1
|
Mohan N, Johnson GS, Tovar Perez JE, Dashwood WM, Rajendran P, Dashwood RH. Alternative splicing of BAZ1A in colorectal cancer disrupts the DNA damage response and increases chemosensitization. Cell Death Dis 2024; 15:570. [PMID: 39112459 PMCID: PMC11306231 DOI: 10.1038/s41419-024-06954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Bromodomain Adjacent to Zinc Finger Domain 1A (BAZ1A) is a critical regulator of chromatin remodeling. We sought to clarify the roles of BAZ1A in the etiology of colorectal cancer, including the mechanisms of its alternatively spliced variants. Public databases were examined and revealed high BAZ1A expression in the majority of colorectal cancer patients, which was corroborated in a panel of human colon cancer cell lines. BAZ1A silencing reduced cell viability and increased markers of DNA damage, apoptosis, and senescence, along with the downregulation of Wnt/β-catenin signaling. The corresponding molecular changes resulted in tumor growth inhibition when BAZ1A-knockout cells were implanted into nude mice. In rescue experiments, a short isoform of BAZ1A that was associated with alternative splicing by the DBIRD complex failed to restore DNA repair activity in colon cancer cells and maintained chemosensitivity to phleomycin treatment, unlike the full-length BAZ1A. A working model proposes that a buried domain in the N-terminus of the BAZ1A short isoform lacks the ability to access linker DNA, thereby disrupting the activity of the associated chromatin remodeling complexes. Given the current interest in RNA splicing deregulation and cancer etiology, additional mechanistic studies are warranted with new lead compounds targeting BAZ1A, and other members of the BAZ family, with a view to improved therapeutic interventions.
Collapse
Affiliation(s)
- Nivedhitha Mohan
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX, USA
| | - Gavin S Johnson
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX, USA
- CRISPR Therapeutics, South Boston, MA, USA
| | | | | | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX, USA.
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX, USA.
| | - Roderick H Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX, USA.
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Harada N, Asada S, Jiang L, Nguyen H, Moreau L, Marina RJ, Adelman K, Iyer DR, D'Andrea AD. The splicing factor CCAR1 regulates the Fanconi anemia/BRCA pathway. Mol Cell 2024; 84:2618-2633.e10. [PMID: 39025073 PMCID: PMC11321822 DOI: 10.1016/j.molcel.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
The twenty-three Fanconi anemia (FA) proteins cooperate in the FA/BRCA pathway to repair DNA interstrand cross-links (ICLs). The cell division cycle and apoptosis regulator 1 (CCAR1) protein is also a regulator of ICL repair, though its possible function in the FA/BRCA pathway remains unknown. Here, we demonstrate that CCAR1 plays a unique upstream role in the FA/BRCA pathway and is required for FANCA protein expression in human cells. Interestingly, CCAR1 co-immunoprecipitates with FANCA pre-mRNA and is required for FANCA mRNA processing. Loss of CCAR1 results in retention of a poison exon in the FANCA transcript, thereby leading to reduced FANCA protein expression. A unique domain of CCAR1, the EF hand domain, is required for interaction with the U2AF heterodimer of the spliceosome and for excision of the poison exon. Taken together, CCAR1 is a splicing modulator required for normal splicing of the FANCA mRNA and other mRNAs involved in various cellular pathways.
Collapse
Affiliation(s)
- Naoya Harada
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Shuhei Asada
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lige Jiang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Huy Nguyen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lisa Moreau
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ryan J Marina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Divya R Iyer
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Alan D D'Andrea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Hoang PM, Torre D, Jaynes P, Ho J, Mohammed K, Alvstad E, Lam WY, Khanchandani V, Lee JM, Toh CMC, Lee RX, Anbuselvan A, Lee S, Sebra RP, Martin J Walsh, Marazzi I, Kappei D, Guccione E, Jeyasekharan AD. A PRMT5-ZNF326 axis mediates innate immune activation upon replication stress. SCIENCE ADVANCES 2024; 10:eadm9589. [PMID: 38838142 DOI: 10.1126/sciadv.adm9589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs). This response is also associated with reactivation of endogenous retroviruses (ERVs). Using quantitative mass spectrometry, we identify proteins with PRMT5-dependent symmetric dimethylarginine (SDMA) modification induced upon RS. Among these, we show that PRMT5 targets and modulates the activity of ZNF326, a zinc finger protein essential for ISG response. Our data demonstrate a role for PRMT5-mediated SDMA in the context of RS-induced transcriptional induction, affecting physiological homeostasis and cancer therapy.
Collapse
Affiliation(s)
- Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Denis Torre
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jessica Ho
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kevin Mohammed
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erik Alvstad
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Wan Yee Lam
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jie Min Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chin Min Clarissa Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Rui Xue Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Akshaya Anbuselvan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Robert P Sebra
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martin J Walsh
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Lugano D, Barrett L, Westerheide SD, Kee Y. Multifaceted roles of CCAR family proteins in the DNA damage response and cancer. Exp Mol Med 2024; 56:59-65. [PMID: 38172598 PMCID: PMC10834508 DOI: 10.1038/s12276-023-01139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
The cell cycle apoptosis regulator (CCAR) family of proteins consists of two proteins, CCAR1 and CCAR2, that play a variety of roles in cellular physiology and pathology. These multidomain proteins are able to perform multiple interactions and functions, playing roles in processes such as stress responses, metabolism, and the DNA damage response. The evolutionary conservation of CCAR family proteins allows their study in model organisms such as Caenorhabditis elegans, where a role for CCAR in aging was revealed. This review particularly highlights the multifaceted roles of CCAR family proteins and their implications in the DNA damage response and in cancer biology.
Collapse
Affiliation(s)
- D Lugano
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL, 33647, USA
| | - L Barrett
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL, 33647, USA
| | - S D Westerheide
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL, 33647, USA
| | - Y Kee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu, 42988, Republic of Korea.
| |
Collapse
|
5
|
Lugano DI, Barrett LN, Chaput D, Park MA, Westerheide SD. CCAR-1 works together with the U2AF large subunit UAF-1 to regulate alternative splicing. RNA Biol 2024; 21:1-11. [PMID: 38126797 PMCID: PMC10761121 DOI: 10.1080/15476286.2023.2289707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The Cell Division Cycle and Apoptosis Regulator (CCAR) protein family members have recently emerged as regulators of alternative splicing and transcription, as well as having other key physiological functions. For example, mammalian CCAR2/DBC1 forms a complex with the zinc factor protein ZNF326 to integrate alternative splicing with RNA polymerase II transcriptional elongation in AT-rich regions of the DNA. Additionally, Caenorhabditis elegans CCAR-1, a homolog to mammalian CCAR2, facilitates the alternative splicing of the perlecan unc-52 gene. However, much about the CCAR family's role in alternative splicing is unknown. Here, we have examined the role of CCAR-1 in genome-wide alternative splicing in Caenorhabditis elegans and have identified new alternative splicing targets of CCAR-1 using RNA sequencing. Also, we found that CCAR-1 interacts with the spliceosome factors UAF-1 and UAF-2 using mass spectrometry, and that knockdown of ccar-1 affects alternative splicing patterns, motility, and proteostasis of UAF-1 mutant worms. Collectively, we demonstrate the role of CCAR-1 in regulating global alternative splicing in C. elegans and in conjunction with UAF-1.
Collapse
Affiliation(s)
- Doreen I. Lugano
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Lindsey N. Barrett
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Margaret A. Park
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Sandy D. Westerheide
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
6
|
Bray C, Balcells C, McNeish IA, Keun HC. The potential and challenges of targeting MTAP-negative cancers beyond synthetic lethality. Front Oncol 2023; 13:1264785. [PMID: 37795443 PMCID: PMC10546069 DOI: 10.3389/fonc.2023.1264785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Approximately 15% of cancers exhibit loss of the chromosomal locus 9p21.3 - the genomic location of the tumour suppressor gene CDKN2A and the methionine salvage gene methylthioadenosine phosphorylase (MTAP). A loss of MTAP increases the pool of its substrate methylthioadenosine (MTA), which binds to and inhibits activity of protein arginine methyltransferase 5 (PRMT5). PRMT5 utilises the universal methyl donor S-adenosylmethionine (SAM) to methylate arginine residues of protein substrates and regulate their activity, notably histones to regulate transcription. Recently, targeting PRMT5, or MAT2A that impacts PRMT5 activity by producing SAM, has shown promise as a therapeutic strategy in oncology, generating synthetic lethality in MTAP-negative cancers. However, clinical development of PRMT5 and MAT2A inhibitors has been challenging and highlights the need for further understanding of the downstream mediators of drug effects. Here, we discuss the rationale and methods for targeting the MAT2A/PRMT5 axis for cancer therapy. We evaluate the current limitations in our understanding of the mechanism of MAT2A/PRMT5 inhibitors and identify the challenges that must be addressed to maximise the potential of these drugs. In addition, we review the current literature defining downstream effectors of PRMT5 activity that could determine sensitivity to MAT2A/PRMT5 inhibition and therefore present a rationale for novel combination therapies that may not rely on synthetic lethality with MTAP loss.
