1
|
Yoon JH, Sellamuthu K, Prakash L, Prakash S. WRN exonuclease imparts high fidelity on translesion synthesis by Y family DNA polymerases. Genes Dev 2024; 38:213-232. [PMID: 38503516 PMCID: PMC11065173 DOI: 10.1101/gad.351410.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Purified translesion synthesis (TLS) DNA polymerases (Pols) replicate through DNA lesions with a low fidelity; however, TLS operates in a predominantly error-free manner in normal human cells. To explain this incongruity, here we determine whether Y family Pols, which play an eminent role in replication through a diversity of DNA lesions, are incorporated into a multiprotein ensemble and whether the intrinsically high error rate of the TLS Pol is ameliorated by the components in the ensemble. To this end, we provide evidence for an indispensable role of Werner syndrome protein (WRN) and WRN-interacting protein 1 (WRNIP1) in Rev1-dependent TLS by Y family Polη, Polι, or Polκ and show that WRN, WRNIP1, and Rev1 assemble together with Y family Pols in response to DNA damage. Importantly, we identify a crucial role of WRN's 3' → 5' exonuclease activity in imparting high fidelity on TLS by Y family Pols in human cells, as the Y family Pols that accomplish TLS in an error-free manner manifest high mutagenicity in the absence of WRN's exonuclease function. Thus, by enforcing high fidelity on TLS Pols, TLS mechanisms have been adapted to safeguard against genome instability and tumorigenesis.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Karthi Sellamuthu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| |
Collapse
|
2
|
Tomar R, Li S, Egli M, Stone MP. Replication Bypass of the N-(2-Deoxy-d-erythro-pentofuranosyl)-urea DNA Lesion by Human DNA Polymerase η. Biochemistry 2024; 63:754-766. [PMID: 38413007 PMCID: PMC10956437 DOI: 10.1021/acs.biochem.3c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/29/2024]
Abstract
Urea lesions in DNA arise from thymine glycol (Tg) or 8-oxo-dG; their genotoxicity is thought to arise in part due to their potential to accommodate the insertion of all four dNTPs during error-prone replication. Replication bypass with human DNA polymerase η (hPol η) confirmed that all four dNTPs were inserted opposite urea lesions but with purines exhibiting greater incorporation efficiency. X-ray crystal structures of ternary replication bypass complexes in the presence of Mg2+ ions with incoming dNTP analogs dAMPnPP, dCMPnPP, dGMPnPP, and dTMPnPP bound opposite urea lesions (hPol η·DNA·dNMPnPP complexes) revealed all were accommodated by hPol η. In each, the Watson-Crick face of the dNMPnPP was paired with the urea lesion, exploiting the ability of the amine and carbonyl groups of the urea to act as H-bond donors or acceptors, respectively. With incoming dAMPnPP or dGMPnPP, the distance between the imino nitrogen of urea and the N9 atoms of incoming dNMPnPP approximated the canonical distance of 9 Å in B-DNA. With incoming dCMPnPP or dTMPnPP, the corresponding distance of about 7 Å was less ideal. Improved base-stacking interactions were also observed with incoming purines vs pyrimidines. Nevertheless, in each instance, the α-phosphate of incoming dNMPnPPs was close to the 3'-hydroxyl group of the primer terminus, consistent with the catalysis of nucleotidyl transfer and the observation that all four nucleotides could be inserted opposite urea lesions. Preferential insertion of purines by hPol η may explain, in part, why the urea-directed spectrum of mutations arising from Tg vs 8-oxo-dG lesions differs.
Collapse
Affiliation(s)
- Rachana Tomar
- Department
of Chemistry, Vanderbilt Ingram Cancer Center, and Vanderbilt Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Songlin Li
- Department
of Chemistry, Vanderbilt Ingram Cancer Center, and Vanderbilt Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Martin Egli
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Michael P. Stone
- Department
of Chemistry, Vanderbilt Ingram Cancer Center, and Vanderbilt Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
3
|
Menck CFM, Galhardo RS, Quinet A. The accurate bypass of pyrimidine dimers by DNA polymerase eta contributes to ultraviolet-induced mutagenesis. Mutat Res 2024; 828:111840. [PMID: 37984186 DOI: 10.1016/j.mrfmmm.2023.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human xeroderma pigmentosum variant (XP-V) patients are mutated in the POLH gene, responsible for encoding the translesion synthesis (TLS) DNA polymerase eta (Pol eta). These patients suffer from a high frequency of skin tumors. Despite several decades of research, studies on Pol eta still offer an intriguing paradox: How does this error-prone polymerase suppress mutations? This review examines recent evidence suggesting that cyclobutane pyrimidine dimers (CPDs) are instructional for Pol eta. Consequently, it can accurately replicate these lesions, and the mutagenic effects induced by UV radiation stem from the deamination of C-containing CPDs. In this model, the deamination of C (forming a U) within CPDs leads to the correct insertion of an A opposite to the deaminated C (or U)-containing dimers. This intricate process results in C>T transitions, which represent the most prevalent mutations detected in skin cancers. Finally, the delayed replication in XP-V cells amplifies the process of C-deamination in CPDs and increases the burden of C>T mutations prevalent in XP-V tumors through the activity of backup TLS polymerases.
Collapse
Affiliation(s)
- C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - R S Galhardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - A Quinet
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
4
|
Spanjaard A, Shah R, de Groot D, Buoninfante OA, Morris B, Lieftink C, Pritchard C, Zürcher LM, Ormel S, Catsman JJI, de Korte-Grimmerink R, Siteur B, Proost N, Boadum T, van de Ven M, Song JY, Kreft M, van den Berk PCM, Beijersbergen RL, Jacobs H. Division of labor within the DNA damage tolerance system reveals non-epistatic and clinically actionable targets for precision cancer medicine. Nucleic Acids Res 2022; 50:7420-7435. [PMID: 35819193 PMCID: PMC9303390 DOI: 10.1093/nar/gkac545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Crosslink repair depends on the Fanconi anemia pathway and translesion synthesis polymerases that replicate over unhooked crosslinks. Translesion synthesis is regulated via ubiquitination of PCNA, and independently via translesion synthesis polymerase REV1. The division of labor between PCNA-ubiquitination and REV1 in interstrand crosslink repair is unclear. Inhibition of either of these pathways has been proposed as a strategy to increase cytotoxicity of platinating agents in cancer treatment. Here, we defined the importance of PCNA-ubiquitination and REV1 for DNA in mammalian ICL repair. In mice, loss of PCNA-ubiquitination, but not REV1, resulted in germ cell defects and hypersensitivity to cisplatin. Loss of PCNA-ubiquitination, but not REV1 sensitized mammalian cancer cell lines to cisplatin. We identify polymerase Kappa as essential in tolerating DNA damage-induced lesions, in particular cisplatin lesions. Polk-deficient tumors were controlled by cisplatin treatment and it significantly delayed tumor outgrowth and increased overall survival of tumor bearing mice. Our results indicate that PCNA-ubiquitination and REV1 play distinct roles in DNA damage tolerance. Moreover, our results highlight POLK as a critical TLS polymerase in tolerating multiple genotoxic lesions, including cisplatin lesions. The relative frequent loss of Polk in cancers indicates an exploitable vulnerability for precision cancer medicine.
Collapse
Affiliation(s)
- Aldo Spanjaard
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ronak Shah
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Daniël de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Olimpia Alessandra Buoninfante
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ben Morris
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Colin Pritchard
- Intervention unit of the Mouse Clinic for Cancer and Aging research (MCCA), The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lisa M Zürcher
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Shirley Ormel
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Joyce J I Catsman
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Renske de Korte-Grimmerink
- Intervention unit of the Mouse Clinic for Cancer and Aging research (MCCA), The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Bjørn Siteur
- Intervention unit of the Mouse Clinic for Cancer and Aging research (MCCA), The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Natalie Proost
- Intervention unit of the Mouse Clinic for Cancer and Aging research (MCCA), The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Terry Boadum
- NKI Animal facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Marieke van de Ven
- Intervention unit of the Mouse Clinic for Cancer and Aging research (MCCA), The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Paul C M van den Berk
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
5
|
Ling JA, Frevert Z, Washington MT. Recent Advances in Understanding the Structures of Translesion Synthesis DNA Polymerases. Genes (Basel) 2022; 13:genes13050915. [PMID: 35627300 PMCID: PMC9141541 DOI: 10.3390/genes13050915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
DNA damage in the template strand causes replication forks to stall because replicative DNA polymerases are unable to efficiently incorporate nucleotides opposite template DNA lesions. To overcome these replication blocks, cells are equipped with multiple translesion synthesis polymerases that have evolved specifically to incorporate nucleotides opposite DNA lesions. Over the past two decades, X-ray crystallography has provided a wealth of information about the structures and mechanisms of translesion synthesis polymerases. This approach, however, has been limited to ground state structures of these polymerases bound to DNA and nucleotide substrates. Three recent methodological developments have extended our understanding of the structures and mechanisms of these polymerases. These include time-lapse X-ray crystallography, which allows one to identify novel reaction intermediates; full-ensemble hybrid methods, which allow one to examine the conformational flexibility of the intrinsically disordered regions of proteins; and cryo-electron microscopy, which allows one to determine the high-resolution structures of larger protein complexes. In this article, we will discuss how these three methodological developments have added to our understanding of the structures and mechanisms of translesion synthesis polymerases.
