1
|
Ma S, Guo Y, Zhang T, Liu D, Wang L, Hu R, Zhou D, Zhou Y, Chen Q, Yu L. Comprehensive Identification and Expression Analysis of the Multidrug and Toxic Compound Extrusion (MATE) Gene Family in Brachypodium distachyon. PLANTS (BASEL, SWITZERLAND) 2024; 13:2586. [PMID: 39339561 PMCID: PMC11434668 DOI: 10.3390/plants13182586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
The Multidrug and Toxic Compound Extrusion (MATE) proteins serve as pivotal transporters responsible for the extrusion of metabolites, thereby playing a significant role in both plant development and the detoxification of toxins. The MATE gene family within the Brachypodium distachyon, which is an important model organism of the Poaceae family, remains largely unexplored. Here, a comprehensive identification and analysis of MATE genes that complement B. distachyon were conducted. The BdMATE genes were systematically categorized into five distinct groups, predicated on an assessment of their phylogenetic affinities and protein structure. Furthermore, our investigation revealed that dispersed duplication has significantly contributed to the expansion of the BdMATE genes, with tandem and segmental duplications showing important roles, suggesting that the MATE genes in Poaceae species have embarked on divergent evolutionary trajectories. Examination of ω values demonstrated that BdMATE genes underwent purifying selection throughout the evolutionary process. Furthermore, collinearity analysis has confirmed a high conservation of MATE genes between B. distachyon and rice. The cis-regulatory elements analysis within BdMATEs promoters, coupled with expression patterns, suggests that BdMATEs play important roles during plant development and in response to phytohormones. Collectively, the findings presented establish a foundational basis for the subsequent detailed characterization of the MATE gene family members in B. distachyon.
Collapse
Affiliation(s)
- Sirui Ma
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yixian Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianyi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Di Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Linna Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruiwen Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Demian Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinfang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lujun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Hernández-Durán M, Colín-Castro CA, Fernández-Rodríguez D, Delgado G, Morales-Espinosa R, Martínez-Zavaleta MG, Shekhar C, Ortíz-Álvarez J, García-Contreras R, Franco-Cendejas R, López-Jácome LE. Inside-out, antimicrobial resistance mediated by efflux pumps in clinical strains of Acinetobacter baumannii isolated from burn wound infections. Braz J Microbiol 2024:10.1007/s42770-024-01461-4. [PMID: 39044104 DOI: 10.1007/s42770-024-01461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Acinetobacter baumannii belongs to the ESKAPE group. It is classified as a critical priority group by the World Health Organization and a global concern on account of its capacity to acquire and develop resistance mechanisms to multiple antibiotics. Data from the United States indicates 500 deaths annually. Resistance mechanisms of this bacterium include enzymatic pathways such as ß-lactamases, carbapenemases, and aminoglycoside-modifying enzymes, decreased permeability, and overexpression of efflux pumps. A. baumannii has been demonstrated to possess efflux pumps, which are classified as members of the MATE family, RND and MFS superfamilies, and SMR transporters. The aim of our work was to assess the distribution of efflux pumps and their regulatory gene expression in clinical strains of A. baumannii isolated from burned patients. METHODS: From the Clinical Microbiology Laboratory at the Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra collection in Mexico, 199 strains were selected. Antibiotics susceptibilities were performed by broth microdilutions to determine minimal inhibitory concentrations. Phenotypic assays with efflux pump inhibitors were conducted using carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and phenylalanine-arginine ß-naphthylamide (PAßN) in conjunction with amikacin, ceftazidime, imipenem, meropenem and levofloxacin. A search was conducted for structural genes that are linked to efflux pumps, and the relative expression of the adeR, adeS, and adeL genes was analyzed. RESULTS: Among a total of 199 strains, 186 exhibited multidrug resistance (MDR). Fluoroquinolones demonstrated the highest resistance rates, while minocycline and amikacin displayed comparatively reduced resistance rates (1.5 and 28.1, respectively). The efflux activity of fluorquinolones exhibited the highest phenotypic detection (from 85 to 100%), while IMP demonstrated the lowest activity of 27% with PAßN and 43.3% with CCCP. Overexpression was observed in adeS and adeL, with adeR exhibiting overexpression. Concluding that clinical strains of A. baumannii from our institution exhibited efflux pumps as one of the resistance mechanisms.
Collapse
Affiliation(s)
- Melissa Hernández-Durán
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Claudia Adriana Colín-Castro
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Diana Fernández-Rodríguez
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
- Plan de Estudios Combinados en Medicina (PECEM) MD/PhD, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Delgado
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosario Morales-Espinosa
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Guadalupe Martínez-Zavaleta
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Chandra Shekhar
- College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
| | - Jossue Ortíz-Álvarez
- Ciencias y Tecnologías (CONAHCYT), Programa "Investigadoras E Investigadores Por México". Consejo Nacional de Humanidades, Mexico City, Mexico
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Franco-Cendejas
- Biomedical Research Subdirection, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Luis Esaú López-Jácome
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico.
- Departamento de Biología. Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
3
|
Gao P, Han R, Xu H, Wei Y, Yu Y. Identification of MATE Family and Characterization of GmMATE13 and GmMATE75 in Soybean's Response to Aluminum Stress. Int J Mol Sci 2024; 25:3711. [PMID: 38612522 PMCID: PMC11011378 DOI: 10.3390/ijms25073711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
The multidrug and toxic compound extrusion (MATE) proteins are coding by a secondary transporter gene family, and have been identified to participate in the modulation of organic acid exudation for aluminum (Al) resistance. The soybean variety Glycine max "Tamba" (TBS) exhibits high Al tolerance. The expression patterns of MATE genes in response to Al stress in TBS and their specific functions in the context of Al stress remain elusive. In this study, 124 MATE genes were identified from the soybean genome. The RNA-Seq results revealed significant upregulation of GmMATE13 and GmMATE75 in TBS upon exposure to high-dose Al3+ treatment and both genes demonstrated sequence homology to citrate transporters of other plants. Subcellular localization showed that both proteins were located in the cell membrane. Transgenic complementation experiments of Arabidopsis mutants, atmate, with GmMATE13 or GmMATE75 genes enhanced the Al tolerance of the plant due to citrate secretion. Taken together, this study identified GmMATE13 and GmMATE75 as citrate transporter genes in TBS, which could improve citrate secretion and enhance Al tolerance. Our findings provide genetic resources for the development of plant varieties that are resistant to Al toxicity.
Collapse
Affiliation(s)
- Pengxiang Gao
- Center for Plant Environmental Sensing, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rongrong Han
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (R.H.); (H.X.); (Y.Y.)
| | - Hui Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (R.H.); (H.X.); (Y.Y.)
| | - Yunmin Wei
- Center for Plant Environmental Sensing, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (R.H.); (H.X.); (Y.Y.)
| | - Yongxiong Yu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (R.H.); (H.X.); (Y.Y.)
| |
Collapse
|
4
|
Mathew D, Valsalan R, Shijili M. Genome-wide mining and characterization of MATE transporters in Coriandrum sativum L. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:155-164. [PMID: 38915458 PMCID: PMC11194028 DOI: 10.22099/mbrc.2024.49840.1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Multidrug and Toxic Compound Extrusion (MATE) proteins are responsible for the transport of a wide range of metabolites out of plant cells. This helps to protect the cells from toxins and other harmful compounds. MATE proteins also play a role in plant development, by regulating the transport of hormones and other signalling molecules. They transport a wide variety of substances, including organic acids, plant hormones, flavonoids, alkaloids, terpenes and other secondary metabolites. MATE proteins are thought to play similar roles in Coriander, in addition to stress responses. The MATE genes in the coriander genome have been identified and characterized. Detailed genome homology search and domain identification analysis have identified 91 MATE proteins in the genome assembly of coriander. A phylogenetic analysis of the identified proteins divided them into five major clades. The functions of the transporters in each cluster were predicted based on the clustering pattern of the functionally characterized proteins. The amino acid sequences, exon-intron structures and motif details of all the 91 proteins are identified and described. This is the first work on the MATE transporters in coriander and the results deliver clues for the molecular mechanisms behind the stress responses and secondary metabolite transport in coriander.