Collapse
Affiliation(s)
- Chandler Bray
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Cristina Balcells
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Hector C. Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Kim HJ, Moon SJ, Kim JH. Mechanistic insights into the dual role of CCAR2/DBC1 in cancer. Exp Mol Med 2023; 55:1691-1701. [PMID: 37524873 PMCID: PMC10474295 DOI: 10.1038/s12276-023-01058-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 08/02/2023] Open
Abstract
Cell cycle and apoptosis regulator 2 (CCAR2), also known as deleted in breast cancer 1 (DBC1), has been recently identified as a master regulator of transcriptional processes and plays diverse roles in physiology and pathophysiology, including as a regulator of apoptosis, DNA repair, metabolism, and tumorigenesis. CCAR2 functions as a coregulator of various transcription factors and a critical regulator of numerous epigenetic modifiers. Based on its ability to stimulate apoptosis by activating and stabilizing p53, CCAR2 was initially considered to be a tumor suppressor. However, an increasing number of studies have shown that CCAR2 also functions as a tumor-promoting coregulator by activating oncogenic transcription factors and regulating the enzymatic activity of epigenetic modifiers, indicating that CCAR2 may play a dual role in cancer progression by acting as a tumor suppressor and tumor promoter. Here, we review recent progress in understanding the dual tumor-suppressing and oncogenic roles of CCAR2 in cancer. We discuss CCAR2 domain structures, its interaction partners, and the molecular mechanisms by which it regulates the activities of transcription factors and epigenetic modifiers.
Collapse
Affiliation(s)
- Hwa Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Sue Jin Moon
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Jeong Hoon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea.
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea.
| |
Collapse
|
8
|
Abe Y, Sano T, Tanaka N. The Role of PRMT5 in Immuno-Oncology. Genes (Basel) 2023; 14:678. [PMID: 36980950 PMCID: PMC10048035 DOI: 10.3390/genes14030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has caused a paradigm shift in cancer therapeutic strategy. However, this therapy only benefits a subset of patients. The difference in responses to ICIs is believed to be dependent on cancer type and its tumor microenvironment (TME). The TME is favorable for cancer progression and metastasis and can also help cancer cells to evade immune attacks. To improve the response to ICIs, it is crucial to understand the mechanism of how the TME is maintained. Protein arginine methyltransferase 5 (PRMT5) di-methylates arginine residues in its substrates and has essential roles in the epigenetic regulation of gene expression, signal transduction, and the fidelity of mRNA splicing. Through these functions, PRMT5 can support cancer cell immune evasion. PRMT5 is necessary for regulatory T cell (Treg) functions and promotes cancer stemness and the epithelial-mesenchymal transition. Specific factors in the TME can help recruit Tregs, tumor-associated macrophages, and myeloid-derived suppressor cells into tumors. In addition, PRMT5 suppresses antigen presentation and the production of interferon and chemokines, which are necessary to recruit T cells into tumors. Overall, PRMT5 supports an immunosuppressive TME. Therefore, PRMT5 inhibition would help recover the immune cycle and enable the immune system-mediated elimination of cancer cells.
Collapse
Affiliation(s)
| | | | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| |
Collapse
|
9
|
Apostolidi M, Stamatopoulou V. Aberrant splicing in human cancer: An RNA structural code point of view. Front Pharmacol 2023; 14:1137154. [PMID: 36909167 PMCID: PMC9995731 DOI: 10.3389/fphar.2023.1137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Alternative splicing represents an essential process that occurs widely in eukaryotes. In humans, most genes undergo alternative splicing to ensure transcriptome and proteome diversity reflecting their functional complexity. Over the last decade, aberrantly spliced transcripts due to mutations in cis- or trans-acting splicing regulators have been tightly associated with cancer development, largely drawing scientific attention. Although a plethora of single proteins, ribonucleoproteins, complexed RNAs, and short RNA sequences have emerged as nodal contributors to the splicing cascade, the role of RNA secondary structures in warranting splicing fidelity has been underestimated. Recent studies have leveraged the establishment of novel high-throughput methodologies and bioinformatic tools to shed light on an additional layer of splicing regulation in the context of RNA structural elements. This short review focuses on the most recent available data on splicing mechanism regulation on the basis of RNA secondary structure, emphasizing the importance of the complex RNA G-quadruplex structures (rG4s), and other specific RNA motifs identified as splicing silencers or enhancers. Moreover, it intends to provide knowledge on newly established techniques that allow the identification of RNA structural elements and highlight the potential to develop new RNA-oriented therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Maria Apostolidi
- Agilent Laboratories, Agilent Technologies, Santa Clara, CA, United States
| | | |
Collapse
|
10
|
CCAR2 functions downstream of the Shieldin complex to promote double-strand break end-joining. Proc Natl Acad Sci U S A 2022; 119:e2214935119. [PMID: 36442094 PMCID: PMC9894118 DOI: 10.1073/pnas.2214935119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The 53BP1-RIF1 pathway restricts the resection of DNA double-strand breaks (DSBs) and promotes blunt end-ligation by non-homologous end joining (NHEJ) repair. The Shieldin complex is a downstream effector of the 53BP1-RIF1 pathway. Here, we identify a component of this pathway, CCAR2/DBC1, which is also required for restriction of DNA end-resection. CCAR2 co-immunoprecipitates with the Shieldin complex, and knockout of CCAR2 in a BRCA1-deficient cell line results in elevated DSB end-resection, RAD51 loading, and PARP inhibitor (PARPi) resistance. Knockout of CCAR2 is epistatic with knockout of other Shieldin proteins. The S1-like RNA-binding domain of CCAR2 is required for its interaction with the Shieldin complex and for suppression of DSB end-resection. CCAR2 functions downstream of the Shieldin complex, and CCAR2 knockout cells have delayed resolution of Shieldin complex foci. Forkhead-associated (FHA)-dependent targeting of CCAR2 to DSB sites re-sensitized BRCA1-/-SHLD2-/- cells to PARPi. Taken together, CCAR2 is a functional component of the 53BP1-RIF1 pathway, promotes the refill of resected DSBs, and suppresses homologous recombination.
Collapse
|
11
|
Jacobs RQ, Carter ZI, Lucius AL, Schneider DA. Uncovering the mechanisms of transcription elongation by eukaryotic RNA polymerases I, II, and III. iScience 2022; 25:105306. [PMID: 36304104 PMCID: PMC9593817 DOI: 10.1016/j.isci.2022.105306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/01/2022] Open
Abstract
Eukaryotes express three nuclear RNA polymerases (Pols I, II, and III) that are essential for cell survival. Despite extensive investigation of the three Pols, significant knowledge gaps regarding their biochemical properties remain because each Pol has been evaluated independently under disparate experimental conditions and methodologies. To advance our understanding of the Pols, we employed identical in vitro transcription assays for direct comparison of their elongation rates, elongation complex (EC) stabilities, and fidelities. Pol I is the fastest, most likely to misincorporate, forms the least stable EC, and is most sensitive to alterations in reaction buffers. Pol II is the slowest of the Pols, forms the most stable EC, and negligibly misincorporated an incorrect nucleotide. The enzymatic properties of Pol III were intermediate between Pols I and II in all assays examined. These results reveal unique enzymatic characteristics of the Pols that provide new insights into their evolutionary divergence.
Collapse
Affiliation(s)
- Ruth Q. Jacobs
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zachariah I. Carter
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Fan Y, Kao C, Yang F, Wang F, Yin G, Wang Y, He Y, Ji J, Liu L. Integrated Multi-Omics Analysis Model to Identify Biomarkers Associated With Prognosis of Breast Cancer. Front Oncol 2022; 12:899900. [PMID: 35761863 PMCID: PMC9232398 DOI: 10.3389/fonc.2022.899900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background With the rapid development and wide application of high-throughput sequencing technology, biomedical research has entered the era of large-scale omics data. We aim to identify genes associated with breast cancer prognosis by integrating multi-omics data. Method Gene-gene interactions were taken into account, and we applied two differential network methods JDINAC and LGCDG to identify differential genes. The patients were divided into case and control groups according to their survival time. The TCGA and METABRIC database were used as the training and validation set respectively. Result In the TCGA dataset, C11orf1, OLA1, RPL31, SPDL1 and IL33 were identified to be associated with prognosis of breast cancer. In the METABRIC database, ZNF273, ZBTB37, TRIM52, TSGA10, ZNF727, TRAF2, TSPAN17, USP28 and ZNF519 were identified as hub genes. In addition, RPL31, TMEM163 and ZNF273 were screened out in both datasets. GO enrichment analysis shows that most of these hub genes were involved in zinc ion binding. Conclusion In this study, a total of 15 hub genes associated with long-term survival of breast cancer were identified, which can promote understanding of the molecular mechanism of breast cancer and provide new insight into clinical research and treatment.