Collapse
|
6
|
Franklin A, Steele EJ. RNA-directed DNA repair and antibody somatic hypermutation. Trends Genet 2021; 38:426-436. [PMID: 34740453 DOI: 10.1016/j.tig.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022]
Abstract
Somatic hypermutation at antibody loci affects both deoxyadenosine-deoxythymidine (A/T) and deoxycytidine-deoxyguanosine (C/G) pairs. Deamination of C to deoxyuridine (U) by activation-induced deaminase (AID) explains how mutation at C/G pairs is potentiated. Mutation at A/T pairs is triggered during the initial stages of repair of AID-generated U lesions and occurs through an as yet unknown mechanism in which polymerase η has a major role. Recent evidence confirms that human polymerase η can act as a reverse transcriptase. Here, we compare the popular suggestion of mutation at A/T pairs through nucleotide mispairing (owing to polymerase error) during short-patch repair synthesis with the alternative proposal of mutation at A/T pairs through RNA editing and RNA-directed DNA repair.
Collapse
Affiliation(s)
- Andrew Franklin
- Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland.
| | | |
Collapse
|
7
|
Lancey C, Tehseen M, Bakshi S, Percival M, Takahashi M, Sobhy MA, Raducanu VS, Blair K, Muskett FW, Ragan TJ, Crehuet R, Hamdan SM, De Biasio A. Cryo-EM structure of human Pol κ bound to DNA and mono-ubiquitylated PCNA. Nat Commun 2021; 12:6095. [PMID: 34667155 PMCID: PMC8526622 DOI: 10.1038/s41467-021-26251-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/22/2021] [Indexed: 11/26/2022] Open
Abstract
Y-family DNA polymerase κ (Pol κ) can replicate damaged DNA templates to rescue stalled replication forks. Access of Pol κ to DNA damage sites is facilitated by its interaction with the processivity clamp PCNA and is regulated by PCNA mono-ubiquitylation. Here, we present cryo-EM reconstructions of human Pol κ bound to DNA, an incoming nucleotide, and wild type or mono-ubiquitylated PCNA (Ub-PCNA). In both reconstructions, the internal PIP-box adjacent to the Pol κ Polymerase-Associated Domain (PAD) docks the catalytic core to one PCNA protomer in an angled orientation, bending the DNA exiting the Pol κ active site through PCNA, while Pol κ C-terminal domain containing two Ubiquitin Binding Zinc Fingers (UBZs) is invisible, in agreement with disorder predictions. The ubiquitin moieties are partly flexible and extend radially away from PCNA, with the ubiquitin at the Pol κ-bound protomer appearing more rigid. Activity assays suggest that, when the internal PIP-box interaction is lost, Pol κ is retained on DNA by a secondary interaction between the UBZs and the ubiquitins flexibly conjugated to PCNA. Our data provide a structural basis for the recruitment of a Y-family TLS polymerase to sites of DNA damage. Translesion Synthesis is a process that enables cells to overcome the deleterious effects of replication stalling caused by DNA lesions. Here the authors present a Cryo-EM structure of human Y-family DNA polymerase k (Pol k) bound to PCNA, P/T DNA and an incoming nucleotide; and propose a model for polymerase switching in which “carrier state” Pol k is recruited to PCNA.
Collapse
Affiliation(s)
- Claudia Lancey
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Muhammad Tehseen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Souvika Bakshi
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Matthew Percival
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Masateru Takahashi
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Mohamed A Sobhy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Vlad S Raducanu
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Kerry Blair
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Frederick W Muskett
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Timothy J Ragan
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Ramon Crehuet
- CSIC-Institute for Advanced Chemistry of Catalonia (IQAC) C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Samir M Hamdan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK. .,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
8
|
Shen S, Davidson GA, Yang K, Zhuang Z. Photo-activatable Ub-PCNA probes reveal new structural features of the Saccharomyces cerevisiae Polη/PCNA complex. Nucleic Acids Res 2021; 49:9374-9388. [PMID: 34390346 PMCID: PMC8450101 DOI: 10.1093/nar/gkab646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/02/2021] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
The Y-family DNA polymerase η (Polη) is critical for the synthesis past damaged DNA nucleotides in yeast through translesion DNA synthesis (TLS). TLS is initiated by monoubiquitination of proliferating cell nuclear antigen (PCNA) and the subsequent recruitment of TLS polymerases. Although individual structures of the Polη catalytic core and PCNA have been solved, a high-resolution structure of the complex of Polη/PCNA or Polη/monoubiquitinated PCNA (Ub-PCNA) still remains elusive, partly due to the disordered Polη C-terminal region and the flexibility of ubiquitin on PCNA. To circumvent these obstacles and obtain structural insights into this important TLS polymerase complex, we developed photo-activatable PCNA and Ub-PCNA probes containing a p-benzoyl-L-phenylalanine (pBpa) crosslinker at selected positions on PCNA. By photo-crosslinking the probes with full-length Polη, specific crosslinking sites were identified following tryptic digestion and tandem mass spectrometry analysis. We discovered direct interactions of the Polη catalytic core and its C-terminal region with both sides of the PCNA ring. Model building using the crosslinking site information as a restraint revealed multiple conformations of Polη in the polymerase complex. Availability of the photo-activatable PCNA and Ub-PCNA probes will also facilitate investigations into other PCNA-containing complexes important for DNA replication, repair and damage tolerance.
Collapse
Affiliation(s)
- Siqi Shen
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, DE 19716, USA
| | - Gregory A Davidson
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, DE 19716, USA
| | - Kun Yang
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, DE 19716, USA
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, DE 19716, USA
| |
Collapse
|
9
|
Yoon JH, Basu D, Choudhury JR, Prakash S, Prakash L. DNA polymerase λ promotes error-free replication through Watson-Crick impairing N1-methyl-deoxyadenosine adduct in conjunction with DNA polymerase ζ. J Biol Chem 2021; 297:100868. [PMID: 34119520 PMCID: PMC8260881 DOI: 10.1016/j.jbc.2021.100868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 11/26/2022] Open
Abstract
In a previous study, we showed that replication through the N1-methyl-deoxyadenosine (1-MeA) adduct in human cells is mediated via three different Polι/Polθ, Polη, and Polζ-dependent pathways. Based on biochemical studies with these Pols, in the Polι/Polθ pathway, we inferred a role for Polι in the insertion of a nucleotide (nt) opposite 1-MeA and of Polθ in extension of synthesis from the inserted nt; in the Polη pathway, we inferred that this Pol alone would replicate through 1-MeA; in the Polζ pathway, however, the Pol required for inserting an nt opposite 1-MeA had remained unidentified. In this study, we provide biochemical and genetic evidence for a role for Polλ in inserting the correct nt T opposite 1-MeA, from which Polζ would extend synthesis. The high proficiency of purified Polλ for inserting a T opposite 1-MeA implicates a role for Polλ—which normally uses W-C base pairing for DNA synthesis—in accommodating 1-MeA in a syn confirmation and forming a Hoogsteen base pair with T. The potential of Polλ to replicate through DNA lesions by Hoogsteen base pairing adds another novel aspect to Polλ’s role in translesion synthesis in addition to its role as a scaffolding component of Polζ. We discuss how the action mechanisms of Polλ and Polζ could be restrained to inserting a T opposite 1-MeA and extending synthesis thereafter, respectively.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Debashree Basu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jayati Roy Choudhury
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
10
|
Deaminated purine bypass by DNA polymerase η. Biochem J 2021; 478:1309-1313. [PMID: 33779688 PMCID: PMC8009656 DOI: 10.1042/bcj20200989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/26/2022]
Abstract
A recent work by Jung and colleagues (Biochem J.477, 4797–4810) provides an explanation of how DNA polymerase η replicates through deaminated purine bases such as xanthine and hypoxanthine. This commentary discusses the crystal structures of the polymerase η complexes that implicate the role of tautomerism in the bypass of these DNA lesions.
