internalised cargoes to the plasma membrane to coordinate their positioning, availability and downstream signalling. The Rab4 and Rab11 small GTPase families regulate distinct recycling routes, broadly classified as fast recycling from early endosomes (Rab4) and slow recycling from perinuclear recycling endosomes (Rab11), and both routes handle a broad range of overlapping cargoes to regulate cell behaviour. We adopted a proximity labelling approach, BioID, to identify and compare the protein complexes recruited by Rab4a, Rab11a and Rab25 (a Rab11 family member implicated in cancer aggressiveness), revealing statistically robust protein-protein interaction networks of both new and well-characterised cargoes and trafficking machinery in migratory cancer cells. Gene ontological analysis of these interconnected networks revealed that these endocytic recycling pathways are intrinsically connected to cell motility and cell adhesion. Using a knock-sideways relocalisation approach, we were further able to confirm novel links between Rab11, Rab25 and the ESCPE-1 and retromer multiprotein sorting complexes, and identify new endocytic recycling machinery associated with Rab4, Rab11 and Rab25 that regulates cancer cell migration in the 3D matrix.
Collapse
Affiliation(s)
- Beverley Wilson
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Chloe Flett
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jakub Gemperle
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Matthew Hartshorn
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Eleanor Hinde
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Tess Harrison
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Megan Chastney
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Sarah Taylor
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jennifer Allen
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jim C. Norman
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Thomas Zacharchenko
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Patrick T. Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
13
|
Ben Ahmed A, Lemaire Q, Scache J, Mariller C, Lefebvre T, Vercoutter-Edouart AS. O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells. Cells 2023; 12:1396. [PMID: 37408229 PMCID: PMC10216988 DOI: 10.3390/cells12101396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
The transport of proteins between the different cellular compartments and the cell surface is governed by the secretory pathway. Alternatively, unconventional secretion pathways have been described in mammalian cells, especially through multivesicular bodies and exosomes. These highly sophisticated biological processes rely on a wide variety of signaling and regulatory proteins that act sequentially and in a well-orchestrated manner to ensure the proper delivery of cargoes to their final destination. By modifying numerous proteins involved in the regulation of vesicular trafficking, post-translational modifications (PTMs) participate in the tight regulation of cargo transport in response to extracellular stimuli such as nutrient availability and stress. Among the PTMs, O-GlcNAcylation is the reversible addition of a single N-acetylglucosamine monosaccharide (GlcNAc) on serine or threonine residues of cytosolic, nuclear, and mitochondrial proteins. O-GlcNAc cycling is mediated by a single couple of enzymes: the O-GlcNAc transferase (OGT) which catalyzes the addition of O-GlcNAc onto proteins, and the O-GlcNAcase (OGA) which hydrolyses it. Here, we review the current knowledge on the emerging role of O-GlcNAc modification in the regulation of protein trafficking in mammalian cells, in classical and unconventional secretory pathways.
Collapse
|
14
|
Xiao D, Yao J, Gao X, Zhu KY. Clathrin-dependent endocytosis plays a critical role in larval and pupal development, and female oocyte production in the red flour beetle (Tribolium castaneum). PEST MANAGEMENT SCIENCE 2023; 79:1731-1742. [PMID: 36617731 DOI: 10.1002/ps.7348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/14/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clathrin-dependent endocytosis is a vesicular transport process by which cells take macromolecules from the extracellular space to the intracellular space. It plays important roles in various cellular functions, but its biological significance in insect development and reproduction has not been well studied. RESULTS We characterized and functionally analyzed four major clathrin-dependent endocytic pathway genes (TcChc, TcAP50, TcVhaSFD, TcRab7) in Tribolium castaneum. RNA interference (RNAi) by injecting double-stranded RNA (dsRNA) targeting each gene at three doses (50, 100, or 200 ng per insect) in 20-day-old larvae led to 100% larval mortality. When the expressions of TcChc, TcVhaSFD, and TcRab7 were suppressed by injecting their respective dsRNAs at each dose in 1-day-old pupae, the adults that emerged from the dsRNA-injected pupae were deformed, with the absence of wing development. The deformed adults died within 2 days after eclosion. When the expression of TcAP50 was suppressed by injecting its dsRNA into 1-day-old pupae, although no apparent deformed adults were observed, all the adults died within 35 days after eclosion. In addition, when the expressions of TcChc and TcVhaSFD were suppressed by injecting their respective dsRNAs at a reduced dose (10 ng per insect) in 5-day-old pupae, the ovarian development and oocyte production in the resultant females were completely inhibited. CONCLUSION Our results indicate that clathrin-dependent endocytosis is essential for insect development and reproduction. The results from this study can help researchers identify potential molecular targets for developing novel strategies for insect pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Da Xiao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| | - Jianxiu Yao
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
15
|
Yoshie M, Ohishi K, Ishikawa G, Tsuru A, Kusama K, Azumi M, Tamura K. Small GTP-binding protein Rap1 mediates EGF and HB-EGF signaling and modulates EGF receptor expression in HTR-8/SVneo extravillous trophoblast cells. Reprod Med Biol 2023; 22:e12537. [PMID: 37614815 PMCID: PMC10442520 DOI: 10.1002/rmb2.12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Purpose Extravillous trophoblasts (EVTs) invade the endometrium to establish a fetomaternal interaction during pregnancy. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) stimulate EVT invasion by binding to the EGF receptor (EGFR). We examined the role of the small GTP-binding protein Rap1 in EGF- and HB-EGF-stimulated EVT invasion. Methods Expression of Rap1 in the first-trimester placenta was examined by immunohistochemistry. Effect of EGF or HB-EGF on Rap1 activation (GTP-Rap1) and Rap1 knockdown on invasion was assessed in EVT cell line (HTR-8/SVneo). In addition, effect of Rap1 knockdown and Rap1GAP (a Rap1 inactivator) overexpression on the activation of EGF signaling and EGFR expression were examined. Results Rap1 was expressed by EVTs, villous cytotrophoblasts, and syncytiotrophoblasts in the placenta. EGF and HB-EGF activated Rap1 and promoted invasion of HTR-8/SVneo, and these effects were inhibited by Rap1 knockdown. The EGF- and HB-EGF-induced phosphorylation of AKT, ERK1/2, p38MAPK, and Src was inhibited by Rap1 knockdown. Furthermore, the knockdown of Rap1 reduced the EGFR protein level. Overexpression of Rap1GAP repressed EGF- and HB-EGF-induced Rap1 activation and reduced EGFR expression. Conclusion Rap1 may function as a mediator of EGF and HB-EGF signaling pathways and can modulate EGFR expression in EVTs during placental development.
Collapse
Affiliation(s)
- Mikihiro Yoshie
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kensuke Ohishi
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Gen Ishikawa
- Department of ObstetricsMiyagi Children's HospitalSendaiJapan
| | - Atsuya Tsuru
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kazuya Kusama
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Mana Azumi
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kazuhiro Tamura
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| |
Collapse
|
16
|
Horzum U, Yanik H, Taskiran EZ, Esendagli G. Effector Th1 cells under PD-1 and CTLA-4 checkpoint blockade abrogate the upregulation of multiple inhibitory receptors and by-pass exhaustion. Immunology 2022; 167:640-650. [PMID: 36053975 DOI: 10.1111/imm.13560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) immunotherapy relies on the restoration of T-cell functions. The ICI receptors are not only found on exhausted T cells but also upregulated upon activation and reach high levels on effector T cells. In an ex vivo model, this study explored the consequences of PD-1 and cytotoxic T-lymphocyte antigen (CTLA-4) blockade applied during specific time frames of T-cell stimulation that coincide with distinct functional phases in type 1 helper T (Th1) cells. When applied at an early stimulation stage, the checkpoint blockade interfered with the upregulation of multiple inhibitory receptors such as PD-1, LAG3, TIM-3 and CTLA-4. Moreover, extension of the blockade period restricted the hyporesponsiveness in T cells. Alternatively, a short-term ICI treatment was advantageous when applied at late time frames of Th1 cell stimulation. Here, a transition phase from effector to exhausted state, which coincided with the late time frames of Th1 stimulation, was clearly determined together with the transcriptomics data demonstrating the initiation of significant alterations in metabolic pathways, genetic information processes, effector and exhaustion specific pathways. Applied in this transition phase, PD-1 and/or CTLA-4 blockade downregulated the inhibitory receptors which were already present on the effector Th1 cells, potentially through endocytic pathways. Therefore, the efficacy of ICI therapy was modulated by the functional status of T cells and can be improved by modifying the timing and duration of PD-1 and CTLA-4 blockade. In conclusion, the ICI therapy not only supports the reactivation of T cells but can also constrain de novo exhaustion.