Collapse
Affiliation(s)
- Yeye Fan
- School of Mathematics, Shandong University, Jinan, China
| | - Chunyu Kao
- Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan, China
| | - Fu Yang
- Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan, China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Gengshen Yin
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Yongjiu Wang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Yong He
- School of Mathematics, Shandong University, Jinan, China.,Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan, China
| | - Jiadong Ji
- Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan, China
| | - Liyuan Liu
- School of Mathematics, Shandong University, Jinan, China.,Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| |
Collapse
|
13
|
Dansu DK, Liang J, Selcen I, Zheng H, Moore DF, Casaccia P. PRMT5 Interacting Partners and Substrates in Oligodendrocyte Lineage Cells. Front Cell Neurosci 2022; 16:820226. [PMID: 35370564 PMCID: PMC8968030 DOI: 10.3389/fncel.2022.820226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
The protein arginine methyl transferase PRMT5 is an enzyme expressed in oligodendrocyte lineage cells and responsible for the symmetric methylation of arginine residues on histone tails. Previous work from our laboratory identified PRMT5 as critical for myelination, due to its transcriptional regulation of genes involved in survival and early stages of differentiation. However, besides its nuclear localization, PRMT5 is found at high levels in the cytoplasm of several cell types, including oligodendrocyte progenitor cells (OPCs) and yet, its interacting partners in this lineage, remain elusive. By using mass spectrometry on protein eluates from extracts generated from primary oligodendrocyte lineage cells and immunoprecipitated with PRMT5 antibodies, we identified 1196 proteins as PRMT5 interacting partners. These proteins were related to molecular functions such as RNA binding, ribosomal structure, cadherin and actin binding, nucleotide and protein binding, and GTP and GTPase activity. We then investigated PRMT5 substrates using iTRAQ-based proteomics on cytosolic and nuclear protein extracts from CRISPR-PRMT5 knockdown immortalized oligodendrocyte progenitors compared to CRISPR-EGFP controls. This analysis identified a similar number of peptides in the two subcellular fractions and a total number of 57 proteins with statistically decreased symmetric methylation of arginine residues in the CRISPR-PRMT5 knockdown compared to control. Several PRMT5 substrates were in common with cancer cell lines and related to RNA processing, splicing and transcription. In addition, we detected ten oligodendrocyte lineage specific substrates, corresponding to proteins with high expression levels in neural tissue. They included: PRC2C, a proline-rich protein involved in methyl-RNA binding, HNRPD an RNA binding protein involved in regulation of RNA stability, nuclear proteins involved in transcription and other proteins related to migration and actin cytoskeleton. Together, these results highlight a cell-specific role of PRMT5 in OPC in regulating several other cellular processes, besides RNA splicing and metabolism.
Collapse
Affiliation(s)
- David K. Dansu
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY, United States,Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States
| | - Jialiang Liang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ipek Selcen
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY, United States,Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ, United States,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, Piscataway, NJ, United States
| | - Dirk F. Moore
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY, United States,Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States,*Correspondence: Patrizia Casaccia,
| |
Collapse
|
14
|
Sarwar Z, Nabi N, Bhat SA, Gillani SQ, Reshi I, Un Nisa M, Adelmant G, Marto J, Andrabi S. Interaction of DBC1 with polyoma small T antigen promotes its degradation and negatively regulates tumorigenesis. J Biol Chem 2021; 298:101496. [PMID: 34921839 PMCID: PMC8784333 DOI: 10.1016/j.jbc.2021.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 12/05/2022] Open
Abstract
Deleted in Breast Cancer 1 (DBC1) is an important metabolic sensor. Previous studies have implicated DBC1 in various cellular functions, notably cell proliferation, apoptosis, histone modification, and adipogenesis. However, current reports about the role of DBC1 in tumorigenesis are controversial and designate DBC1 alternatively as a tumor suppressor or a tumor promoter. In the present study, we report that polyoma small T antigen (PyST) associates with DBC1 in mammalian cells, and this interaction leads to the posttranslational downregulation of DBC1 protein levels. When coexpressed, DBC1 overcomes PyST-induced mitotic arrest and promotes the exit of cells from mitosis. Using both transient and stable modes of PyST expression, we also show that cellular DBC1 is subjected to degradation by LKB1, a tumor suppressor and cellular energy sensor kinase, in an AMP kinase-independent manner. Moreover, LKB1 negatively regulates the phosphorylation as well as activity of the prosurvival kinase AKT1 through DBC1 and its downstream pseudokinase substrate, Tribbles 3 (TRB3). Using both transient transfection and stable cell line approaches as well as soft agar assay, we demonstrate that DBC1 has oncogenic potential. In conclusion, our study provides insight into a novel signaling axis that connects LKB1, DBC1, TRB3, and AKT1. We propose that the LKB1–DBC1–AKT1 signaling paradigm may have an important role in the regulation of cell cycle and apoptosis and consequently tumorigenesis.
Collapse
Affiliation(s)
- Zarka Sarwar
- Department of Biochemistry, University of Kashmir, Srinagar, India, 190006
| | - Nusrat Nabi
- Department of Biochemistry, University of Kashmir, Srinagar, India, 190006
| | - Sameer Ahmed Bhat
- Department of Biochemistry, University of Kashmir, Srinagar, India, 190006
| | | | - Irfana Reshi
- Department of Biochemistry, University of Kashmir, Srinagar, India, 190006
| | - Misbah Un Nisa
- Department of Biochemistry, University of Kashmir, Srinagar, India, 190006
| | - Guillaume Adelmant
- Blais Proteomics Centre, Dana Farber Cancer Institute, Harvard University, Boston, USA
| | - Jarrod Marto
- Blais Proteomics Centre, Dana Farber Cancer Institute, Harvard University, Boston, USA
| | - Shaida Andrabi
- Department of Biochemistry, University of Kashmir, Srinagar, India, 190006.
| |
Collapse
|
15
|
Appel LM, Franke V, Bruno M, Grishkovskaya I, Kasiliauskaite A, Kaufmann T, Schoeberl UE, Puchinger MG, Kostrhon S, Ebenwaldner C, Sebesta M, Beltzung E, Mechtler K, Lin G, Vlasova A, Leeb M, Pavri R, Stark A, Akalin A, Stefl R, Bernecky C, Djinovic-Carugo K, Slade D. PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC. Nat Commun 2021; 12:6078. [PMID: 34667177 PMCID: PMC8526623 DOI: 10.1038/s41467-021-26360-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Vedran Franke
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Melania Bruno
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Aiste Kasiliauskaite
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tanja Kaufmann
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Ursula E Schoeberl
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin G Puchinger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Sebastian Kostrhon
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Carmen Ebenwaldner
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Marek Sebesta
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Etienne Beltzung
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Gen Lin
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Anna Vlasova
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Martin Leeb
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Altuna Akalin
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Carrie Bernecky
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Dea Slade
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Muniz L, Nicolas E, Trouche D. RNA polymerase II speed: a key player in controlling and adapting transcriptome composition. EMBO J 2021; 40:e105740. [PMID: 34254686 PMCID: PMC8327950 DOI: 10.15252/embj.2020105740] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
RNA polymerase II (RNA Pol II) speed or elongation rate, i.e., the number of nucleotides synthesized per unit of time, is a major determinant of transcriptome composition. It controls co-transcriptional processes such as splicing, polyadenylation, and transcription termination, thus regulating the production of alternative splice variants, circular RNAs, alternatively polyadenylated transcripts, or read-through transcripts. RNA Pol II speed itself is regulated in response to intra- and extra-cellular stimuli and can in turn affect the transcriptome composition in response to these stimuli. Evidence points to a potentially important role of transcriptome composition modification through RNA Pol II speed regulation for adaptation of cells to a changing environment, thus pointing to a function of RNA Pol II speed regulation in cellular physiology. Analyzing RNA Pol II speed dynamics may therefore be central to fully understand the regulation of physiological processes, such as the development of multicellular organisms. Recent findings also raise the possibility that RNA Pol II speed deregulation can be detrimental and participate in disease progression. Here, we review initial and current approaches to measure RNA Pol II speed, as well as providing an overview of the factors controlling speed and the co-transcriptional processes which are affected. Finally, we discuss the role of RNA Pol II speed regulation in cell physiology.
Collapse
Affiliation(s)
- Lisa Muniz
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| | - Estelle Nicolas
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| | - Didier Trouche
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| |
Collapse
|
17
|
Chao Y, Jiang Y, Zhong M, Wei K, Hu C, Qin Y, Zuo Y, Yang L, Shen Z, Zou C. Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health. Cell Biosci 2021; 11:66. [PMID: 33795017 PMCID: PMC8017860 DOI: 10.1186/s13578-021-00581-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing (AS) regulates gene expression patterns at the post-transcriptional level and generates a striking expansion of coding capacities of genomes and cellular protein diversity. RNA splicing could undergo modulation and close interaction with genetic and epigenetic machinery. Notably, during the adipogenesis processes of white, brown and beige adipocytes, AS tightly interplays with the differentiation gene program networks. Here, we integrate the available findings on specific splicing events and distinct functions of different splicing regulators as examples to highlight the directive biological contribution of AS mechanism in adipogenesis and adipocyte biology. Furthermore, accumulating evidence has suggested that mutations and/or altered expression in splicing regulators and aberrant splicing alterations in the obesity-associated genes are often linked to humans’ diet-induced obesity and metabolic dysregulation phenotypes. Therefore, significant attempts have been finally made to overview novel detailed discussion on the prospects of splicing machinery with obesity and metabolic disorders to supply featured potential management mechanisms in clinical applicability for obesity treatment strategies.
Collapse
Affiliation(s)
- Yunqi Chao
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Yonghui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mianling Zhong
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Kaiyan Wei
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Chenxi Hu
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Yifang Qin
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Yiming Zuo
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Lili Yang
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Zheng Shen
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Chaochun Zou
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China.
| |
Collapse
|
18
|
Johnson GS, Rajendran P, Dashwood RH. CCAR1 and CCAR2 as gene chameleons with antagonistic duality: Preclinical, human translational, and mechanistic basis. Cancer Sci 2020; 111:3416-3425. [PMID: 33403784 PMCID: PMC7540973 DOI: 10.1111/cas.14579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cell Cycle and Apoptosis Regulator 1 (CCAR1) and Cell Cycle and Apoptosis Regulator 2 (CCAR2) have emerged as key players in physiology and pathophysiology, with critical roles in the DNA damage response, nuclear receptor function, and Wnt signaling, among other activities. Contradictory reports exist on the functional duality of CCAR1 and CCAR2 as either tumor promoters or suppressors, suggesting that CCAR1 and CCAR2 have the hallmarks of gene chameleons. We review herein the mechanistic, preclinical, and human translational findings for CCAR1 and CCAR2, based on available RNA and protein expression data from human studies, The Cancer Genome Atlas (TCGA) data mining, gene knockout mouse models, and cell-based assays. Multiple factors contribute to the divergent activities of CCAR1 and CCAR2, including tissue type, mutation/genetic background, protein-protein interactions, dynamic regulation via posttranslational modifications, and alternative RNA splicing. An array of protein partners interact with CCAR1 and CCAR2 in the context of tumor promotion and suppression, including β-catenin, androgen receptor, p21Cip1/Waf1, tumor protein p53 (p53), sirtuin 1, and histone deacetylase 3. Genetic changes frequently found in cancer, such as TP53 mutation, also serve as critical determinants of survival outcomes in cancer patients. This review seeks to provide the impetus for further investigation into CCAR1 and CCAR2 as potential master regulators of metabolism, aging, and cancer.