Collapse
|
11
|
Yoon JH, Basu D, Sellamuthu K, Johnson RE, Prakash S, Prakash L. A novel role of DNA polymerase λ in translesion synthesis in conjunction with DNA polymerase ζ. Life Sci Alliance 2021; 4:4/4/e202000900. [PMID: 33514655 PMCID: PMC7898466 DOI: 10.26508/lsa.202000900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
As an integral scaffolding component of DNA polymerase (Pol) zeta, Pol lambda adapts Pol zeta–dependent translesion synthesis to operate in a predominantly error-free manner in human cells. By extending synthesis opposite from a diverse array of DNA lesions, DNA polymerase (Pol) ζ performs a crucial role in translesion synthesis (TLS). In yeast and cancer cells, Rev1 functions as an indispensable scaffolding component of Polζ and it imposes highly error-prone TLS upon Polζ. However, for TLS that occurs during replication in normal human cells, Rev1 functions instead as a scaffolding component of Pols η, ι, and κ and Rev1-dependent TLS by these Pols operates in a predominantly error-free manner. The lack of Rev1 requirement for Polζ function in TLS in normal cells suggested that some other protein substitutes for this Rev1 role. Here, we identify a novel role of Polλ as an indispensable scaffolding component of Polζ. TLS studies opposite a number of DNA lesions support the conclusion that as an integral component, Polλ adapts Polζ-dependent TLS to operate in a predominantly error-free manner in human cells, essential for genome integrity and cellular homeostasis.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Debashree Basu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karthi Sellamuthu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert E Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
12
|
Structural insights into the bypass of the major deaminated purines by translesion synthesis DNA polymerase. Biochem J 2020; 477:4797-4810. [PMID: 33258913 DOI: 10.1042/bcj20200800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
The exocyclic amines of nucleobases can undergo deamination by various DNA damaging agents such as reactive oxygen species, nitric oxide, and water. The deamination of guanine and adenine generates the promutagenic xanthine and hypoxanthine, respectively. The exocyclic amines of bases in DNA are hydrogen bond donors, while the carbonyl moiety generated by the base deamination acts as hydrogen bond acceptors, which can alter base pairing properties of the purines. Xanthine is known to base pair with both cytosine and thymine, while hypoxanthine predominantly pairs with cytosine to promote A to G mutations. Despite the known promutagenicity of the major deaminated purines, structures of DNA polymerase bypassing these lesions have not been reported. To gain insights into the deaminated-induced mutagenesis, we solved crystal structures of human DNA polymerase η (polη) catalyzing across xanthine and hypoxanthine. In the catalytic site of polη, the deaminated guanine (i.e., xanthine) forms three Watson-Crick-like hydrogen bonds with an incoming dCTP, indicating the O2-enol tautomer of xanthine involves in the base pairing. The formation of the enol tautomer appears to be promoted by the minor groove contact by Gln38 of polη. When hypoxanthine is at the templating position, the deaminated adenine uses its O6-keto tautomer to form two Watson-Crick hydrogen bonds with an incoming dCTP, providing the structural basis for the high promutagenicity of hypoxanthine.
Collapse
|
13
|
Kondratick CM, Washington MT, Spies M. Making Choices: DNA Replication Fork Recovery Mechanisms. Semin Cell Dev Biol 2020; 113:27-37. [PMID: 33967572 DOI: 10.1016/j.semcdb.2020.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA replication is laden with obstacles that slow, stall, collapse, and break DNA replication forks. At each obstacle, there is a decision to be made whether to bypass the lesion, repair or restart the damaged fork, or to protect stalled forks from further demise. Each "decision" draws upon multitude of proteins participating in various mechanisms that allow repair and restart of replication forks. Specific functions for many of these proteins have been described and an understanding of how they come together in supporting replication forks is starting to emerge. Many questions, however, remain regarding selection of the mechanisms that enable faithful genome duplication and how "normal" intermediates in these mechanisms are sometimes funneled into "rogue" processes that destabilize the genome and lead to cancer, cell death, and emergence of chemotherapeutic resistance. In this review we will discuss molecular mechanisms of DNA damage bypass and replication fork protection and repair. We will specifically focus on the key players that define which mechanism is employed including: PCNA and its control by posttranslational modifications, translesion synthesis DNA polymerases, molecular motors that catalyze reversal of stalled replication forks, proteins that antagonize fork reversal and protect reversed forks from nucleolytic degradation, and the machinery of homologous recombination that helps to reestablish broken forks. We will also discuss risks to genome integrity inherent in each of these mechanisms.
Collapse
Affiliation(s)
- Christine M Kondratick
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - M Todd Washington
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.,Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Maria Spies
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.,Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
14
|
Abstract
During translesion synthesis, eukaryotic DNA polymerase ζ (zeta) carries out extension from a wide range of DNA lesions. In this issue, Malik et al. (2020) (1 ) present the cryo-EM structure of polymerase ζ and show how it catalyzes the extension step of translesion synthesis.
Collapse
Affiliation(s)
- M Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA, USA.
| | - Melissa S Gildenberg
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA, USA
| |
Collapse
|
15
|
Koag MC, Jung H, Lee S. Mutagenesis mechanism of the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine. Nucleic Acids Res 2020; 48:5119-5134. [PMID: 32282906 PMCID: PMC7229865 DOI: 10.1093/nar/gkaa193] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species generate the genotoxic 8-oxoguanine (oxoG) and 8-oxoadenine (oxoA) as major oxidative lesions. The mutagenicity of oxoG is attributed to the lesion's ability to evade the geometric discrimination of DNA polymerases by adopting Hoogsteen base pairing with adenine in a Watson–Crick-like geometry. Compared with oxoG, the mutagenesis mechanism of oxoA, which preferentially induces A-to-C mutations, is poorly understood. In the absence of protein contacts, oxoA:G forms a wobble conformation, the formation of which is suppressed in the catalytic site of most DNA polymerases. Interestingly, human DNA polymerase η (polη) proficiently incorporates dGTP opposite oxoA, suggesting the nascent oxoA:dGTP overcomes the geometric discrimination of polη. To gain insights into oxoA-mediated mutagenesis, we determined crystal structures of polη bypassing oxoA. When paired with dGTP, oxoA adopted a syn-conformation and formed Hoogsteen pairing while in a wobble geometry, which was stabilized by Gln38-mediated minor groove contacts to oxoA:dGTP. Gln38Ala mutation reduced misinsertion efficiency ∼55-fold, indicating oxoA:dGTP misincorporation was promoted by minor groove interactions. Also, the efficiency of oxoA:dGTP insertion by the X-family polβ decreased ∼380-fold when Asn279-mediated minor groove contact to dGTP was abolished. Overall, these results suggest that, unlike oxoG, oxoA-mediated mutagenesis is greatly induced by minor groove interactions.
Collapse
Affiliation(s)
- Myong-Chul Koag
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hunmin Jung
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
16
|
Yoon JH, Johnson RE, Prakash L, Prakash S. Genetic evidence for reconfiguration of DNA polymerase θ active site for error-free translesion synthesis in human cells. J Biol Chem 2020; 295:5918-5927. [PMID: 32169903 PMCID: PMC7196657 DOI: 10.1074/jbc.ra120.012816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/10/2020] [Indexed: 11/06/2022] Open
Abstract
The action mechanisms revealed by the biochemical and structural analyses of replicative and translesion synthesis (TLS) DNA polymerases (Pols) are retained in their cellular roles. In this regard, DNA polymerase θ differs from other Pols in that whereas purified Polθ misincorporates an A opposite 1,N6-ethenodeoxyadenosine (ϵdA) using an abasic-like mode, Polθ performs predominantly error-free TLS in human cells. To test the hypothesis that Polθ adopts a different mechanism for replicating through ϵdA in human cells than in the purified Pol, here we analyze the effects of mutations in the two highly conserved tyrosine residues, Tyr-2387 and Tyr-2391, in the Polθ active site. Our findings that these residues are indispensable for TLS by the purified Pol but are not required in human cells, as well as other findings, provide strong evidence that the Polθ active site is reconfigured in human cells to stabilize ϵdA in the syn conformation for Hoogsteen base pairing with the correct nucleotide. The evidence that a DNA polymerase can configure its active site entirely differently in human cells than in the purified Pol establishes a new paradigm for DNA polymerase function.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1061
| | - Robert E Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1061
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1061
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1061.
| |
Collapse
|
17
|
Guérillon C, Smedegaard S, Hendriks IA, Nielsen ML, Mailand N. Multisite SUMOylation restrains DNA polymerase η interactions with DNA damage sites. J Biol Chem 2020; 295:8350-8362. [PMID: 32350109 PMCID: PMC7307195 DOI: 10.1074/jbc.ra120.013780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/25/2020] [Indexed: 12/26/2022] Open
Abstract
Translesion DNA synthesis (TLS) mediated by low-fidelity DNA polymerases is an essential cellular mechanism for bypassing DNA lesions that obstruct DNA replication progression. However, the access of TLS polymerases to the replication machinery must be kept tightly in check to avoid excessive mutagenesis. Recruitment of DNA polymerase η (Pol η) and other Y-family TLS polymerases to damaged DNA relies on proliferating cell nuclear antigen (PCNA) monoubiquitylation and is regulated at several levels. Using a microscopy-based RNAi screen, here we identified an important role of the SUMO modification pathway in limiting Pol η interactions with DNA damage sites in human cells. We found that Pol η undergoes DNA damage- and protein inhibitor of activated STAT 1 (PIAS1)-dependent polySUMOylation upon its association with monoubiquitylated PCNA, rendering it susceptible to extraction from DNA damage sites by SUMO-targeted ubiquitin ligase (STUbL) activity. Using proteomic profiling, we demonstrate that Pol η is targeted for multisite SUMOylation, and that collectively these SUMO modifications are essential for PIAS1- and STUbL-mediated displacement of Pol η from DNA damage sites. These findings suggest that a SUMO-driven feedback inhibition mechanism is an intrinsic feature of TLS-mediated lesion bypass functioning to curtail the interaction of Pol η with PCNA at damaged DNA to prevent harmful mutagenesis.
