1
|
Li Q, Dong M, Chen P. Advances in structural-guided modifications of siRNA. Bioorg Med Chem 2024; 110:117825. [PMID: 38954918 DOI: 10.1016/j.bmc.2024.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
To date, the US Food and Drug Administration (FDA) has approved six small interfering RNA (siRNA) drugs: patisiran, givosiran, lumasiran, inclisiran, vutrisiran, and nedosiran, serving as compelling evidence of the promising potential of RNA interference (RNAi) therapeutics. The successful implementation of siRNA therapeutics is improved through a combination of various chemical modifications and diverse delivery approaches. The utilization of chemically modified siRNA at specific sites on either the sense strand (SS) or antisense strand (AS) has the potential to enhance resistance to ribozyme degradation, improve stability and specificity, and prolong the efficacy of drugs. Herein, we provide comprehensive analyses concerning the correlation between chemical modifications and structure-guided siRNA design. Various modifications, such as 2'-modifications, 2',4'-dual modifications, non-canonical sugar modifications, and phosphonate mimics, are crucial for the activity of siRNA. We also emphasize the essential strategies for enhancing overhang stability, improving RISC loading efficacy and strand selection, reducing off-target effects, and discussing the future of targeted delivery.
Collapse
Affiliation(s)
- Qiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China; Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China.
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Pu Chen
- Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
2
|
Chamakioti M, Chrousos GP, Kassi E, Vlachakis D, Yapijakis C. Stress-Related Roles of Exosomes and Exosomal miRNAs in Common Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:8256. [PMID: 39125827 PMCID: PMC11311345 DOI: 10.3390/ijms25158256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes, natural nanovesicles that contain a cargo of biologically active molecules such as lipids, proteins, and nucleic acids, are released from cells to the extracellular environment. They then act as autocrine, paracrine, or endocrine mediators of communication between cells by delivering their cargo into recipient cells and causing downstream effects. Exosomes are greatly enriched in miRNAs, which are small non-coding RNAs that act both as cytoplasmic post-transcriptional repression agents, modulating the translation of mRNAs into proteins, as well as nuclear transcriptional gene activators. Neuronal exosomal miRNAs have important physiologic functions in the central nervous system (CNS), including cell-to-cell communication, synaptic plasticity, and neurogenesis, as well as modulating stress and inflammatory responses. Stress-induced changes in exosomal functions include effects on neurogenesis and neuroinflammation, which can lead to the appearance of various neuropsychiatric disorders such as schizophrenia, major depression, bipolar disorder, and Alzheimer's and Huntington's diseases. The current knowledge regarding the roles of exosomes in the pathophysiology of common mental disorders is discussed in this review.
Collapse
Affiliation(s)
- Myrsini Chamakioti
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Eva Kassi
- 1st Department of Internal Medicine, School of Medicine, National Kapodistrian University of Athens, Laikon Hospital, 115 27 Athens, Greece;
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece;
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| |
Collapse
|
3
|
Shibamoto A, Kitsu Y, Shibata K, Kaneko Y, Moriizumi H, Takahashi T. microRNA-guided immunity against respiratory virus infection in human and mouse lung cells. Biol Open 2024; 13:bio060172. [PMID: 38875000 PMCID: PMC11212637 DOI: 10.1242/bio.060172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Viral infectivity depends on multiple factors. Recent studies showed that the interaction between viral RNAs and endogenous microRNAs (miRNAs) regulates viral infectivity; viral RNAs function as a sponge of endogenous miRNAs and result in upregulation of its original target genes, while endogenous miRNAs target viral RNAs directly and result in repression of viral gene expression. In this study, we analyzed the possible interaction between parainfluenza virus RNA and endogenous miRNAs in human and mouse lungs. We showed that the parainfluenza virus can form base pairs with human miRNAs abundantly than mouse miRNAs. Furthermore, we analyzed that the sponge effect of endogenous miRNAs on viral RNAs may induce the upregulation of transcription regulatory factors. Then, we performed RNA-sequence analysis and observed the upregulation of transcription regulatory factors in the early stages of parainfluenza virus infection. Our studies showed how the differential expression of endogenous miRNAs in lungs could contribute to respiratory virus infection and species- or tissue-specific mechanisms and common mechanisms could be conserved in humans and mice and regulated by miRNAs during viral infection.
Collapse
Affiliation(s)
- Ayaka Shibamoto
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama 338-8570, Japan
| | - Yoshiaki Kitsu
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama 338-8570, Japan
| | - Keiko Shibata
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yuka Kaneko
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Harune Moriizumi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Tomoko Takahashi
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama 338-8570, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
4
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
5
|
Xu J, Xu N, Xie W, Zhao C, Yu L, Feng W. BERT-siRNA: siRNA target prediction based on BERT pre-trained interpretable model. Gene 2024; 910:148330. [PMID: 38431236 DOI: 10.1016/j.gene.2024.148330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Silencing mRNA through siRNA is vital for RNA interference (RNAi), necessitating accurate computational methods for siRNA selection. Current approaches, relying on machine learning, often face challenges with large data requirements and intricate data preprocessing, leading to reduced accuracy. To address this challenge, we propose a BERT model-based siRNA target gene knockdown efficiency prediction method called BERT-siRNA, which consists of a pre-trained DNA-BERT module and Multilayer Perceptron module. It applies the concept of transfer learning to avoid the limitation of a small sample size and the need for extensive preprocessing processes. By fine-tuning on various siRNA datasets after pretraining on extensive genomic data using DNA-BERT to enhance predictive capabilities. Our model clearly outperforms all existing siRNA prediction models through testing on the independent public siRNA dataset. Furthermore, the model's consistent predictions of high-efficiency siRNA knockdown for SARS-CoV-2, as well as its alignment with experimental results for PDCD1, CD38, and IL6, demonstrate the reliability and stability of the model. In addition, the attention scores for all 19-nt positions in the dataset indicate that the model's attention is predominantly focused on the 5' end of the siRNA. The step-by-step visualization of the hidden layer's classification progressively clarified and explained the effective feature extraction of the MLP layer. The explainability of model by analysis the attention scores and hidden layers is also our main purpose in this work, making it more explainable and reliable for biological researchers.
Collapse
Affiliation(s)
- Jiayu Xu
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Nan Xu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, No, 3663 North Zhongshan Road, Shanghai 200065, China; Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, No 1525 Minqiang Road, Shanghai 201612, China.
| | - Weixin Xie
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Chengkui Zhao
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, No 1525 Minqiang Road, Shanghai 201612, China.
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, No, 3663 North Zhongshan Road, Shanghai 200065, China; Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, No 1525 Minqiang Road, Shanghai 201612, China.
| | - Weixing Feng
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
6
|
Lei L, Harp JM, Chaput JC, Wassarman K, Schlegel MK, Manoharan M, Egli M. Structure and Stability of Ago2 MID-Nucleotide Complexes: All-in-One (Drop) His 6-SUMO Tag Removal, Nucleotide Binding, and Crystal Growth. Curr Protoc 2024; 4:e1088. [PMID: 38923271 DOI: 10.1002/cpz1.1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The middle (MID) domain of eukaryotic Argonaute (Ago) proteins and archaeal and bacterial homologues mediates the interaction with the 5'-terminal nucleotide of miRNA and siRNA guide strands. The MID domain of human Ago2 (hAgo2) is comprised of 139 amino acids with a molecular weight of 15.56 kDa. MID adopts a Rossman-like beta1-alpha1-beta2-alpha2-beta3-alpha3-beta4-alpha4 fold with a nucleotide specificity loop between beta3 and alpha3. Multiple crystal structures of nucleotides bound to hAgo2 MID have been reported, whereby complexes were obtained by soaking ligands into crystals of MID domain alone. This protocol describes a simplified one-step approach to grow well-diffracting crystals of hAgo2 MID-nucleotide complexes by mixing purified His6-SUMO-MID fusion protein, Ulp1 protease, and excess nucleotide in the presence of buffer and precipitant. The crystal structures of MID complexes with UMP, UTP and 2'-3' linked α-L-threofuranosyl thymidine-3'-triphosphate (tTTP) are presented. This article also describes fluorescence-based assays to measure dissociation constants (Kd) of MID-nucleotide interactions for nucleoside 5'-monophosphates and nucleoside 3',5'-bisphosphates. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Crystallization of Ago2 MID-nucleotide complexes Basic Protocol 2: Measurement of dissociation constant Kd between Ago2 MID and nucleotides.
Collapse
Affiliation(s)
- Li Lei
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Joel M Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | | | | | | | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
7
|
Tang Q, Khvorova A. RNAi-based drug design: considerations and future directions. Nat Rev Drug Discov 2024; 23:341-364. [PMID: 38570694 PMCID: PMC11144061 DOI: 10.1038/s41573-024-00912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
More than 25 years after its discovery, the post-transcriptional gene regulation mechanism termed RNAi is now transforming pharmaceutical development, proved by the recent FDA approval of multiple small interfering RNA (siRNA) drugs that target the liver. Synthetic siRNAs that trigger RNAi have the potential to specifically silence virtually any therapeutic target with unprecedented potency and durability. Bringing this innovative class of medicines to patients, however, has been riddled with substantial challenges, with delivery issues at the forefront. Several classes of siRNA drug are under clinical evaluation, but their utility in treating extrahepatic diseases remains limited, demanding continued innovation. In this Review, we discuss principal considerations and future directions in the design of therapeutic siRNAs, with a particular emphasis on chemistry, the application of informatics, delivery strategies and the importance of careful target selection, which together influence therapeutic success.