Collapse
Affiliation(s)
- Deepu Mathew
- Bioinformatics Centre, Kerala Agricultural University, Thrissur-680 656, India
| | - Ravisankar Valsalan
- Bioinformatics Centre, Kerala Agricultural University, Thrissur-680 656, India
| | - M Shijili
- Bioinformatics Centre, Kerala Agricultural University, Thrissur-680 656, India
| |
Collapse
|
5
|
Zheng Z, Gao J, Wang C, Peng H, Zeng J, Chen F. Genome-wide identification and expression pattern analysis of the MATE gene family in carmine radish (Raphanus sativus L.). Gene 2023; 887:147734. [PMID: 37625557 DOI: 10.1016/j.gene.2023.147734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Carmine radish (Raphanus sativus L.) is famousforcontaininganaturalredpigment(redradishpigment) that grown in Fuling, Chongqing City, China. MATE (multidrug and toxic compound extrusion), as an integral member of the multidrug efflux transporter family, has various functions in plants. However, noinformationhasbeenavailableaboutcharacteristicsoftheMATEgenefamily in carmine radish. In this study, total of 85 candidate MATE gene family members classifiedinto 4 groups were identified and foundtobewidelyandrandomlydistributedindifferent genome. Synteny analysis revealed that twenty-one segmental and ten tandem duplications acted as important regulators for the expansion of RsMATE genes. The Ka/Ks ratios of RsMATE indicated that RsMATE may have undergone intense purification in the radish genome. Cis-acting element analysis of RsMATE in the promoter region indicated that RsMATE were mainly related to the abiotic stress response and phytohormone. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that RsMATE40-b, RsMATE16-b and RsMATE13-a genes were significantly expressed under ABA (abscisic acid) and NaCl stress treatments respectively. In addition, the expression patterns of fifteen key RsMATE genes were investigated in 'XCB' (Xichangbai) and 'HX' (Hongxin) roots under Cadmium (Cd) stress for different treatment times using qRT-PCR, of those, RsMATE49-b, RsMATE33 and RsMATE26 transcripts were strongly altered at different time points in XCB responsive to Cd stress,compared to HX. This study will provide valuable insights for studying the functional characterization of the MATE gene in carmine radish and other plants.
Collapse
Affiliation(s)
- Zhangfei Zheng
- School of Biological and Food Engineering, Chongqing Three Gorges University, WanZhou, 404100 Chongqing, China; School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China
| | - Jian Gao
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China.
| | - Chuanyi Wang
- School of Biological and Food Engineering, Chongqing Three Gorges University, WanZhou, 404100 Chongqing, China; School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China
| | - Hua Peng
- Research Centre for Tourism Agriculture Development, Sichuan Tourism College, Chengdu 610100, Sichuan, China
| | - Jing Zeng
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China
| | - Fabo Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China
| |
Collapse
|
6
|
Kumar S, Lekshmi M, Stephen J, Ortiz-Alegria A, Ayitah M, Varela MF. Dynamics of efflux pumps in antimicrobial resistance, persistence, and community living of Vibrionaceae. Arch Microbiol 2023; 206:7. [PMID: 38017151 DOI: 10.1007/s00203-023-03731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
The marine bacteria of the Vibrionaceae family are significant from the point of view of their role in the marine geochemical cycle, as well as symbionts and opportunistic pathogens of aquatic animals and humans. The well-known pathogens of this group, Vibrio cholerae, V. parahaemolyticus, and V. vulnificus, are responsible for significant morbidity and mortality associated with a range of infections from gastroenteritis to bacteremia acquired through the consumption of raw or undercooked seafood and exposure to seawater containing these pathogens. Although generally regarded as susceptible to commonly employed antibiotics, the antimicrobial resistance of Vibrio spp. has been on the rise in the last two decades, which has raised concern about future infections by these bacteria becoming increasingly challenging to treat. Diverse mechanisms of antimicrobial resistance have been discovered in pathogenic vibrios, the most important being the membrane efflux pumps, which contribute to antimicrobial resistance and their virulence, environmental fitness, and persistence through biofilm formation and quorum sensing. In this review, we discuss the evolution of antimicrobial resistance in pathogenic vibrios and some of the well-characterized efflux pumps' contributions to the physiology of antimicrobial resistance, host and environment survival, and their pathogenicity.
Collapse
Affiliation(s)
- Sanath Kumar
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Manjusha Lekshmi
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Jerusha Stephen
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Matthew Ayitah
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA.
| |
Collapse
|
7
|
Durán D, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, Rivilla R, Martín M. An Orphan VrgG Auxiliary Module Related to the Type VI Secretion Systems from Pseudomonas ogarae F113 Mediates Bacterial Killing. Genes (Basel) 2023; 14:1979. [PMID: 38002922 PMCID: PMC10671463 DOI: 10.3390/genes14111979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
The model rhizobacterium Pseudomonas ogarae F113, a relevant plant growth-promoting bacterium, encodes three different Type VI secretion systems (T6SS) in its genome. In silico analysis of its genome revealed the presence of a genetic auxiliary module containing a gene encoding an orphan VgrG protein (VgrG5a) that is not genetically linked to any T6SS structural cluster, but is associated with genes encoding putative T6SS-related proteins: a possible adaptor Tap protein, followed by a putative effector, Tfe8, and its putative cognate immunity protein, Tfi8. The bioinformatic analysis of the VgrG5a auxiliary module has revealed that this cluster is only present in several subgroups of the P. fluorescens complex of species. An analysis of the mutants affecting the vgrG5a and tfe8 genes has shown that the module is involved in bacterial killing. To test whether Tfe8/Tfi8 constitute an effector-immunity pair, the genes encoding Tfe8 and Tfi8 were cloned and expressed in E. coli, showing that the ectopic expression of tfe8 affected growth. The growth defect was suppressed by tfi8 ectopic expression. These results indicate that Tfe8 is a bacterial killing effector, while Tfi8 is its cognate immunity protein. The Tfe8 protein sequence presents homology to the proteins of the MATE family involved in drug extrusion. The Tfe8 effector is a membrane protein with 10 to 12 transmembrane domains that could destabilize the membranes of target cells by the formation of pores, revealing the importance of these effectors for bacterial interaction. Tfe8 represents a novel type of a T6SS effector present in pseudomonads.
Collapse
Affiliation(s)
- David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - David Vazquez-Arias
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| |
Collapse
|
8
|
Shijili M, Valsalan R, Mathew D. Genome wide identification and characterization of MATE family genes in mangrove plants. Genetica 2023:10.1007/s10709-023-00186-w. [PMID: 37014491 DOI: 10.1007/s10709-023-00186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Multidrug and Toxic Compound Extrusion (MATE) proteins are essential transporters that extrude metabolites and participate in plant development and cellular detoxification. MATE transporters, which play crucial roles in the survival of mangrove plants under highly challenged environments, by specialized salt extrusion mechanisms, are mined from their genomes and reported here for the first time. Through homology search and domain prediction in the genome assemblies of Avicennia marina, Bruguiera sexangula, Ceriops zippeliana, Kandelia obovata, Rhizophora apiculata and Ceriops tagal, 74, 68, 66, 66, 63 and 64 MATE proteins, respectively were identified. The phylogenetic analysis divided the identified proteins into five major clusters and following the clustering pattern of the functionally characterized proteins, functions of the transporters in each cluster were predicted. Amino acid sequences, exon-intron structure, motif details and subcellular localization pattern for all the 401 proteins are described. The custom designed repeat masking libraries generated for each of these genomes, which will be of extensive use for the researchers worldwide, are also provided in this paper. This is the first study on the MATE genes in mangroves and the results provide comprehensive information on the molecular mechanisms enabling the survival of mangroves under hostile conditions.
Collapse
Affiliation(s)
- M Shijili
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680 656, India
| | - Ravisankar Valsalan
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680 656, India
| | - Deepu Mathew
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680 656, India.
| |
Collapse
|
9
|
Tolbatov I, Marrone A, Shepard W, Chiaverini L, Upadhyay Kahaly M, La Mendola D, Marzo T, Ciccone L. Inorganic Drugs as a Tool for Protein Structure Solving and Studies on Conformational Changes. Chemistry 2023; 29:e202202937. [PMID: 36477932 DOI: 10.1002/chem.202202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Inorganic drugs are capable of tight interactions with proteins through coordination towards aminoacidic residues, and this feature is recognized as a key aspect for their pharmacological action. However, the "protein metalation process" is exploitable for solving the phase problem and structural resolution. In fact, the use of inorganic drugs bearing specific metal centers and ligands capable to drive the binding towards the desired portions of the protein target could represent a very intriguing and fruitful strategy. In this context, a theoretical approach may further contribute to solve protein structures and their refinement. Here, we delineate the main features of a reliable experimental-theoretical integrated approach, based on the use of metallodrugs, for protein structure solving.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Alessandro Marrone
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - William Shepard
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | | | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Sharma S, Kaushik V, Kulshrestha M, Tiwari V. Different Efflux Pump Systems in Acinetobacter baumannii and Their Role in Multidrug Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023. [DOI: 10.1007/5584_2023_771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Chetri S. The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: Urgent need for an improved new generation of EPIs. Front Microbiol 2023; 14:1149418. [PMID: 37138605 PMCID: PMC10149990 DOI: 10.3389/fmicb.2023.1149418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
Efflux pumps function as an advanced defense system against antimicrobials by reducing the concentration of drugs inside the bacteria and extruding the substances outside. Various extraneous substances, including antimicrobials, toxic heavy metals, dyes, and detergents, have been removed by this protective barrier composed of diverse transporter proteins found in between the cell membrane and the periplasm within the bacterial cell. In this review, multiple efflux pump families have been analytically and widely outlined, and their potential applications have been discussed in detail. Additionally, this review also discusses a variety of biological functions of efflux pumps, including their role in the formation of biofilms, quorum sensing, their survivability, and the virulence in bacteria, and the genes/proteins associated with efflux pumps have also been explored for their potential relevance to antimicrobial resistance and antibiotic residue detection. A final discussion centers around efflux pump inhibitors, particularly those derived from plants.