Collapse
Affiliation(s)
- Claire Guérillon
- Ubiquitin Signaling Group, Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Stine Smedegaard
- Ubiquitin Signaling Group, Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Niels Mailand
- Ubiquitin Signaling Group, Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| |
Collapse
|
18
|
Acharya N, Khandagale P, Thakur S, Sahu JK, Utkalaja BG. Quaternary structural diversity in eukaryotic DNA polymerases: monomeric to multimeric form. Curr Genet 2020; 66:635-655. [PMID: 32236653 DOI: 10.1007/s00294-020-01071-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Sixteen eukaryotic DNA polymerases have been identified and studied so far. Based on the sequence similarity of the catalytic subunits of DNA polymerases, these have been classified into four A, B, X and Y families except PrimPol, which belongs to the AEP family. The quaternary structure of these polymerases also varies depending upon whether they are composed of one or more subunits. Therefore, in this review, we used a quaternary structure-based classification approach to group DNA polymerases as either monomeric or multimeric and highlighted functional significance of their accessory subunits. Additionally, we have briefly summarized various DNA polymerase discoveries from a historical perspective, emphasized unique catalytic mechanism of each DNA polymerase and highlighted recent advances in understanding their cellular functions.
Collapse
Affiliation(s)
- Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| | - Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Shweta Thakur
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Jugal Kishor Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| |
Collapse
|
19
|
Hoitsma NM, Whitaker AM, Schaich MA, Smith MR, Fairlamb MS, Freudenthal BD. Structure and function relationships in mammalian DNA polymerases. Cell Mol Life Sci 2020; 77:35-59. [PMID: 31722068 PMCID: PMC7050493 DOI: 10.1007/s00018-019-03368-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
DNA polymerases are vital for the synthesis of new DNA strands. Since the discovery of DNA polymerase I in Escherichia coli, a diverse library of mammalian DNA polymerases involved in DNA replication, DNA repair, antibody generation, and cell checkpoint signaling has emerged. While the unique functions of these DNA polymerases are differentiated by their association with accessory factors and/or the presence of distinctive catalytic domains, atomic resolution structures of DNA polymerases in complex with their DNA substrates have revealed mechanistic subtleties that contribute to their specialization. In this review, the structure and function of all 15 mammalian DNA polymerases from families B, Y, X, and A will be reviewed and discussed with special emphasis on the insights gleaned from recently published atomic resolution structures.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Max S Fairlamb
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
20
|
Yoon JH, Roy Choudhury J, Prakash L, Prakash S. Translesion synthesis DNA polymerases η, ι, and ν promote mutagenic replication through the anticancer nucleoside cytarabine. J Biol Chem 2019; 294:19048-19054. [PMID: 31685662 DOI: 10.1074/jbc.ra119.011381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/30/2019] [Indexed: 11/06/2022] Open
Abstract
Cytarabine (AraC) is the mainstay for the treatment of acute myeloid leukemia. Although complete remission is observed in a large proportion of patients, relapse occurs in almost all the cases. The chemotherapeutic action of AraC derives from its ability to inhibit DNA synthesis by the replicative polymerases (Pols); the replicative Pols can insert AraCTP at the 3' terminus of the nascent DNA strand, but they are blocked at extending synthesis from AraC. By extending synthesis from the 3'-terminal AraC and by replicating through AraC that becomes incorporated into DNA, translesion synthesis (TLS) DNA Pols could reduce the effectiveness of AraC in chemotherapy. Here we identify the TLS Pols required for replicating through the AraC templating residue and determine their error-proneness. We provide evidence that TLS makes a consequential contribution to the replication of AraC-damaged DNA; that TLS through AraC is conducted by three different pathways dependent upon Polη, Polι, and Polν, respectively; and that TLS by all these Pols incurs considerable mutagenesis. The prominent role of TLS in promoting proficient and mutagenic replication through AraC suggests that TLS inhibition in acute myeloid leukemia patients would increase the effectiveness of AraC chemotherapy; and by reducing mutation formation, TLS inhibition may dampen the emergence of drug-resistant tumors and thereby the high incidence of relapse in AraC-treated patients.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| | - Jayati Roy Choudhury
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| |
Collapse
|
21
|
Bhutani P, Nikkel DJ, Wilson KA, Wetmore SD. Computational Insight into the Differential Mutagenic Patterns of O-Methylthymine Lesions. Chem Res Toxicol 2019; 32:2107-2117. [DOI: 10.1021/acs.chemrestox.9b00291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Priya Bhutani
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta T1K 3M4, Canada
| | - Dylan J. Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta T1K 3M4, Canada
| | - Katie A. Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
22
|
Abstract
DNA contains information that must be safeguarded, but also accessed for transcription and replication. To perform replication, eukaryotic cells use the B-family DNA polymerase enzymes Polδ and Polɛ, which are optimized for accuracy, speed, and processivity. The molecular basis of these high-performance characteristics causes these replicative polymerases to fail at sites of DNA damage (lesions), which would lead to genomic instability and cell death. To avoid this, cells possess additional DNA polymerases such as the Y-family of polymerases and the B-family member Polζ that can replicate over sites of DNA damage in a process called translesion synthesis (TLS). While able to replicate over DNA lesions, the TLS polymerases exhibit low-fidelity on undamaged DNA and, consequently, must be prevented from replicating DNA under normal circumstances and recruited only when necessary. The replicative bypass of most types of DNA lesions requires the consecutive action of these specialized TLS polymerases assembled into a dynamic multiprotein complex called the Rev1/Polζ mutasome. To this end, posttranslational modifications and a network of protein-protein interactions mediated by accessory domains/subunits of the TLS polymerases control the assembly and rearrangements of the Rev1/Polζ mutasome and recruitment of TLS proteins to sites of DNA damage. This chapter focuses on the structures and interactions that control these processes underlying the function of the Rev1/Polζ mutasome, as well as the development of small molecule inhibitors of the Rev1/Polζ-dependent TLS holding promise as a potential anticancer therapy.
Collapse
Affiliation(s)
- Alessandro A Rizzo
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, United States
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, United States.
| |
Collapse
|
23
|
Ji S, Fu I, Naldiga S, Shao H, Basu AK, Broyde S, Tretyakova NY. 5-Formylcytosine mediated DNA-protein cross-links block DNA replication and induce mutations in human cells. Nucleic Acids Res 2019; 46:6455-6469. [PMID: 29905846 PMCID: PMC6061883 DOI: 10.1093/nar/gky444] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
5-Formylcytosine (5fC) is an epigenetic DNA modification introduced via TET protein-mediated oxidation of 5-methyl-dC. We recently reported that 5fC form reversible DNA–protein conjugates (DPCs) with histone proteins in living cells (Ji et al. (2017) Angew. Chem. Int. Ed., 56:14130–14134). We now examined the effects of 5fC mediated DPCs on DNA replication. Synthetic DNA duplexes containing site-specific DPCs between 5fC and lysine-containing proteins and peptides were subjected to primer extension experiments in the presence of human translesion synthesis DNA polymerases η and κ. We found that DPCs containing histones H2A or H4 completely inhibited DNA replication, but the replication block was removed when the proteins were subjected to proteolytic digestion. Cross-links to 11-mer or 31-mer peptides were bypassed by both polymerases in an error-prone manner, inducing targeted C→T transitions and –1 deletions. Similar types of mutations were observed when plasmids containing 5fC-peptide cross-links were replicated in human embryonic kidney (HEK) 293T cells. Molecular simulations of the 11-mer peptide-dC cross-links bound to human polymerases η and κ revealed that the peptide fits well on the DNA major groove side, and the modified dC forms a stable mismatch with incoming dATP via wobble base pairing in the polymerase active site.
Collapse
Affiliation(s)
- Shaofei Ji
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iwen Fu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Spandana Naldiga
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Hongzhao Shao
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Kottur J, Nair DT. Pyrophosphate hydrolysis is an intrinsic and critical step of the DNA synthesis reaction. Nucleic Acids Res 2019; 46:5875-5885. [PMID: 29850882 PMCID: PMC6159520 DOI: 10.1093/nar/gky402] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/15/2018] [Indexed: 11/14/2022] Open
Abstract
DNA synthesis by DNA polymerases (dPols) is central to duplication and maintenance of the genome in all living organisms. dPols catalyze the formation of a phosphodiester bond between the incoming deoxynucleoside triphosphate and the terminal primer nucleotide with the release of a pyrophosphate (PPi) group. It is believed that formation of the phosphodiester bond is an endergonic reaction and PPi has to be hydrolyzed by accompanying pyrophosphatase enzymes to ensure that the free energy change of the DNA synthesis reaction is negative and it can proceed in the forward direction. The fact that DNA synthesis proceeds in vitro in the absence of pyrophosphatases represents a long-standing conundrum regarding the thermodynamics of the DNA synthesis reaction. Using time-resolved crystallography, we show that hydrolysis of PPi is an intrinsic and critical step of the DNA synthesis reaction catalyzed by dPols. The hydrolysis of PPi occurs after the formation of the phosphodiester bond and ensures that the DNA synthesis reaction is energetically favorable without the need for additional enzymes. Also, we observe that DNA synthesis is a two Mg2+ ion assisted stepwise associative SN2 reaction. Overall, this study provides deep temporal insight regarding the primary enzymatic reaction responsible for genome duplication.