Collapse
Affiliation(s)
- Gavin S. Johnson
- Center for Epigenetics & Disease PreventionTexas A&M Health Science CenterHoustonTXUSA
| | - Praveen Rajendran
- Center for Epigenetics & Disease PreventionTexas A&M Health Science CenterHoustonTXUSA
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease PreventionTexas A&M Health Science CenterHoustonTXUSA
- Department of Translational Medical Sciences, Texas A&M College of MedicineTexas A&M UniversityHouston CampusTXUSA
- Department of Clinical Cancer PreventionThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| |
Collapse
|
19
|
Shao W, Ding Z, Zheng ZZ, Shen JJ, Shen YX, Pu J, Fan YJ, Query CC, Xu YZ. Prp5-Spt8/Spt3 interaction mediates a reciprocal coupling between splicing and transcription. Nucleic Acids Res 2020; 48:5799-5813. [PMID: 32399566 PMCID: PMC7293005 DOI: 10.1093/nar/gkaa311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/08/2020] [Accepted: 05/03/2020] [Indexed: 01/23/2023] Open
Abstract
Transcription and pre-mRNA splicing are coupled to promote gene expression and regulation. However, mechanisms by which transcription and splicing influence each other are still under investigation. The ATPase Prp5p is required for pre-spliceosome assembly and splicing proofreading at the branch-point region. From an open UV mutagenesis screen for genetic suppressors of prp5 defects and subsequent targeted testing, we identify components of the TBP-binding module of the Spt–Ada–Gcn5 Acetyltransferase (SAGA) complex, Spt8p and Spt3p. Spt8Δ and spt3Δ rescue the cold-sensitivity of prp5-GAR allele, and prp5 mutants restore growth of spt8Δ and spt3Δ strains on 6-azauracil. By chromatin immunoprecipitation (ChIP), we find that prp5 alleles decrease recruitment of RNA polymerase II (Pol II) to an intron-containing gene, which is rescued by spt8Δ. Further ChIP-seq reveals that global effects on Pol II-binding are mutually rescued by prp5-GAR and spt8Δ. Inhibited splicing caused by prp5-GAR is also restored by spt8Δ. In vitro assays indicate that Prp5p directly interacts with Spt8p, but not Spt3p. We demonstrate that Prp5p's splicing proofreading is modulated by Spt8p and Spt3p. Therefore, this study reveals that interactions between the TBP-binding module of SAGA and the spliceosomal ATPase Prp5p mediate a balance between transcription initiation/elongation and pre-spliceosome assembly.
Collapse
Affiliation(s)
- Wei Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhan Ding
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zeng-Zhang Zheng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ji-Jia Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jia Pu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Jie Fan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of Medicine, NY 10461, USA
| | - Yong-Zhen Xu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
20
|
Deng C, Zhang B, Zhang Y, Xu X, Xiong D, Chen X, Wu J. A long non-coding RNA OLBC15 promotes triple-negative breast cancer progression via enhancing ZNF326 degradation. J Clin Lab Anal 2020; 34:e23304. [PMID: 32329931 PMCID: PMC7439339 DOI: 10.1002/jcla.23304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The long non-coding RNAs (lncRNAs) have been involved in various processes, including cancer. However, the function of many lncRNAs is still elusive in triple-negative breast cancer (TNBC). METHODS LncRNA profiling was used to screen for novel lncRNAs related to TNBC. OLBC15 expression was measured via qRT-PCR. In vitro migration and viability assays were conducted to determine the oncogenic role of OLBC15. Xenograft and metastatic models were performed to further investigate effects in vivo. RNA immunoprecipitation (RIP), mass spectrometry (MS), and fluorescence in situ hybridization (FISH) strategies were designed to identify the interaction between ZNF326 and OLBC15. RESULTS In the current study, we have identified a novel oncogenic lncRNA termed OLBC15 via lncRNA profiling. OLBC15 is highly expressed especially in triple-negative breast cancer. OLBC15 promoted viability and migration in breast cancer cells. Moreover, OLBC15 could accelerate metastasis and xenograft tumor growth. Mechanistic study suggested that OLBC15 could bind a well-characterized tumor suppressor ZNF326 and OLBC15-ZNF326 interaction resulted in ZNF326 destabilization. OLBC15 induced proteasomal ZNF326 degradation through enhanced ubiquitination. OLBC15 and ZNF326 protein expression is also negatively correlated in clinical specimens. CONCLUSIONS Collectively, OLBC15 may serve as an oncogenic lncRNA to facilitate TNBC progression and a putative target for therapeutic anti-breast cancer intervention.
Collapse
Affiliation(s)
- Chao Deng
- Department of Comprehensive Ward of OncologyChongqing Three Gorges Central HospitalChongqingChina
| | - Bojuan Zhang
- Department of Comprehensive Ward of OncologyChongqing Three Gorges Central HospitalChongqingChina
| | - Yao Zhang
- Department of Comprehensive Ward of OncologyChongqing Three Gorges Central HospitalChongqingChina
| | - Xiaogang Xu
- Department of Comprehensive Ward of OncologyChongqing Three Gorges Central HospitalChongqingChina
| | - Deming Xiong
- Department of Comprehensive Ward of OncologyChongqing Three Gorges Central HospitalChongqingChina
| | - Xiaoyan Chen
- Department of Comprehensive Ward of OncologyChongqing Three Gorges Central HospitalChongqingChina
| | - Jiaojiao Wu
- Department of Respiratory Ward of RadiotherapyChongqing Three Gorges Central HospitalChongqingChina
| |
Collapse
|
21
|
Fang Q, Bellanti JA, Zheng SG. Advances on the role of the deleted in breast cancer (DBC1) in cancer and autoimmune diseases. J Leukoc Biol 2020; 109:449-454. [PMID: 32337788 DOI: 10.1002/jlb.6mr0320-086r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Accepted: 03/21/2020] [Indexed: 12/24/2022] Open
Abstract
DBC1 (deleted in breast cancer 1) is a human nuclear protein that modulates the activities of various proteins. Most of the research on DBC1 has focused on metabolism and epigenetics because it is a crucial endogenic inhibitor of deacetylase Sirtuin1 (SIRT1). In this review, we have discussed and summarized the new advances in DBC1 research, mostly focusing on its structure, regulatory function, and significance in cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Qiannan Fang
- Department of Clinical Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
22
|
DBC1, p300, HDAC3, and Siah1 coordinately regulate ELL stability and function for expression of its target genes. Proc Natl Acad Sci U S A 2020; 117:6509-6520. [PMID: 32152128 PMCID: PMC7104407 DOI: 10.1073/pnas.1912375117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Among all of the Super Elongation Complex (SEC) components, ELL1 (also known as ELL) is the only bona fide elongation factor that directly stimulates transcription elongation by RNA polymerase II. However, the mechanism(s) of functional regulation of ELL1 (referred to as ELL hereafter), through its stabilization, is completely unknown. Here, we report a function of human DBC1 in regulating ELL stability involving HDAC3, p300, and Siah1. Mechanistically, we show that p300-mediated site-specific acetylation increases, whereas HDAC3-mediated deacetylation decreases, ELL stability through polyubiquitylation by the E3 ubiquitin ligase Siah1. DBC1 competes with HDAC3 for the same binding sites on ELL and thus increases its acetylation and stability. Knockdown of DBC1 reduces ELL levels and expression of a significant number of genes, including those involved in glucose metabolism. Consistently, Type 2 diabetes patient-derived peripheral blood mononuclear cells show reduced expression of DBC1 and ELL and associated key target genes required for glucose homeostasis. Thus, we describe a pathway of regulating stability and functions of key elongation factor ELL for expression of diverse sets of genes, including ones that are linked to Type 2 diabetes pathogenesis.
Collapse
|
23
|
Scherer M, Levin M, Butter F, Scheibe M. Quantitative Proteomics to Identify Nuclear RNA-Binding Proteins of Malat1. Int J Mol Sci 2020; 21:ijms21031166. [PMID: 32050583 PMCID: PMC7037011 DOI: 10.3390/ijms21031166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/02/2023] Open
Abstract
The long non-coding RNA Malat1 has been implicated in several human cancers, while the mechanism of action is not completely understood. As RNAs in cells function together with RNA-binding proteins (RBPs), the composition of their RBP complex can shed light on their functionality. We here performed quantitative interactomics of 14 non-overlapping fragments covering the full length of Malat1 to identify possible nuclear interacting proteins. Overall, we identified 35 candidates including 14 already known binders, which are able to interact with Malat1 in the nucleus. Furthermore, the use of fragments along the full-length RNA allowed us to reveal two hotspots for protein binding, one in the 5′-region and one in the 3′-region of Malat1. Our results provide confirmation on previous RNA-protein interaction studies and suggest new candidates for functional investigations.