Collapse
|
12
|
Lorusso AB, Carrara JA, Barroso CDN, Tuon FF, Faoro H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:15779. [PMID: 36555423 PMCID: PMC9779380 DOI: 10.3390/ijms232415779] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance is an old and silent pandemic. Resistant organisms emerge in parallel with new antibiotics, leading to a major global public health crisis over time. Antibiotic resistance may be due to different mechanisms and against different classes of drugs. These mechanisms are usually found in the same organism, giving rise to multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria. One resistance mechanism that is closely associated with the emergence of MDR and XDR bacteria is the efflux of drugs since the same pump can transport different classes of drugs. In Gram-negative bacteria, efflux pumps are present in two configurations: a transmembrane protein anchored in the inner membrane and a complex formed by three proteins. The tripartite complex has a transmembrane protein present in the inner membrane, a periplasmic protein, and a porin associated with the outer membrane. In Pseudomonas aeruginosa, one of the main pathogens associated with respiratory tract infections, four main sets of efflux pumps have been associated with antibiotic resistance: MexAB-OprM, MexXY, MexCD-OprJ, and MexEF-OprN. In this review, the function, structure, and regulation of these efflux pumps in P. aeruginosa and their actions as resistance mechanisms are discussed. Finally, a brief discussion on the potential of efflux pumps in P. aeruginosa as a target for new drugs is presented.
Collapse
Affiliation(s)
- Andre Bittencourt Lorusso
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - João Antônio Carrara
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
| | | | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- CHU de Quebec Research Center, Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
13
|
Fernandes I, Paulo OS, Marques I, Sarjkar I, Sen A, Graça I, Pawlowski K, Ramalho JC, Ribeiro-Barros AI. Salt Stress Tolerance in Casuarina glauca: Insights from the Branchlets Transcriptome. PLANTS (BASEL, SWITZERLAND) 2022; 11:2942. [PMID: 36365395 PMCID: PMC9658546 DOI: 10.3390/plants11212942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Climate change and the accelerated rate of population growth are imposing a progressive degradation of natural ecosystems worldwide. In this context, the use of pioneer trees represents a powerful approach to reverse the situation. Among others, N2-fixing actinorhizal trees constitute important elements of plant communities and have been successfully used in land reclamation at a global scale. In this study, we have analyzed the transcriptome of the photosynthetic organs of Casuarina glauca (branchlets) to unravel the molecular mechanisms underlying salt stress tolerance. For that, C. glauca plants supplied either with chemical nitrogen (KNO3+) or nodulated by Frankia (NOD+) were exposed to a gradient of salt concentrations (200, 400, and 600 mM NaCl) and RNA-Seq was performed. An average of ca. 25 million clean reads was obtained for each group of plants, corresponding to 86,202 unigenes. The patterns of differentially expressed genes (DEGs) clearly separate two groups: (i) control- and 200 mM NaCl-treated plants, and (ii) 400 and 600 mM NaCl-treated plants. Additionally, although the number of total transcripts was relatively high in both plant groups, the percentage of significant DEGs was very low, ranging from 6 (200 mM NaCl/NOD+) to 314 (600 mM NaCl/KNO3+), mostly involving down-regulation. The vast majority of up-regulated genes was related to regulatory processes, reinforcing the hypothesis that some ecotypes of C. glauca have a strong stress-responsive system with an extensive set of constitutive defense mechanisms, complemented by a tight mechanism of transcriptional and post-transcriptional regulation. The results suggest that the robustness of the stress response system in C. glauca is regulated by a limited number of genes that tightly regulate detoxification and protein/enzyme stability, highlighting the complexity of the molecular interactions leading to salinity tolerance in this species.
Collapse
Affiliation(s)
- Isabel Fernandes
- Computational Biology and Population Genomics Group, cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Isabel Marques
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Indrani Sarjkar
- Bioinformatics Facility, University of North Bengal, Siliguri 734013, India
| | - Arnab Sen
- Bioinformatics Facility, University of North Bengal, Siliguri 734013, India
| | - Inês Graça
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - José C. Ramalho
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal
| | - Ana I. Ribeiro-Barros
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal
| |
Collapse
|
14
|
Wang Z, Liu Y, Cui W, Gong L, He Y, Zhang Q, Meng X, Yang Z, You J. Characterization of GmMATE13 in its contribution of citrate efflux and aluminum resistance in soybeans. FRONTIERS IN PLANT SCIENCE 2022; 13:1027560. [PMID: 36340364 PMCID: PMC9634752 DOI: 10.3389/fpls.2022.1027560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Citrate exudation mediated by a citrate transporter of the MATE protein family is critical for resisting aluminum (Al) toxicity in soybeans. However, the expression patterns of citrate transporter genes differ under Al stress. Thus, exploring the responsive pattern of GmMATEs in response to Al stress is of great importance to understand the Al resistance mechanism in soybeans. In the present study, the phylogenetic analysis, transcriptionally expressed pattern, and function of GmMATE13 were investigated. The results show that soybean GmMATE13 is highly homologous to known citrate transporter proteins from other plants. Under Al exposure, the transcript abundance of GmMATE13 was increased during a 24 h Al treatment period. The expression of GmMATE13 is specifically induced by Al exposure, but not by the status of Fe, Cu, Cd, or La. Moreover, it was also highly increased when soybean seedlings were grown on acidic soil with a high Al content. Subcellular localization showed that GmMATE13 was localized on the plasma membrane when it was transiently expressed in Arabidopsis protoplasts. Investigation of tissue localization of GmMATE13 expression by investigating GUS activity staining under control of the GmMATE13 promoter showed that it was mainly expressed in the central cylinder in the root tips of the soybean under Al-free conditions, yet extended to cortical and epidermis cells under Al stress. Finally, overexpressing GmMATE13 in soybean hairy roots enhanced Al resistance by increasing citrate efflux. Collectively, we conclude that GmMATE13 is a promising candidate to improve the resistance of soybean to Al toxicity in acidic soil.
Collapse
|
15
|
Burata OE, Yeh TJ, Macdonald CB, Stockbridge RB. Still rocking in the structural era: A molecular overview of the small multidrug resistance (SMR) transporter family. J Biol Chem 2022; 298:102482. [PMID: 36100040 PMCID: PMC9574504 DOI: 10.1016/j.jbc.2022.102482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
The small multidrug resistance (SMR) family is composed of widespread microbial membrane proteins that fulfill different transport functions. Four functional SMR subtypes have been identified, which variously transport the small, charged metabolite guanidinium, bulky hydrophobic drugs and antiseptics, polyamines, and glycolipids across the membrane bilayer. The transporters possess a minimalist architecture, with ∼100-residue subunits that require assembly into homodimers or heterodimers for transport. In part because of their simple construction, the SMRs are a tractable system for biochemical and biophysical analysis. Studies of SMR transporters over the last 25 years have yielded deep insights for diverse fields, including membrane protein topology and evolution, mechanisms of membrane transport, and bacterial multidrug resistance. Here, we review recent advances in understanding the structures and functions of SMR transporters. New molecular structures of SMRs representing two of the four functional subtypes reveal the conserved structural features that have permitted the emergence of disparate substrate transport functions in the SMR family and illuminate structural similarities with a distantly related membrane transporter family, SLC35/DMT.
Collapse
Affiliation(s)
- Olive E Burata
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Trevor Justin Yeh
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Randy B Stockbridge
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA; Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
16
|
Kohga H, Mori T, Tanaka Y, Yoshikaie K, Taniguchi K, Fujimoto K, Fritz L, Schneider T, Tsukazaki T. Crystal structure of the lipid flippase MurJ in a "squeezed" form distinct from its inward- and outward-facing forms. Structure 2022; 30:1088-1097.e3. [PMID: 35660157 DOI: 10.1016/j.str.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
The bacterial peptidoglycan enclosing the cytoplasmic membrane is a fundamental cellular architecture. The integral membrane protein MurJ plays an essential role in flipping the cell wall building block Lipid II across the cytoplasmic membrane for peptidoglycan biosynthesis. Previously reported crystal structures of MurJ have elucidated its V-shaped inward- or outward-facing forms with an internal cavity for substrate binding. MurJ transports Lipid II using its cavity through conformational transitions between these two forms. Here, we report two crystal structures of inward-facing forms from Arsenophonus endosymbiont MurJ and an unprecedented crystal structure of Escherichia coli MurJ in a "squeezed" form, which lacks a cavity to accommodate the substrate, mainly because of the increased proximity of transmembrane helices 2 and 8. Subsequent molecular dynamics simulations supported the hypothesis that the squeezed form is an intermediate conformation. This study fills a gap in our understanding of the Lipid II flipping mechanism.