Collapse
Affiliation(s)
- Jithesh Kottur
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, India
| |
Collapse
|
25
|
Hara K. [Structural Basis of the Multifunctional Hub Protein and Identification of a Small-molecule Compound for Drug Discovery]. YAKUGAKU ZASSHI 2019; 139:969-973. [PMID: 31257254 DOI: 10.1248/yakushi.19-00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translesion DNA synthesis (TLS) is an emergency system activated to inhibit cell death caused by DNA damage-induced replication arrest. Thus, TLS enables cancer cells to acquire resistance to alkylate anticancer drugs. REV7 functions as the hub protein that interacts with both the inserter DNA polymerase REV1 and the extender DNA polymerase REV3 in TLS. REV7-mediated protein-protein interactions (PPIs) are essential for the activation of TLS, and are therefore attractive targets for anticancer drug development. To clarify the REV7-REV3 and REV7-REV1 PPIs, we determined the structures of REV7-REV3 and REV7-REV3-REV1 complexes. In the structures of REV7-REV3 and REV7-REV3-REV1 complexes, REV7 wraps around the REV3 fragment, and the REV1-binding interface is distinct from the REV3-binding site of REV7. We also identified a novel REV7 binding protein, transcription factor II-I (TFII-I), which is required for TLS. Of note, TFII-I binds the REV7-REV3-REV1 complex, suggesting that REV7-TFII-I PPIs are independent of other REV7-mediated PPIs. Furthermore, we found a small-molecule compound that inhibits TLS by targeting the REV7-REV3 PPIs. Lastly, we determined the structure of REV7 in complex with chromosome alignment maintaining phosphoprotein (CAMP), a known kinetochore-microtubule attachment protein. The overall structure of the REV7-CAMP complex is similar to that of the REV7-REV3 complex, but the REV7-CAMP PPIs are markedly different from the REV7-REV3 PPIs. These findings improve our understanding of multifunctional hub proteins, and are helpful for designing small-molecule compounds for novel anticancer drug development.
Collapse
Affiliation(s)
- Kodai Hara
- Department of Physical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
26
|
Koag MC, Jung H, Lee S. Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases. J Am Chem Soc 2019; 141:4584-4596. [PMID: 30817143 DOI: 10.1021/jacs.8b08551] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species attack DNA to produce 7,8-dihyro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as major lesions. The structural basis for the mutagenicity of oxoG, which induces G to T mutations, is well understood. However, the structural basis for the mutagenic potential of oxoA, which induces A to C mutations, remains poorly understood. To gain insight into oxoA-induced mutagenesis, we conducted kinetic studies of human DNA polymerases β and η replicating across oxoA and structural studies of polβ incorporating dTTP/dGTP opposite oxoA. While polη readily bypassed oxoA, it incorporated dGTP opposite oxoA with a catalytic specificity comparable to that of correct insertion, underscoring the promutagenic nature of the major oxidative adenine lesion. Polη and polβ incorporated dGTP opposite oxoA ∼170-fold and ∼100-fold more efficiently than that opposite dA, respectively, indicating that the 8-oxo moiety greatly facilitated error-prone replication. Crystal structures of polβ showed that, when paired with an incoming dTTP, the templating oxoA adopted an anti conformation and formed Watson-Crick base pair. When paired with dGTP, oxoA adopted a syn conformation and formed a Hoogsteen base pair with Watson-Crick-like geometry, highlighting the dual-coding potential of oxoA. The templating oxoA was stabilized by Lys280-mediated stacking and hydrogen bonds. Overall, these results provide insight into the mutagenic potential and dual-coding nature of the major oxidative adenine lesion.
Collapse
Affiliation(s)
- Myong-Chul Koag
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Hunmin Jung
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
27
|
Yoon JH, McArthur MJ, Park J, Basu D, Wakamiya M, Prakash L, Prakash S. Error-Prone Replication through UV Lesions by DNA Polymerase θ Protects against Skin Cancers. Cell 2019; 176:1295-1309.e15. [PMID: 30773314 PMCID: PMC6453116 DOI: 10.1016/j.cell.2019.01.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/01/2018] [Accepted: 01/09/2019] [Indexed: 01/17/2023]
Abstract
Cancers from sun-exposed skin accumulate "driver" mutations, causally implicated in oncogenesis. Because errors incorporated during translesion synthesis (TLS) opposite UV lesions would generate these mutations, TLS mechanisms are presumed to underlie cancer development. To address the role of TLS in skin cancer formation, we determined which DNA polymerase is responsible for generating UV mutations, analyzed the relative contributions of error-free TLS by Polη and error-prone TLS by Polθ to the replication of UV-damaged DNA and to genome stability, and examined the incidence of UV-induced skin cancers in Polθ-/-, Polη-/-, and Polθ-/- Polη-/- mice. Our findings that the incidence of skin cancers rises in Polθ-/- mice and is further exacerbated in Polθ-/- Polη-/- mice compared with Polη-/- mice support the conclusion that error-prone TLS by Polθ provides a safeguard against tumorigenesis and suggest that cancer formation can ensue in the absence of somatic point mutations.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Mark J McArthur
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeseong Park
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Debashree Basu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Maki Wakamiya
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA.
| |
Collapse
|
28
|
Abstract
CRISPR-Cas9 is a bacterial immune system with exciting applications for genome editing. In spite of extensive experimental characterization, the active site chemistry of the RuvC domain-which performs DNA cleavages-has remained elusive. Its knowledge is key for structure-based engineering aimed at improving DNA cleavages. Here, we deliver an in-depth characterization by using quantum-classical (QM/MM) molecular dynamics (MD) simulations and a Gaussian accelerated MD method, coupled with bioinformatics analysis. We disclose a two-metal aided architecture in the RuvC active site, which is poised to operate DNA cleavages, in analogy with other DNA/RNA processing enzymes. The conformational dynamics of the RuvC domain further reveals that an "arginine finger" stably contacts the scissile phosphate, with the function of stabilizing the active complex. Remarkably, the formation of a catalytically competent state of the RuvC domain is only observed upon the conformational activation of the other nuclease domain of CRISPR-Cas9-i.e., the HNH domain-such allowing concerted cleavages of double stranded DNA. This structure is in agreement with the available experimental data and remarkably differs from previous models based on classical mechanics, demonstrating also that only quantum mechanical simulations can accurately describe the metal-aided active site in CRISPR-Cas9. This fully catalytic structure-in which both the HNH and RuvC domains are prone to perform DNA cleavages-constitutes a stepping-stone for understanding DNA cleavage and specificity. It calls for novel experimental verifications and offers the structural foundations for engineering efforts aimed at improving the genome editing capability of CRISPR-Cas9.
Collapse
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering, Bourns College of Engineering , University of California Riverside , 900 University Avenue , Riverside , California 92521 , United States
| |
Collapse
|
29
|
Wilson KA, Fernandes PA, Ramos MJ, Wetmore SD. Exploring the Identity of the General Base for a DNA Polymerase Catalyzed Reaction Using QM/MM: The Case Study of Human Translesion Synthesis Polymerase η. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Katie A. Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4 Canada
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4 Canada
| |
Collapse
|
30
|
Acharya N, Manohar K, Peroumal D, Khandagale P, Patel SK, Sahu SR, Kumari P. Multifaceted activities of DNA polymerase η: beyond translesion DNA synthesis. Curr Genet 2018; 65:649-656. [PMID: 30535880 DOI: 10.1007/s00294-018-0918-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
DNA polymerases are evolved to extend the 3'-OH of a growing primer annealed to a template DNA substrate. Since replicative DNA polymerases have a limited role while replicating structurally distorted template, translesion DNA polymerases mostly from Y-family come to the rescue of stalled replication fork and maintain genome stability. DNA polymerase eta is one such specialized enzyme whose function is directly associated with casual development of certain skin cancers and chemo-resistance. More than 20 years of extensive studies are available to support TLS activities of Polη in bypassing various DNA lesions, in addition, limited but crucial growing evidence also exist to suggest Polη possessing TLS-independent cellular functions. In this review, we have mostly focused on non-TLS activities of Polη from different organisms including our recent findings from pathogenic yeast Candida albicans.