Collapse
|
24
|
Ala U, Manco M, Mandili G, Tolosano E, Novelli F, Provero P, Altruda F, Fagoonee S. Proteomics-Based Evidence for a Pro-Oncogenic Role of ESRP1 in Human Colorectal Cancer Cells. Int J Mol Sci 2020; 21:ijms21020575. [PMID: 31963158 PMCID: PMC7014300 DOI: 10.3390/ijms21020575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding protein, Epithelial Splicing Regulatory Protein 1 (ESRP1) can promote or suppress tumorigenesis depending on the cell type and disease context. In colorectal cancer, we have previously shown that aberrantly high ESRP1 expression can drive tumor progression. In order to unveil the mechanisms by which ESRP1 can modulate cancer traits, we searched for proteins affected by modulation of Esrp1 in two human colorectal cancer cell lines, HCA24 and COLO320DM, by proteomics analysis. Proteins hosted by endogenous ESRP1 ribonucleoprotein complex in HCA24 cells were also analyzed following RNA-immunoprecipitation. Proteomics data were complemented with bioinformatics approach to exploit publicly available data on protein-protein interaction (PPI). Gene Ontology was analysed to identify a common molecular signature possibly explaining the pro-tumorigenic role of ESRP1. Interestingly, proteins identified herein support a role for ESRP1 in response to external stimulus, regulation of cell cycle and hypoxia. Our data provide further insights into factors affected by and entwined with ESRP1 in colorectal cancer.
Collapse
Affiliation(s)
- Ugo Ala
- Department of Veterinary Science, University of Turin, 10126 Turin, Italy;
| | - Marta Manco
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (M.M.); (E.T.); (P.P.)
| | - Giorgia Mandili
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza, 10126 Turin, Italy; (G.M.); (F.N.)
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (M.M.); (E.T.); (P.P.)
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza, 10126 Turin, Italy; (G.M.); (F.N.)
| | - Paolo Provero
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (M.M.); (E.T.); (P.P.)
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (M.M.); (E.T.); (P.P.)
- Correspondence: (F.A.); (S.F.)
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Centre, 10126 Turin, Italy
- Correspondence: (F.A.); (S.F.)
| |
Collapse
|
25
|
Yamazaki T, Liu L, Manley JL. TCF3 mutually exclusive alternative splicing is controlled by long-range cooperative actions between hnRNPH1 and PTBP1. RNA (NEW YORK, N.Y.) 2019; 25:1497-1508. [PMID: 31391218 PMCID: PMC6795145 DOI: 10.1261/rna.072298.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/31/2019] [Indexed: 05/22/2023]
Abstract
TCF3, also known as E2A, is a well-studied transcription factor that plays an important role in stem cell maintenance and hematopoietic development. The TCF3 gene encodes two related proteins, E12 and E47, which arise from mutually exclusive alternative splicing (MEAS). Since these two proteins have different DNA binding and dimerization domains, this AS event must be strictly regulated to ensure proper isoform ratios. Previously, we found that heterogeneous nuclear ribonucleoprotein (hnRNP) H1/F regulates TCF3 AS by binding to exonic splicing silencers (ESSs) in exon 18b. Here, we identify conserved intronic splicing silencers (ISSs) located between, and far from, the two mutually exclusive exons, and show that they are essential for MEAS. Further, we demonstrate that the hnRNP PTBP1 binds the ISS and is a regulator of TCF3 AS. We also demonstrate that hnRNP H1 and PTBP1 regulate TCF3 AS reciprocally, and that position-dependent interactions between these factors are essential for proper TCF3 MEAS. Our study provides a new model in which MEAS is regulated by cooperative actions of distinct hnRNPs bound to ISSs and ESSs.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
26
|
So BR, Di C, Cai Z, Venters CC, Guo J, Oh JM, Arai C, Dreyfuss G. A Complex of U1 snRNP with Cleavage and Polyadenylation Factors Controls Telescripting, Regulating mRNA Transcription in Human Cells. Mol Cell 2019; 76:590-599.e4. [PMID: 31522989 DOI: 10.1016/j.molcel.2019.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/25/2019] [Accepted: 08/02/2019] [Indexed: 11/27/2022]
Abstract
Full-length transcription in the majority of human genes depends on U1 snRNP (U1) to co-transcriptionally suppress transcription-terminating premature 3' end cleavage and polyadenylation (PCPA) from cryptic polyadenylation signals (PASs) in introns. However, the mechanism of this U1 activity, termed telescripting, is unknown. Here, we captured a complex, comprising U1 and CPA factors (U1-CPAFs), that binds intronic PASs and suppresses PCPA. U1-CPAFs are distinct from U1-spliceosomal complexes; they include CPA's three main subunits, CFIm, CPSF, and CstF; lack essential splicing factors; and associate with transcription elongation and mRNA export complexes. Telescripting requires U1:pre-mRNA base-pairing, which can be disrupted by U1 antisense oligonucleotide (U1 AMO), triggering PCPA. U1 AMO remodels U1-CPAFs, revealing changes, including recruitment of CPA-stimulating factors, that explain U1-CPAFs' switch from repressive to activated states. Our findings outline this U1 telescripting mechanism and demonstrate U1's unique role as central regulator of pre-mRNA processing and transcription.
Collapse
Affiliation(s)
- Byung Ran So
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | - Chao Di
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | - Zhiqiang Cai
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | - Christopher C Venters
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | - Jiannan Guo
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | - Jung-Min Oh
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | - Chie Arai
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Davis-Turak J, Johnson TL, Hoffmann A. Mathematical modeling identifies potential gene structure determinants of co-transcriptional control of alternative pre-mRNA splicing. Nucleic Acids Res 2019; 46:10598-10607. [PMID: 30272246 PMCID: PMC6237756 DOI: 10.1093/nar/gky870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/17/2018] [Indexed: 01/22/2023] Open
Abstract
The spliceosome catalyzes the removal of introns from pre-messenger RNA (mRNA) and subsequent pairing of exons with remarkable fidelity. Some exons are known to be skipped or included in the mature mRNA in a cell type- or context-dependent manner (cassette exons), thereby contributing to the diversification of the human proteome. Interestingly, splicing is initiated (and sometimes completed) co-transcriptionally. Here, we develop a kinetic mathematical modeling framework to investigate alternative co-transcriptional splicing (CTS) and, specifically, the control of cassette exons' inclusion. We show that when splicing is co-transcriptional, default splice patterns of exon inclusion are more likely than when splicing is post-transcriptional, and that certain exons are more likely to be regulatable (i.e. cassette exons) than others, based on the exon-intron structure context. For such regulatable exons, transcriptional elongation rates may affect splicing outcomes. Within the CTS paradigm, we examine previously described hypotheses of co-operativity between splice sites of short introns (i.e. 'intron definition') or across short exons (i.e. 'exon definition'), and find that models encoding these faithfully recapitulate observations in the fly and human genomes, respectively.
Collapse
Affiliation(s)
- Jeremy Davis-Turak
- San Diego Center for Systems Biology (SDCSB), University of California, San Diego, La Jolla, CA 92093, USA
| | - Tracy L Johnson
- San Diego Center for Systems Biology (SDCSB), University of California, San Diego, La Jolla, CA 92093, USA.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA.,Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Hoffmann
- San Diego Center for Systems Biology (SDCSB), University of California, San Diego, La Jolla, CA 92093, USA.,Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences (QCB) University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
The regulation, functions and clinical relevance of arginine methylation. Nat Rev Mol Cell Biol 2019; 20:642-657. [PMID: 31350521 DOI: 10.1038/s41580-019-0155-x] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
Methylation of arginine residues by protein arginine methyltransferases (PRMTs) is involved in the regulation of fundamental cellular processes, including transcription, RNA processing, signal transduction cascades, the DNA damage response and liquid-liquid phase separation. Recent studies have provided considerable advances in the development of experimental tools and the identification of clinically relevant PRMT inhibitors. In this review, we discuss the regulation of PRMTs, their various cellular roles and the clinical relevance of PRMT inhibitors for the therapy of neurodegenerative diseases and cancer.
Collapse
|
29
|
Chi B, O'Connell JD, Iocolano AD, Coady JA, Yu Y, Gangopadhyay J, Gygi SP, Reed R. The neurodegenerative diseases ALS and SMA are linked at the molecular level via the ASC-1 complex. Nucleic Acids Res 2019; 46:11939-11951. [PMID: 30398641 PMCID: PMC6294556 DOI: 10.1093/nar/gky1093] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular pathways disrupted in motor neuron diseases is urgently needed. Here, we employed CRISPR knockout (KO) to investigate the functions of four ALS-causative RNA/DNA binding proteins (FUS, EWSR1, TAF15 and MATR3) within the RNAP II/U1 snRNP machinery. We found that each of these structurally related proteins has distinct roles with FUS KO resulting in loss of U1 snRNP and the SMN complex, EWSR1 KO causing dissociation of the tRNA ligase complex, and TAF15 KO resulting in loss of transcription factors P-TEFb and TFIIF. However, all four ALS-causative proteins are required for association of the ASC-1 transcriptional co-activator complex with the RNAP II/U1 snRNP machinery. Remarkably, mutations in the ASC-1 complex are known to cause a severe form of Spinal Muscular Atrophy (SMA), and we show that an SMA-causative mutation in an ASC-1 component or an ALS-causative mutation in FUS disrupts association between the ASC-1 complex and the RNAP II/U1 snRNP machinery. We conclude that ALS and SMA are more intimately tied to one another than previously thought, being linked via the ASC-1 complex.