Collapse
Affiliation(s)
- Utku Horzum
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Hamdullah Yanik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Ekim Z Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
17
|
Salimi-Moosavi H, Soto M. A Non-radiometric Approach to Determine Tissue Vascular Blood Volume in Biodistribution Studies. AAPS J 2022; 24:116. [PMID: 36376552 DOI: 10.1208/s12248-022-00770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this research was to develop a reliable non-radiometric method to measure the residual blood in tissue without the need for perfusion or radiometric measurements in biodistribution studies. It was found that the perfusion method not only was ineffective in removing blood from tissue, but also introduced additional variability in the determination of tissue drug exposure and was not reproducible across studies. In addition, the use of hemoglobin as an endogenous protein and biomarker for tissue blood content was studied and it was found that hemoglobin measurement in tissue was not a reliable and effective approach for determination of residual blood level in tissue. To evaluate an alternative method for addressing the tissue blood level in biodistribution studies, animals were dosed with a Residual Blood Determinant Reagent (RBDR) 5 min prior to tissue harvesting. The level of RBDR, an exogenous protein, was measured in whole blood homogenate and in tissue lysate. Based on the level of the RBDR, the vascular blood volume (VBV) in tissue was calculated and then the tissue exposures were corrected based on the blood volumes. The tissue VBVs measured by the RBDR method were comparable with the literature values obtained by radiometric measurements.
Collapse
Affiliation(s)
- Hossein Salimi-Moosavi
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California, 91320, USA.
| | - Marcus Soto
- Pharmacokinetics & Drug Metabolism, Amgen Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California, 91320, USA
| |
Collapse
|
18
|
Kyumurkov A, Bouin AP, Boissan M, Manet S, Baschieri F, Proponnet-Guerault M, Balland M, Destaing O, Régent-Kloeckner M, Calmel C, Nicolas A, Waharte F, Chavrier P, Montagnac G, Planus E, Albiges-Rizo C. Force tuning through regulation of clathrin-dependent integrin endocytosis. J Cell Biol 2022; 222:213549. [PMID: 36250940 PMCID: PMC9579986 DOI: 10.1083/jcb.202004025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less documented. We identified ICAP-1 as an integrin inhibitor involved in mechanotransduction by co-working with NME2 to control clathrin-mediated endocytosis of integrins at the edge of focal adhesions (FA). Loss of ICAP-1 enables β3-integrin-mediated force generation independently of β1 integrin. β3-integrin-mediated forces were associated with a decrease in β3 integrin dynamics stemming from their reduced diffusion within adhesion sites and slow turnover of FA. The decrease in β3 integrin dynamics correlated with a defect in integrin endocytosis. ICAP-1 acts as an adaptor for clathrin-dependent endocytosis of integrins. ICAP-1 controls integrin endocytosis by interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an inhibitor is an unprecedented mechanism to tune forces at FA.
Collapse
Affiliation(s)
- Alexander Kyumurkov
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Anne-Pascale Bouin
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Mathieu Boissan
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Sandra Manet
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | | | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, UMR CNRS 5588, University Grenoble Alpes, Grenoble, France
| | - Olivier Destaing
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Myriam Régent-Kloeckner
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Calmel
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Alice Nicolas
- University Grenoble Alpes, CNRS, CEA/LETIMinatec, Grenoble Institute of Technology, Microelectronics Technology Laboratory, Grenoble, France
| | - François Waharte
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Philippe Chavrier
- Institut Curie, UMR144, Université de Recherche Paris Sciences et Lettres, Centre Universitaire, Paris, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Emmanuelle Planus
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France,Correspondence to Emmanuelle Planus: mailto:
| | - Corinne Albiges-Rizo
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France,Corinne Albiges-Rizo:
| |
Collapse
|
19
|
Chandrasekar S, Kuipa S, Vargas AI, Ignatova T, Rotkin SV, Jedlicka SS. Cell cycle-dependent endocytosis of DNA-wrapped single-walled carbon nanotubes by neural progenitor cells. BIOPHYSICAL REPORTS 2022; 2:100061. [PMID: 36425331 PMCID: PMC9680777 DOI: 10.1016/j.bpr.2022.100061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/06/2022] [Accepted: 06/08/2022] [Indexed: 06/16/2023]
Abstract
While exposure of C17.2 neural progenitor cells (NPCs) to nanomolar concentrations of carbon nanotubes (NTs) yields evidence of cellular substructure reorganization and alteration of cell division and differentiation, the mechanisms of NT entry are not understood. This study examines the entry modes of (GT)20 DNA-wrapped single-walled carbon nanotubes (SWCNTs) into NPCs. Several endocytic mechanisms were examined for responsibility in nanomaterial uptake and connections to alterations in cell development via cell-cycle regulation. Chemical cell-cycle arrest agents were used to synchronize NPCs in early G1, late G1/S, and G2/M phases at rates (>80%) aligned with previously documented levels of synchrony for stem cells. Synchronization led to the highest reduction in SWCNT internalization during the G1/S transition of the cell cycle. Concurrently, known inhibitors of endocytosis were used to gain control over established endocytic machineries (receptor-mediated endocytosis (RME), macropinocytosis (MP), and clathrin-independent endocytosis (CIE)), which resulted in a decrease in uptake of SWCNTs across the board in comparison with the control. The outcome implicated RME as the primary mechanism of uptake while suggesting that other endocytic mechanisms, though still fractionally responsible, are not central to SWCNT uptake and can be supplemented by RME when compromised. Thereby, endocytosis of nanomaterials was shown to have a dependency on cell-cycle progression in NPCs.
Collapse
Affiliation(s)
- Swetha Chandrasekar
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Sophia Kuipa
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| | - Ana I. Vargas
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| | - Tetyana Ignatova
- Joint School of Nanoscience and Nanoengineering, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Slava V. Rotkin
- Department of Engineering Science & Mechanics, Materials Research Institute, The Pennsylvania State University, Millennium Science Complex, University Park, Pennsylvania
| | - Sabrina S. Jedlicka
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
20
|
Kazan JM, Pollato-Blanco A, Lukacs GL, Pause A. Measuring EGFR plasma membrane density, stability, internalization, and recycling in alive adherent cells by cell surface ELISA. STAR Protoc 2022; 3:101475. [PMID: 35755125 PMCID: PMC9213824 DOI: 10.1016/j.xpro.2022.101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jalal M Kazan
- Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ariadna Pollato-Blanco
- Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Gergely L Lukacs
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada.