Collapse
Affiliation(s)
- Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| | - Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Doureradjou Peroumal
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| |
Collapse
|
31
|
Zutterling C, Mursalimov A, Talhaoui I, Koshenov Z, Akishev Z, Bissenbaev AK, Mazon G, Geacintov NE, Gasparutto D, Groisman R, Zharkov DO, Matkarimov BT, Saparbaev M. Aberrant repair initiated by the adenine-DNA glycosylase does not play a role in UV-induced mutagenesis in Escherichia coli. PeerJ 2018; 6:e6029. [PMID: 30568855 PMCID: PMC6286661 DOI: 10.7717/peerj.6029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/30/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND DNA repair is essential to counteract damage to DNA induced by endo- and exogenous factors, to maintain genome stability. However, challenges to the faithful discrimination between damaged and non-damaged DNA strands do exist, such as mismatched pairs between two regular bases resulting from spontaneous deamination of 5-methylcytosine or DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved the mismatch-specific DNA glycosylases that can recognize and remove regular DNA bases in the mismatched DNA duplexes. The Escherichia coli adenine-DNA glycosylase (MutY/MicA) protects cells against oxidative stress-induced mutagenesis by removing adenine which is mispaired with 7,8-dihydro-8-oxoguanine (8oxoG) in the base excision repair pathway. However, MutY does not discriminate between template and newly synthesized DNA strands. Therefore the ability to remove A from 8oxoG•A mispair, which is generated via misincorporation of an 8-oxo-2'-deoxyguanosine-5'-triphosphate precursor during DNA replication and in which A is the template base, can induce A•T→C•G transversions. Furthermore, it has been demonstrated that human MUTYH, homologous to the bacterial MutY, might be involved in the aberrant processing of ultraviolet (UV) induced DNA damage. METHODS Here, we investigated the role of MutY in UV-induced mutagenesis in E. coli. MutY was probed on DNA duplexes containing cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproduct (6-4PP). UV irradiation of E. coli induces Save Our Souls (SOS) response characterized by increased production of DNA repair enzymes and mutagenesis. To study the role of MutY in vivo, the mutation frequencies to rifampicin-resistant (RifR) after UV irradiation of wild type and mutant E. coli strains were measured. RESULTS We demonstrated that MutY does not excise Adenine when it is paired with CPD and 6-4PP adducts in duplex DNA. At the same time, MutY excises Adenine in A•G and A•8oxoG mispairs. Interestingly, E. coli mutY strains, which have elevated spontaneous mutation rate, exhibited low mutational induction after UV exposure as compared to MutY-proficient strains. However, sequence analysis of RifR mutants revealed that the frequencies of C→T transitions dramatically increased after UV irradiation in both MutY-proficient and -deficient E. coli strains. DISCUSSION These findings indicate that the bacterial MutY is not involved in the aberrant DNA repair of UV-induced DNA damage.
Collapse
Affiliation(s)
- Caroline Zutterling
- Groupe «Réparation de l’ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif, France
| | - Aibek Mursalimov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ibtissam Talhaoui
- CNRS UMR 8200—Laboratoire «Stabilité Génétique et Oncogenèse», Université Paris Sud (Paris XI), Gustave Roussy Cancer Campus, Villejuif, France
| | - Zhanat Koshenov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zhiger Akishev
- Department of Molecular Biology and Genetics, al-Farabi Kazakh National University, Faculty of Biology, Almaty, Kazakhstan
| | - Amangeldy K. Bissenbaev
- Department of Molecular Biology and Genetics, al-Farabi Kazakh National University, Faculty of Biology, Almaty, Kazakhstan
| | - Gerard Mazon
- CNRS UMR 8200—Laboratoire «Stabilité Génétique et Oncogenèse», Université Paris Sud (Paris XI), Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Didier Gasparutto
- CEA, CNRS, INAC, SyMMES, Université Grenoble Alpes, Grenoble, France
| | - Regina Groisman
- Groupe «Réparation de l’ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif, France
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Murat Saparbaev
- Groupe «Réparation de l’ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
32
|
Manohar K, Peroumal D, Acharya N. TLS dependent and independent functions of DNA polymerase eta (Polη/Rad30) from Pathogenic Yeast Candida albicans. Mol Microbiol 2018; 110:707-727. [PMID: 29907984 DOI: 10.1111/mmi.14004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Abstract
Polη, a unique TLS DNA polymerase that promotes efficient bypass of UV-induced CPDs and cisplatin adducts, has not been explored in Candida species yet. Here, we show that CaPolη plays a vital role in protecting Candida albicans genome from diverse array of DNA damaging agents, not limited to UV and cisplatin. Polη deficient strain did not exhibit any hyphal development in the presence of UV and cisplatin while the wild type strain profusely developed DNA damage induced filamentation. The polarized growth induced by HU and MMS was found to be Polη independent. No common regulatory pathway of morphogenesis operates in C. albicans due to genomic stress, rather Polη branches away from RAD53 dependent pathway to be specific to UV/cisplatin. Interestingly, serum that does not inflict any DNA damage also induces hyphal growth in C. albicans, and requires a functionally active Polη. Importantly, deletion of RAD30 sensitized the strain to amphotericin B; but its presence resulted in azole drug tolerance only in DNA damaging conditions. We suggest that the roles of CaPolη in genome stability and genotoxins induced filamentation are due to its TLS activities; whereas its TLS independent functions play a vital role in serum induced morphogenesis and amphotericin B resistance.
Collapse
Affiliation(s)
- Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Doureradjou Peroumal
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
33
|
Peddu C, Zhang S, Zhao H, Wong A, Lee EYC, Lee MYWT, Zhang Z. Phosphorylation Alters the Properties of Pol η: Implications for Translesion Synthesis. iScience 2018; 6:52-67. [PMID: 30240625 PMCID: PMC6137289 DOI: 10.1016/j.isci.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/26/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
There are significant ambiguities regarding how DNA polymerase η is recruited to DNA lesion sites in stressed cells while avoiding normal replication forks in non-stressed cells. Even less is known about the mechanisms responsible for Pol η-induced mutations in cancer genomes. We show that there are two safeguards to prevent Pol η from adventitious participation in normal DNA replication. These include sequestration by a partner protein and low basal activity. Upon cellular UV irradiation, phosphorylation enables Pol η to be released from sequestration by PDIP38 and activates its polymerase function through increased affinity toward monoubiquitinated proliferating cell nuclear antigen (Ub-PCNA). Moreover, the high-affinity binding of phosphorylated Pol η to Ub-PCNA limits its subsequent displacement by Pol δ. Consequently, activated Pol η replicates DNA beyond the lesion site and potentially introduces clusters of mutations due to its low fidelity. This mechanism could account for the prevalence of Pol η signatures in cancer genome.
Collapse
Affiliation(s)
- Chandana Peddu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Hong Zhao
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | - Agnes Wong
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
34
|
Powers KT, Washington MT. Eukaryotic translesion synthesis: Choosing the right tool for the job. DNA Repair (Amst) 2018; 71:127-134. [PMID: 30174299 DOI: 10.1016/j.dnarep.2018.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Normal DNA replication is blocked by DNA damage in the template strand. Translesion synthesis is a major pathway for overcoming these replication blocks. In this process, multiple non-classical DNA polymerases are thought to form a complex at the stalled replication fork that we refer to as the mutasome. This hypothetical multi-protein complex is structurally organized by the replication accessory factor PCNA and the non-classical polymerase Rev1. One of the non-classical polymerases within this complex then catalyzes replication through the damage. Each non-classical polymerase has one or more cognate lesions, which the enzyme bypasses with high accuracy and efficiency. Thus, the accuracy and efficiency of translesion synthesis depends on which non-classical polymerase is chosen to bypass the damage. In this review article, we discuss how the most appropriate polymerase is chosen. In so doing, we examine the structural motifs that mediate the protein interactions in the mutasome; the multiple architectures that the mutasome can adopt, such as PCNA tool belts and Rev1 bridges; the intrinsically disordered regions that tether the polymerases to PCNA and to one another; and the kinetic selection model in which the most appropriate polymerase is chosen via a competition among the multiple polymerases within the mutasome.
Collapse
Affiliation(s)
- Kyle T Powers
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States
| | - M Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States.
| |
Collapse
|
35
|
Jain R, Aggarwal AK, Rechkoblit O. Eukaryotic DNA polymerases. Curr Opin Struct Biol 2018; 53:77-87. [PMID: 30005324 DOI: 10.1016/j.sbi.2018.06.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/19/2018] [Indexed: 01/10/2023]
Abstract
The eukaryotic DNA replication machinery is conserved from yeast to humans and requires the actions of multiple DNA polymerases. In addition to replicative DNA polymerases for duplication of the leading and lagging DNA strands, another group of specialized polymerases is required for DNA repair and/or translesion DNA synthesis (TLS). We emphasize here recent findings that accelerate our understanding of the structure and mechanisms of these remarkable enzymes. We also highlight growing evidence on the role of DNA polymerases in the origin of certain cancers, and paradoxically as emerging targets for cancer therapy.