Collapse
Affiliation(s)
- Hidetaka Kohga
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takaharu Mori
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshiki Tanaka
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | - Kei Fujimoto
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Lisa Fritz
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Tomoya Tsukazaki
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
17
|
Nazish T, Huang YJ, Zhang J, Xia JQ, Alfatih A, Luo C, Cai XT, Xi J, Xu P, Xiang CB. Understanding paraquat resistance mechanisms in Arabidopsis thaliana to facilitate the development of paraquat-resistant crops. PLANT COMMUNICATIONS 2022; 3:100321. [PMID: 35576161 PMCID: PMC9251430 DOI: 10.1016/j.xplc.2022.100321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/06/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Paraquat (PQ) is the third most used broad-spectrum nonselective herbicide around the globe after glyphosate and glufosinate. Repeated usage and overreliance on this herbicide have resulted in the emergence of PQ-resistant weeds that are a potential hazard to agriculture. It is generally believed that PQ resistance in weeds is due to increased sequestration of the herbicide and its decreased translocation to the target site, as well as an enhanced ability to scavenge reactive oxygen species. However, little is known about the genetic bases and molecular mechanisms of PQ resistance in weeds, and hence no PQ-resistant crops have been developed to date. Forward genetics of the model plant Arabidopsis thaliana has advanced our understanding of the molecular mechanisms of PQ resistance. This review focuses on PQ resistance loci and resistance mechanisms revealed in Arabidopsis and examines the possibility of developing PQ-resistant crops using the elucidated mechanisms.
Collapse
Affiliation(s)
- Tahmina Nazish
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Yi-Jie Huang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Alamin Alfatih
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Chao Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Xiao-Teng Cai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China.
| | - Jing Xi
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
18
|
Kumar S, Mollo A, Kahne D, Ruiz N. The Bacterial Cell Wall: From Lipid II Flipping to Polymerization. Chem Rev 2022; 122:8884-8910. [PMID: 35274942 PMCID: PMC9098691 DOI: 10.1021/acs.chemrev.1c00773] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The peptidoglycan (PG) cell wall is an extra-cytoplasmic glycopeptide polymeric structure that protects bacteria from osmotic lysis and determines cellular shape. Since the cell wall surrounds the cytoplasmic membrane, bacteria must add new material to the PG matrix during cell elongation and division. The lipid-linked precursor for PG biogenesis, Lipid II, is synthesized in the inner leaflet of the cytoplasmic membrane and is subsequently translocated across the bilayer so that the PG building block can be polymerized and cross-linked by complex multiprotein machines. This review focuses on major discoveries that have significantly changed our understanding of PG biogenesis in the past decade. In particular, we highlight progress made toward understanding the translocation of Lipid II across the cytoplasmic membrane by the MurJ flippase, as well as the recent discovery of a novel class of PG polymerases, the SEDS (shape, elongation, division, and sporulation) glycosyltransferases RodA and FtsW. Since PG biogenesis is an effective target of antibiotics, these recent developments may lead to the discovery of much-needed new classes of antibiotics to fight bacterial resistance.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aurelio Mollo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Abstract
Biosynthesis of many important polysaccharides (including peptidoglycan, lipopolysaccharide, and N-linked glycans) necessitates the transport of lipid-linked oligosaccharides (LLO) across membranes from their cytosolic site of synthesis to their sites of utilization. Much of our current understanding of LLO transport comes from genetic, biochemical, and structural studies of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) superfamily protein MurJ, which flips the peptidoglycan precursor lipid II. MurJ plays a pivotal role in bacterial cell wall synthesis and is an emerging antibiotic target. Here, we review the mechanism of LLO flipping by MurJ, including the structural basis for lipid II flipping and ion coupling. We then discuss inhibition of MurJ by antibacterials, including humimycins and the phage M lysis protein, as well as how studies on MurJ could provide insight into other flippases, both within and beyond the MOP superfamily. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alvin C Y Kuk
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA; .,Current affiliation: Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Aili Hao
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA;
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA;
| |
Collapse
|
20
|
Garcia ÍR, de Oliveira Garcia FA, Pereira PS, Coutinho HDM, Siyadatpanah A, Norouzi R, Wilairatana P, de Lourdes Pereira M, Nissapatorn V, Tintino SR, Rodrigues FFG. Microbial resistance: The role of efflux pump superfamilies and their respective substrates. Life Sci 2022; 295:120391. [PMID: 35149116 DOI: 10.1016/j.lfs.2022.120391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/24/2022]
Abstract
The microorganism resistance to antibiotics has become one of the most worrying issues for science due to the difficulties related to clinical treatment and the rapid spread of diseases. Efflux pumps are classified into six groups of carrier proteins that are part of the different types of mechanisms that contribute to resistance in microorganisms, allowing their survival. The present study aimed to carry out a bibliographic review on the superfamilies of carriers in order to understand their compositions, expressions, substrates, and role in intrinsic resistance. At first, a search for manuscripts was carried out in the databases Medline, Pubmed, ScienceDirect, and Scielo, using as descriptors: efflux pump, expression, pump inhibitors and efflux superfamily. For article selection, two criteria were taken into account: for inclusion, those published between 2000 and 2020, including textbooks, and for exclusion, duplicates and academic collections. In this research, 139,615 published articles were obtained, with 312 selected articles and 7 book chapters that best met the aim. From the comprehensive analysis, it was possible to consider that the chromosomes and genetic elements can contain genes encoding efflux pumps and are responsible for multidrug resistance. Even though this is a well-explored topic in the scientific community, understanding the behavior of antibiotics as substrates that increase the expression of pump-encoding genes has challenged medicine. This review study succinctly summarizes the most relevant features of these systems, as well as their contribution to multidrug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and Research Excellence Center for Innovation and Health, Walailak University, Thailand
| | | | | |
Collapse
|
21
|
Stephen J, Lekshmi M, Ammini P, Kumar SH, Varela MF. Membrane Efflux Pumps of Pathogenic Vibrio Species: Role in Antimicrobial Resistance and Virulence. Microorganisms 2022; 10:microorganisms10020382. [PMID: 35208837 PMCID: PMC8875612 DOI: 10.3390/microorganisms10020382] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/15/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Infectious diseases caused by bacterial species of the Vibrio genus have had considerable significance upon human health for centuries. V. cholerae is the causative microbial agent of cholera, a severe ailment characterized by profuse watery diarrhea, a condition associated with epidemics, and seven great historical pandemics. V. parahaemolyticus causes wound infection and watery diarrhea, while V. vulnificus can cause wound infections and septicemia. Species of the Vibrio genus with resistance to multiple antimicrobials have been a significant health concern for several decades. Mechanisms of antimicrobial resistance machinery in Vibrio spp. include biofilm formation, drug inactivation, target protection, antimicrobial permeability reduction, and active antimicrobial efflux. Integral membrane-bound active antimicrobial efflux pump systems include primary and secondary transporters, members of which belong to closely related protein superfamilies. The RND (resistance-nodulation-division) pumps, the MFS (major facilitator superfamily) transporters, and the ABC superfamily of efflux pumps constitute significant drug transporters for investigation. In this review, we explore these antimicrobial transport systems in the context of Vibrio spp. pathogenesis and virulence.
Collapse
Affiliation(s)
- Jerusha Stephen
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India; (J.S.); (M.L.); (S.H.K.)
| | - Manjusha Lekshmi
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India; (J.S.); (M.L.); (S.H.K.)
| | - Parvathi Ammini
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India;
| | - Sanath H. Kumar
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India; (J.S.); (M.L.); (S.H.K.)
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
- Correspondence:
| |
Collapse
|
22
|
Zhang X, Wright SH. Transport Turnover Rates for Human OCT2 and MATE1 Expressed in Chinese Hamster Ovary Cells. Int J Mol Sci 2022; 23:ijms23031472. [PMID: 35163393 PMCID: PMC8836179 DOI: 10.3390/ijms23031472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
MATE1 (multidrug and toxin extruder 1) and OCT2 (organic cation transporter 2) play critical roles in organic cation excretion by the human kidney. The transporter turnover rate (TOR) is relevant to understanding both their transport mechanisms and interpreting the in vitro-in vivo extrapolation (IVIVE) required for physiologically-based pharmacokinetic (PBPK) modeling. Here, we use a quantitative western blot method to determine TORs for MATE1 and OCT2 proteins expressed in CHO cells. MATE1 and OCT2, each with a C-terminal V-5 epitope tag, were cell surface biotinylated and the amount of cell surface MATE1 and OCT2 protein was quantified by western analysis, using standard curves for the V5 epitope. Cell surface MATE1 and OCT2 protein represented 25% and 24%, respectively, of the total expression of these proteins in CHO cells. The number of cell surface transporters was ~55 fmol cm-2 for MATE1 and ~510 fmol cm-2 for OCT2. Dividing these values into the different Jmax values for transport of MPP, metformin, and atenolol mediated by MATE1 and OCT2 resulted in calculated TOR values (±SE, n = 4) of 84.0 ± 22.0 s-1 and 2.9 ± 0.6 s-1; metformin, 461.0 ± 121.0 s-1 and 12.6 ± 2.4 s-1; atenolol, 118.0 ± 31.0 s-1, respectively. These values are consistent with the TOR values determined for a variety of exchangers (NHEs), cotransporters (SGLTs, Lac permease), and uniporters (GLUTs, ENTs).