| | - Arnim Pause
- Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
21
|
Elsakka EGE, Mokhtar MM, Hegazy M, Ismail A, Doghish AS. Megalin, a multi-ligand endocytic receptor, and its participation in renal function and diseases: A review. Life Sci 2022; 308:120923. [PMID: 36049529 DOI: 10.1016/j.lfs.2022.120923] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
The endocytosis mechanism is a complicated system that is essential for cell signaling and survival. Megalin, a membrane-associated endocytic receptor, and its related proteins such as cubilin, the neonatal Fc receptor for IgG, and NaPi-IIa are important in receptors-mediated endocytosis. Physiologically, megalin uptakes plasma vitamins and proteins from primary urine, preventing their loss. It also facilitates tubular retrieval of solutes and endogenous components that may be involved in modulation and recovery from kidney injuries. Moreover, megalin is responsible for endocytosis of xenobiotics and drugs in renal tubules, increasing their half-life and/or their toxicity. Fluctuations in megalin expression and/or functionality due to changes in its regulatory mechanisms are associated with some sort of kidney injury. Also, it's an important component of several pathological conditions, including diabetic nephropathy and Dent disease. Thus, exploring the fundamental role of megalin in the kidney might help in the protection and/or treatment of multiple kidney-related diseases. Hence, this review aimed to explore the physiological roles of megalin in the kidney and their implications for kidney-related injuries.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
22
|
Molon B, Liboni C, Viola A. CD28 and chemokine receptors: Signalling amplifiers at the immunological synapse. Front Immunol 2022; 13:938004. [PMID: 35983040 PMCID: PMC9379342 DOI: 10.3389/fimmu.2022.938004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023] Open
Abstract
T cells are master regulators of the immune response tuning, among others, B cells, macrophages and NK cells. To exert their functions requiring high sensibility and specificity, T cells need to integrate different stimuli from the surrounding microenvironment. A finely tuned signalling compartmentalization orchestrated in dynamic platforms is an essential requirement for the proper and efficient response of these cells to distinct triggers. During years, several studies have depicted the pivotal role of the cytoskeleton and lipid microdomains in controlling signalling compartmentalization during T cell activation and functions. Here, we discuss mechanisms responsible for signalling amplification and compartmentalization in T cell activation, focusing on the role of CD28, chemokine receptors and the actin cytoskeleton. We also take into account the detrimental effect of mutations carried by distinct signalling proteins giving rise to syndromes characterized by defects in T cell functionality.
Collapse
Affiliation(s)
- Barbara Molon
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Barbara Molon,
| | - Cristina Liboni
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonella Viola
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
23
|
Castroflorio E, Pérez Berná AJ, López-Márquez A, Badosa C, Loza-Alvarez P, Roldán M, Jiménez-Mallebrera C. The Capillary Morphogenesis Gene 2 Triggers the Intracellular Hallmarks of Collagen VI-Related Muscular Dystrophy. Int J Mol Sci 2022; 23:ijms23147651. [PMID: 35886995 PMCID: PMC9322809 DOI: 10.3390/ijms23147651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen VI-related disorders (COL6-RD) represent a severe form of congenital disease for which there is no treatment. Dominant-negative pathogenic variants in the genes encoding α chains of collagen VI are the main cause of COL6-RD. Here we report that patient-derived fibroblasts carrying a common single nucleotide variant mutation are unable to build the extracellular collagen VI network. This correlates with the intracellular accumulation of endosomes and lysosomes triggered by the increased phosphorylation of the collagen VI receptor CMG2. Notably, using a CRISPR-Cas9 gene-editing tool to silence the dominant-negative mutation in patients’ cells, we rescued the normal extracellular collagen VI network, CMG2 phosphorylation levels, and the accumulation of endosomes and lysosomes. Our findings reveal an unanticipated role of CMG2 in regulating endosomal and lysosomal homeostasis and suggest that mutated collagen VI dysregulates the intracellular environment in fibroblasts in collagen VI-related muscular dystrophy.
Collapse
Affiliation(s)
- Enrico Castroflorio
- ICFO-The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain;
- Correspondence: (E.C.); (C.J.-M.)
| | | | - Arístides López-Márquez
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (A.L.-M.); (C.B.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
- Centro de Investigaciones Biomédicas en Red de Enfermedades Rara (CIBERER), 28029 Madrid, Spain
| | - Carmen Badosa
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (A.L.-M.); (C.B.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
| | - Pablo Loza-Alvarez
- ICFO-The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain;
| | - Mónica Roldán
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
- Unitat de Microscòpia Confocal i Imatge Cellular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malaties Rares (IPER), Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Cecilia Jiménez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (A.L.-M.); (C.B.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
- Centro de Investigaciones Biomédicas en Red de Enfermedades Rara (CIBERER), 28029 Madrid, Spain
- Department of Genetics, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (E.C.); (C.J.-M.)
| |
Collapse
|
24
|
Gombodorj N, Azuma Y, Yokobori T, Erkhem-Ochir B, Kosaka T, Ohtaki Y, Nakazawa S, Mogi A, Yajima T, Kuwano H, Saeki H, Shirabe K. RAB11A Expression Is Associated With Cancer Aggressiveness Through Regulation of FGFR-Signaling in Lung Squamous Cell Carcinoma. Ann Surg Oncol 2022; 29:7149-7162. [DOI: 10.1245/s10434-022-11833-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
|
25
|
Guo SK, Sodt AJ, Johnson ME. Large self-assembled clathrin lattices spontaneously disassemble without sufficient adaptor proteins. PLoS Comput Biol 2022; 18:e1009969. [PMID: 35312692 PMCID: PMC8979592 DOI: 10.1371/journal.pcbi.1009969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/31/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Clathrin-coated structures must assemble on cell membranes to internalize receptors, with the clathrin protein only linked to the membrane via adaptor proteins. These structures can grow surprisingly large, containing over 20 clathrin, yet they often fail to form productive vesicles, instead aborting and disassembling. We show that clathrin structures of this size can both form and disassemble spontaneously when adaptor protein availability is low, despite high abundance of clathrin. Here, we combine recent in vitro kinetic measurements with microscopic reaction-diffusion simulations and theory to differentiate mechanisms of stable vs unstable clathrin assembly on membranes. While in vitro conditions drive assembly of robust, stable lattices, we show that concentrations, geometry, and dimensional reduction in physiologic-like conditions do not support nucleation if only the key adaptor AP-2 is included, due to its insufficient abundance. Nucleation requires a stoichiometry of adaptor to clathrin that exceeds 1:1, meaning additional adaptor types are necessary to form lattices successfully and efficiently. We show that the critical nucleus contains ~25 clathrin, remarkably similar to sizes of the transient and abortive structures observed in vivo. Lastly, we quantify the cost of bending the membrane under our curved clathrin lattices using a continuum membrane model. We find that the cost of bending the membrane could be largely offset by the energetic benefit of forming curved rather than flat structures, with numbers comparable to experiments. Our model predicts how adaptor density can tune clathrin-coated structures from the transient to the stable, showing that active energy consumption is therefore not required for lattice disassembly or remodeling during growth, which is a critical advance towards predicting productive vesicle formation.
Collapse
Affiliation(s)
- Si-Kao Guo
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alexander J. Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Margaret E. Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Redpath G, Deo N. Serotonin: an overlooked regulator of endocytosis and endosomal sorting? Biol Open 2022; 11:bio059057. [PMID: 35076063 PMCID: PMC8801889 DOI: 10.1242/bio.059057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
Serotonin is a neurotransmitter and a hormone that is typically associated with regulating our mood. However, the serotonin transporter and receptors are expressed throughout the body, highlighting the much broader, systemic role of serotonin in regulating human physiology. A substantial body of data strongly implicates serotonin as a fundamental regulator of endocytosis and endocytic sorting. Serotonin has the potential to enhance endocytosis through three distinct mechanisms - serotonin signalling, serotonylation and insertion into the plasma membrane - although the interplay and relationship between these mechanisms has not yet been explored. Endocytosis is central to the cellular response to the extracellular environment, controlling receptor distribution on the plasma membrane to modulate signalling, neurotransmitter release and uptake, circulating protein and lipid cargo uptake, and amino acid internalisation for cell proliferation. Uncovering the range of cellular and physiological circumstances in which serotonin regulates endocytosis is of great interest for our understanding of how serotonin regulates mood, and also the fundamental understanding of endocytosis and its regulation throughout the body. This article has an associated Future Leader to Watch interview with the first author of the paper.