Collapse
Affiliation(s)
- Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Garreau M, Weidner J, Hamilton R, Kolosionek E, Toki N, Stavenhagen K, Paris C, Bonetti A, Czechtizky W, Gnerlich F, Rydzik A. Chemical modification patterns for microRNA therapeutic mimics: a structure-activity relationship (SAR) case-study on miR-200c. Nucleic Acids Res 2024; 52:2792-2807. [PMID: 38421619 PMCID: PMC11014349 DOI: 10.1093/nar/gkae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
microRNA (miRNA) mimics are an emerging class of oligonucleotide therapeutics, with a few compounds already in clinical stages. Synthetic miRNAs are able to restore downregulated levels of intrinsic miRNAs, allowing for parallel regulation of multiple genes involved in a particular disease. In this work, we examined the influence of chemical modifications patterns in miR-200c mimics, assessing the regulation of a selection of target messenger RNAs (mRNA) and, subsequently, of the whole transcriptome in A549 cells. We have probed 37 mimics and provided an initial set of instructions for designing miRNA mimics with potency and selectivity similar to an unmodified miRNA duplex. Additionally, we have examined the stability of selected mimics in serum. Finally, the selected two modification patterns were translated to two other miRNAs, miR-34a and miR-155. To differing degrees, these designs acted on target mRNAs in a similar manner to the unmodified mimic. Here, for the first time, we describe a structured overview of 'miRNA mimics modification templates' that are chemically stabilised and optimised for use in an in vitro set up and highlight the need of further sequence specific optimization when mimics are to be used beyond in vitro tool experiments.
Collapse
Affiliation(s)
- Marion Garreau
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Julie Weidner
- Translational Science Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Russell Hamilton
- Translational Science Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Cambridge, UK
| | - Ewa Kolosionek
- Bioscience COPD/IPF, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Naoko Toki
- Translational Genomics, Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Kathrin Stavenhagen
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Clément Paris
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Alessandro Bonetti
- Translational Genomics, Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Werngard Czechtizky
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Felix Gnerlich
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Rydzik
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
9
|
Almeida MV, Blumer M, Yuan CU, Sierra P, Price JL, Quah FX, Friman A, Dallaire A, Vernaz G, Putman ALK, Smith AM, Joyce DA, Butter F, Haase AD, Durbin R, Santos ME, Miska EA. Dynamic co-evolution of transposable elements and the piRNA pathway in African cichlid fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587621. [PMID: 38617250 PMCID: PMC11014572 DOI: 10.1101/2024.04.01.587621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that target TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.
Collapse
Affiliation(s)
- Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Moritz Blumer
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- These authors contributed equally
| | - Chengwei Ulrika Yuan
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- These authors contributed equally
| | - Pío Sierra
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Jonathan L. Price
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Fu Xiang Quah
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Aleksandr Friman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Biophysics Graduate Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Alexandra Dallaire
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond TW9 3DS, UK
| | - Grégoire Vernaz
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Present address: Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, Basel, 4051, Switzerland
| | - Audrey L. K. Putman
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Alan M. Smith
- School of Natural Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Domino A. Joyce
- School of Natural Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Falk Butter
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Ackermannweg 4, Mainz, 55128, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer, Greifswald, 17493, Germany
| | - Astrid D. Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - M. Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Eric A. Miska
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| |
Collapse
|
10
|
Sha G, Zhang W, Jiang Z, Zhao Q, Wang D, Tang D. Exosomal non-coding RNA: A new frontier in diagnosing and treating pancreatic cancer: A review. Int J Biol Macromol 2024; 263:130149. [PMID: 38365161 DOI: 10.1016/j.ijbiomac.2024.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Pancreatic cancer is the most fatal malignancy worldwide. Once diagnosed, most patients are already at an advanced stage because of their highly heterogeneous, drug-resistant, and metastatic nature and the lack of effective diagnostic markers. Recently, the study of proliferation, metastasis, and drug resistance mechanisms in pancreatic cancer and the search for useful diagnostic markers have posed significant challenges to the scientific community. Exosomes carry various biomolecules (DNA, non-coding RNAs (ncRNAs), proteins, and lipids) that mediate communication between tumors and other cells. ncRNAs can be transported through exosomes to numerous relevant receptor cells and regulate local epithelial-mesenchymal transition (EMT) in tumor tissue, proliferation, drug resistance, and the establishment of pre-metastatic ecological niches in distant organs. In summary, exosomal ncRNAs promote tumor cell proliferation, invasion, and metastasis through multiple EMT, immunosuppression, angiogenesis, and extracellular matrix remodeling pathways. Moreover, we discuss the significant therapeutic significance of exosomal ncRNAs as PC biomarkers.
Collapse
Affiliation(s)
- Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Qianqian Zhao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Daorong Wang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China; Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225000, China.
| | - Dong Tang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China; Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225000, China.
| |
Collapse
|
11
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
12
|
Zhao D, Zhao Y, Xu E, Liu W, Ayers PW, Liu S, Chen D. Fragment-Based Deep Learning for Simultaneous Prediction of Polarizabilities and NMR Shieldings of Macromolecules and Their Aggregates. J Chem Theory Comput 2024; 20:2655-2665. [PMID: 38441881 DOI: 10.1021/acs.jctc.3c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Simultaneous prediction of the molecular response properties, such as polarizability and the NMR shielding constant, at a low computational cost is an unresolved issue. We propose to combine a linear-scaling generalized energy-based fragmentation (GEBF) method and deep learning (DL) with both molecular and atomic information-theoretic approach (ITA) quantities as effective descriptors. In GEBF, the total molecular polarizability can be assembled as a linear combination of the corresponding quantities calculated from a set of small embedded subsystems in GEBF. In the new GEBF-DL(ITA) protocol, one can predict subsystem polarizabilities based on the corresponding molecular wave function (thus electron density and ITA quantities) and DL model rather than calculate them from the computationally intensive coupled-perturbed Hartree-Fock or Kohn-Sham equations and finally obtain the total molecular polarizability via a linear combination equation. As a proof-of-concept application, we predict the molecular polarizabilities of large proteins and protein aggregates. GEBF-DL(ITA) is shown to be as accurate enough as GEBF, with mean absolute percentage error <1%. For the largest protein aggregate (>4000 atoms), GEBF-DL(ITA) gains a speedup ratio of 3 compared with GEBF. It is anticipated that when more advanced electronic structure methods are used, this advantage will be more appealing. Moreover, one can also predict the NMR chemical shieldings of proteins with reasonably good accuracy. Overall, the cost-efficient GEBF-DL(ITA) protocol should be a robust theoretical tool for simultaneously predicting polarizabilities and NMR shieldings of large systems.
Collapse
Affiliation(s)
- Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Yilin Zhao
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ONL8S4M1, Canada
| | - Enhua Xu
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Wenqi Liu
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ONL8S4M1, Canada
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, P. R. China
| |
Collapse
|
13
|
Manakova E, Golovinas E, Pocevičiūtė R, Sasnauskas G, Silanskas A, Rutkauskas D, Jankunec M, Zagorskaitė E, Jurgelaitis E, Grybauskas A, Venclovas Č, Zaremba M. The missing part: the Archaeoglobus fulgidus Argonaute forms a functional heterodimer with an N-L1-L2 domain protein. Nucleic Acids Res 2024; 52:2530-2545. [PMID: 38197228 PMCID: PMC10954474 DOI: 10.1093/nar/gkad1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
Argonaute (Ago) proteins are present in all three domains of life (bacteria, archaea and eukaryotes). They use small (15-30 nucleotides) oligonucleotide guides to bind complementary nucleic acid targets and are responsible for gene expression regulation, mobile genome element silencing, and defence against viruses or plasmids. According to their domain organization, Agos are divided into long and short Agos. Long Agos found in prokaryotes (long-A and long-B pAgos) and eukaryotes (eAgos) comprise four major functional domains (N, PAZ, MID and PIWI) and two structural linker domains L1 and L2. The majority (∼60%) of pAgos are short pAgos, containing only the MID and inactive PIWI domains. Here we focus on the prokaryotic Argonaute AfAgo from Archaeoglobus fulgidus DSM4304. Although phylogenetically classified as a long-B pAgo, AfAgo contains only MID and catalytically inactive PIWI domains, akin to short pAgos. We show that AfAgo forms a heterodimeric complex with a protein encoded upstream in the same operon, which is a structural equivalent of the N-L1-L2 domains of long pAgos. This complex, structurally equivalent to a long PAZ-less pAgo, outperforms standalone AfAgo in guide RNA-mediated target DNA binding. Our findings provide a missing piece to one of the first and the most studied pAgos.