Collapse
Affiliation(s)
- Binkai Chi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave. Boston MA 02115, USA
| | - Jeremy D O'Connell
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave. Boston MA 02115, USA
| | - Alexander D Iocolano
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave. Boston MA 02115, USA
| | - Jordan A Coady
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave. Boston MA 02115, USA
| | - Yong Yu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave. Boston MA 02115, USA
| | - Jaya Gangopadhyay
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave. Boston MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave. Boston MA 02115, USA
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave. Boston MA 02115, USA
| |
Collapse
|
30
|
Liu G, Wu Q, Wang Y, Xiong Q, Fu F. Deleted in breast cancer 1 as a potential prognostic biomarker in human cancers: a pooled analysis of 2,254 patients. Onco Targets Ther 2019; 12:1563-1574. [PMID: 30863120 PMCID: PMC6390861 DOI: 10.2147/ott.s189618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Deleted in breast cancer 1 (DBC1) is believed to be involved in human cancers. However, it is still uncertain whether DBC1 expression can be regarded as a prognostic factor in patients with various cancers. This meta-analysis aimed to evaluate the relationship between high levels of DBC1 and prognosis in tumor patients. Methods Electronic databases were searched and 14 studies meeting the selection criteria were included. Overall survival (OS), relapse-free survival (RFS), and 95% CIs were extracted and analyzed. HRs from individual studies were pooled using fixed-or random-effects models, depending on the heterogeneity of the included studies, and publication bias analyses were also performed to increase the reliability of the results. Results A total of 2,254 patients with tumors from 14 published studies were included in the meta-analysis. DBC1 overexpression was associated with worse OS (univariate analysis: HR=2.94; 95% CI: [2.38–3.63]; multivariate analysis: HR=1.98, 95% CI: [1.21–3.25]) and RFS (univariate analysis: HR=2.83, 95% CI: [2.30–3.49]; multivariate analysis: HR=2.71, 95% CI: [2.07–3.53]) for various tumors. No publication bias was observed according to test of funnel plot asymmetry and Egger’s test. Conclusion Current evidence supports the conclusion that the upregulation of DBC1 is correlated with poor survival among tumor patients, suggesting that DBC1 represents an independent prognostic factor significantly associated with OS and RFS, and could serve as a novel therapeutic target in patients with tumors. Nevertheless, further large-scale prospective trials and well-designed studies are warranted to confirm this finding.
Collapse
Affiliation(s)
- Gang Liu
- Department of Breast Surgery, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases, Nanchang, Jiangxi 330009, China, ;
| | - Qiaosheng Wu
- Department of Breast Surgery, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases, Nanchang, Jiangxi 330009, China, ;
| | - Yili Wang
- Department of Breast Surgery, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases, Nanchang, Jiangxi 330009, China, ;
| | - Qiuyun Xiong
- Department of Breast Surgery, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases, Nanchang, Jiangxi 330009, China, ;
| | - Feiguo Fu
- Department of Breast Surgery, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases, Nanchang, Jiangxi 330009, China, ;
| |
Collapse
|
31
|
Wu J, Zhang X, Han Q, Han X, Rong X, Wang M, Zheng X, Wang E. ZNF326 promotes proliferation of non-small cell lung cancer cells by regulating ERCC1 expression. J Transl Med 2019; 99:169-179. [PMID: 30401956 DOI: 10.1038/s41374-018-0148-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/18/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
The roles and downstream target genes of the transcription factor ZNF326 in malignant tumors are unclear. Out of 146 lung cancer tissue samples, we found that high expression of ZNF326 in 82 samples was closely related to low differentiation and a high pTNM stage of non-small cell lung cancer (NSCLC) cells. In vitro and in vivo analyses showed that ZNF326 significantly promoted cell cycle progression, colony formation, and proliferation as well as the growth of NSCLC transplanted tumors. Chromatin immunoprecipitation sequencing, dual-luciferase assay, and electrophoretic mobility shift assay confirmed that the C2H2 structure of ZNF326 binds to the -833 to -875 bp region of the ERCC1 promoter to initiate transcriptional activity. This binding promoted CyclinB1 synthesis and cell cycle progression. These results show that the ZNF326 transcription factor is highly expressed in lung cancer and promotes the proliferation of NSCLC cells by regulating the expression of ERCC1.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Qiang Han
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Xu Han
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Xuezhu Rong
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Minghao Wang
- Neurosurgery, The First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Xiaoying Zheng
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Enhua Wang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China.
| |
Collapse
|
32
|
Yu X, Wang M, Wu J, Han Q, Zhang X. ZNF326 promotes malignant phenotype of glioma by up-regulating HDAC7 expression and activating Wnt pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:40. [PMID: 30691485 PMCID: PMC6350303 DOI: 10.1186/s13046-019-1031-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
Abstract
Background Zinc-finger protein-326 (ZNF326) was initially found in the NIH3T3 cell line to regulate cell growth, however, the expression and underlying role of ZNF326 in human tumours, especially in glioma, is not fully understood. Methods Immunohistochemistry was applied to detect the expression of ZNF326 in glioma tissues, and statistical analysis was used to analyse the relationship between ZNF326 expression and clinicopathological factors. The effect of ZNF326 on glioma cells proliferation and invasion was conducted by functional experiments both in vivo and in vitro. Chromatin immunoprecipitation and dual-luciferase assays were performed to demonstrate that histone deacetylase enzyme-7 (HDAC7) is the target gene of ZNF326. Immunoblotting, real-time PCR, GST-pulldown and co-immunoprecipitation assays were used to clarify the underlying role of ZNF326 on Wnt pathway activation. Results High nuclear expression of ZNF326 was observed in glioma cell lines and tissues, and closely related with advanced tumour grade in the patients. Moreover, ectopic ZNF326 expression promoted the proliferation and invasiveness of glioma cells. Mechanistically, ZNF326 could activate HDAC7 transcription by binding to a specific promoter region via its transcriptional activation domain and zinc-finger structures. The interaction of the up-regulated HDAC7 with β-catenin led to a decrease in β-catenin acetylation level at Lys-49, followed by a decrease in β-catenin phosphorylation level at Ser-45. These changes in β-catenin posttranscriptional modification levels promoted its redistribution and import into the nucleus. Additionally, ZNF326 directly associated with β-catenin in the nucleus, and enhanced the binding of β-catenin to TCF-4, serving as a co-activator in stimulating Wnt pathway. Conclusions Our findings elucidated ZNF326 promotes the malignant phenotype of human glioma via ZNF326-HDAC7-β-catenin signalling. This study reveals the vital role and mechanism of ZNF326 in the malignant progression of glioma, and provides the reference for finding biomarkers and therapeutic targets for glioma. Electronic supplementary material The online version of this article (10.1186/s13046-019-1031-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinmiao Yu
- Department of Surgical Oncology and Breast Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Minghao Wang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Jingjing Wu
- Department of Pathology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qiang Han
- Department of Pathology, College of Basic Medical Sciences, and First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences, and First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, Kosmicki JA, Arbelaez J, Cui W, Schwartz GB, Chow ED, Kanterakis E, Gao H, Kia A, Batzoglou S, Sanders SJ, Farh KKH. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019; 176:535-548.e24. [DOI: 10.1016/j.cell.2018.12.015] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/31/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
|
34
|
Kim W, Ryu J, Kim JE. CCAR2/DBC1 and Hsp60 Positively Regulate Expression of Survivin in Neuroblastoma Cells. Int J Mol Sci 2019; 20:ijms20010131. [PMID: 30609639 PMCID: PMC6337645 DOI: 10.3390/ijms20010131] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
CCAR2 (cell cycle and apoptosis regulator 2) controls a variety of cellular functions; however, its main function is to regulate cell survival and cell death in response to genotoxic and metabolic stresses. Recently, we reported that CCAR2 protects cells from apoptosis following mitochondrial stress, possibly by co-operating with Hsp60. However, it is not clear how CCAR2 and Hsp60 control cell survival and death. Here, we found that depleting CCAR2 and Hsp60 downregulated expression of survivin, a member of the inhibitor of apoptosis (IAP) family. Survivin expression in neuroblastoma tissues and human cancer cell lines correlated positively with expression of CCAR2 and Hsp60. Furthermore, high expression of CCAR2, Hsp60, and survivin was associated with poor survival of neuroblastoma patients. In summary, both CCAR2 and Hsp60 are required for expression of survivin, and both promote cancer cell survival, at least in part, by maintaining survivin expression. Therefore, CCAR2, Hsp60, and survivin are candidate tumor biomarkers and prognostic markers in neuroblastomas.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Jaewook Ryu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
35
|
Yu X, Wang M, Han Q, Zhang X, Mao X, Wang X, Li X, Ma W, Jin F. ZNF326 promotes a malignant phenotype of breast cancer by interacting with DBC1. Mol Carcinog 2018; 57:1803-1815. [PMID: 30175866 DOI: 10.1002/mc.22898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Xinmiao Yu
- Department of Breast Surgery; The First Hospital of China Medical University; Shenyang China
| | - Minghao Wang
- Department of Neurosurgery; The First Hospital of China Medical University; Shenyang China
| | - Qiang Han
- Department of Pathology; College of Basic Medical Sciences and The First Hospital; China Medical University; Shenyang China
| | - Xiupeng Zhang
- Department of Pathology; College of Basic Medical Sciences and The First Hospital; China Medical University; Shenyang China
| | - Xiaoyun Mao
- Department of Breast Surgery; The First Hospital of China Medical University; Shenyang China
| | - Xu Wang
- Department of Breast Surgery; The First Hospital of China Medical University; Shenyang China
| | - Xiaoying Li
- Department of Breast Surgery; The First Hospital of China Medical University; Shenyang China
| | - Wei Ma
- Department of Breast Surgery; The First Hospital of China Medical University; Shenyang China
| | - Feng Jin
- Department of Breast Surgery; The First Hospital of China Medical University; Shenyang China
| |
Collapse
|
36
|
Interactome analyses revealed that the U1 snRNP machinery overlaps extensively with the RNAP II machinery and contains multiple ALS/SMA-causative proteins. Sci Rep 2018; 8:8755. [PMID: 29884807 PMCID: PMC5993797 DOI: 10.1038/s41598-018-27136-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in multiple RNA/DNA binding proteins cause Amyotrophic Lateral Sclerosis (ALS). Included among these are the three members of the FET family (FUS, EWSR1 and TAF15) and the structurally similar MATR3. Here, we characterized the interactomes of these four proteins, revealing that they largely have unique interactors, but share in common an association with U1 snRNP. The latter observation led us to analyze the interactome of the U1 snRNP machinery. Surprisingly, this analysis revealed the interactome contains ~220 components, and of these, >200 are shared with the RNA polymerase II (RNAP II) machinery. Among the shared components are multiple ALS and Spinal muscular Atrophy (SMA)-causative proteins and numerous discrete complexes, including the SMN complex, transcription factor complexes, and RNA processing complexes. Together, our data indicate that the RNAP II/U1 snRNP machinery functions in a wide variety of molecular pathways, and these pathways are candidates for playing roles in ALS/SMA pathogenesis.