Collapse
Affiliation(s)
- Rinku Jain
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA.
| | - Olga Rechkoblit
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| |
Collapse
|
36
|
The active site residues Gln55 and Arg73 play a key role in DNA damage bypass by S. cerevisiae Pol η. Sci Rep 2018; 8:10314. [PMID: 29985422 PMCID: PMC6037775 DOI: 10.1038/s41598-018-28664-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic DNA polymerase eta (Pol η) plays a key role in the efficient and accurate DNA translesion synthesis (TLS) opposite UV-induced thymine dimers. Pol η is also involved in bypass of many other DNA lesions but possesses low fidelity on undamaged DNA templates. To better understand the mechanism of DNA synthesis by Pol η we investigated substitutions of evolutionary conserved active site residues Gln55 and Arg73 in Saccharomyces cerevisiae Pol η. We analyzed the efficiency and fidelity of DNA synthesis by the mutant Pol η variants opposite thymine dimers, abasic site, thymine glycol, 8-oxoguanine and on undamaged DNA. Substitutions Q55A and R73A decreased the catalytic activity and significantly affected DNA damage bypass by Pol η. In particular, the Q55A substitution reduced the efficiency of thymine dimers bypass, R73A had a stronger effect on the TLS-activity opposite abasic site, while both substitutions impaired replication opposite thymine glycol. Importantly, the R73A substitution also increased the fidelity of Pol η. Altogether, these results reveal a key role of residues Gln55 and Arg73 in DNA synthesis opposite various types of DNA lesions and highlight the evolutionary importance of the Pol η TLS function at the cost of DNA replication accuracy.
Collapse
|
37
|
Powers KT, Elcock AH, Washington MT. The C-terminal region of translesion synthesis DNA polymerase η is partially unstructured and has high conformational flexibility. Nucleic Acids Res 2018; 46:2107-2120. [PMID: 29385534 PMCID: PMC5829636 DOI: 10.1093/nar/gky031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic DNA polymerase η catalyzes translesion synthesis of thymine dimers and 8-oxoguanines. It is comprised of a polymerase domain and a C-terminal region, both of which are required for its biological function. The C-terminal region mediates interactions with proliferating cell nuclear antigen (PCNA) and other translesion synthesis proteins such as Rev1. This region contains a ubiquitin-binding/zinc-binding (UBZ) motif and a PCNA-interacting protein (PIP) motif. Currently little structural information is available for this region of polymerase η. Using a combination of approaches-including genetic complementation assays, X-ray crystallography, Langevin dynamics simulations, and small-angle X-ray scattering-we show that the C-terminal region is partially unstructured and has high conformational flexibility. This implies that the C-terminal region acts as a flexible tether linking the polymerase domain to PCNA thereby increasing its local concentration. Such tethering would facilitate the sampling of translesion synthesis polymerases to ensure that the most appropriate one is selected to bypass the lesion.
Collapse
Affiliation(s)
- Kyle T Powers
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, USA
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, USA
| | - M Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, USA
| |
Collapse
|
38
|
Dyson OF, Pagano JS, Whitehurst CB. The Translesion Polymerase Pol η Is Required for Efficient Epstein-Barr Virus Infectivity and Is Regulated by the Viral Deubiquitinating Enzyme BPLF1. J Virol 2017; 91:JVI.00600-17. [PMID: 28724765 PMCID: PMC5599766 DOI: 10.1128/jvi.00600-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 02/03/2023] Open
Abstract
Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication.IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and lymphomas that develop in organ transplant recipients. Cellular DNA damage is a major determinant in the establishment of oncogenic processes and is well studied, but there are few studies of endogenous repair of viral DNA. This work evaluates how EBV's BPLF1 protein and its conserved deubiquitinating activity regulate the cellular DNA repair enzyme polymerase eta and recruit it to potential sites of viral damage and replication, resulting in enhanced production of infectious virus. These findings help to establish how EBV enlists and manipulates cellular DNA repair factors during the viral lytic cycle, contributing to efficient infectious virion production.
Collapse
Affiliation(s)
- Ossie F Dyson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph S Pagano
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher B Whitehurst
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
39
|
Powers KT, Washington MT. Analyzing the Catalytic Activities and Interactions of Eukaryotic Translesion Synthesis Polymerases. Methods Enzymol 2017; 592:329-356. [PMID: 28668126 DOI: 10.1016/bs.mie.2017.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Translesion synthesis is the process by which nonclassical DNA polymerases bypass DNA damage during DNA replication. Cells possess a variety of nonclassical polymerases, each one is specific for incorporating nucleotides opposite to one or more closely related DNA lesions, called its cognate lesions. In this chapter, we discuss a variety of approaches for probing the catalytic activities and the protein-protein interactions of nonclassical polymerases. With respect to their catalytic activities, we discuss polymerase assays, steady-state kinetics, and presteady-state kinetics. With respect to their interactions, we discuss qualitative binding assays such as enzyme-linked immunosorbent assays and coimmunoprecipitation; quantitative binding assays such as isothermal titration calorimetry, surface plasmon resonance, and nuclear magnetic resonance spectroscopy; and single-molecule binding assays such as total internal reflection fluorescence microscopy. We focus on how nonclassical polymerases accommodate their cognate lesions during nucleotide incorporation and how the most appropriate nonclassical polymerase is selected for bypassing a given lesion.
Collapse
Affiliation(s)
- Kyle T Powers
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - M Todd Washington
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
40
|
Nishimoto N, Suzuki M, Izuta S. Effect of pH on the Misincorporation Rate of DNA Polymerase η. Biol Pharm Bull 2017; 39:953-8. [PMID: 27251497 DOI: 10.1248/bpb.b15-00900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The many known eukaryotic DNA polymerases are classified into four families; A, B, X, and Y. Among them, DNA polymerase η, a Y family polymerase, is a low fidelity enzyme that contributes to translesional synthesis and somatic hypermutation. Although a high mutation frequency is observed in immunoglobulin genes, translesional synthesis occurs with a high accuracy. We determined whether the misincorporation rate of DNA polymerase η varies with ambient conditions. It has been reported that DNA polymerase η is unable to exclude water molecules from the active site. This finding suggests that some ions affect hydrogen bond formation at the active site. We focused on the effect of pH and evaluated the misincorporation rate of deoxyguanosine triphosphate (dGTP) opposite template T by DNA polymerase η at various pH levels with a synthetic template-primer. The misincorporation rate of dGTP by DNA polymerase η drastically increased at pH 8.0-9.0 compared with that at pH 6.5-7.5. Kinetic analysis revealed that the Km value for dGTP on the misincorporation opposite template T was markedly affected by pH. However, this drastic change was not seen with the low fidelity DNA polymerase α.
Collapse
Affiliation(s)
- Naomi Nishimoto
- Graduate School of Science and Technology, Kumamoto University
| | | | | |
Collapse
|
41
|
Comparative molecular dynamics studies of heterozygous open reading frames of DNA polymerase eta (η) in pathogenic yeast Candida albicans. Sci Rep 2017; 7:41087. [PMID: 28120914 PMCID: PMC5264235 DOI: 10.1038/srep41087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/15/2016] [Indexed: 01/20/2023] Open
Abstract
Genomic instability in Candida albicans is believed to play a crucial role in fungal pathogenesis. DNA polymerases contribute significantly to stability of any genome. Although Candida Genome database predicts presence of S. cerevisiae DNA polymerase orthologs; functional and structural characterizations of Candida DNA polymerases are still unexplored. DNA polymerase eta (Polη) is unique as it promotes efficient bypass of cyclobutane pyrimidine dimers. Interestingly, C. albicans is heterozygous in carrying two Polη genes and the nucleotide substitutions were found only in the ORFs. As allelic differences often result in functional differences of the encoded proteins, comparative analyses of structural models and molecular dynamic simulations were performed to characterize these orthologs of DNA Polη. Overall structures of both the ORFs remain conserved except subtle differences in the palm and PAD domains. The complementation analysis showed that both the ORFs equally suppressed UV sensitivity of yeast rad30 deletion strain. Our study has predicted two novel molecular interactions, a highly conserved molecular tetrad of salt bridges and a series of π-π interactions spanning from thumb to PAD. This study suggests these ORFs as the homologues of yeast Polη, and due to its heterogeneity in C. albicans they may play a significant role in pathogenicity.
Collapse
|
42
|
Goncalves-Maia M, Magnaldo T. Genetic therapy of Xeroderma Pigmentosum: analysis of strategies and translation. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2017.1256770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Thierry Magnaldo
- Life Sciences, Institute for Research on Cancer and Aging, Nice, France
| |
Collapse
|
43
|
Rechkoblit O, Gupta YK, Malik R, Rajashankar KR, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Structure and mechanism of human PrimPol, a DNA polymerase with primase activity. SCIENCE ADVANCES 2016; 2:e1601317. [PMID: 27819052 PMCID: PMC5088642 DOI: 10.1126/sciadv.1601317] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 05/18/2023]
Abstract
PrimPol is a novel human enzyme that contains both DNA primase and DNA polymerase activities. We present the first structure of human PrimPol in ternary complex with a DNA template-primer and an incoming deoxynucleoside triphosphate (dNTP). The ability of PrimPol to function as a DNA primase stems from a simple but remarkable feature-almost complete lack of contacts to the DNA primer strand. This, in turn, allows two dNTPs to bind initiation and elongation sites on the enzyme for the formation of the first dinucleotide. PrimPol shows the ability to synthesize DNA opposite ultraviolet (UV) lesions; however, unexpectedly, the active-site cleft of the enzyme is constrained, which precludes the bypass of UV-induced DNA lesions by conventional translesion synthesis. Together, the structure addresses long-standing questions about how DNA primases actually initiate synthesis and how primase and polymerase activities combine in a single enzyme to carry out DNA synthesis.