Collapse
Affiliation(s)
- Gregory Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| | - Nikita Deo
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
27
|
Acconcia F, Fiocchetti M, Busonero C, Fernandez VS, Montalesi E, Cipolletti M, Pallottini V, Marino M. The extra-nuclear interactome of the estrogen receptors: implications for physiological functions. Mol Cell Endocrinol 2021; 538:111452. [PMID: 34500041 DOI: 10.1016/j.mce.2021.111452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Over the last decades, a great body of evidence has defined a novel view of the cellular mechanism of action of the steroid hormone 17β-estradiol (E2) through its estrogen receptors (i.e., ERα and ERβ). It is now clear that the E2-activated ERs work both as transcription factors and extra-nuclear plasma membrane-localized receptors. The activation of a plethora of signal transduction cascades follows the E2-dependent engagement of plasma membrane-localized ERs and is required for the coordination of gene expression, which ultimately controls the occurrence of the pleiotropic effects of E2. The definition of the molecular mechanisms by which the ERs locate at the cell surface (i.e., palmitoylation and protein association) determined the quest for understanding the specificity of the extra-nuclear E2 signaling. The use of mice models lacking the plasma membrane ERα localization unveiled that the extra-nuclear E2 signaling is operational in vivo but tissue-specific. However, the underlying molecular details for such ERs signaling diversity in the perspective of the E2 physiological functions in the different cellular contexts are still not understood. Therefore, to gain insights into the tissue specificity of the extra-nuclear E2 signaling to physiological functions, here we reviewed the known ERs extra-nuclear interactors and tried to extrapolate from available databases the ERα and ERβ extra-nuclear interactomes. Based on literature data, it is possible to conclude that by specifically binding to extra-nuclear localized proteins in different sub-cellular compartments, the ERs fine-tune their molecular activities. Moreover, we report that the context-dependent diversity of the ERs-mediated extra-nuclear E2 actions can be ascribed to the great flexibility of the physical structures of ERs and the spatial-temporal organization of the logistics of the cells (i.e., the endocytic compartments). Finally, we provide lists of proteins belonging to the potential ERα and ERβ extra-nuclear interactomes and propose that the systematic experimental definition of the ERs extra-nuclear interactomes in different tissues represents the next step for the research in the ERs field. Such characterization will be fundamental for the identification of novel druggable targets for the innovative treatment of ERs-related diseases.
Collapse
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| | - Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Claudia Busonero
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Virginia Solar Fernandez
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Emiliano Montalesi
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Valentina Pallottini
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
28
|
Song J, Liu Y, Wan J, Zhao GN, Wang JC, Dai Z, Hu S, Yang L, Liu Z, Fu Y, Dong E, Tang YD. SIMPLE Is an Endosomal Regulator That Protects Against NAFLD by Targeting the Lysosomal Degradation of EGFR. Hepatology 2021; 74:3091-3109. [PMID: 34320238 DOI: 10.1002/hep.32075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS NAFLD has become a tremendous burden for public health; however, there is no drug for NAFLD therapy at present. Impaired endo-lysosome-mediated protein degradation is observed in a variety of metabolic disorders, such as atherosclerosis, type 2 diabetes mellitus, and NAFLD. Small integral membrane protein of lysosome/late endosome (SIMPLE) is a regulator of endosome-to-lysosome trafficking and cell signaling, but the role that SIMPLE plays in NAFLD progression remains unknown. Here we investigated SIMPLE function in NAFLD development and sophisticated mechanism therein. APPROACH AND RESULTS This study found that in vitro knockdown of SIMPLE significantly aggravated lipid accumulation and inflammation in hepatocytes treated with metabolic stimulation. Consistently, in vivo experiments showed that liver-specific Simple-knockout (Simple-HKO) mice exhibited more severe high-fat diet (HFD)-induced, high-fat-high-cholesterol diet (HFHC)-induced, and methionine-choline-deficient diet (MCD)-induced steatosis, glucose intolerance, inflammation, and fibrosis than those fed with normal chow (NC) diet. Meanwhile, RNA-sequencing demonstrated the up-regulated signaling pathways and signature genes involved in lipid metabolism, inflammation, and fibrosis in Simple-HKO mice compared with control mice under metabolic stress. Mechanically, we found SIMPLE directly interact with epidermal growth factor receptor (EGFR). SIMPLE deficiency results in dysregulated degradation of EGFR, subsequently hyperactivated EGFR phosphorylation, thus exaggerating NAFLD development. Moreover, we demonstrated that using EGFR inhibitor or silencing EGFR expression could ameliorate lipid accumulation induced by the knockdown of SIMPLE. CONCLUSIONS SIMPLE ameliorated NASH by prompting EGFR degradation and can be a potential therapeutic candidate for NASH.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupeng Liu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juan Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guang-Nian Zhao
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Sha Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Erdan Dong
- The Institute of Cardiovascular Sciences, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China.,Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
29
|
The Therapeutic Effects of Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells on Scleroderma. Tissue Eng Regen Med 2021; 19:141-150. [PMID: 34784013 PMCID: PMC8782977 DOI: 10.1007/s13770-021-00405-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Scleroderma is a multisystem disease in which tissue fibrosis is caused by inflammation and vascular damage. The mortality of scleroderma has remained high due to a lack of effective treatments. However, exosomes derived from human umbilical cord mesenchymal stem cells (HUMSCs)-Ex have been regarded as potential treatments for various autoimmune diseases, and may also act as candidates for treating scleroderma. Methods: Mice with scleroderma received a single 50 μg HUMSCs-Ex. HUMSCs-Ex was characterized using transmission electron microscopy, nanoparticle tracking analysis and nanoflow cytometry. The therapeutic efficacy was assessed using histopathology, immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay and western blot. Results: HUMSCs-Ex ameliorated the deposition of extracellular matrix and suppressed the epithelial-mesenchymal transition process, and the effects lasted at least three weeks. In addition, HUMSCs-Ex promoted M1 macrophage polarization and inhibited M2 macrophage polarization, leading to the restoration of the balance of M1/M2 macrophages. Conclusion: We investigated the potential antifibrotic and anti-inflammatory effects of HUMSCs-Ex in a bleomycin-induced mouse model of scleroderma. So HUMSCs-Ex could be considered as a candidate therapy for scleroderma. Supplementary Information The online version contains supplementary material available at 10.1007/s13770-021-00405-5.
Collapse
|
30
|
Wang D, Liu S, Wang G. Establishment of an Endocytosis-Related Prognostic Signature for Patients With Low-Grade Glioma. Front Genet 2021; 12:709666. [PMID: 34552618 PMCID: PMC8450508 DOI: 10.3389/fgene.2021.709666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background Low-grade glioma (LGG) is a heterogeneous tumor that might develop into high-grade malignant glioma, which markedly reduces patient survival time. Endocytosis is a cellular process responsible for the internalization of cell surface proteins or external materials into the cytosol. Dysregulated endocytic pathways have been linked to all steps of oncogenesis, from initial transformation to late invasion and metastasis. However, endocytosis-related gene (ERG) signatures have not been used to study the correlations between endocytosis and prognosis in cancer. Therefore, it is essential to develop a prognostic model for LGG based on the expression profiles of ERGs. Methods The Cancer Genome Atlas and the Genotype-Tissue Expression database were used to identify differentially expressed ERGs in LGG patients. Gene ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene set enrichment analysis methodologies were adopted for functional analysis. A protein-protein interaction (PPI) network was constructed and hub genes were identified based on the Search Tool for the Retrieval of Interacting Proteins database. Univariate and multivariate Cox regression analyses were used to develop an ERG signature to predict the overall survival (OS) of LGG patients. Finally, the association between the ERG signature and gene mutation status was further analyzed. Results Sixty-two ERGs showed distinct mRNA expression patterns between normal brain tissues and LGG tissues. Functional analysis indicated that these ERGs were strikingly enriched in endosomal trafficking pathways. The PPI network indicated that EGFR was the most central protein. We then built a 29-gene signature, dividing patients into high-risk and low-risk groups with significantly different OS times. The prognostic performance of the 29-gene signature was validated in another LGG cohort. Additionally, we found that the mutation scores calculated based on the TTN, PIK3CA, NF1, and IDH1 mutation status were significantly correlated with the endocytosis-related prognostic signature. Finally, a clinical nomogram with a concordance index of 0.881 predicted the survival probability of LGG patients by integrating clinicopathologic features and ERG signatures. Conclusion Our ERG-based prediction models could serve as an independent prognostic tool to accurately predict the outcomes of LGG.