Collapse
Affiliation(s)
- Elena Manakova
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Edvardas Golovinas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Reda Pocevičiūtė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Arunas Silanskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Danielis Rutkauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
- Institute of Physics, Center for Physical Sciences and Technology, Savanoriu 231, LT-02300, Vilnius, Lithuania
| | - Marija Jankunec
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Evelina Zagorskaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Edvinas Jurgelaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Algirdas Grybauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Mindaugas Zaremba
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
14
|
Hiers NM, Li T, Traugot CM, Xie M. Target-directed microRNA degradation: Mechanisms, significance, and functional implications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1832. [PMID: 38448799 PMCID: PMC11098282 DOI: 10.1002/wrna.1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a fundamental role in enabling miRNA-mediated target repression, a post-transcriptional gene regulatory mechanism preserved across metazoans. Loss of certain animal miRNA genes can lead to developmental abnormalities, disease, and various degrees of embryonic lethality. These short RNAs normally guide Argonaute (AGO) proteins to target RNAs, which are in turn translationally repressed and destabilized, silencing the target to fine-tune gene expression and maintain cellular homeostasis. Delineating miRNA-mediated target decay has been thoroughly examined in thousands of studies, yet despite these exhaustive studies, comparatively less is known about how and why miRNAs are directed for decay. Several key observations over the years have noted instances of rapid miRNA turnover, suggesting endogenous means for animals to induce miRNA degradation. Recently, it was revealed that certain targets, so-called target-directed miRNA degradation (TDMD) triggers, can "trigger" miRNA decay through inducing proteolysis of AGO and thereby the bound miRNA. This process is mediated in animals via the ZSWIM8 ubiquitin ligase complex, which is recruited to AGO during engagement with triggers. Since its discovery, several studies have identified that ZSWIM8 and TDMD are indispensable for proper animal development. Given the rapid expansion of this field of study, here, we summarize the key findings that have led to and followed the discovery of ZSWIM8-dependent TDMD. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Nicholas M Hiers
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Conner M Traugot
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
Vaucheret H, Voinnet O. The plant siRNA landscape. THE PLANT CELL 2024; 36:246-275. [PMID: 37772967 PMCID: PMC10827316 DOI: 10.1093/plcell/koad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Whereas micro (mi)RNAs are considered the clean, noble side of the small RNA world, small interfering (si)RNAs are often seen as a noisy set of molecules whose barbarian acronyms reflect a large diversity of often elusive origins and functions. Twenty-five years after their discovery in plants, however, new classes of siRNAs are still being identified, sometimes in discrete tissues or at particular developmental stages, making the plant siRNA world substantially more complex and subtle than originally anticipated. Focusing primarily on the model Arabidopsis, we review here the plant siRNA landscape, including transposable elements (TE)-derived siRNAs, a vast array of non-TE-derived endogenous siRNAs, as well as exogenous siRNAs produced in response to invading nucleic acids such as viruses or transgenes. We primarily emphasize the extraordinary sophistication and diversity of their biogenesis and, secondarily, the variety of their known or presumed functions, including via non-cell autonomous activities, in the sporophyte, gametophyte, and shortly after fertilization.
Collapse
Affiliation(s)
- Hervé Vaucheret
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zurich), 8092 Zürich, Switzerland
| |
Collapse
|
16
|
Zhen X, Xu X, Ye L, Xie S, Huang Z, Yang S, Wang Y, Li J, Long F, Ouyang S. Structural basis of antiphage immunity generated by a prokaryotic Argonaute-associated SPARSA system. Nat Commun 2024; 15:450. [PMID: 38200015 PMCID: PMC10781750 DOI: 10.1038/s41467-023-44660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Argonaute (Ago) proteins are ubiquitous across all kingdoms of life. Eukaryotic Agos (eAgos) use small RNAs to recognize transcripts for RNA silencing in eukaryotes. In contrast, the functions of prokaryotic counterparts (pAgo) are less well known. Recently, short pAgos in conjunction with the associated TIR or Sir2 (SPARTA or SPARSA) were found to serve as antiviral systems to combat phage infections. Herein, we present the cryo-EM structures of nicotinamide adenine dinucleotide (NAD+)-bound SPARSA with and without nucleic acids at resolutions of 3.1 Å and 3.6 Å, respectively. Our results reveal that the APAZ (Analogue of PAZ) domain and the short pAgo form a featured architecture similar to the long pAgo to accommodate nucleic acids. We further identified the key residues for NAD+ binding and elucidated the structural basis for guide RNA and target DNA recognition. Using structural comparisons, molecular dynamics simulations, and biochemical experiments, we proposed a putative mechanism for NAD+ hydrolysis in which an H186 loop mediates nucleophilic attack by catalytic water molecules. Overall, our study provides mechanistic insight into the antiphage role of the SPARSA system.
Collapse
Affiliation(s)
- Xiangkai Zhen
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xiaolong Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China
| | - Le Ye
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Song Xie
- College of Chemistry, Fuzhou University, 350116, Fuzhou, China
| | - Zhijie Huang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Sheng Yang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yanhui Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, 350116, Fuzhou, China.
| | - Feng Long
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
17
|
Ray A, Sarkar A, Banerjee S, Biswas K. Non-Canonical Targets of MicroRNAs: Role in Transcriptional Regulation, Disease Pathogenesis and Potential for Therapeutic Targets. Microrna 2024; 13:83-95. [PMID: 38317474 DOI: 10.2174/0122115366278651240105071533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
MicroRNAs are a class of regulatory, non-coding small ribonucleic acid (RNA) molecules found in eukaryotes. Dysregulated expression of microRNAs can lead to downregulation or upregulation of their target gene. In general, microRNAs bind with the Argonaute protein and its interacting partners to form a silencing complex. This silencing complex binds with fully or partial complementary sequences in the 3'-UTR of their cognate target mRNAs and leads to degradation of the transcripts or translational inhibition, respectively. However, recent developments point towards the ability of these microRNAs to bind to the promoters, enhancers or coding sequences, leading to upregulation of their target genes. This review briefly summarizes the various non-canonical binding sites of microRNAs and their regulatory roles in various diseased conditions.
Collapse
Affiliation(s)
- Aishwarya Ray
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, 700091, India
| | - Abhisek Sarkar
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, 700091, India
| | - Sounak Banerjee
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, 700091, India
| | - Kaushik Biswas
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, 700091, India
| |
Collapse
|
18
|
Nakanishi K. When Argonaute takes out the ribonuclease sword. J Biol Chem 2024; 300:105499. [PMID: 38029964 PMCID: PMC10772731 DOI: 10.1016/j.jbc.2023.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Argonaute (AGO) proteins in all three domains of life form ribonucleoprotein or deoxyribonucleoprotein complexes by loading a guide RNA or DNA, respectively. Since all AGOs retain a PIWI domain that takes an RNase H fold, the ancestor was likely an endoribonuclease (i.e., a slicer). In animals, most miRNA-mediated gene silencing occurs slicer independently. However, the slicer activity of AGO is indispensable in specific events, such as development and differentiation, which are critical for vertebrates and thus cannot be replaced by the slicer-independent regulation. This review highlights the distinctions in catalytic activation mechanisms among slicing-competent AGOs, shedding light on the roles of two metal ions in target recognition and cleavage. The precision of the target specificity by the RNA-induced silencing complexes is reevaluated and redefined. The possible coevolutionary relationship between slicer-independent gene regulation and AGO-binding protein, GW182, is also explored. These discussions reveal that numerous captivating questions remain unanswered regarding the timing and manner in which AGOs employ their slicing activity.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
19
|
Bofill-De Ros X, Vang Ørom UA. Recent progress in miRNA biogenesis and decay. RNA Biol 2024; 21:1-8. [PMID: 38031325 PMCID: PMC10761092 DOI: 10.1080/15476286.2023.2288741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
MicroRNAs are a class of small regulatory RNAs that mediate regulation of protein synthesis by recognizing sequence elements in mRNAs. MicroRNAs are processed through a series of steps starting from transcription and primary processing in the nucleus to precursor processing and mature function in the cytoplasm. It is also in the cytoplasm where levels of mature microRNAs can be modulated through decay mechanisms. Here, we review the recent progress in the lifetime of a microRNA at all steps required for maintaining their homoeostasis. The increasing knowledge about microRNA regulation upholds great promise as therapeutic targets.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- RNA Biology and Innovation, Institute of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ulf Andersson Vang Ørom
- RNA Biology and Innovation, Institute of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet 2023; 24:816-833. [PMID: 37380761 PMCID: PMC11087887 DOI: 10.1038/s41576-023-00611-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/30/2023]
Abstract
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Gayan Senavirathne
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
21
|
Fujimoto Y, Iwakawa HO. Mechanisms that regulate the production of secondary siRNAs in plants. J Biochem 2023; 174:491-499. [PMID: 37757447 DOI: 10.1093/jb/mvad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Many organisms produce secondary small interfering RNAs (siRNAs) that are triggered by primary small RNAs to regulate various biological processes. Plants have evolved several types of secondary siRNA biogenesis pathways that play important roles in development, stress responses and defense against viruses and transposons. The critical step of these pathways is the production of double-stranded RNAs by RNA-dependent RNA polymerases. This step is normally tightly regulated, but when its control is released, secondary siRNA production is initiated. In this article, we will review the recent advances in secondary siRNA production triggered by microRNAs encoded in the genome and siRNAs derived from invasive nucleic acids. In particular, we will focus on the factors, events, and RNA/DNA elements that promote or inhibit the early steps of secondary siRNA biogenesis.