Collapse
Affiliation(s)
- Olga Rechkoblit
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | - Yogesh K. Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | - Radhika Malik
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | - Kanagalaghatta R. Rajashankar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Northeastern Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Robert E. Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77755–1061, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77755–1061, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77755–1061, USA
| | - Aneel K. Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
- Corresponding author.
| |
Collapse
|
44
|
Y-family DNA polymerase-independent gap-filling translesion synthesis across aristolochic acid-derived adenine adducts in mouse cells. DNA Repair (Amst) 2016; 46:55-60. [PMID: 27497692 DOI: 10.1016/j.dnarep.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022]
Abstract
Translesion DNA synthesis (TLS) operates when replicative polymerases are blocked by DNA lesions. To investigate the mechanism of mammalian TLS, we employed a plasmid bearing a single 7-(deoxyadenosine-N6-yl)-aristolactam I (dA-AL-I) adduct, which is generated by the human carcinogen, aristolochic acid I, and genetically engineered mouse embryonic fibroblasts. This lesion induces A to T transversions at a high frequency. The simultaneous knockouts of the Polh, Poli and Polk genes did not influence the TLS efficiency or the coding property of dA-AL-I, indicating that an unknown DNA polymerase(s) can efficiently catalyze the insertion of a nucleotide opposite the adduct and subsequent extension. Similarly, knockout of the Rev1 gene did not significantly affect TLS. However, knockout of the Rev3l gene, coding for the catalytic subunit of polζ, drastically suppressed TLS and abolished dA-AL-I to T transversions. The results support the idea that Rev1 is not essential for the cellular TLS functions of polζ in mammalian cells. Furthermore, the frequency of dA-AL-I to T transversion was affected by a sequence context, suggesting that TLS, at least in part, contributes to the formation of mutational hot and cold spots observed in aristolochic acid-induced cancers.
Collapse
|
45
|
Korzhnev DM, Hadden MK. Targeting the Translesion Synthesis Pathway for the Development of Anti-Cancer Chemotherapeutics. J Med Chem 2016; 59:9321-9336. [PMID: 27362876 DOI: 10.1021/acs.jmedchem.6b00596] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human cells possess tightly controlled mechanisms to rescue DNA replication following DNA damage caused by environmental and endogenous carcinogens using a set of low-fidelity translesion synthesis (TLS) DNA polymerases. These polymerases can copy over replication blocking DNA lesions while temporarily leaving them unrepaired, preventing cell death at the expense of increasing mutation rates and contributing to the onset and progression of cancer. In addition, TLS has been implicated as a major cellular mechanism promoting acquired resistance to genotoxic chemotherapy. Owing to its central role in mutagenesis and cell survival after DNA damage, inhibition of the TLS pathway has emerged as a potential target for the development of anticancer agents. This review will recap our current understanding of the structure and regulation of DNA polymerase complexes that mediate TLS and describe how this knowledge is beginning to translate into the development of small molecule TLS inhibitors.
Collapse
Affiliation(s)
- Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| |
Collapse
|
46
|
Roy U, Mukherjee S, Sharma A, Frank EG, Schärer OD. The structure and duplex context of DNA interstrand crosslinks affects the activity of DNA polymerase η. Nucleic Acids Res 2016; 44:7281-91. [PMID: 27257072 PMCID: PMC5009737 DOI: 10.1093/nar/gkw485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/20/2016] [Indexed: 12/18/2022] Open
Abstract
Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol η activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only a minimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases.
Collapse
Affiliation(s)
- Upasana Roy
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Shivam Mukherjee
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Anjali Sharma
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Ekaterina G Frank
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Orlando D Schärer
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
47
|
Yoon JH, Park J, Conde J, Wakamiya M, Prakash L, Prakash S. Rev1 promotes replication through UV lesions in conjunction with DNA polymerases η, ι, and κ but not DNA polymerase ζ. Genes Dev 2016; 29:2588-602. [PMID: 26680302 PMCID: PMC4699387 DOI: 10.1101/gad.272229.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Yoon et al. show that Rev1 is indispensable for translesion synthesis (TLS) mediated by Polη, Polι, and Polκ but is not required for TLS by Polζ. This work implicates a crucial role for Rev1 in the maintenance of genome stability in humans. Translesion synthesis (TLS) DNA polymerases (Pols) promote replication through DNA lesions; however, little is known about the protein factors that affect their function in human cells. In yeast, Rev1 plays a noncatalytic role as an indispensable component of Polζ, and Polζ together with Rev1 mediates a highly mutagenic mode of TLS. However, how Rev1 functions in TLS and mutagenesis in human cells has remained unclear. Here we determined the role of Rev1 in TLS opposite UV lesions in human and mouse fibroblasts and showed that Rev1 is indispensable for TLS mediated by Polη, Polι, and Polκ but is not required for TLS by Polζ. In contrast to its role in mutagenic TLS in yeast, Rev1 promotes predominantly error-free TLS opposite UV lesions in humans. The identification of Rev1 as an indispensable scaffolding component for Polη, Polι, and Polκ, which function in TLS in highly specialized ways opposite a diverse array of DNA lesions and act in a predominantly error-free manner, implicates a crucial role for Rev1 in the maintenance of genome stability in humans.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Jeseong Park
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Juan Conde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Maki Wakamiya
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
48
|
Kinetic analysis of bypass of O(6)- methylguanine by the catalytic core of yeast DNA polymerase eta. Arch Biochem Biophys 2016; 596:99-107. [PMID: 26976707 DOI: 10.1016/j.abb.2016.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
Alkylating agents can form O(6)-methylguansine (O(6)-MeG). To study the intrinsic kinetic behaviors of bypassing O(6)-MeG, we used the catalytic core of yeast DNA polymerase η (Pol ηcore, residues 1-513), instead of the full-length Pol η, to study their elementary steps, eliminating the effects of the C-terminal C2H2 motif on dNTP incorporation. The misincorporation frequencies were 10(-4) for G and 0.055-0.446 for O(6)-MeG. O(6)-MeG does not affect the extension efficiency. Pol ηcore showed no fast burst phase for any incorporation opposite G or O(6)-MeG. Primer extension was greatly blocked by O(6)-MeG and about 67% dTTP, 31% dCTP and 2% dATP were incorporated opposite O(6)-MeG. This study provides further understanding of the mutation mechanism of alkylated lesion for yeast DNA polymerase η.
Collapse
|
49
|
Liu MS, Tsai HY, Liu XX, Ho MC, Wu WJ, Tsai MD. Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ. J Am Chem Soc 2016; 138:2389-98. [PMID: 26836966 DOI: 10.1021/jacs.5b13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanism of DNA polymerase (pol) fidelity is of fundamental importance in chemistry and biology. While high-fidelity pols have been well studied, much less is known about how some pols achieve medium or low fidelity with functional importance. Here we examine how human DNA polymerase λ (Pol λ) achieves medium fidelity by determining 12 crystal structures and performing pre-steady-state kinetic analyses. We showed that apo-Pol λ exists in the closed conformation, unprecedentedly with a preformed MgdNTP binding pocket, and binds MgdNTP readily in the active conformation in the absence of DNA. Since prebinding of MgdNTP could lead to very low fidelity as shown previously, it is attenuated in Pol λ by a hydrophobic core including Leu431, Ile492, and the Tyr505/Phe506 motif. We then predicted and demonstrated that L431A mutation enhances MgdNTP prebinding and lowers the fidelity. We also hypothesized that the MgdNTP-prebinding ability could stabilize a mismatched ternary complex and destabilize a matched ternary complex, and provided evidence with structures in both forms. Our results demonstrate that, while high-fidelity pols follow a common paradigm, Pol λ has developed specific conformations and mechanisms for its medium fidelity. Structural comparison with other pols also suggests that different pols likely utilize different conformational changes and microscopic mechanisms to achieve their catalytic functions with varying fidelities.
Collapse
Affiliation(s)
- Mu-Sen Liu
- Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| | | | | | - Meng-Chiao Ho
- Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| | | | - Ming-Daw Tsai
- Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
50
|
Abstract
Nucleotide excision repair (NER) is a highly versatile and efficient DNA repair process, which is responsible for the removal of a large number of structurally diverse DNA lesions. Its extreme broad substrate specificity ranges from DNA damages formed upon exposure to ultraviolet radiation to numerous bulky DNA adducts induced by mutagenic environmental chemicals and cytotoxic drugs used in chemotherapy. Defective NER leads to serious diseases, such as xeroderma pigmentosum (XP). Eight XP complementation groups are known of which seven (XPA-XPG) are caused by mutations in genes involved in the NER process. The eighth gene, XPV, codes for the DNA polymerase ɳ, which replicates through DNA lesions in a process called translesion synthesis (TLS). Over the past decade, detailed structural information of these DNA repair proteins involved in eukaryotic NER and TLS have emerged. These structures allow us now to understand the molecular mechanism of the NER and TLS processes in quite some detail and we have begun to understand the broad substrate specificity of NER. In this review, we aim to highlight recent advances in the process of damage recognition and repair as well as damage tolerance by the XP proteins.
Collapse
|