Collapse
Affiliation(s)
- Dawei Wang
- Shandong Academy of Clinical Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Academy of Clinical Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiguang Liu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangxin Wang
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
31
|
Kirichenko EY, Skatchkov SN, Ermakov AM. Structure and Functions of Gap Junctions and Their Constituent Connexins in the Mammalian CNS. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2021; 15:107-119. [PMID: 34512926 PMCID: PMC8432592 DOI: 10.1134/s1990747821020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Numerous data obtained in the last 20 years indicate that all parts of the mature central nervous system, from the retina and olfactory bulb to the spinal cord and brain, contain cells connected by gap junctions (GJs). The morphological basis of the GJs is a group of joined membrane hemichannels called connexons, the subunit of each connexon is the protein connexin. In the central nervous system, connexins show specificity and certain types of them are expressed either in neurons or in glial cells. Connexins and GJs of neurons, combining certain types of inhibitory hippocampal and neocortical neuronal ensembles, provide synchronization of local impulse and rhythmic activity, thalamocortical conduction, control of excitatory connections, which reflects their important role in the processes of perception, concentration of attention and consolidation of memory, both on the cellular and at the system level. Connexins of glial cells are ubiquitously expressed in the brain, and the GJs formed by them provide molecular signaling and metabolic cooperation and play a certain role in the processes of neuronal migration during brain development, myelination, tissue homeostasis, and apoptosis. At the same time, mutations in the genes of glial connexins, as well as a deficiency of these proteins, are associated with such diseases as congenital neuropathies, hearing loss, skin diseases, and brain tumors. This review summarizes the existing data of numerous molecular, electrophysiological, pharmacological, and morphological studies aimed at progress in the study of the physiological and pathophysiological significance of glial and neuronal connexins and GJs for the central nervous system.
Collapse
Affiliation(s)
- E Yu Kirichenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090 Russia
| | - S N Skatchkov
- Department of Biochemistry, School of Medicine, P.O. Box 60327, Universidad Central del Caribe, Bayamón, PR, 00960-6032 USA.,Department of Physiology, School of Medicine, P.O. Box 60327, Universidad Central del Caribe, Bayamón, PR, 00960-6032 USA
| | - A M Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, 344003 Russia
| |
Collapse
|
32
|
Sigismund S, Lanzetti L, Scita G, Di Fiore PP. Endocytosis in the context-dependent regulation of individual and collective cell properties. Nat Rev Mol Cell Biol 2021; 22:625-643. [PMID: 34075221 DOI: 10.1038/s41580-021-00375-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Endocytosis allows cells to transport particles and molecules across the plasma membrane. In addition, it is involved in the termination of signalling through receptor downmodulation and degradation. This traditional outlook has been substantially modified in recent years by discoveries that endocytosis and subsequent trafficking routes have a profound impact on the positive regulation and propagation of signals, being key for the spatiotemporal regulation of signal transmission in cells. Accordingly, endocytosis and membrane trafficking regulate virtually every aspect of cell physiology and are frequently subverted in pathological conditions. Two key aspects of endocytic control over signalling are coming into focus: context-dependency and long-range effects. First, endocytic-regulated outputs are not stereotyped but heavily dependent on the cell-specific regulation of endocytic networks. Second, endocytic regulation has an impact not only on individual cells but also on the behaviour of cellular collectives. Herein, we will discuss recent advancements in these areas, highlighting how endocytic trafficking impacts complex cell properties, including cell polarity and collective cell migration, and the relevance of these mechanisms to disease, in particular cancer.
Collapse
Affiliation(s)
- Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Giorgio Scita
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy. .,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
33
|
Metz C, Oyanadel C, Jung J, Retamal C, Cancino J, Barra J, Venegas J, Du G, Soza A, González A. Phosphatidic acid-PKA signaling regulates p38 and ERK1/2 functions in ligand-independent EGFR endocytosis. Traffic 2021; 22:345-361. [PMID: 34431177 DOI: 10.1111/tra.12812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
Ligand-independent epidermal growth factor receptor (EGFR) endocytosis is inducible by a variety of stress conditions converging upon p38 kinase. A less known pathway involves phosphatidic acid (PA) signaling toward the activation of type 4 phosphodiesterases (PDE4) that decrease cAMP levels and protein kinase A (PKA) activity. This PA/PDE4/PKA pathway is triggered with propranolol used to inhibit PA hydrolysis and induces clathrin-dependent and clathrin-independent endocytosis, followed by reversible accumulation of EGFR in recycling endosomes. Here we give further evidence of this signaling pathway using biosensors of PA, cAMP, and PKA in live cells and then show that it activates p38 and ERK1/2 downstream the PKA inhibition. Clathrin-silencing and IN/SUR experiments involved the activity of p38 in the clathrin-dependent route, while ERK1/2 mediates clathrin-independent EGFR endocytosis. The PA/PDE4/PKA pathway selectively increases the EGFR endocytic rate without affecting LDLR and TfR constitute endocytosis. This selectiveness is probably because of EGFR phosphorylation, as detected in Th1046/1047 and Ser669 residues. The EGFR accumulates at perinuclear recycling endosomes colocalizing with TfR, fluorescent transferrin, and Rab11, while a small proportion distributes to Alix-endosomes. A non-selective recycling arrest includes LDLR and TfR in a reversible manner. The PA/PDE4/PKA pathway involving both p38 and ERK1/2 expands the possibilities of EGFR transmodulation and interference in cancer.
Collapse
Affiliation(s)
- Claudia Metz
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Oyanadel
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Juan Jung
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Retamal
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jonathan Barra
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jaime Venegas
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Andrea Soza
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| |
Collapse
|
34
|
Cerniello FM, Silva MG, Carretero OA, Gironacci MM. Mas receptor is translocated to the nucleus upon agonist stimulation in brainstem neurons from spontaneously hypertensive rats but not normotensive rats. Cardiovasc Res 2021; 116:1995-2008. [PMID: 31825460 DOI: 10.1093/cvr/cvz332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/31/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
AIMS Activation of the angiotensin (Ang)-(1-7)/Mas receptor (R) axis protects from sympathetic overactivity. Endocytic trafficking is an essential process that regulates receptor (R) function and its ultimate cellular responses. We investigated whether the blunted responses to Ang-(1-7) in hypertensive rats are associated to an alteration in MasR trafficking. METHODS AND RESULTS Brainstem neurons from Wistar-Kyoto (WKY) or spontaneously hypertensive rats (SHRs) were investigated for (i) Ang-(1-7) levels and binding and MasR expression, (ii) Ang-(1-7) responses (arachidonic acid and nitric oxide release and Akt and ERK1/2 phosphorylation), and (iii) MasR trafficking. Ang-(1-7) was determined by radioimmunoassay. MasR expression and functionality were evaluated by western blot and binding assays. MasR trafficking was evaluated by immunofluorescence. Ang-(1-7) treatment induced an increase in nitric oxide and arachidonic acid release and ERK1/2 and Akt phosphorylation in WKY neurons but did not have an effect in SHR neurons. Although SHR neurons showed greater MasR expression, Ang-(1-7)-elicited responses were substantially diminished presumably due to decreased Ang-(1-7) endogenous levels concomitant with impaired binding to its receptor. Through immunocolocalization studies, we evidenced that upon Ang-(1-7) stimulation MasRs were internalized through clathrin-coated pits and caveolae into early endosomes and slowly recycled back to the plasma membrane. However, the fraction of internalized MasRs into early endosomes was larger and the fraction of MasRs recycled back to the plasma membrane was smaller in SHR than in WKY neurons. Surprisingly, in SHR neurons but not in WKY neurons, Ang-(1-7) induced MasR translocation to the nucleus. Nuclear MasR expression and Ang-(1-7) levels were significantly greater in the nuclei of Ang-(1-7)-stimulated SHR neurons, indicating that the MasR is translocated with its ligand bound to it. CONCLUSION MasRs display differential trafficking in brainstem neurons from SHRs, which may contribute to the impaired responses to Ang-(1-7).