Collapse
|
37
|
Magni M, Buscemi G, Zannini L. Cell cycle and apoptosis regulator 2 at the interface between DNA damage response and cell physiology. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:1-9. [DOI: 10.1016/j.mrrev.2018.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/06/2023]
|
38
|
The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding. Cell Metab 2018; 27:404-418.e7. [PMID: 29358041 PMCID: PMC6996513 DOI: 10.1016/j.cmet.2017.12.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/05/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022]
Abstract
The mechanisms by which feeding and fasting drive rhythmic gene expression for physiological adaptation to daily rhythm in nutrient availability are not well understood. Here we show that, upon feeding, the RNA-binding protein NONO accumulates within speckle-like structures in liver cell nuclei. Combining RNA-immunoprecipitation and sequencing (RIP-seq), we find that an increased number of RNAs are bound by NONO after feeding. We further show that NONO binds and regulates the rhythmicity of genes involved in nutrient metabolism post-transcriptionally. Finally, we show that disrupted rhythmicity of NONO target genes has profound metabolic impact. Indeed, NONO-deficient mice exhibit impaired glucose tolerance and lower hepatic glycogen and lipids. Accordingly, these mice shift from glucose storage to fat oxidation, and therefore remain lean throughout adulthood. In conclusion, our study demonstrates that NONO post-transcriptionally coordinates circadian mRNA expression of metabolic genes with the feeding/fasting cycle, thereby playing a critical role in energy homeostasis.
Collapse
|
39
|
Rambout X, Dequiedt F, Maquat LE. Beyond Transcription: Roles of Transcription Factors in Pre-mRNA Splicing. Chem Rev 2017; 118:4339-4364. [PMID: 29251915 DOI: 10.1021/acs.chemrev.7b00470] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whereas individual steps of protein-coding gene expression in eukaryotes can be studied in isolation in vitro, it has become clear that these steps are intimately connected within cells. Connections not only ensure quality control but also fine-tune the gene expression process, which must adapt to environmental changes while remaining robust. In this review, we systematically present proven and potential mechanisms by which sequence-specific DNA-binding transcription factors can alter gene expression beyond transcription initiation and regulate pre-mRNA splicing, and thereby mRNA isoform production, by (i) influencing transcription elongation rates, (ii) binding to pre-mRNA to recruit splicing factors, and/or (iii) blocking the association of splicing factors with pre-mRNA. We propose various mechanistic models throughout the review, in some cases without explicit supportive evidence, in hopes of providing fertile ground for future studies.
Collapse
|
40
|
Rengasamy M, Zhang F, Vashisht A, Song WM, Aguilo F, Sun Y, Li S, Zhang W, Zhang B, Wohlschlegel JA, Walsh MJ. The PRMT5/WDR77 complex regulates alternative splicing through ZNF326 in breast cancer. Nucleic Acids Res 2017; 45:11106-11120. [PMID: 28977470 PMCID: PMC5737218 DOI: 10.1093/nar/gkx727] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/11/2017] [Indexed: 12/22/2022] Open
Abstract
We observed overexpression and increased intra-nuclear accumulation of the PRMT5/WDR77 in breast cancer cell lines relative to immortalized breast epithelial cells. Utilizing mass spectrometry and biochemistry approaches we identified the Zn-finger protein ZNF326, as a novel interaction partner and substrate of the nuclear PRMT5/WDR77 complex. ZNF326 is symmetrically dimethylated at arginine 175 (R175) and this modification is lost in a PRMT5 and WDR77-dependent manner. Loss of PRMT5 or WDR77 in MDA-MB-231 cells leads to defects in alternative splicing, including inclusion of A-T rich exons in target genes, a phenomenon that has previously been observed upon loss of ZNF326. We observed that the alternatively spliced transcripts of a subset of these genes, involved in proliferation and tumor cell migration like REPIN1/AP4, ST3GAL6, TRNAU1AP and PFKM are degraded upon loss of PRMT5. In summary, we have identified a novel mechanism through which the PRMT5/WDR77 complex maintains the balance between splicing and mRNA stability through methylation of ZNF326.
Collapse
Affiliation(s)
- Madhumitha Rengasamy
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fan Zhang
- Department of Medicine, Division of Nephrology, Bioinformatics Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Center for Life Sciences, School of Life Sciences and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Ajay Vashisht
- Departmentof Biological Chemistry and the Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesca Aguilo
- Wallenberg Centre for Molecular Medicine, Department of Medical Biosciences, University of Umeå, Försörjningsvägen 19073, Umeå, Sweden
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - SiDe Li
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weijia Zhang
- Department of Medicine, Division of Nephrology, Bioinformatics Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James A Wohlschlegel
- Departmentof Biological Chemistry and the Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
41
|
Ljungman M, Parks L, Hulbatte R, Bedi K. The role of H3K79 methylation in transcription and the DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:48-54. [PMID: 31395348 DOI: 10.1016/j.mrrev.2017.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/19/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022]
Abstract
Chromatin plays a critical role in organizing and protecting DNA. However, chromatin acts as an impediment for transcription and DNA repair. Histone modifications, such as H3K79 methylation, promote transcription and genomic stability by enhancing transcription elongation and by serving as landing sites for proteins involved in the DNA damage response. This review summarizes the current understanding of the role of H3K79 methylation in transcription, how it affects genome stability and opportunities to develop impactful therapeutic interventions for cancer.
Collapse
Affiliation(s)
- Mats Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.
| | - Luke Parks
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States; Department of Cell and Molecular Biology, Uppsala University, Box 256, 75105 Uppsala, Sweden
| | - Radhika Hulbatte
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States
| | - Karan Bedi
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
42
|
Galganski L, Urbanek MO, Krzyzosiak WJ. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res 2017; 45:10350-10368. [PMID: 28977640 PMCID: PMC5737799 DOI: 10.1093/nar/gkx759] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022] Open
Abstract
The nucleoplasm is not homogenous; it consists of many types of nuclear bodies, also known as nuclear domains or nuclear subcompartments. These self-organizing structures gather machinery involved in various nuclear activities. Nuclear speckles (NSs) or splicing speckles, also called interchromatin granule clusters, were discovered as sites for splicing factor storage and modification. Further studies on transcription and mRNA maturation and export revealed a more general role for splicing speckles in RNA metabolism. Here, we discuss the functional implications of the localization of numerous proteins crucial for epigenetic regulation, chromatin organization, DNA repair and RNA modification to nuclear speckles. We highlight recent advances suggesting that NSs facilitate integrated regulation of gene expression. In addition, we consider the influence of abundant regulatory and signaling proteins, i.e. protein kinases and proteins involved in protein ubiquitination, phosphoinositide signaling and nucleoskeletal organization, on pre-mRNA synthesis and maturation. While many of these regulatory proteins act within NSs, direct evidence for mRNA metabolism events occurring in NSs is still lacking. NSs contribute to numerous human diseases, including cancers and viral infections. In addition, recent data have demonstrated close relationships between these structures and the development of neurological disorders.