Collapse
Affiliation(s)
- Yuji Fujimoto
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Hiro-Oki Iwakawa
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
22
|
Collotta D, Bertocchi I, Chiapello E, Collino M. Antisense oligonucleotides: a novel Frontier in pharmacological strategy. Front Pharmacol 2023; 14:1304342. [PMID: 38044945 PMCID: PMC10690781 DOI: 10.3389/fphar.2023.1304342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are short single stranded synthetic RNA or DNA molecules, whereas double-stranded RNA nucleotide sequences are called small interfering RNA (siRNA). ASOs bind to complementary nucleic acid sequences impacting the associated functions of the targeted nucleic acids. They represent an emerging class of drugs that, through a revolutionary mechanism of action, aim to directly regulate disease-causing genes and their variants, providing an alternative tool to traditional "protein-specific" therapies. The majority of the ASOs are designed to treat orphan genetic disorders that in most of the cases are seriously disabling and still lacking an adequate therapy. In order to translate ASOs into clinical success, constant technological advances have been instrumental in overcoming several pharmacological, toxicological and formulation limitations. Accordingly, chemical structures have been recently implemented and new bio-conjugation and nanocarriers formulation strategies explored. The aim of this work is to offer an overview of the antisense technology with a comparative analysis of the oligonucleotides approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA).
Collapse
Affiliation(s)
- D. Collotta
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - I. Bertocchi
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
| | - E. Chiapello
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - M. Collino
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| |
Collapse
|
23
|
Seistrup AS, Choppin M, Govind S, Feldmeyer B, Kever M, Karaulanov E, Séguret A, Karunanithi S, Almeida MV, Ketting RF, Foitzik S. Age- and caste-independent piRNAs in the germline and miRNA profiles linked to caste and fecundity in the ant Temnothorax rugatulus. Mol Ecol 2023; 32:6027-6043. [PMID: 37830492 DOI: 10.1111/mec.17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Social insects are models for studies of phenotypic plasticity. Ant queens and workers vary in fecundity and lifespan, which are enhanced and extended in queens. Yet, the regulatory mechanisms underlying this variation are not well understood. Ant queens live and reproduce for years, so that they need to protect their germline from transposable element (TE) activity, which may be redundant in short-lived, often sterile workers. We analysed the expression of two protective classes of small RNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), in various tissues, castes and age classes of the ant Temnothorax rugatulus. In queens, piRNAs were highly abundant in ovaries with TEs being their clear targets, with reduced but still detectable piRNA-specific ping-pong signatures in thorax and brains. piRNA pathway activity varied little with age in queens. Moreover, the reduced ovaries of workers also exhibited similar piRNA activity and this not only in young, fertile workers, but also in older foragers with regressed ovaries. Therefore, these ants protect their germline through piRNA activity, regardless of ovarian development, age or caste, even in sterile workers often considered the soma of the superorganism. Our tissue-specific miRNA analysis detected the expression of 304 miRNAs, of which 105 were expressed in all tissues, 10 enriched in the brain, three in the thorax, whereas 83 were ovarian-specific. We identified ovarian miRNAs whose expression was related to caste, fecundity and age, and which likely regulate group-specific gene expression. sRNA shifts in young- to middle-aged queens were minor, suggesting delayed senescence in this reproductive caste.
Collapse
Affiliation(s)
- Ann-Sophie Seistrup
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - Marina Choppin
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Shamitha Govind
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Frankfurt, Germany
| | - Marion Kever
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Alice Séguret
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Miguel V Almeida
- Institute of Molecular Biology, Mainz, Germany
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - René F Ketting
- Institute of Molecular Biology, Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
24
|
Singh S, Sinha T, Panda AC. Regulation of microRNA by circular RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1820. [PMID: 37783567 DOI: 10.1002/wrna.1820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Circular (circ)RNAs have emerged as novel regulators of gene expression through various mechanisms. However, most publications focus on functional circRNAs regulating target gene expression by interacting with micro (mi)RNAs and acting as competing endogenous RNAs (ceRNAs). Although the theory of miRNA sponging by ceRNAs suggests the inhibition of miRNA activity, many studies are biased toward the selection of miRNAs showing a reverse expression pattern compared with circRNA expression. Although several computational tools and molecular assays have been used to predict and validate the interaction of miRNAs with circRNAs, the actual validation of functional in vivo interactions needs careful consideration of molecular experiments with specific controls. As extensive research is being performed on circRNA, many questions arise on the functional significance of circRNA-miRNA interactions. We hope the critical discussion on the criteria for selecting circRNA-miRNA pairs for functional analysis and providing standard methods for validating circRNA-miRNA interactions will advance our understanding of circRNAs as novel gene regulators. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Translation > Regulation RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Suman Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Tanvi Sinha
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Amaresh C Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| |
Collapse
|
25
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|
26
|
Wang X, Li X, Yu G, Zhang L, Zhang C, Wang Y, Liao F, Wen Y, Yin H, Liu X, Wei Y, Li Z, Deng Z, Zhang H. Structural insights into mechanisms of Argonaute protein-associated NADase activation in bacterial immunity. Cell Res 2023; 33:699-711. [PMID: 37311833 PMCID: PMC10474274 DOI: 10.1038/s41422-023-00839-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a central metabolite in cellular processes. Depletion of NAD+ has been demonstrated to be a prevalent theme in both prokaryotic and eukaryotic immune responses. Short prokaryotic Argonaute proteins (Agos) are associated with NADase domain-containing proteins (TIR-APAZ or SIR2-APAZ) encoded in the same operon. They confer immunity against mobile genetic elements, such as bacteriophages and plasmids, by inducing NAD+ depletion upon recognition of target nucleic acids. However, the molecular mechanisms underlying the activation of such prokaryotic NADase/Ago immune systems remain unknown. Here, we report multiple cryo-EM structures of NADase/Ago complexes from two distinct systems (TIR-APAZ/Ago and SIR2-APAZ/Ago). Target DNA binding triggers tetramerization of the TIR-APAZ/Ago complex by a cooperative self-assembly mechanism, while the heterodimeric SIR2-APAZ/Ago complex does not assemble into higher-order oligomers upon target DNA binding. However, the NADase activities of these two systems are unleashed via a similar closed-to-open transition of the catalytic pocket, albeit by different mechanisms. Furthermore, a functionally conserved sensor loop is employed to inspect the guide RNA-target DNA base pairing and facilitate the conformational rearrangement of Ago proteins required for the activation of these two systems. Overall, our study reveals the mechanistic diversity and similarity of Ago protein-associated NADase systems in prokaryotic immune response.
Collapse
Affiliation(s)
- Xiaoshen Wang
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuzichao Li
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guimei Yu
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingling Zhang
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chendi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Yong Wang
- Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fumeng Liao
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanan Wen
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hang Yin
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Yong Wei
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Zengqin Deng
- Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Heng Zhang
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
27
|
Shen Z, Yang XY, Xia S, Huang W, Taylor DJ, Nakanishi K, Fu TM. Oligomerization-mediated activation of a short prokaryotic Argonaute. Nature 2023; 621:154-161. [PMID: 37494956 PMCID: PMC11332595 DOI: 10.1038/s41586-023-06456-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Although eukaryotic and long prokaryotic Argonaute proteins (pAgos) cleave nucleic acids, some short pAgos lack nuclease activity and hydrolyse NAD(P)+ to induce bacterial cell death1. Here we present a hierarchical activation pathway for SPARTA, a short pAgo consisting of an Argonaute (Ago) protein and TIR-APAZ, an associated protein2. SPARTA progresses through distinct oligomeric forms, including a monomeric apo state, a monomeric RNA-DNA-bound state, two dimeric RNA-DNA-bound states and a tetrameric RNA-DNA-bound active state. These snapshots together identify oligomerization as a mechanistic principle of SPARTA activation. The RNA-DNA-binding channel of apo inactive SPARTA is occupied by an auto-inhibitory motif in TIR-APAZ. After the binding of RNA-DNA, SPARTA transitions from a monomer to a symmetric dimer and then an asymmetric dimer, in which two TIR domains interact through charge and shape complementarity. Next, two dimers assemble into a tetramer with a central TIR cluster responsible for hydrolysing NAD(P)+. In addition, we observe unique features of interactions between SPARTA and RNA-DNA, including competition between the DNA 3' end and the auto-inhibitory motif, interactions between the RNA G2 nucleotide and Ago, and splaying of the RNA-DNA duplex by two loops exclusive to short pAgos. Together, our findings provide a mechanistic basis for the activation of short pAgos, a large section of the Ago superfamily.
Collapse
Affiliation(s)
- Zhangfei Shen
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center and Center for Cancer Metabolism, The Ohio State University, Columbus, OH, USA
| | - Xiao-Yuan Yang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center and Center for Cancer Metabolism, The Ohio State University, Columbus, OH, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Shiyu Xia
- Divison of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.