Collapse
Affiliation(s)
- Flavia M Cerniello
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IQUIFIB (UBA-CONICET), Dpto. Química Biológica, Junín 956, 1113, Buenos Aires, Argentina
| | - Mauro G Silva
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IQUIFIB (UBA-CONICET), Dpto. Química Biológica, Junín 956, 1113, Buenos Aires, Argentina
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, USA
| | - Mariela M Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IQUIFIB (UBA-CONICET), Dpto. Química Biológica, Junín 956, 1113, Buenos Aires, Argentina
| |
Collapse
|
35
|
May V, Johnson GC, Hammack SE, Braas KM, Parsons RL. PAC1 Receptor Internalization and Endosomal MEK/ERK Activation Is Essential for PACAP-Mediated Neuronal Excitability. J Mol Neurosci 2021; 71:1536-1542. [PMID: 33675454 PMCID: PMC8450765 DOI: 10.1007/s12031-021-01821-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) activation of PAC1 receptors (Adcyap1r1) can significantly increase the excitability of diverse neurons through differential mechanisms. For guinea pig cardiac neurons, the modulation of excitability can be mediated in part by PAC1 receptor plasma membrane G protein-dependent activation of adenylyl cyclase and downstream signaling cascades. By contrast, PAC1 receptor-mediated excitability of hippocampal dentate gyrus granule cells appears independent of membrane-delimited AC/cAMP/PKA and PLC/PKC signaling. For both neuronal types, there is mechanistic convergence demonstrating that endosomal PAC1 receptor signaling has prominent roles. In these models, neuronal exposure to Pitstop2 to inhibit β-arrestin/clathrin-mediated PAC1 receptor internalization eliminates PACAP modulation of excitability. β-arrestin is a scaffold for a number of effectors especially MEK/ERK and notably, paradigms that inhibit PAC1 receptor endosome formation and ERK signaling also blunt the PACAP-induced increase in excitability. Detailed PAC1 receptor internalization and endosomal ERK signaling mechanisms have been confirmed in HEK PAC1R-EGFP cells and shown to be long lasting which appear to recapitulate the sustained electrophysiological responses. Thus, PAC1 receptor internalization/endosomal recruitment efficiently and efficaciously activates MEK/ERK signaling and appears to represent a singular and critical common denominator in regulating neuronal excitability by PACAP.
Collapse
Affiliation(s)
- Victor May
- Departmental of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Gregory C Johnson
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Karen M Braas
- Departmental of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| | - Rodney L Parsons
- Departmental of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
36
|
Havrdová M, Urbančič I, Bartoň Tománková K, Malina L, Štrancar J, Bourlinos AB. Self-Targeting of Carbon Dots into the Cell Nucleus: Diverse Mechanisms of Toxicity in NIH/3T3 and L929 Cells. Int J Mol Sci 2021; 22:ijms22115608. [PMID: 34070594 PMCID: PMC8198156 DOI: 10.3390/ijms22115608] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
It is important to understand the nanomaterials intracellular trafficking and distribution and investigate their targeting into the nuclear area in the living cells. In our previous study, we firstly observed penetration of nonmodified positively charged carbon dots decorated with quaternary ammonium groups (QCDs) into the nucleus of mouse NIH/3T3 fibroblasts. Thus, in this work, we focused on deeper study of QCDs distribution inside two healthy mouse NIH/3T3 and L929 cell lines by fluorescence microspectroscopy and performed a comprehensive cytotoxic and DNA damage measurements. Real-time penetration of QCDs across the plasma cell membrane was recorded, concentration dependent uptake was determined and endocytic pathways were characterized. We found out that the QCDs concentration of 200 µg/mL is close to saturation and subsequently, NIH/3T3 had a different cell cycle profile, however, no significant changes in viability (not even in the case with QCDs in the nuclei) and DNA damage. In the case of L929, the presence of QCDs in the nucleus evoked a cellular death. Intranuclear environment of NIH/3T3 cells affected fluorescent properties of QCDs and evoked fluorescence blue shifts. Studying the intracellular interactions with CDs is essential for development of future applications such as DNA sensing, because CDs as DNA probes have not yet been developed.
Collapse
Affiliation(s)
- Markéta Havrdová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- Correspondence: ; Tel.: +420-58-563-4384
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, “Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia; (I.U.); (J.Š.)
| | - Kateřina Bartoň Tománková
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translation Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic; (K.B.T.); (L.M.)
| | - Lukáš Malina
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translation Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic; (K.B.T.); (L.M.)
| | - Janez Štrancar
- Laboratory of Biophysics, Condensed Matter Physics Department, “Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia; (I.U.); (J.Š.)
| | | |
Collapse
|
37
|
Abstract
Secretory pore-forming proteins (PFPs) have been identified in organisms from all kingdoms of life. Our studies with the toad species Bombina maxima found an interaction network among aerolysin family PFPs (af-PFPs) and trefoil factors (TFFs). As a toad af-PFP, BmALP1 can be reversibly regulated between active and inactive forms, with its paralog BmALP3 acting as a negative regulator. BmALP1 interacts with BmTFF3 to form a cellular active complex called βγ-CAT. This PFP complex is characterized by acting on endocytic pathways and forming pores on endolysosomes, including stimulating cell macropinocytosis. In addition, cell exocytosis can be induced and/or modulated in the presence of βγ-CAT. Depending on cell contexts and surroundings, these effects can facilitate the toad in material uptake and vesicular transport, while maintaining mucosal barrier function as well as immune defense. Based on experimental evidence, we hereby propose a secretory endolysosome channel (SELC) pathway conducted by a secreted PFP in cell endocytic and exocytic systems, with βγ-CAT being the first example of a SELC protein. With essential roles in cell interactions and environmental adaptations, the proposed SELC protein pathway should be conserved in other living organisms.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Qi-Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Cheng-Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
38
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
39
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
40
|
Colletti M, Ceglie D, Di Giannatale A, Nazio F. Autophagy and Exosomes Relationship in Cancer: Friends or Foes? Front Cell Dev Biol 2021; 8:614178. [PMID: 33511121 PMCID: PMC7835528 DOI: 10.3389/fcell.2020.614178] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an intracellular degradation process involved in the removal of proteins and damaged organelles by the formation of a double-membrane vesicle named autophagosome and degraded through fusion with lysosomes. An intricate relationship between autophagy and the endosomal and exosomal pathways can occur at different stages with important implications for normal physiology and human diseases. Recent researches have revealed that extracellular vesicles (EVs), such as exosomes, could have a cytoprotective role by inducing intracellular autophagy; on the other hand, autophagy plays a crucial role in the biogenesis and degradation of exosomes. Although the importance of these processes in cancer is well established, their interplay in tumor is only beginning to be documented. In some tumor contexts (1) autophagy and exosome-mediated release are coordinately activated, sharing the molecular machinery and regulatory mechanisms; (2) cancer cell-released exosomes impact on autophagy in recipient cells through mechanisms yet to be determined; (3) exosome-autophagy relationship could affect drug resistance and tumor microenvironment (TME). In this review, we survey emerging discoveries relevant to the exosomes and autophagy crosstalk in the context of cancer initiation, progression and recurrence. Consequently, we discuss clinical implications by targeting autophagy-exosomal pathway interaction and how this could lay a basis for the purpose of novel cancer therapeutics.