Collapse
|
23
|
Centeno-Leija S, Espinosa-Barrera L, Velazquez-Cruz B, Cárdenas-Conejo Y, Virgen-Ortíz R, Valencia-Cruz G, Saenz RA, Marín-Tovar Y, Gómez-Manzo S, Hernández-Ochoa B, Rocha-Ramirez LM, Zataraín-Palacios R, Osuna-Castro JA, López-Munguía A, Serrano-Posada H. Mining for novel cyclomaltodextrin glucanotransferases unravels the carbohydrate metabolism pathway via cyclodextrins in Thermoanaerobacterales. Sci Rep 2022; 12:730. [PMID: 35031648 PMCID: PMC8760340 DOI: 10.1038/s41598-021-04569-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Carbohydrate metabolism via cyclodextrins (CM-CD) is an uncommon starch-converting pathway that thoroughly depends on extracellular cyclomaltodextrin glucanotransferases (CGTases) to transform the surrounding starch substrate to α-(1,4)-linked oligosaccharides and cyclodextrins (CDs). The CM-CD pathway has emerged as a convenient microbial adaptation to thrive under extreme temperatures, as CDs are functional amphipathic toroids with higher heat-resistant values than linear dextrins. Nevertheless, although the CM-CD pathway has been described in a few mesophilic bacteria and archaea, it remains obscure in extremely thermophilic prokaryotes (Topt ≥ 70 °C). Here, a new monophyletic group of CGTases with an exceptional three-domain ABC architecture was detected by (meta)genome mining of extremely thermophilic Thermoanaerobacterales living in a wide variety of hot starch-poor environments on Earth. Functional studies of a representative member, CldA, showed a maximum activity in a thermoacidophilic range (pH 4.0 and 80 °C) with remarkable product diversification that yielded a mixture of α:β:γ-CDs (34:62:4) from soluble starch, as well as G3-G7 linear dextrins and fermentable sugars as the primary products. Together, comparative genomics and predictive functional analysis, combined with data of the functionally characterized key proteins of the gene clusters encoding CGTases, revealed the CM-CD pathway in Thermoanaerobacterales and showed that it is involved in the synthesis, transportation, degradation, and metabolic assimilation of CDs.
Collapse
Affiliation(s)
- Sara Centeno-Leija
- Consejo Nacional de Ciencia y Tecnología, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico.
| | - Laura Espinosa-Barrera
- Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico
| | - Beatriz Velazquez-Cruz
- Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico
| | - Yair Cárdenas-Conejo
- Consejo Nacional de Ciencia y Tecnología, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico
| | - Raúl Virgen-Ortíz
- Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico
| | - Georgina Valencia-Cruz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Avenida 25 de julio 965, Colonia Villa de San Sebastián, 28045, Colima, Colima, Mexico
| | - Roberto A Saenz
- Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340, 28045, Colima, Colima, Mexico
| | - Yerli Marín-Tovar
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530, Mexico City, Mexico
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica y Biología Celular, Hospital Infantil de México Federico Gómez, Secretaría de Salud, 06720, Mexico City, Mexico
| | - Luz María Rocha-Ramirez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Colonia Doctores, 06720, Delegación Cuauhtémoc, Mexico
| | - Rocío Zataraín-Palacios
- Escuela de Medicina General, Universidad José Martí, Bosques del Decán 351, 28089, Colima, Colima, México
| | - Juan A Osuna-Castro
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, Autopista Colima-Manzanillo, 28100, Tecomán, Colima, Mexico
| | - Agustín López-Munguía
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Hugo Serrano-Posada
- Consejo Nacional de Ciencia y Tecnología, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico.
| |
Collapse
|
24
|
Bloch JS, Mukherjee S, Kowal J, Filippova EV, Niederer M, Pardon E, Steyaert J, Kossiakoff AA, Locher KP. Development of a universal nanobody-binding Fab module for fiducial-assisted cryo-EM studies of membrane proteins. Proc Natl Acad Sci U S A 2021; 118:e2115435118. [PMID: 34782475 PMCID: PMC8617411 DOI: 10.1073/pnas.2115435118] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
With conformation-specific nanobodies being used for a wide range of structural, biochemical, and cell biological applications, there is a demand for antigen-binding fragments (Fabs) that specifically and tightly bind these nanobodies without disturbing the nanobody-target protein interaction. Here, we describe the development of a synthetic Fab (termed NabFab) that binds the scaffold of an alpaca-derived nanobody with picomolar affinity. We demonstrate that upon complementary-determining region grafting onto this parent nanobody scaffold, nanobodies recognizing diverse target proteins and derived from llama or camel can cross-react with NabFab without loss of affinity. Using NabFab as a fiducial and size enhancer (50 kDa), we determined the high-resolution cryogenic electron microscopy (cryo-EM) structures of nanobody-bound VcNorM and ScaDMT, both small membrane proteins of ∼50 kDa. Using an additional anti-Fab nanobody further facilitated reliable initial three-dimensional structure determination from small cryo-EM test datasets. Given that NabFab is of synthetic origin, is humanized, and can be conveniently expressed in Escherichia coli in large amounts, it may be useful not only for structural biology but also for biomedical applications.
Collapse
Affiliation(s)
- Joël S Bloch
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Ekaterina V Filippova
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Martina Niederer
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637;
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland;
| |
Collapse
|
25
|
The structure of the Aquifex aeolicus MATE family multidrug resistance transporter and sequence comparisons suggest the existence of a new subfamily. Proc Natl Acad Sci U S A 2021; 118:2107335118. [PMID: 34753818 DOI: 10.1073/pnas.2107335118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
Multidrug and toxic compound extrusion (MATE) transporters are widespread in all domains of life. Bacterial MATE transporters confer multidrug resistance by utilizing an electrochemical gradient of H+ or Na+ to export xenobiotics across the membrane. Despite the availability of X-ray structures of several MATE transporters, a detailed understanding of the transport mechanism has remained elusive. Here we report the crystal structure of a MATE transporter from Aquifex aeolicus at 2.0-Å resolution. In light of its phylogenetic placement outside of the diversity of hitherto-described MATE transporters and the lack of conserved acidic residues, this protein may represent a subfamily of prokaryotic MATE transporters, which was proven by phylogenetic analysis. Furthermore, the crystal structure and substrate docking results indicate that the substrate binding site is located in the N bundle. The importance of residues surrounding this binding site was demonstrated by structure-based site-directed mutagenesis. We suggest that Aq_128 is functionally similar but structurally diverse from DinF subfamily transporters. Our results provide structural insights into the MATE transporter, which further advances our global understanding of this important transporter family.
Collapse
|
26
|
Biała-Leonhard W, Zanin L, Gottardi S, de Brito Francisco R, Venuti S, Valentinuzzi F, Mimmo T, Cesco S, Bassin B, Martinoia E, Pinton R, Jasiński M, Tomasi N. Identification of an Isoflavonoid Transporter Required for the Nodule Establishment of the Rhizobium- Fabaceae Symbiotic Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:758213. [PMID: 34745190 PMCID: PMC8570342 DOI: 10.3389/fpls.2021.758213] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/15/2021] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) as well as Phosphorus (P) are key nutrients determining crop productivity. Legumes have developed strategies to overcome nutrient limitation by, for example, forming a symbiotic relationship with N-fixing rhizobia and the release of P-mobilizing exudates and are thus able to grow without supply of N or P fertilizers. The legume-rhizobial symbiosis starts with root release of isoflavonoids that act as signaling molecules perceived by compatible bacteria. Subsequently, bacteria release nod factors, which induce signaling cascades allowing the formation of functional N-fixing nodules. We report here the identification and functional characterization of a plasma membrane-localized MATE-type transporter (LaMATE2) involved in the release of genistein from white lupin roots. The LaMATE2 expression in the root is upregulated under N deficiency as well as low phosphate availability, two nutritional deficiencies that induce the release of this isoflavonoid. LaMATE2 silencing reduced genistein efflux and even more the formation of symbiotic nodules, supporting the crucial role of LaMATE2 in isoflavonoid release and nodulation. Furthermore, silencing of LaMATE2 limited the P-solubilization activity of lupin root exudates. Transport assays in yeast vesicles demonstrated that LaMATE2 acts as a proton-driven isoflavonoid transporter.
Collapse
Affiliation(s)
- Wanda Biała-Leonhard
- Department of Plant Molecular Physiology, Polish Academy of Sciences, Institute of Bioorganic Chemistry, Poznań, Poland
| | - Laura Zanin
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Stefano Gottardi
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | | | - Silvia Venuti
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Fabio Valentinuzzi
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, University of Udine, Udine, Italy
- Faculty of Science and Technology, Free University of Bozen Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen Bolzano, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen Bolzano, Bolzano, Italy
| | - Barbara Bassin
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Enrico Martinoia
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Roberto Pinton
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Polish Academy of Sciences, Institute of Bioorganic Chemistry, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Nicola Tomasi
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, University of Udine, Udine, Italy
| |
Collapse
|
27
|
Abstract
Microbes are hardly seen as planktonic species and are most commonly found as biofilm communities in cases of chronic infections. Biofilms are regarded as a biological condition, where a large group of microorganisms gets adhered to a biotic or abiotic surface. In this context, Pseudomonas aeruginosa, a Gram-negative nosocomial pathogen is the main causative organism responsible for life-threatening and persistent infections in individuals affected with cystic fibrosis and other lung ailments. The bacteria can form a strong biofilm structure when it adheres to a surface suitable for the development of a biofilm matrix. These bacterial biofilms pose higher natural resistance to conventional antibiotic therapy due to their multiple tolerance mechanisms. This prevailing condition has led to an increasing rate of treatment failures associated with P. aeruginosa biofilm infections. A better understanding of the effect of a diverse group of antibiotics on established biofilms would be necessary to avoid inappropriate treatment strategies. Hence, the search for other alternative strategies as effective biofilm treatment options has become a growing area of research. The current review aims to give an overview of the mechanisms governing biofilm formation and the different strategies employed so far in the control of biofilm infections caused by P. aeruginosa. Moreover, this review can also help researchers to search for new antibiofilm agents to tackle the effect of biofilm infections that are currently imprudent to conventional antibiotics.