- Comprehensive Cancer Center and Center for Cancer Metabolism, The Ohio State University, Columbus, OH, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
28
|
van Wolfswinkel JC. Insights in piRNA targeting rules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1811. [PMID: 37632327 PMCID: PMC10895071 DOI: 10.1002/wrna.1811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023]
Abstract
PIWI-interacting RNAs (piRNAs) play an important role in the defense against transposons in the germline and stem cells of animals. To what extent other transcripts are also regulated by piRNAs is an ongoing topic of debate. The amount of sequence complementarity between piRNA and target that is required for effective downregulation of the targeted transcript is guiding in this discussion. Over the years, various methods have been applied to infer targeting requirements from the collections of piRNAs and potential target transcripts, and recent structural studies of the PIWI proteins have provided an additional perspective. In this review, I summarize the findings from these studies and propose a set of requirements that can be used to predict targets to the best of our current abilities. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA-Based Catalysis > RNA-Mediated Cleavage.
Collapse
Affiliation(s)
- Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Center for Stem Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
- Center for RNA Biology and Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
29
|
Nail HM, Chiu CC, Leung CH, Ahmed MMM, Wang HMD. Exosomal miRNA-mediated intercellular communications and immunomodulatory effects in tumor microenvironments. J Biomed Sci 2023; 30:69. [PMID: 37605155 PMCID: PMC10440907 DOI: 10.1186/s12929-023-00964-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Extracellular communication, in other words, crosstalk between cells, has a pivotal role in the survival of an organism. This communication occurs by different methods, one of which is extracellular vesicles. Exosomes, which are small lipid extracellular vesicles, have recently been discovered to have a role in signal transduction between cells inside the body. These vesicles contain important bioactive molecules including lipids, proteins, DNA, mRNA, and noncoding RNAs such as microRNAs (miRNAs). Exosomes are secreted by all cells including immune cells (macrophages, lymphocytes, granulocytes, dendritic cells, mast cells) and tumor cells. The tumor microenvironment (TME) represents a complex network that supports the growth of tumor cells. This microenvironment encompasses tumor cells themselves, the extracellular matrix, fibroblasts, endothelial cells, blood vessels, immune cells, and non-cellular components such as exosomes and cytokines. This review aims to provide insights into the latest discoveries concerning how the immune system communicates internally and with other cell types, with a specific focus on research involving exosomal miRNAs in macrophages, dendritic cells, B lymphocytes, and T lymphocytes. Additionally, we will explore the role of exosomal miRNA in the TME and the immunomodulatory effect.
Collapse
Affiliation(s)
- Howida M Nail
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City, 402, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao, China
| | - Mahmoud M M Ahmed
- Department of Soil and Environmental Sciences, National Chung Hsing University, 404, Taichung City, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City, 402, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
30
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
31
|
Mishra A, Bharti PS, Rani N, Nikolajeff F, Kumar S. A tale of exosomes and their implication in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188908. [PMID: 37172650 DOI: 10.1016/j.bbcan.2023.188908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cancer is a cause of high deaths worldwide and also a huge burden for the health system. Cancer cells have unique properties such as a high rate of proliferation, self-renewal, metastasis, and treatment resistance, therefore, the development of novel diagnoses of cancers is a tedious task. Exosomes are secreted by virtually all cell types and have the ability to carry a multitude of biomolecules crucial for intercellular communication, hence, contributing a crucial part in the onset and spread of cancer. These exosomal components can be utilized in the development of markers for diagnostic and prognostic purposes for various cancers. This review emphasized primarily the following topics: exosomes structure and functions, isolation and characterization strategies of exosomes, the role of exosomal contents in cancer with a focus in particular on noncoding RNA and protein, exosomes, and the cancer microenvironment interactions, cancer stem cells, and tumor diagnosis and prognosis based on exosomes.
Collapse
Affiliation(s)
- Abhay Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, 97187, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; Department of Health, Education, and Technology, Lulea University of Technology, 97187, Sweden.
| |
Collapse
|
32
|
Isenmann M, Stoddart MJ, Schmelzeisen R, Gross C, Della Bella E, Rothweiler RM. Basic Principles of RNA Interference: Nucleic Acid Types and In Vitro Intracellular Delivery Methods. MICROMACHINES 2023; 14:1321. [PMID: 37512632 PMCID: PMC10383872 DOI: 10.3390/mi14071321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Since its discovery in 1989, RNA interference (RNAi) has become a widely used tool for the in vitro downregulation of specific gene expression in molecular biological research. This basically involves a complementary RNA that binds a target sequence to affect its transcription or translation process. Currently, various small RNAs, such as small interfering RNA (siRNA), micro RNA (miRNA), small hairpin RNA (shRNA), and PIWI interacting RNA (piRNA), are available for application on in vitro cell culture, to regulate the cells' gene expression by mimicking the endogenous RNAi-machinery. In addition, several biochemical, physical, and viral methods have been established to deliver these RNAs into the cell or nucleus. Since each RNA and each delivery method entail different off-target effects, limitations, and compatibilities, it is crucial to understand their basic mode of action. This review is intended to provide an overview of different nucleic acids and delivery methods for planning, interpreting, and troubleshooting of RNAi experiments.
Collapse
Affiliation(s)
- Marie Isenmann
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Martin James Stoddart
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Rainer Schmelzeisen
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | - Christian Gross
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | - Elena Della Bella
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - René Marcel Rothweiler
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| |
Collapse
|
33
|
Shibata A, Shirohzu H, Iwakami Y, Abe T, Emura C, Aoki E, Ohgi T. Terminal bridging of siRNA duplex at the ribose 2' position controls strand bias and target sequence preference. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:468-477. [PMID: 37168798 PMCID: PMC10165404 DOI: 10.1016/j.omtn.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
Small interfering RNA (siRNA) and short hairpin RNA (shRNA) are widely used as RNA interference (RNAi) reagents. Recently, truncated shRNAs that trigger RNAi in a Dicer-independent manner have been developed. We generated a novel class of RNAi reagent, designated enforced strand bias (ESB) RNA, in which an siRNA duplex was chemically bridged between the 3' terminal overhang region of the guide strand and the 5' terminal nucleotide of the passenger strand. ESB RNA, which is chemically bridged at the 2' positions of ribose (2'-2' ESB RNA), functions in a Dicer-independent manner and was highly effective at triggering RNAi without the passenger strand-derived off-target effect. In addition, the 2'-2' ESB RNA exhibited a unique target sequence preference that differs from siRNA and silenced target sequences that could not be effectively suppressed by siRNA. Our results indicate that ESB RNA has the potential to be an effective RNAi reagent even when the target sequence is not suitable for siRNA.
Collapse
Affiliation(s)
- Atsushi Shibata
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
- Corresponding author Atsushi Shibata, Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan.
| | - Hisao Shirohzu
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
- Fukuoka Center for Disease Control and Prevention, Kurume, Fukuoka, Japan
| | - Yusuke Iwakami
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Tomoaki Abe
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Chisato Emura
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Eriko Aoki
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Tadaaki Ohgi
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| |
Collapse
|
34
|
Manakova E, Golovinas E, Pocevičiūtė R, Sasnauskas G, Grybauskas A, Gražulis S, Zaremba M. Structural basis for sequence-specific recognition of guide and target strands by the Archaeoglobus fulgidus Argonaute protein. Sci Rep 2023; 13:6123. [PMID: 37059709 PMCID: PMC10104839 DOI: 10.1038/s41598-023-32600-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
Argonaute (Ago) proteins are found in all three domains of life. The best-characterized group is eukaryotic Argonautes (eAgos). Being the structural core of RNA interference machinery, they use guide RNA molecules for RNA targeting. Prokaryotic Argonautes (pAgos) are more diverse, both in terms of structure (there are eAgo-like 'long' and truncated 'short' pAgos) and mechanism, as many pAgos are specific for DNA, not RNA guide and/or target strands. Some long pAgos act as antiviral defence systems. Their defensive role was recently demonstrated for short pAgo-encoding systems SPARTA and GsSir2/Ago, but the function and action mechanisms of all other short pAgos remain unknown. In this work, we focus on the guide and target strand preferences of AfAgo, a truncated long-B Argonaute protein encoded by an archaeon Archaeoglobus fulgidus. We demonstrate that AfAgo associates with small RNA molecules carrying 5'-terminal AUU nucleotides in vivo, and characterize its affinity to various RNA and DNA guide/target strands in vitro. We also present X-ray structures of AfAgo bound to oligoduplex DNAs that provide atomic details for base-specific AfAgo interactions with both guide and target strands. Our findings broaden the range of currently known Argonaute-nucleic acid recognition mechanisms.