Collapse
Affiliation(s)
- Marta Colletti
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Donatella Ceglie
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Di Giannatale
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Nazio
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
41
|
Abstract
Endocytosis and intracellular retrograde trafficking from endosomes to the Golgi apparatus are key cellular processes. Endocytosis is directly or indirectly involved in many if not all cellular functions ranging from nutrient uptake and receptor signaling to mitosis, cell division, and migration (Scita, Di Fiore. Nature 463(7280):464-473, 2010; McMahon, Boucrot. Nat Rev Mol Cell Biol 12(8):517-533, 2011). Retrograde trafficking is emerging as a key driver for cell polarity. Robust methods are needed to quantify these processes. At the example of the bacterial Shiga toxin and the endogenous α5β1 integrin, we here describe generic methods to differentiate (1) internalized from cell surface-accessible cargo proteins and (2) endocytic cargo proteins that have reached the Golgi apparatus via the retrograde route from those that have not. The choice of antibodies or natural ligands allows to adjust these methods to virtually any chosen biological system.
Collapse
|
42
|
Phuyal S, Baschieri F. Endomembranes: Unsung Heroes of Mechanobiology? Front Bioeng Biotechnol 2020; 8:597721. [PMID: 33195167 PMCID: PMC7642594 DOI: 10.3389/fbioe.2020.597721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Mechanical stimuli have profound effects on the cellular architecture and functions. Over the past two decades, considerable progress has been made in unraveling the molecular machineries that confer cells the ability to sense and transduce mechanical input into biochemical signals. This has resulted in the identification of several force-sensing proteins or mechanically activated ion channels distributed throughout most cell types, whereby the plasma membrane, cytoskeleton, and the nucleus have garnered much attention. Although organelles from the endomembrane system make up significant portion of cell volume and play pivotal roles in the spatiotemporal distribution of signaling molecules, they have received surprisingly little attention in mechanobiology. In this mini-review, we summarize results that document participation of the endomembrane system in sensing and responding to mechanical cues.
Collapse
Affiliation(s)
- Santosh Phuyal
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
43
|
Lee MF, Trotman LC. PTEN: Bridging Endocytosis and Signaling. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036103. [PMID: 31818848 DOI: 10.1101/cshperspect.a036103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The transduction of signals in the PTEN/PI3-kinase (PI3K) pathway is built around a phosphoinositide (PIP) lipid messenger, phosphatidylinositol trisphosphate, PI(3,4,5)P3 or PIP3 Another, more ancient role of this family of messengers is the control of endocytosis, where a handful of separate PIPs act like postal codes. Prominent among them is PI(3)P, which helps to ensure that endocytic vesicles, their cargo, and membranes themselves reach their correct destinations. Traditionally, the cancer and the endocytic functions of the PI3K signaling pathway have been studied by cancer and membrane biologists, respectively, with some notable but overall minimal overlap. Modern microscopy has enabled monitoring of the PTEN/PI3K pathway in action. Here, we explore the flurry of groundbreaking concepts emerging from those efforts. The discovery that PTEN contains an autonomous PI(3)P reader domain, fused to the catalytic PIP3 eraser domain has prompted us to explore the relationship between PI3K signaling and endocytosis. This revealed how PTEN can achieve signal termination in a precisely controlled fashion, because endocytosis can package the PIP3 signal into discrete units that PTEN will erase. We explore how PTEN can bridge the worlds of endocytosis and PI3K signaling and discuss progress on how PI3K/AKT signaling can be acting from internal membranes. We discuss how the PTEN/PI3K system for growth control may have emerged from principles of endocytosis, and how this development could have affected the evolution of multicellular organisms.
Collapse
Affiliation(s)
- Matthew F Lee
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
44
|
Abstract
Derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming somatic cells to a pluripotent state has revolutionized stem cell research. Ensuing this, various groups have used genetic and non-genetic approaches to generate iPSCs from numerous cell types. However, achieving a pluripotent state in most of the reprogramming studies is marred by serious limitations such as low reprogramming efficiency and slow kinetics. These limitations are mainly due to the presence of potent barriers that exist during reprogramming when a mature cell is coaxed to achieve a pluripotent state. Several studies have revealed that intrinsic factors such as non-optimal stoichiometry of reprogramming factors, specific signaling pathways, cellular senescence, pluripotency-inhibiting transcription factors and microRNAs act as a roadblock. In addition, the epigenetic state of somatic cells and specific epigenetic modifications that occur during reprogramming also remarkably impede the generation of iPSCs. In this review, we present a comprehensive overview of the barriers that inhibit reprogramming and the understanding of which will pave the way to develop safe strategies for efficient reprogramming.
Collapse
|
45
|
Liu Y, Li L, Liu X, Wang Y, Liu L, Peng L, Liu J, Zhang L, Wang G, Li H, Liu DX, Huang B, Lu J, Zhang Y. Arginine methylation of SHANK2 by PRMT7 promotes human breast cancer metastasis through activating endosomal FAK signalling. eLife 2020; 9:57617. [PMID: 32844749 PMCID: PMC7494359 DOI: 10.7554/elife.57617] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Arginine methyltransferase PRMT7 is associated with human breast cancer metastasis. Endosomal FAK signalling is critical for cancer cell migration. Here we identified the pivotal roles of PRMT7 in promoting endosomal FAK signalling activation during breast cancer metastasis. PRMT7 exerted its functions through binding to scaffold protein SHANK2 and catalyzing di-methylation of SHANK2 at R240. SHANK2 R240 methylation exposed ANK domain by disrupting its SPN-ANK domain blockade, promoting in co-accumulation of dynamin2, talin, FAK, cortactin with SHANK2 on endosomes. In addition, SHANK2 R240 methylation activated endosomal FAK/cortactin signals in vitro and in vivo. Consistently, all the levels of PRMT7, methylated SHANK2, FAK Y397 phosphorylation and cortactin Y421 phosphorylation were correlated with aggressive clinical breast cancer tissues. These findings characterize the PRMT7-dependent SHANK2 methylation as a key player in mediating endosomal FAK signals activation, also point to the value of SHANK2 R240 methylation as a target for breast cancer metastasis.
Collapse
Affiliation(s)
- Yingqi Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lingling Li
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaoqing Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lingxia Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lu Peng
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jiayuan Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lian Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Guannan Wang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Baiqu Huang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
46
|
Redpath GMI, Betzler VM, Rossatti P, Rossy J. Membrane Heterogeneity Controls Cellular Endocytic Trafficking. Front Cell Dev Biol 2020; 8:757. [PMID: 32850860 PMCID: PMC7419583 DOI: 10.3389/fcell.2020.00757] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Endocytic trafficking relies on highly localized events in cell membranes. Endocytosis involves the gathering of protein (cargo/receptor) at distinct plasma membrane locations defined by specific lipid and protein compositions. Simultaneously, the molecular machinery that drives invagination and eventually scission of the endocytic vesicle assembles at the very same place on the inner leaflet of the membrane. It is membrane heterogeneity - the existence of specific lipid and protein domains in localized regions of membranes - that creates the distinct molecular identity required for an endocytic event to occur precisely when and where it is required rather than at some random location within the plasma membrane. Accumulating evidence leads us to believe that the trafficking fate of internalized proteins is sealed following endocytosis, as this distinct membrane identity is preserved through the endocytic pathway, upon fusion of endocytic vesicles with early and sorting endosomes. In fact, just like at the plasma membrane, multiple domains coexist at the surface of these endosomes, regulating local membrane tubulation, fission and sorting to recycling pathways or to the trans-Golgi network via late endosomes. From here, membrane heterogeneity ensures that fusion events between intracellular vesicles and larger compartments are spatially regulated to promote the transport of cargoes to their intracellular destination.