Collapse
|
28
|
A rice QTL GS3.1 regulates grain size through metabolic-flux distribution between flavonoid and lignin metabolons without affecting stress tolerance. Commun Biol 2021; 4:1171. [PMID: 34620988 PMCID: PMC8497587 DOI: 10.1038/s42003-021-02686-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Grain size is a key component trait of grain weight and yield. Numbers of quantitative trait loci (QTLs) have been identified in various bioprocesses, but there is still little known about how metabolism-related QTLs influence grain size and yield. The current study report GS3.1, a QTL that regulates rice grain size via metabolic flux allocation between two branches of phenylpropanoid metabolism. GS3.1 encodes a MATE (multidrug and toxic compounds extrusion) transporter that regulates grain size by directing the transport of p-coumaric acid from the p-coumaric acid biosynthetic metabolon to the flavonoid biosynthetic metabolon. A natural allele of GS3.1 was identified from an African rice with enlarged grains, reduced flavonoid content and increased lignin content in the panicles. Notably, the natural allele of GS3.1 caused no alterations in other tissues and did not affect stress tolerance, revealing an ideal candidate for breeding efforts. This study uncovers insights into the regulation of grain size though metabolic-flux distribution. In this way, it supports a strategy of enhancing crop yield without introducing deleterious side effects on stress tolerance mechanisms.
Collapse
|
29
|
Du Z, Su Q, Wu Z, Huang Z, Bao J, Li J, Tu H, Zeng C, Fu J, He H. Genome-wide characterization of MATE gene family and expression profiles in response to abiotic stresses in rice (Oryza sativa). BMC Ecol Evol 2021; 21:141. [PMID: 34243710 PMCID: PMC8268253 DOI: 10.1186/s12862-021-01873-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/29/2021] [Indexed: 01/09/2023] Open
Abstract
Multidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice. In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. The rice MATE family was divided into four subfamilies based on the phylogenetic tree. Tandem repeats and fragment replication contribute to the expansion of the rice MATE gene family. Gene structure and cis-regulatory elements reveal the potential functions of MATE genes. Analysis of gene expression showed that most of MATE genes were constitutively expressed and the expression patterns of genes in different tissues were analyzed using RNA-seq. Furthermore, qRT-PCR-based analysis showed differential expression patterns in response to salt and drought stress. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.
Collapse
Affiliation(s)
- Zhixuan Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qitao Su
- School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Zheng Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhou Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianzhong Bao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianbin Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hang Tu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chuihai Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
30
|
Tanaka Y, Iwaki S, Sasaki A, Tsukazaki T. Crystal structures of a nicotine MATE transporter provide insight into its mechanism of substrate transport. FEBS Lett 2021; 595:1902-1913. [PMID: 34050946 DOI: 10.1002/1873-3468.14136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 11/08/2022]
Abstract
A transporter of the multidrug and toxic compound extrusion (MATE) family, Nicotiana tabacum MATE2 (NtMATE2), is located in the vacuole membrane of the tobacco plant root and is involved in the transportation of nicotine, a secondary or specialized metabolic compound in Solanaceae. Here, we report the crystal structures of NtMATE2 in its outward-facing forms. The overall structure has a bilobate V-shape with pseudo-symmetrical assembly of the N- and C-lobes. In one crystal structure, the C-lobe cavity of NtMATE2 interacts with an unidentified molecule that may partially mimic a substrate. In addition, NtMATE2-specific conformational transitions imply that an unprecedented movement of the transmembrane α-helix 7 is related to the release of the substrate into the vacuolar lumen.
Collapse
Affiliation(s)
| | | | - Akira Sasaki
- Nara Institute of Science and Technology, Ikoma, Japan
| | | |
Collapse
|
31
|
Kokic Males V, Požar M. Why Should Metformin Not Be Given in Advanced Kidney Disease? Potential Leads from Computer Simulations. ACS OMEGA 2021; 6:15382-15391. [PMID: 34151116 PMCID: PMC8210427 DOI: 10.1021/acsomega.1c01744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Metformin is considered as the go-to drug in the treatment of diabetes. However, it is either prescribed in lower doses or not prescribed at all to patients with kidney problems. To find a potential explanation for this practice, we employed atomistic-level computer simulations to simulate the transport of metformin through multidrug and toxin extrusion 1 (MATE1), a protein known to play a key role in the expulsion of metformin into urine. Herein, we examine the hydrogen bonding between MATE1 and one or more metformin molecules. The simulation results indicate that metformin continuously forms and breaks off hydrogen bonds with MATE1 residues. However, the mean hydrogen bond lifetimes increase for an order of magnitude when three metformin molecules are inserted instead of one. This new insight into the metformin transport process may provide the molecular foundation behind the clinical practice of not prescribing metformin to kidney disease patients.
Collapse
Affiliation(s)
- Visnja Kokic Males
- University Department
for Health Studies, University of Split, Ruđera Boškovića
35, 21000 Split, Croatia
| | - Martina Požar
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| |
Collapse
|
32
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
33
|
Raturi S, Nair AV, Shinoda K, Singh H, Bai B, Murakami S, Fujitani H, van Veen HW. Engineered MATE multidrug transporters reveal two functionally distinct ion-coupling pathways in NorM from Vibrio cholerae. Commun Biol 2021; 4:558. [PMID: 33976372 PMCID: PMC8113278 DOI: 10.1038/s42003-021-02081-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/01/2021] [Indexed: 11/09/2022] Open
Abstract
Multidrug and toxic compound extrusion (MATE) transport proteins confer multidrug resistance on pathogenic microorganisms and affect pharmacokinetics in mammals. Our understanding of how MATE transporters work, has mostly relied on protein structures and MD simulations. However, the energetics of drug transport has not been studied in detail. Many MATE transporters utilise the electrochemical H+ or Na+ gradient to drive substrate efflux, but NorM-VC from Vibrio cholerae can utilise both forms of metabolic energy. To dissect the localisation and organisation of H+ and Na+ translocation pathways in NorM-VC we engineered chimaeric proteins in which the N-lobe of H+-coupled NorM-PS from Pseudomonas stutzeri is fused to the C-lobe of NorM-VC, and vice versa. Our findings in drug binding and transport experiments with chimaeric, mutant and wildtype transporters highlight the versatile nature of energy coupling in NorM-VC, which enables adaptation to fluctuating salinity levels in the natural habitat of V. cholerae.
Collapse
Affiliation(s)
- Sagar Raturi
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- University College Dublin Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - Asha V Nair
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Keiko Shinoda
- Microbial Membrane Transport Engineering, Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Himansha Singh
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Boyan Bai
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Satoshi Murakami
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Hideaki Fujitani
- Laboratories for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | | |
Collapse
|
34
|
Structural Insights into Transporter-Mediated Drug Resistance in Infectious Diseases. J Mol Biol 2021; 433:167005. [PMID: 33891902 DOI: 10.1016/j.jmb.2021.167005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases present a major threat to public health globally. Pathogens can acquire resistance to anti-infectious agents via several means including transporter-mediated efflux. Typically, multidrug transporters feature spacious, dynamic, and chemically malleable binding sites to aid in the recognition and transport of chemically diverse substrates across cell membranes. Here, we discuss recent structural investigations of multidrug transporters involved in resistance to infectious diseases that belong to the ATP-binding cassette (ABC) superfamily, the major facilitator superfamily (MFS), the drug/metabolite transporter (DMT) superfamily, the multidrug and toxic compound extrusion (MATE) family, the small multidrug resistance (SMR) family, and the resistance-nodulation-division (RND) superfamily. These structural insights provide invaluable information for understanding and combatting multidrug resistance.
Collapse
|
35
|
Ali E, Saand MA, Khan AR, Shah JM, Feng S, Ming C, Sun P. Genome-wide identification and expression analysis of detoxification efflux carriers (DTX) genes family under abiotic stresses in flax. PHYSIOLOGIA PLANTARUM 2021; 171:483-501. [PMID: 32270877 DOI: 10.1111/ppl.13105] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 05/19/2023]
Abstract
The detoxification efflux carriers (DTX)/multidrug and toxic compound extrusion (MATE) transporters encompass an ancient gene family of secondary transporters involved in the process of plant detoxification. A genome-wide analysis of these transporters was carried out in order to better understand the transport of secondary metabolites in flaxseed genome (Linum usitassimum). A total of 73 genes coding for DTX/MATE transporters were identified. Gene structure, protein domain and motif organization were found to be notably conserved over the distinct phylogenetic groups, showing the evolutionary significant role of each class. Gene ontology (GO) annotation revealed a link to transporter activities, response to stimulus and localizations. The presence of various hormone and stress-responsive cis-regulatory elements in promoter regions could be directly correlated with the alteration of their transcripts. Tertiary structure showed conservation for pore size and constrains in the pore, which indicate their involvement in the exclusion of toxic substances from the cell. MicroRNA target analysis revealed that LuDTXs genes were targeted by different classes of miRNA families. Twelve LuDTX genes were chosen for further quantitative real-time polymerase chain reaction analysis in response to cold, salinity and cadmium stress at 0, 6, 12 and 24 hours after treatment. Altogether, the identified members of the DTX gene family, their expression profile, phylogenetic and miRNAs analysis might provide opportunities for future functional validation of this important gene family in flax.