Collapse
Affiliation(s)
- Elena Manakova
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Edvardas Golovinas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Reda Pocevičiūtė
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Algirdas Grybauskas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Saulius Gražulis
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Mindaugas Zaremba
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania.
| |
Collapse
|
35
|
Quesnelle DC, Bendena WG, Chin-Sang ID. A Compilation of the Diverse miRNA Functions in Caenorhabditis elegans and Drosophila melanogaster Development. Int J Mol Sci 2023; 24:ijms24086963. [PMID: 37108126 PMCID: PMC10139094 DOI: 10.3390/ijms24086963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
MicroRNAs are critical regulators of post-transcriptional gene expression in a wide range of taxa, including invertebrates, mammals, and plants. Since their discovery in the nematode, Caenorhabditis elegans, miRNA research has exploded, and they are being identified in almost every facet of development. Invertebrate model organisms, particularly C. elegans, and Drosophila melanogaster, are ideal systems for studying miRNA function, and the roles of many miRNAs are known in these animals. In this review, we compiled the functions of many of the miRNAs that are involved in the development of these invertebrate model species. We examine how gene regulation by miRNAs shapes both embryonic and larval development and show that, although many different aspects of development are regulated, several trends are apparent in the nature of their regulation.
Collapse
Affiliation(s)
| | - William G Bendena
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
36
|
Xu Y, Zhang Y, Li Z, Soloria AK, Potter S, Chen X. The N-terminal extension of Arabidopsis ARGONAUTE 1 is essential for microRNA activities. PLoS Genet 2023; 19:e1010450. [PMID: 36888599 PMCID: PMC9994745 DOI: 10.1371/journal.pgen.1010450] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
microRNAs (miRNAs) regulate target gene expression through their ARGONAUTE (AGO) effector protein, mainly AGO1 in Arabidopsis thaliana. In addition to the highly conserved N, PAZ, MID and PIWI domains with known roles in RNA silencing, AGO1 contains a long, unstructured N-terminal extension (NTE) of little-known function. Here, we show that the NTE is indispensable for the functions of Arabidopsis AGO1, as a lack of the NTE leads to seedling lethality. Within the NTE, the region containing amino acids (a.a.) 91 to 189 is essential for rescuing an ago1 null mutant. Through global analyses of small RNAs, AGO1-associated small RNAs, and miRNA target gene expression, we show that the region containing a.a. 91-189 is required for the loading of miRNAs into AGO1. Moreover, we show that reduced nuclear partitioning of AGO1 did not affect its profiles of miRNA and ta-siRNA association. Furthermore, we show that the 1-to-90a.a. and 91-to-189a.a. regions of the NTE redundantly promote the activities of AGO1 in the biogenesis of trans-acting siRNAs. Together, we report novel roles of the NTE of Arabidopsis AGO1.
Collapse
Affiliation(s)
- Ye Xu
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Yong Zhang
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Zhenfang Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Alyssa K. Soloria
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Savannah Potter
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Xuemei Chen
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| |
Collapse
|
37
|
Structure of the human DICER-pre-miRNA complex in a dicing state. Nature 2023; 615:331-338. [PMID: 36813958 DOI: 10.1038/s41586-023-05723-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/14/2022] [Indexed: 02/24/2023]
Abstract
Dicer has a key role in small RNA biogenesis, processing double-stranded RNAs (dsRNAs)1,2. Human DICER (hDICER, also known as DICER1) is specialized for cleaving small hairpin structures such as precursor microRNAs (pre-miRNAs) and has limited activity towards long dsRNAs-unlike its homologues in lower eukaryotes and plants, which cleave long dsRNAs. Although the mechanism by which long dsRNAs are cleaved has been well documented, our understanding of pre-miRNA processing is incomplete because structures of hDICER in a catalytic state are lacking. Here we report the cryo-electron microscopy structure of hDICER bound to pre-miRNA in a dicing state and uncover the structural basis of pre-miRNA processing. hDICER undergoes large conformational changes to attain the active state. The helicase domain becomes flexible, which allows the binding of pre-miRNA to the catalytic valley. The double-stranded RNA-binding domain relocates and anchors pre-miRNA in a specific position through both sequence-independent and sequence-specific recognition of the newly identified 'GYM motif'3. The DICER-specific PAZ helix is also reoriented to accommodate the RNA. Furthermore, our structure identifies a configuration of the 5' end of pre-miRNA inserted into a basic pocket. In this pocket, a group of arginine residues recognize the 5' terminal base (disfavouring guanine) and terminal monophosphate; this explains the specificity of hDICER and how it determines the cleavage site. We identify cancer-associated mutations in the 5' pocket residues that impair miRNA biogenesis. Our study reveals how hDICER recognizes pre-miRNAs with stringent specificity and enables a mechanistic understanding of hDICER-related diseases.
Collapse
|
38
|
Orbán TI. One locus, several functional RNAs-emerging roles of the mechanisms responsible for the sequence variability of microRNAs. Biol Futur 2023:10.1007/s42977-023-00154-7. [PMID: 36847925 DOI: 10.1007/s42977-023-00154-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
With the development of modern molecular genetics, the original "one gene-one enzyme" hypothesis has been outdated. For protein coding genes, the discovery of alternative splicing and RNA editing provided the biochemical background for the RNA repertoire of a single locus, which also serves as an important pillar for the enormous protein variability of the genomes. Non-protein coding RNA genes were also revealed to produce several RNA species with distinct functions. The loci of microRNAs (miRNAs), encoding for small endogenous regulatory RNAs, were also found to produce a population of small RNAs, rather than a single defined product. This review aims to present the mechanisms contributing to the astonishing variability of miRNAs revealed by the new sequencing technologies. One important source is the careful balance of arm selection, producing sequentially different 5p- or 3p-miRNAs from the same pre-miRNA, thereby broadening the number of regulated target RNAs and the phenotypic response. In addition, the formation of 5', 3' and polymorphic isomiRs, with variable end and internal sequences also leads to a higher number of targeted sequences, and increases the regulatory output. These miRNA maturation processes, together with other known mechanisms such as RNA editing, further increase the potential outcome of this small RNA pathway. By discussing the subtle mechanisms behind the sequence diversity of miRNAs, this review intends to reveal this engaging aspect of the inherited "RNA world", how it contributes to the almost infinite molecular variability among living organisms, and how this variability can be exploited to treat human diseases.
Collapse
Affiliation(s)
- Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary.
| |
Collapse
|
39
|
Seroussi U, Lugowski A, Wadi L, Lao RX, Willis AR, Zhao W, Sundby AE, Charlesworth AG, Reinke AW, Claycomb JM. A comprehensive survey of C. elegans argonaute proteins reveals organism-wide gene regulatory networks and functions. eLife 2023; 12:e83853. [PMID: 36790166 PMCID: PMC10101689 DOI: 10.7554/elife.83853] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
Argonaute (AGO) proteins associate with small RNAs to direct their effector function on complementary transcripts. The nematode Caenorhabditis elegans contains an expanded family of 19 functional AGO proteins, many of which have not been fully characterized. In this work, we systematically analyzed every C. elegans AGO using CRISPR-Cas9 genome editing to introduce GFP::3xFLAG tags. We have characterized the expression patterns of each AGO throughout development, identified small RNA binding complements, and determined the effects of ago loss on small RNA populations and developmental phenotypes. Our analysis indicates stratification of subsets of AGOs into distinct regulatory modules, and integration of our data led us to uncover novel stress-induced fertility and pathogen response phenotypes due to ago loss.
Collapse
Affiliation(s)
- Uri Seroussi
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Andrew Lugowski
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Lina Wadi
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Robert X Lao
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | | | - Winnie Zhao
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Adam E Sundby
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | | | - Aaron W Reinke
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of TorontoTorontoCanada
| |
Collapse
|
40
|
Kirstein N, Dokaneheifard S, Cingaram PR, Valencia MG, Beckedorff F, Gomes Dos Santos H, Blumenthal E, Tayari MM, Gaidosh GS, Shiekhattar R. The Integrator complex regulates microRNA abundance through RISC loading. SCIENCE ADVANCES 2023; 9:eadf0597. [PMID: 36763664 PMCID: PMC9916992 DOI: 10.1126/sciadv.adf0597] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
MicroRNA (miRNA) homeostasis is crucial for the posttranscriptional regulation of their target genes during development and in disease states. miRNAs are derived from primary transcripts and are processed from a hairpin precursor intermediary to a mature 22-nucleotide duplex RNA. Loading of the duplex into the Argonaute (AGO) protein family is pivotal to miRNA abundance and its posttranscriptional function. The Integrator complex plays a key role in protein coding and noncoding RNA maturation, RNA polymerase II pause-release, and premature transcriptional termination. Here, we report that loss of Integrator results in global destabilization of mature miRNAs. Enhanced ultraviolet cross-linking and immunoprecipitation of Integrator uncovered an association with duplex miRNAs before their loading onto AGOs. Tracing miRNA fate from biogenesis to stabilization by incorporating 4-thiouridine in nascent transcripts pinpointed a critical role for Integrator in miRNA assembly into AGOs.