Collapse
Affiliation(s)
- Gregory M I Redpath
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,The ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Verena M Betzler
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Pascal Rossatti
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
47
|
Glassman PM, Myerson JW, Ferguson LT, Kiseleva RY, Shuvaev VV, Brenner JS, Muzykantov VR. Targeting drug delivery in the vascular system: Focus on endothelium. Adv Drug Deliv Rev 2020; 157:96-117. [PMID: 32579890 PMCID: PMC7306214 DOI: 10.1016/j.addr.2020.06.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
The bloodstream is the main transporting pathway for drug delivery systems (DDS) from the site of administration to the intended site of action. In many cases, components of the vascular system represent therapeutic targets. Endothelial cells, which line the luminal surface of the vasculature, play a tripartite role of the key target, barrier, or victim of nanomedicines in the bloodstream. Circulating DDS may accumulate in the vascular areas of interest and in off-target areas via mechanisms bypassing specific molecular recognition, but using ligands of specific vascular determinant molecules enables a degree of precision, efficacy, and specificity of delivery unattainable by non-affinity DDS. Three decades of research efforts have focused on specific vascular targeting, which have yielded a multitude of DDS, many of which are currently undergoing a translational phase of development for biomedical applications, including interventions in the cardiovascular, pulmonary, and central nervous systems, regulation of endothelial functions, host defense, and permeation of vascular barriers. We discuss the design of endothelial-targeted nanocarriers, factors underlying their interactions with cells and tissues, and describe examples of their investigational use in models of acute vascular inflammation with an eye on translational challenges.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
48
|
Kang D, Jung SH, Lee GH, Lee S, Park HJ, Ko YG, Kim YN, Lee JS. Sulfated syndecan 1 is critical to preventing cellular senescence by modulating fibroblast growth factor receptor endocytosis. FASEB J 2020; 34:10316-10328. [PMID: 32530114 DOI: 10.1096/fj.201902714r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence can be triggered by various intrinsic and extrinsic stimuli. We previously reported that silencing of 3'-phosphoadenosine 5'-phosphosulfate synthetase 2 (PAPSS2) induces cellular senescence through augmented fibroblast growth factor receptor 1 (FGFR1) signaling. However, the exact molecular mechanism connecting heparan sulfation and cellular senescence remains unclear. Here, we investigated the potential involvement of heparan sulfate proteoglycans (HSPGs) in augmented FGFR1 signaling and cellular senescence. Depletion of several types of HSPGs revealed that cells depleted of syndecan 1 (SDC1) exhibited typical senescence phenotypes, and those depleted of PAPSS2-, SDC1-, or heparan sulfate 2-O sulfotransferase 1 (HS2ST1) showed decreased FGFR1 internalization along with hyperresponsiveness to and prolonged activation of fibroblast growth factor 2 (FGF2)-stimulated FGFR1- v-akt murine thymoma viral oncogene homolog (AKT) signaling. Clathrin- and caveolin-mediated FGFR1 endocytosis contributed to cellular senescence through the FGFR1-AKT-p53-p21 signaling pathway. Dynasore treatment triggered senescence phenotypes, augmented FGFR1-AKT-p53-p21 signaling, and decreased SDC1 expression. Finally, the replicatively and prematurely senescent cells were characterized by decreases of SDC1 expression and FGFR1 internalization, and an increase in FGFR1-AKT-p53-p21 signaling. Together, our results demonstrate that properly sulfated SDC1 plays a critical role in preventing cellular senescence through the regulation of FGFR1 endocytosis.
Collapse
Affiliation(s)
- Donghee Kang
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| | - Seung Hee Jung
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| | - Gun-Hee Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| | - Seongju Lee
- Medical Research Center, Inha University College of Medicine, Incheon, Korea.,Department of Anatomy, Inha University College of Medicine, Incheon, Korea
| | - Heon Joo Park
- Medical Research Center, Inha University College of Medicine, Incheon, Korea.,Department of Microbiology, Inha University College of Medicine, Incheon, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Yong-Nyun Kim
- Division of Translational Science, National Cancer Center, Goyang, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
49
|
Wang Q, Bian X, Zeng L, Pan F, Liu L, Liang J, Wang L, Zhou K, Lee W, Xiang Y, Li S, Teng M, Li X, Guo X, Zhang Y. A cellular endolysosome-modulating pore-forming protein from a toad is negatively regulated by its paralog under oxidizing conditions. J Biol Chem 2020; 295:10293-10306. [PMID: 32499370 DOI: 10.1074/jbc.ra120.013556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/22/2020] [Indexed: 01/05/2023] Open
Abstract
Endolysosomes are key players in cell physiology, including molecular exchange, immunity, and environmental adaptation. They are the molecular targets of some pore-forming aerolysin-like proteins (ALPs) that are widely distributed in animals and plants and are functionally related to bacterial toxin aerolysins. βγ-CAT is a complex of an ALP (BmALP1) and a trefoil factor (BmTFF3) in the firebelly toad (Bombina maxima). It is the first example of a secreted endogenous pore-forming protein that modulates the biochemical properties of endolysosomes by inducing pore formation in these intracellular vesicles. Here, using a large array of biochemical and cell biology methods, we report the identification of BmALP3, a paralog of BmALP1 that lacks membrane pore-forming capacity. We noted that both BmALP3 and BmALP1 contain a conserved cysteine in their C-terminal regions. BmALP3 was readily oxidized to a disulfide bond-linked homodimer, and this homodimer then oxidized BmALP1 via disulfide bond exchange, resulting in the dissociation of βγ-CAT subunits and the elimination of biological activity. Consistent with its behavior in vitro, BmALP3 sensed environmental oxygen tension in vivo, leading to modulation of βγ-CAT activity. Interestingly, we found that this C-terminal cysteine site is well conserved in numerous vertebrate ALPs. These findings uncover the existence of a regulatory ALP (BmALP3) that modulates the activity of an active ALP (BmALP1) in a redox-dependent manner, a property that differs from those of bacterial toxin aerolysins.
Collapse
Affiliation(s)
- Qiquan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xianling Bian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Lin Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Fei Pan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lingzhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jinyang Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lingyan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Kaifeng Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wenhui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yang Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Sheng'an Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaolong Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
50
|
Abstract
Several studies have demonstrated interactions between the two leaflets in membrane bilayers and the importance of specific lipid species for such interaction and membrane function. We here discuss these investigations with a focus on the sphingolipid and cholesterol-rich lipid membrane domains called lipid rafts, including the small flask-shaped invaginations called caveolae, and the importance of such membrane structures in cell biology and cancer. We discuss the possible interactions between the very long-chain sphingolipids in the outer leaflet of the plasma membrane and the phosphatidylserine species PS 18:0/18:1 in the inner leaflet and the importance of cholesterol for such interactions. We challenge the view that lipid rafts contain a large fraction of lipids with two saturated fatty acyl groups and argue that it is important in future studies of membrane models to use asymmetric membrane bilayers with lipid species commonly found in cellular membranes. We also discuss the need for more quantitative lipidomic studies in order to understand membrane function and structure in general, and the importance of lipid rafts in biological systems. Finally, we discuss cancer-related changes in lipid rafts and lipid composition, with a special focus on changes in glycosphingolipids and the possibility of using lipid therapy for cancer treatment.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway.
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|