Collapse
Affiliation(s)
- Essa Ali
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, 310014, China
| | - Mumtaz Ali Saand
- Department of Botany, Shah Abdul Latif University, Sindh, 66020, Pakistan
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Ali Raza Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | - Simin Feng
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, 310014, China
| | - Cai Ming
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, 310014, China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, 310014, China
| |
Collapse
|
36
|
Goda M, Ikehara M, Sakitani M, Oda K, Ishizawa K, Otsuka M. Involvement of Human Multidrug and Toxic Compound Extrusion (MATE) Transporters in Testosterone Transport. Biol Pharm Bull 2021; 44:501-506. [PMID: 33790101 DOI: 10.1248/bpb.b20-00753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multidrug and toxic compound extrusion (MATE) transporters are primarily expressed in the kidneys and liver, where they contribute to the excretion of organic cations. Our previous study suggested that pig MATE2 (class III) participates in testosterone secretion from Leydig cells. In humans, it is unclear which MATE class is involved in testosterone transport. In this study, we aimed to clarify whether human MATE1 (hMATE1) or human MATE2K (hMATE2K) mediates testosterone transport. To confirm that testosterone inhibits transporter-mediated tetraethylammonium (TEA) uptake, a cis-inhibition assay was performed using cells that stably expressed hMATE1 or hMATE2K. Docking simulations were performed to characterize differences in the binding of hMATE1 and hMATE2K to testosterone. Transport experiments in LLC-PK1 cells that stably expressed hMATE1 were used to test whether hMATE1 mediates testosterone transport. We detected differences between the amino acid sequences of the substrate-binding sites of hMATE1 and hMATE2K that could potentially be involved in testosterone binding. Testosterone and estradiol inhibited TEA uptake mediated by hMATE1 but not that mediated by hMATE2K. Transport experiments in LLC-PK1 cells indicated that testosterone might be transported via hMATE1. This study suggested that hMATE1, but not hMATE2K, is involved in human testosterone transport.
Collapse
Affiliation(s)
- Mitsuhiro Goda
- Department of Pharmacy, Tokushima University Hospital.,Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
| | - Momo Ikehara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Mako Sakitani
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kana Oda
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital.,Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
| | - Masato Otsuka
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
37
|
Claxton DP, Jagessar KL, Mchaourab HS. Principles of Alternating Access in Multidrug and Toxin Extrusion (MATE) Transporters. J Mol Biol 2021; 433:166959. [PMID: 33774036 DOI: 10.1016/j.jmb.2021.166959] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
The multidrug and toxin extrusion (MATE) transporters catalyze active efflux of a broad range of chemically- and structurally-diverse compounds including antimicrobials and chemotherapeutics, thus contributing to multidrug resistance in pathogenic bacteria and cancers. Multiple methodological approaches have been taken to investigate the structural basis of energy transduction and substrate translocation in MATE transporters. Crystal structures representing members from all three MATE subfamilies have been interpreted within the context of an alternating access mechanism that postulates occupation of distinct structural intermediates in a conformational cycle powered by electrochemical ion gradients. Here we review the structural biology of MATE transporters, integrating the crystallographic models with biophysical and computational studies to define the molecular determinants that shape the transport energy landscape. This holistic analysis highlights both shared and disparate structural and functional features within the MATE family, which underpin an emerging theme of mechanistic diversity within the framework of a conserved structural scaffold.
Collapse
Affiliation(s)
- Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 747 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Kevin L Jagessar
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 747 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 747 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
38
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
39
|
Conserved binding site in the N-lobe of prokaryotic MATE transporters suggests a role for Na + in ion-coupled drug efflux. J Biol Chem 2021; 296:100262. [PMID: 33837745 PMCID: PMC7949106 DOI: 10.1016/j.jbc.2021.100262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
In both prokaryotes and eukaryotes, multidrug and toxic-compound extrusion (MATE) transporters catalyze the efflux of a broad range of cytotoxic compounds, including human-made antibiotics and anticancer drugs. MATEs are secondary-active antiporters, i.e., their drug-efflux activity is coupled to, and powered by, the uptake of ions down a preexisting transmembrane electrochemical gradient. Key aspects of this mechanism, however, remain to be delineated, such as its ion specificity and stoichiometry. We previously revealed the existence of a Na+-binding site in a MATE transporter from Pyroccocus furiosus (PfMATE) and hypothesized that this site might be broadly conserved among prokaryotic MATEs. Here, we evaluate this hypothesis by analyzing VcmN and ClbM, which along with PfMATE are the only three prokaryotic MATEs whose molecular structures have been determined at atomic resolution, i.e. better than 3 Å. Reinterpretation of existing crystallographic data and molecular dynamics simulations indeed reveal an occupied Na+-binding site in the N-terminal lobe of both structures, analogous to that identified in PfMATE. We likewise find this site to be strongly selective against K+, suggesting it is mechanistically significant. Consistent with these computational results, DEER spectroscopy measurements for multiple doubly-spin-labeled VcmN constructs demonstrate Na+-dependent changes in protein conformation. The existence of this binding site in three MATE orthologs implicates Na+ in the ion-coupled drug-efflux mechanisms of this class of transporters. These results also imply that observations of H+-dependent activity likely stem either from a site elsewhere in the structure, or from H+ displacing Na+ under certain laboratory conditions, as has been noted for other Na+-driven transport systems.
Collapse
|
40
|
Identification of CTL Epitopes on Efflux Pumps of the ATP-Binding Cassette and the Major Facilitator Superfamily of Mycobacterium tuberculosis. J Immunol Res 2021; 2021:8899674. [PMID: 33490292 PMCID: PMC7803423 DOI: 10.1155/2021/8899674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis is the world's most deadly infectious disease, with 10 million people falling ill and 1.5 million people dying from the disease every year. With the increasing number of drug-resistant Mycobacterium tuberculosis (MTB) strains and prevalence of coinfection of MTB with human immunodeficiency virus, many challenges remain in the prevention and treatment of tuberculosis. Therefore, the development of safe and effective tuberculosis vaccines is an urgent issue. In this study, we identified cytotoxic T lymphocyte epitopes on drug resistance-associated membrane protein efflux pumps of MTB, the ATP-binding cassette and the major facilitator superfamilies. First, three online software were used to predict HLA-A2-restricted epitopes. Then, the candidate epitopes were confirmed with the T2A2 cell binding affinity and peptide/MHC (pMHC) complex stability assays and in vitro immune activity experiments. Two drug-resistant T lymphocyte epitopes, designated Rv1218c-p24 and Rv2477c-p182, were selected, and their immunogenic activities studied in vivo in genetically engineered mice. The immune activities of these two epitopes were improved with the help of complete Freund's adjuvant (CFA). The epitopes identified here provide a foundation for the diagnosis and treatment of patients infected with drug resistant and the future development of a multiepitope vaccine.
Collapse
|
41
|
Ismail A, Darwish AG, Park M, Gajjar P, Tsolova V, Soliman KFA, El-Sharkawy I. Transcriptome Profiling During Muscadine Berry Development Reveals the Dynamic of Polyphenols Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:818071. [PMID: 35185966 PMCID: PMC8849228 DOI: 10.3389/fpls.2021.818071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/31/2021] [Indexed: 05/17/2023]
Abstract
Muscadine grapes accumulate higher amounts of bioactive phenolics compared with other grape species. To identify the molecular events associated with polyphenolic accumulation that influence antioxidant capacity, two contrasting muscadine genotypes (C5 and C6) with varied phenolic/flavonoid content and antioxidant activity were investigated via RNA-sequencing during berry development. The results showed that berry development is concomitant with transcriptome profile changes, which was more pronounced at the véraison (V) stage. Despite that the downregulation pattern of gene expression dominated the upregulation through berry development, the C5 genotype maintained higher expression levels. Comparative transcript profiling allowed the identification of 94 differentially expressed genes with potential relevance in regulating fruit secondary metabolism, including 18 transcription factors and 76 structural genes. The genes underlying the critical enzymes in the modification reactions of polyphenolics biosynthetic pathway, including hydroxylation, methylation, and glycosylation were more pronounced during the immature stages of prevéraison (PrV), V, and postvéraison (PoV) in the C5 genotype, resulting in more accumulation of biologically active phenolic/flavonoid derivatives. The results suggested that muscadine grapes, as in bunch grapes (Vitis sp.); possess a similar mechanism that organizes polyphenolics accumulation; however, the set of total flavonoids (TFs) and structural genes coordinating the pathway varies between the two species.