Collapse
Affiliation(s)
- Nina Kirstein
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Sadat Dokaneheifard
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Pradeep Reddy Cingaram
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Monica Guiselle Valencia
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Felipe Beckedorff
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Helena Gomes Dos Santos
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Ezra Blumenthal
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Medical Scientist Training Program and Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mina Masoumeh Tayari
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Gabriel Stephen Gaidosh
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
41
|
Weng YT, Chang YM, Chern Y. The Impact of Dysregulated microRNA Biogenesis Machinery and microRNA Sorting on Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24043443. [PMID: 36834853 PMCID: PMC9959302 DOI: 10.3390/ijms24043443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs involved in the differentiation, development, and function of cells in the body by targeting the 3'- untranslated regions (UTR) of mRNAs for degradation or translational inhibition. miRNAs not only affect gene expression inside the cells but also, when sorted into exosomes, systemically mediate the communication between different types of cells. Neurodegenerative diseases (NDs) are age-associated, chronic neurological diseases characterized by the aggregation of misfolded proteins, which results in the progressive degeneration of selected neuronal population(s). The dysregulation of biogenesis and/or sorting of miRNAs into exosomes was reported in several NDs, including Huntington's disease (HD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). Many studies support the possible roles of dysregulated miRNAs in NDs as biomarkers and therapeutic treatments. Understanding the molecular mechanisms underlying the dysregulated miRNAs in NDs is therefore timely and important for the development of diagnostic and therapeutic interventions. In this review, we focus on the dysregulated miRNA machinery and the role of RNA-binding proteins (RBPs) in NDs. The tools that are available to identify the target miRNA-mRNA axes in NDs in an unbiased manner are also discussed.
Collapse
|
42
|
Wang F, Huang HY, Huang J, Singh J, Pikaard CS. Enzymatic reactions of AGO4 in RNA-directed DNA methylation: siRNA duplex loading, passenger strand elimination, target RNA slicing, and sliced target retention. Genes Dev 2023; 37:103-118. [PMID: 36746605 PMCID: PMC10069450 DOI: 10.1101/gad.350240.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 02/08/2023]
Abstract
RNA-directed DNA methylation in plants is guided by 24-nt siRNAs generated in parallel with 23-nt RNAs of unknown function. We show that 23-nt RNAs function as passenger strands during 24-nt siRNA incorporation into AGO4. The 23-nt RNAs are then sliced into 11- and 12-nt fragments, with 12-nt fragments remaining associated with AGO4. Slicing recapitulated with recombinant AGO4 and synthetic RNAs reveals that siRNAs of 21-24 nt, with any 5'-terminal nucleotide, can guide slicing, with sliced RNAs then retained by AGO4. In vivo, RdDM target locus RNAs that copurify with AGO4 also display a sequence signature of slicing. Comparing plants expressing slicing-competent versus slicing-defective AGO4 shows that slicing elevates cytosine methylation levels at virtually all RdDM loci. We propose that siRNA passenger strand elimination and AGO4 tethering to sliced target RNAs are distinct modes by which AGO4 slicing enhances RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Feng Wang
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
- Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405, USA
| | - Hsiao-Yun Huang
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Jie Huang
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Jasleen Singh
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Craig S Pikaard
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
- Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
43
|
Kobayashi T, Young C, Zhou W, Rhee EP. Reduced glycolysis links resting zone chondrocyte proliferation in the growth plate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524550. [PMID: 36711926 PMCID: PMC9882305 DOI: 10.1101/2023.01.18.524550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A gain-of-function mutation of the chondrocyte-specific microRNA, miR-140-5p, encoded by the MIR140 gene, causes spondyloepiphyseal dysplasia, Nishimura type (SEDN, also known as SED, MIR140 type; MIM, 611894). We reported that a mouse model for SEDN showed a unique growth plate phenotype that is characterized by an expansion of the resting zone of the growth plate and an increase in resting chondrocytes, of which the mechanism of regulation is poorly understood. We found that the miR-140 mutant chondrocytes showed a significant reduction of Hif1a, the master transcription factor that regulates energy metabolism in response to hypoxia. Based on this finding, we hypothesized that energy metabolism plays a regulatory role in resting chondrocyte proliferation and growth plate development. In this study, we show that suppression of glycolysis via LDH ablation causes an expansion of the resting zone and skeletal developmental defects. We have also found that reduced glycolysis results in reduced histone acetylation in the miR-140 mutant as well as LDH-deficient chondrocytes likely due to the reduction in acetyl-CoA generated from mitochondria-derived citrate. Reduction in acetyl-CoA conversion from citrate by deleting Acly caused an expansion of the resting zone and a similar gross phenotype to LDH-deficient bones without inducing energy deficiency, suggesting that the reduced acetyl-CoA, but not the ATP synthesis deficit, is responsible for the increase in resting zone chondrocytes. Comparison of the transcriptome between LDH-deficient and Acly-deficient chondrocytes also showed overlapping changes including upregulation in Fgfr3. We also confirmed that overexpression of an activation mutation of Ffgr3 causes an expansion of resting zone chondrocytes. These data demonstrate the association between reduced glycolysis and an expansion of the resting zone and suggest that it is caused by acetyl-CoA deficiency, but not energy deficiency, possibly through epigenetic upregulation of FGFR3 signaling.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Cameron Young
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Wen Zhou
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
- Current address, Johnson & Johnson, Cambridge, MA 02142 USA
| | - Eugene P. Rhee
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
- Renal Unit, Massachusetts General Hospital and Harvard Medical School
- Broad Institute Cambridge, MA
| |
Collapse
|
44
|
Xie X, Wang L, Ma L. A bacterial Argonaute from Tepiditoga spiralis with the ability of RNA guided plasmid cleavage. Biochem Biophys Res Commun 2023; 640:157-163. [PMID: 36512847 DOI: 10.1016/j.bbrc.2022.11.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
The eukaryotic Argonaute proteins (eAgos) play an important role in the RNA interference pathway. The function and mechanism of prokaryotic Argonaute proteins (pAgos) in vivo are still unclear although the structure of pAgos and eAgos are highly homologous. Most of the reported pAgos have a preference for 5'P-gDNA, but MpAgo originated from bacteria Marinitoga piezophila preferentially uses 5'OH-gRNA to target DNA and RNA. To enrich our knowledge of this type of Argonaute proteins, here we report an Argonaute protein derived from Tepiditoga spiralis (TsAgo). Like MpAgo, TsAgo has a preference for 5'OH-gRNA. Meanwhile, TsAgo has DNA and RNA cleavage activity in presence of Mn2+ and Mg2+, and TsAgo has catalytic activity at 37-70 °C. In addition, TsAgo can tolerate mismatches in the 5'-end and 3'-tail regions of guides but is sensitive to mismatches in the 5'-seed and central regions of guides, especially the central region. Furthermore, the EMSA assay reveals that TsAgo exhibits a stronger binding affinity for 5'OH-gRNA than 5'P-gRNA which is consistent with its cleavage activity. Moreover, the structural modeling analysis demonstrates that like MpAgo, TsAgo has an ordered α5 at the C terminus of the PIWI domain which may hinder to binding of 5' phosphate. Importantly, we find that TsAgo can target and cut plasmid DNA in vitro at 60 °C under the direction of RNA guides. These studies broaden our understanding of pAgos, and demonstrate that TsAgo can be regarded as an RNA-guided programmable nuclease for cleaving plasmids.
Collapse
Affiliation(s)
- Xiaochen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
45
|
Komatsu S, Kitai H, Suzuki HI. Network Regulation of microRNA Biogenesis and Target Interaction. Cells 2023; 12:306. [PMID: 36672241 PMCID: PMC9856966 DOI: 10.3390/cells12020306] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are versatile, post-transcriptional regulators of gene expression. Canonical miRNAs are generated through the two-step DROSHA- and DICER-mediated processing of primary miRNA (pri-miRNA) transcripts with optimal or suboptimal features for DROSHA and DICER cleavage and loading into Argonaute (AGO) proteins, whereas multiple hairpin-structured RNAs are encoded in the genome and could be a source of non-canonical miRNAs. Recent advances in miRNA biogenesis research have revealed details of the structural basis of miRNA processing and cluster assistance mechanisms that facilitate the processing of suboptimal hairpins encoded together with optimal hairpins in polycistronic pri-miRNAs. In addition, a deeper investigation of miRNA-target interaction has provided insights into the complexity of target recognition with distinct outcomes, including target-mediated miRNA degradation (TDMD) and cooperation in target regulation by multiple miRNAs. Therefore, the coordinated or network regulation of both miRNA biogenesis and miRNA-target interaction is prevalent in miRNA biology. Alongside recent advances in the mechanistic investigation of miRNA functions, this review summarizes recent findings regarding the ordered regulation of miRNA biogenesis and miRNA-target interaction.
Collapse
Affiliation(s)
- Shintaro Komatsu
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroki Kitai
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu 501-1193, Japan
| |
Collapse
|
46
|
Structural Modifications of siRNA Improve Its Performance In Vivo. Int J Mol Sci 2023; 24:ijms24020956. [PMID: 36674473 PMCID: PMC9862127 DOI: 10.3390/ijms24020956] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
The use of small interfering RNA (siRNA) in the clinic gives a wide range of possibilities for the treatment of previously incurable diseases. However, the main limitation for biomedical applications is their delivery to target cells and organs. Currently, delivery of siRNA to liver cells is a solved problem due to the bioconjugation of siRNA with N-acetylgalactosamine; other organs remain challenging for siRNA delivery to them. Despite the important role of the ligand in the composition of the bioconjugate, the structure and molecular weight of siRNA also play an important role in the delivery of siRNA. The basic principle is that siRNAs with smaller molecular weights are more efficient at entering cells, whereas siRNAs with larger molecular weights have advantages at the organism level. Here we review the relationships between siRNA structure and its biodistribution and activity to find new strategies for improving siRNA performance.