Collapse
Affiliation(s)
- Lukasz Galganski
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
43
|
Li C, Liao J, Wu S, Fan J, Peng Z, Wang Z. Overexpression of DBC1, correlated with poor prognosis, is a potential therapeutic target for hepatocellular carcinoma. Biochem Biophys Res Commun 2017; 494:511-517. [PMID: 29106957 DOI: 10.1016/j.bbrc.2017.10.134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 11/26/2022]
Abstract
Deleted in Breast Cancer 1 (DBC1) is a regulatory protein involved in cell metabolism and cancer progression. Nevertheless, the expression and prognostic values of DBC1 in hepatocellular carcinoma (HCC) are still not well understood. The following study investigated the clinical significance and biological function of DBC1 in HCC. Briefly, overexpression of DBC1 at transcriptional and translational levels in human HCC tissues compared to adjacent normal tissues was observed using quantitative real-time polymerase chain reaction (qRT-PCR), western blot (WB) and immunohistochemistry (IHC) approach. Furthermore, upregulated DBC1 was significantly correlated with tumor size (p = 0.005), N stage (p = 0.016), M stage (p = 0.011), tumor differentiation (p < 0.001), and American Joint Committee on Cancer (AJCC) stage (p = 0.001). Moreover, Kaplan-Meier survival analysis revealed that DBC1 was an independent prognosis predictor for disease-free survival (DFS) (p < 0.001) and overall survival (OS) (p < 0.001). In addition, by using Cell Counting Kit-8 (CCK8) assays and colony formation assays, we found that the knockdown of DBC1 significantly suppressed the proliferation of HCC cells in vitro. To conclude, these findings demonstrated that DBC1 was essential in tumorigenesis and proliferation. Moreover, it was identified as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Changcan Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jianhua Liao
- Department of General Surgery, Zhejiang Hospital, Hangzhou 310013, China.
| | - Shaohan Wu
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing College, Jiaxing 314000, China
| | - Junwei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhaowen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
44
|
Auboeuf D. Genome evolution is driven by gene expression-generated biophysical constraints through RNA-directed genetic variation: A hypothesis. Bioessays 2017; 39. [DOI: 10.1002/bies.201700069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Didier Auboeuf
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210; Laboratory of Biology and Modelling of the Cell; Site Jacques Monod; Lyon France
| |
Collapse
|
45
|
Rangel R, Guzman-Rojas L, Kodama T, Kodama M, Newberg JY, Copeland NG, Jenkins NA. Identification of New Tumor Suppressor Genes in Triple-Negative Breast Cancer. Cancer Res 2017; 77:4089-4101. [DOI: 10.1158/0008-5472.can-17-0785] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/28/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
|
46
|
Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins. Biochem Soc Trans 2017; 44:1058-65. [PMID: 27528752 DOI: 10.1042/bst20160080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 02/04/2023]
Abstract
Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands.
Collapse
|
47
|
Mannen T, Yamashita S, Tomita K, Goshima N, Hirose T. The Sam68 nuclear body is composed of two RNase-sensitive substructures joined by the adaptor HNRNPL. J Cell Biol 2017; 214:45-59. [PMID: 27377249 PMCID: PMC4932371 DOI: 10.1083/jcb.201601024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/14/2016] [Indexed: 01/21/2023] Open
Abstract
The mammalian cell nucleus contains membraneless suborganelles referred to as nuclear bodies (NBs). Some NBs are formed with an architectural RNA (arcRNA) as the structural core. Here, we searched for new NBs that are built on unidentified arcRNAs by screening for ribonuclease (RNase)-sensitive NBs using 32,651 fluorescently tagged human cDNA clones. We identified 32 tagged proteins that required RNA for their localization in distinct nuclear foci. Among them, seven RNA-binding proteins commonly localized in the Sam68 nuclear body (SNB), which was disrupted by RNase treatment. Knockdown of each SNB protein revealed that SNBs are composed of two distinct RNase-sensitive substructures. One substructure is present as a distinct NB, termed the DBC1 body, in certain conditions, and the more dynamic substructure including Sam68 joins to form the intact SNB. HNRNPL acts as the adaptor to combine the two substructures and form the intact SNB through the interaction of two sets of RNA recognition motifs with the putative arcRNAs in the respective substructures.
Collapse
Affiliation(s)
- Taro Mannen
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Seisuke Yamashita
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Kozo Tomita
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koutou 135-0064, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
48
|
Damianov A, Ying Y, Lin CH, Lee JA, Tran D, Vashisht AA, Bahrami-Samani E, Xing Y, Martin KC, Wohlschlegel JA, Black DL. Rbfox Proteins Regulate Splicing as Part of a Large Multiprotein Complex LASR. Cell 2016; 165:606-19. [PMID: 27104978 DOI: 10.1016/j.cell.2016.03.040] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/18/2015] [Accepted: 03/22/2016] [Indexed: 12/11/2022]
Abstract
Rbfox proteins control alternative splicing and posttranscriptional regulation in mammalian brain and are implicated in neurological disease. These proteins recognize the RNA sequence (U)GCAUG, but their structures and diverse roles imply a variety of protein-protein interactions. We find that nuclear Rbfox proteins are bound within a large assembly of splicing regulators (LASR), a multimeric complex containing the proteins hnRNP M, hnRNP H, hnRNP C, Matrin3, NF110/NFAR-2, NF45, and DDX5, all approximately equimolar to Rbfox. We show that splicing repression mediated by hnRNP M is stimulated by Rbfox. Virtually all the intron-bound Rbfox is associated with LASR, and hnRNP M motifs are enriched adjacent to Rbfox crosslinking sites in vivo. These findings demonstrate that Rbfox proteins bind RNA with a defined set of cofactors and affect a broader set of exons than previously recognized. The function of this multimeric LASR complex has implications for deciphering the regulatory codes controlling splicing networks.
Collapse
Affiliation(s)
- Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Ying
- Molecular Biology Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ji-Ann Lee
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Diana Tran
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emad Bahrami-Samani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
49
|
Hu J, Khodadadi-Jamayran A, Mao M, Shah K, Yang Z, Nasim MT, Wang Z, Jiang H. AKAP95 regulates splicing through scaffolding RNAs and RNA processing factors. Nat Commun 2016; 7:13347. [PMID: 27824034 PMCID: PMC5105168 DOI: 10.1038/ncomms13347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing of pre-mRNAs significantly contributes to the complexity of gene expression in higher organisms, but the regulation of the splice site selection remains incompletely understood. We have previously demonstrated that a chromatin-associated protein, AKAP95, has a remarkable activity in enhancing chromatin transcription. In this study, we show that AKAP95 interacts with many factors involved in transcription and RNA processing, including selective groups of hnRNP proteins, through its N-terminal region, and directly regulates pre-mRNA splicing. AKAP95 binds preferentially to proximal intronic regions on pre-mRNAs in human transcriptome, and this binding requires its zinc-finger domains. By selectively coordinating with hnRNP H/F and U proteins, AKAP95 appears to mainly promote the inclusion of many exons in the genome. AKAP95 also directly interacts with itself. Taken together, our results establish AKAP95 as a mostly positive regulator of pre-mRNA splicing and a possible integrator of transcription and splicing regulation. The chromatin-associated protein AKAP95 is known for its chromatin-related functions including enhancing transcription. Here the authors show that AKAP95 interacts with the splicing regulatory factors as well as RNAs to regulate the inclusion of exons and pre-mRNA splicing.
Collapse
Affiliation(s)
- Jing Hu
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA
| | - Miaowei Mao
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kushani Shah
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA
| | - Zhenhua Yang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA
| | - Md Talat Nasim
- University of Bradford School of Pharmacy, Bradford BD7 1DP, UK
| | - Zefeng Wang
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA
| |
Collapse
|
50
|
López-Saavedra A, Gómez-Cabello D, Domínguez-Sánchez MS, Mejías-Navarro F, Fernández-Ávila MJ, Dinant C, Martínez-Macías MI, Bartek J, Huertas P. A genome-wide screening uncovers the role of CCAR2 as an antagonist of DNA end resection. Nat Commun 2016; 7:12364. [PMID: 27503537 PMCID: PMC4980490 DOI: 10.1038/ncomms12364] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/27/2016] [Indexed: 01/29/2023] Open
Abstract
There are two major and alternative pathways to repair DNA double-strand breaks: non-homologous end-joining and homologous recombination. Here we identify and characterize novel factors involved in choosing between these pathways; in this study we took advantage of the SeeSaw Reporter, in which the repair of double-strand breaks by homology-independent or -dependent mechanisms is distinguished by the accumulation of green or red fluorescence, respectively. Using a genome-wide human esiRNA (endoribonuclease-prepared siRNA) library, we isolate genes that control the recombination/end-joining ratio. Here we report that two distinct sets of genes are involved in the control of the balance between NHEJ and HR: those that are required to facilitate recombination and those that favour NHEJ. This last category includes CCAR2/DBC1, which we show inhibits recombination by limiting the initiation and the extent of DNA end resection, thereby acting as an antagonist of CtIP. A DNA double strand break can be repaired through either the non-homologous end-joining or the homologous recombination pathways. Here the authors conduct a genome-wide screen and identify a role for CCAR2 in pathway choice by regulating DNA end resection by CtIP.
Collapse
Affiliation(s)
- Ana López-Saavedra
- Departamento de Genética, Universidad de Sevilla, 41080 Sevilla, Spain.,Department of Regenerative Medicine, Centro Andaluz de Biología Molecular y Medicina Regenerativa, 41092 Sevilla, Spain
| | - Daniel Gómez-Cabello
- Department of Regenerative Medicine, Centro Andaluz de Biología Molecular y Medicina Regenerativa, 41092 Sevilla, Spain
| | - María Salud Domínguez-Sánchez
- Department of Regenerative Medicine, Centro Andaluz de Biología Molecular y Medicina Regenerativa, 41092 Sevilla, Spain
| | - Fernando Mejías-Navarro
- Departamento de Genética, Universidad de Sevilla, 41080 Sevilla, Spain.,Department of Regenerative Medicine, Centro Andaluz de Biología Molecular y Medicina Regenerativa, 41092 Sevilla, Spain
| | - María Jesús Fernández-Ávila
- Department of Regenerative Medicine, Centro Andaluz de Biología Molecular y Medicina Regenerativa, 41092 Sevilla, Spain
| | - Christoffel Dinant
- Genome Integrity Unit, Danish Cancer Society Research Centre, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - María Isabel Martínez-Macías
- Departamento de Genética, Universidad de Sevilla, 41080 Sevilla, Spain.,Department of Regenerative Medicine, Centro Andaluz de Biología Molecular y Medicina Regenerativa, 41092 Sevilla, Spain
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Centre, Strandboulevarden 49, 2100 Copenhagen, Denmark.,Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, 41080 Sevilla, Spain.,Department of Regenerative Medicine, Centro Andaluz de Biología Molecular y Medicina Regenerativa, 41092 Sevilla, Spain
| |
Collapse
|