Collapse
Affiliation(s)
- Ahmed Ismail
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Ahmed G. Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Minkyu Park
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Pranavkumar Gajjar
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, United States
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
- *Correspondence: Islam El-Sharkawy,
| |
Collapse
|
42
|
Abstract
Drug transporters are integral membrane proteins that play a critical role in drug disposition by affecting absorption, distribution, and excretion. They translocate drugs, as well as endogenous molecules and toxins, across membranes using ATP hydrolysis, or ion/concentration gradients. In general, drug transporters are expressed ubiquitously, but they function in drug disposition by being concentrated in tissues such as the intestine, the kidneys, the liver, and the brain. Based on their primary sequence and their mechanism, transporters can be divided into the ATP-binding cassette (ABC), solute-linked carrier (SLC), and the solute carrier organic anion (SLCO) superfamilies. Many X-ray crystallography and cryo-electron microscopy (cryo-EM) structures have been solved in the ABC and SLC transporter superfamilies or of their bacterial homologs. The structures have provided valuable insight into the structural basis of transport. This chapter will provide particular focus on the promiscuous drug transporters because of their effect on drug disposition and the challenges associated with them.
Collapse
Affiliation(s)
- Arthur G Roberts
- Pharmaceutical and Biomedical Sciences Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
43
|
Su T, Nakamoto R, Chun YY, Chua WZ, Chen JH, Zik JJ, Sham LT. Decoding capsule synthesis in Streptococcus pneumoniae. FEMS Microbiol Rev 2020; 45:6041728. [PMID: 33338218 DOI: 10.1093/femsre/fuaa067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae synthesizes more than one hundred types of capsular polysaccharides (CPS). While the diversity of the enzymes and transporters involved is enormous, it is not limitless. In this review, we summarized the recent progress on elucidating the structure-function relationships of CPS, the mechanisms by which they are synthesized, how their synthesis is regulated, the host immune response against them, and the development of novel pneumococcal vaccines. Based on the genetic and structural information available, we generated provisional models of the CPS repeating units that remain unsolved. In addition, to facilitate cross-species comparisons and assignment of glycosyltransferases, we illustrated the biosynthetic pathways of the known CPS in a standardized format. Studying the intricate steps of pneumococcal CPS assembly promises to provide novel insights for drug and vaccine development as well as improve our understanding of related pathways in other species.
Collapse
Affiliation(s)
- Tong Su
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Rei Nakamoto
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Ye Yu Chun
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Wan Zhen Chua
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Jia Hui Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Justin J Zik
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| |
Collapse
|
44
|
Saito A, Ishiguro N, Takatani M, Bister B, Kusuhara H. Impact of Direction of Transport on the Evaluation of Inhibition Potencies of Multidrug and Toxin Extrusion Protein 1 Inhibitors. Drug Metab Dispos 2020; 49:152-158. [PMID: 33262224 DOI: 10.1124/dmd.120.000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022] Open
Abstract
Multidrug and toxin extrusion (MATE) transporters are expressed on the luminal membrane of renal proximal tubule cells and extrude their substrates into the luminal side of the tubules. Inhibition of MATE1 can reduce renal secretory clearance of its substrate drugs and lead to drug-drug interactions (DDIs). To address whether IC50 values of MATE1 inhibitors with regard to their extracellular concentrations are affected by the direction of MATE1-mediated transport, we established an efflux assay of 1-methyl-4-phenylpyridinium (MPP+) and metformin using the human embryonic kidney 293 model transiently expressing human MATE1. The efflux rate was defined by reduction of the cellular amount of MPP+ and metformin for 0.25 minutes shortly after the removal of extracellular MPP+ and metformin. Inhibition potencies of 12 inhibitors toward MATE1-mediated transport were determined in both uptake and efflux assays. When MPP+ was used as a substrate, 8 out of 12 inhibitors showed comparable IC50 values between assays (<4-fold). IC50 values from the efflux assays were higher for cimetidine (9.9-fold), trimethoprim (10-fold), famotidine (6.4-fold), and cephalexin (>3.8-fold). When metformin was used as a substrate, IC50 values of the tested inhibitors when evaluated using uptake and efflux assays were within 4-fold of each other, with the exception of cephalexin (>4.7-fold). IC50 values obtained from the uptake assay using metformin showed smaller IC50 values than those from the efflux assay. Therefore, the uptake assay is recommended to determine IC50 values for the DDI predictions. SIGNIFICANCE STATEMENT: In this study, a new method to evaluate IC50 values of extracellular added inhibitors utilizing an efflux assay was established. IC50 values were not largely different between uptake and efflux directions but were smaller for uptake. This study supports the rationale for a commonly accepted uptake assay with metformin as an in vitro probe substrate for multidrug and toxin extrusion 1-mediated drug-drug interaction risk assessment in drug development.
Collapse
Affiliation(s)
- Asami Saito
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan (A.S., N.I, M.T., B.B.) and Laboratory of Molecular Pharmaceutics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.)
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan (A.S., N.I, M.T., B.B.) and Laboratory of Molecular Pharmaceutics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.)
| | - Masahito Takatani
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan (A.S., N.I, M.T., B.B.) and Laboratory of Molecular Pharmaceutics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.)
| | - Bojan Bister
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan (A.S., N.I, M.T., B.B.) and Laboratory of Molecular Pharmaceutics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.)
| | - Hiroyuki Kusuhara
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan (A.S., N.I, M.T., B.B.) and Laboratory of Molecular Pharmaceutics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.)
| |
Collapse
|
45
|
The structural basis of promiscuity in small multidrug resistance transporters. Nat Commun 2020; 11:6064. [PMID: 33247110 PMCID: PMC7695847 DOI: 10.1038/s41467-020-19820-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
By providing broad resistance to environmental biocides, transporters from the small multidrug resistance (SMR) family drive the spread of multidrug resistance cassettes among bacterial populations. A fundamental understanding of substrate selectivity by SMR transporters is needed to identify the types of selective pressures that contribute to this process. Using solid-supported membrane electrophysiology, we find that promiscuous transport of hydrophobic substituted cations is a general feature of SMR transporters. To understand the molecular basis for promiscuity, we solved X-ray crystal structures of a SMR transporter Gdx-Clo in complex with substrates to a maximum resolution of 2.3 Å. These structures confirm the family’s extremely rare dual topology architecture and reveal a cleft between two helices that provides accommodation in the membrane for the hydrophobic substituents of transported drug-like cations. Gdx-Clo is a bacterial transporter from the small multidrug resistance (SMR) family. Here, the authors use solid supported membrane electrophysiology to characterize Gdx-Clo functionally and report crystal structures of Gdx-Clo which confirm the dual topology architecture and offer insight into substrate binding and transport mechanism.
Collapse
|
46
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Identification and Expression of the Multidrug and Toxic Compound Extrusion (MATE) Gene Family in Capsicum annuum and Solanum tuberosum. PLANTS 2020; 9:plants9111448. [PMID: 33120967 PMCID: PMC7716203 DOI: 10.3390/plants9111448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Multidrug and Toxic Compound Extrusion (MATE) proteins are essential transporters that extrude metabolites and participate in plant development and the detoxification of toxins. Little is known about the MATE gene family in the Solanaceae, which includes species that produce a broad range of specialized metabolites. Here, we identified and analyzed the complement of MATE genes in pepper (Capsicum annuum) and potato (Solanum tuberosum). We classified all MATE genes into five groups based on their phylogenetic relationships and their gene and protein structures. Moreover, we discovered that tandem duplication contributed significantly to the expansion of the pepper MATE family, while both tandem and segmental duplications contributed to the expansion of the potato MATE family, indicating that MATEs took distinct evolutionary paths in these two Solanaceous species. Analysis of ω values showed that all potato and pepper MATE genes experienced purifying selection during evolution. In addition, collinearity analysis showed that MATE genes were highly conserved between pepper and potato. Analysis of cis-elements in MATE promoters and MATE expression patterns revealed that MATE proteins likely function in many stages of plant development, especially during fruit ripening, and when exposed to multiple stresses, consistent with the existence of functional differentiation between duplicated MATE genes. Together, our results lay the foundation for further characterization of pepper and potato MATE gene family members.
Collapse
|
48
|
Murakami S, Okada U, van Veen HW. Tripartite transporters as mechanotransmitters in periplasmic alternating-access mechanisms. FEBS Lett 2020; 594:3908-3919. [PMID: 32936941 DOI: 10.1002/1873-3468.13929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
To remove xenobiotics from the periplasmic space, Gram-negative bacteria utilise unique tripartite efflux systems in which a molecular engine in the plasma membrane connects to periplasmic and outer membrane subunits. Substrates bind to periplasmic sections of the engine or sometimes to the periplasmic subunits. Then, the tripartite machines undergo conformational changes that allow the movement of the substrates down the substrate translocation pathway to the outside of the cell. The transmembrane (TM) domains of the tripartite resistance-nodulation-drug-resistance (RND) transporters drive these conformational changes by converting proton motive force into mechanical motion. Similarly, the TM domains of tripartite ATP-binding cassette (ABC) transporters transmit mechanical movement associated with nucleotide binding and hydrolysis at the nucleotide-binding domains to the relevant subunits in the periplasm. In this way, metabolic energy is coupled to periplasmic alternating-access mechanisms to achieve substrate transport across the outer membrane.
Collapse
Affiliation(s)
- Satoshi Murakami
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ui Okada
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | |
Collapse
|
49
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
50
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|