Collapse
|
47
|
Feng C, Torimaru K, Lim MYT, Chak LL, Shiimori M, Tsuji K, Tanaka T, Iida J, Okamura K. A novel eukaryotic RdRP-dependent small RNA pathway represses antiviral immunity by controlling an ERK pathway component in the black-legged tick. PLoS One 2023; 18:e0281195. [PMID: 36996253 PMCID: PMC10062562 DOI: 10.1371/journal.pone.0281195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/17/2023] [Indexed: 04/01/2023] Open
Abstract
Small regulatory RNAs (sRNAs) are involved in antiviral defense and gene regulation. Although roles of RNA-dependent RNA Polymerases (RdRPs) in sRNA biology are extensively studied in nematodes, plants and fungi, understanding of RdRP homologs in other animals is still lacking. Here, we study sRNAs in the ISE6 cell line, which is derived from the black-legged tick, an important vector of human and animal pathogens. We find abundant classes of ~22nt sRNAs that require specific combinations of RdRPs and sRNA effector proteins (Argonautes or AGOs). RdRP1-dependent sRNAs possess 5'-monophosphates and are mainly derived from RNA polymerase III-transcribed genes and repetitive elements. Knockdown of some RdRP homologs misregulates genes including RNAi-related genes and the regulator of immune response Dsor1. Sensor assays demonstrate that Dsor1 is downregulated by RdRP1 through the 3'UTR that contains a target site of RdRP1-dependent repeat-derived sRNAs. Consistent with viral gene repression by the RNAi mechanism using virus-derived small interfering RNAs, viral transcripts are upregulated by AGO knockdown. On the other hand, RdRP1 knockdown unexpectedly results in downregulation of viral transcripts. This effect is dependent on Dsor1, suggesting that antiviral immunity is enhanced by RdRP1 knockdown through Dsor1 upregulation. We propose that tick sRNA pathways control multiple aspects of immune response via RNAi and regulation of signaling pathways.
Collapse
Affiliation(s)
- Canran Feng
- Nara Institute of Science and Technology, Nara, Japan
| | | | - Mandy Yu Theng Lim
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Li-Ling Chak
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| | | | - Kosuke Tsuji
- Nara Institute of Science and Technology, Nara, Japan
| | - Tetsuya Tanaka
- Joint Faculty of Veterinary Medicine, Laboratory of Infectious Diseases, Kagoshima University, Kagoshima, Japan
| | - Junko Iida
- Nara Institute of Science and Technology, Nara, Japan
| | - Katsutomo Okamura
- Nara Institute of Science and Technology, Nara, Japan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
48
|
Ye Q, Li Z, Li Y, Li Y, Zhang Y, Gui R, Cui Y, Zhang Q, Qian L, Xiong Y, Yu Y. Exosome-Derived microRNA: Implications in Melanoma Progression, Diagnosis and Treatment. Cancers (Basel) 2022; 15:cancers15010080. [PMID: 36612077 PMCID: PMC9818028 DOI: 10.3390/cancers15010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Melanoma is a malignant and aggressive cancer, and its progression is greatly affected by interactions between melanoma cells and their surroundings. Exploration on mechanism of melanoma and improved diagnostic and therapeutic strategies are becoming increasingly important. Unlike extracellular messengers that mainly work on targeted cells through corresponding receptors, exosomes are essential intercellular messengers that deliver biologically active substances such as nucleic acids and proteins to target cells for cell-cell communication. Of them, microRNAs (miRNAs) are common and important exosomal components that can regulate the expression of a wide range of target genes. Accordingly, exosome-derived miRNAs play a significant role in melanoma progression, including invasion and metastasis, microenvironment establishment, angiogenesis, and immune escape. MiRNA signatures of exosomes are specific in melanoma patients compared to healthy controls, thus circulating miRNAs, especially exosomal miRNAs, become potential diagnostic markers and therapeutic targets for melanoma. This review aims to summarize recent studies on the role of exosomal miRNAs in melanoma as well as ongoing efforts in melanoma treatment.
Collapse
Affiliation(s)
- Qiang Ye
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Zi Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yang Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yirong Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yan Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Runlin Gui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yue Cui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Qi Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Lu Qian
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Department of Endocrinology, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi’an 710069, China
| | - Yuyan Xiong
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence: (Y.X.); (Y.Y.)
| | - Yi Yu
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence: (Y.X.); (Y.Y.)
| |
Collapse
|
49
|
Jia Y, Zhao J, Yu T, Zhang X, Qi X, Hao T, Jin Z, Zhao X. PSMC3 promotes RNAi by maintaining AGO2 stability through USP14. Cell Mol Biol Lett 2022; 27:111. [PMID: 36528617 PMCID: PMC9759854 DOI: 10.1186/s11658-022-00411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Argonaute 2 (AGO2), the only protein with catalytic activity in the human Argonaute family, is considered as a key component of RNA interference (RNAi) pathway. Here we performed a yeast two-hybrid screen using the human Argonaute 2 PIWI domain as bait to screen for new AGO2-interacting proteins and explored the specific mechanism through a series of molecular biology and biochemistry experiments. METHODS The yeast two-hybrid system was used to screen for AGO2-interacting proteins. Co-immunoprecipitation and immunofluorescence assays were used to further determine interactions and co-localization. Truncated plasmids were constructed to clarify the interaction domain. EGFP fluorescence assay was performed to determine the effect of PSMC3 on RNAi. Regulation of AGO2 protein expression and ubiquitination by PSMC3 and USP14 was examined by western blotting. RT-qPCR assays were applied to assess the level of AGO2 mRNA. Rescue assays were also performed. RESULTS We identified PSMC3 (proteasome 26S subunit, ATPase, 3) as a novel AGO2 binding partner. Biochemical and bioinformatic analysis demonstrates that this interaction is performed in an RNA-independent manner and the N-terminal coiled-coil motif of PSMC3 is required. Depletion of PSMC3 impairs the activity of the targeted cleavage mediated by small RNAs. Further studies showed that depletion of PSMC3 decreased AGO2 protein amount, whereas PSMC3 overexpression increased the expression of AGO2 at a post-translational level. Cycloheximide treatment indicated that PSMC3 depletion resulted in a decrease in cytoplasmic AGO2 amount due to an increase in AGO2 protein turnover. The absence of PSMC3 promoted ubiquitination of AGO2, resulting in its degradation by the 26S proteasome. Mechanistically, PSMC3 assists in the interaction of AGO2 with the deubiquitylase USP14(ubiquitin specific peptidase 14) and facilitates USP14-mediated deubiquitination of AGO2. As a result, AGO2 is stabilized, which then promotes RNAi. CONCLUSION Our findings demonstrate that PSMC3 plays an essential role in regulating the stability of AGO2 and thus in maintaining effective RNAi.
Collapse
Affiliation(s)
- Yan Jia
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Jianing Zhao
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Tao Yu
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Xue Zhang
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Xiaozhen Qi
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Tongxin Hao
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Zeyuan Jin
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Xiaoqing Zhao
- grid.452704.00000 0004 7475 0672Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong China
| |
Collapse
|
50
|
Quévillon Huberdeau M, Shah VN, Nahar S, Neumeier J, Houle F, Bruckmann A, Gypas F, Nakanishi K, Großhans H, Meister G, Simard MJ. A specific type of Argonaute phosphorylation regulates binding to microRNAs during C. elegans development. Cell Rep 2022; 41:111822. [PMID: 36516777 PMCID: PMC10436268 DOI: 10.1016/j.celrep.2022.111822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Argonaute proteins are at the core of the microRNA-mediated gene silencing pathway essential for animals. In C. elegans, the microRNA-specific Argonautes ALG-1 and ALG-2 regulate multiple processes required for proper animal developmental timing and viability. Here we identified a phosphorylation site on ALG-1 that modulates microRNA association. Mutating ALG-1 serine 642 into a phospho-mimicking residue impairs microRNA binding and causes embryonic lethality and post-embryonic phenotypes that are consistent with alteration of microRNA functions. Monitoring microRNA levels in alg-1 phosphorylation mutant animals shows that microRNA passenger strands increase in abundance but are not preferentially loaded into ALG-1, indicating that the miRNA binding defects could lead to microRNA duplex accumulation. Our genetic and biochemical experiments support protein kinase A (PKA) KIN-1 as the putative kinase that phosphorylates ALG-1 serine 642. Our data indicate that PKA triggers ALG-1 phosphorylation to regulate its microRNA association during C. elegans development.
Collapse
Affiliation(s)
- Miguel Quévillon Huberdeau
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Vivek Nilesh Shah
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Smita Nahar
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Julia Neumeier
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - François Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Foivos Gypas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, Columbus, OH 43210, USA
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4056 Basel, Switzerland
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada.
| |
Collapse
|