1
|
Talavera-Soza S, Cobden L, Faul UH, Deuss A. Global 3D model of mantle attenuation using seismic normal modes. Nature 2025:10.1038/s41586-024-08322-y. [PMID: 39843752 DOI: 10.1038/s41586-024-08322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/31/2024] [Indexed: 01/24/2025]
Abstract
Seismic tomographic models based only on wave velocities have limited ability to distinguish between a thermal or compositional origin for Earth's 3D structure1. Complementing wave velocities with attenuation observations can make that distinction, which is fundamental for understanding mantle convection evolution. However, global 3D attenuation models are only available for the upper mantle at present2-5. Here we present a 3D global model of attenuation for the whole mantle made using whole-Earth oscillations, constraining even spherical harmonics up to degree four. In the upper mantle, we find that high attenuation correlates with low velocity, indicating a thermal origin, in agreement with previous studies6,7. In the lower mantle, we find the opposite and observe the highest attenuation in the 'ring around the Pacific', which is seismically fast, and the lowest attenuation in the large low-seismic-velocity provinces (LLSVPs). Comparing our model with wave speeds and attenuation predicted by a laboratory-based viscoelastic model8 suggests that the circum-Pacific is a colder and small-grain-size region9, surrounding the warmer and large-grain-size LLSVPs. Viscosities calculated for the inferred variations in grain size and temperature confirm LLSVPs as long-lived, stable features10.
Collapse
Affiliation(s)
| | - Laura Cobden
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ulrich H Faul
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY, USA
| | - Arwen Deuss
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Zhang L, Chen Y, Yang Z, Liu L, Yang Y, Dalladay-Simpson P, Wang J, Mao HK. Pressure stabilizes ferrous iron in bridgmanite under hydrous deep lower mantle conditions. Nat Commun 2024; 15:4333. [PMID: 38773099 PMCID: PMC11109188 DOI: 10.1038/s41467-024-48665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
Earth's lower mantle is a potential water reservoir. The physical and chemical properties of the region are in part controlled by the Fe3+/ΣFe ratio and total iron content in bridgmanite. However, the water effect on the chemistry of bridgmanite remains unclear. We carry out laser-heated diamond anvil cell experiments under hydrous conditions and observe dominant Fe2+ in bridgmanite (Mg, Fe)SiO3 above 105 GPa under the normal geotherm conditions corresponding to depth > 2300 km, whereas Fe3+-rich bridgmanite is obtained at lower pressures. We further observe FeO in coexistence with hydrous NiAs-type SiO2 under similar conditions, indicating that the stability of ferrous iron is a combined result of H2O effect and high pressure. The stability of ferrous iron in bridgmanite under hydrous conditions would provide an explanation for the nature of the low-shear-velocity anomalies in the deep lower mantle. In addition, entrainment from a hydrous dense layer may influence mantle plume dynamics and contribute to variations in the redox conditions of the mantle.
Collapse
Affiliation(s)
- Li Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China.
| | - Yongjin Chen
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Ziqiang Yang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Lu Liu
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Yanping Yang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | | | - Junyue Wang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Ho-Kwang Mao
- Shanghai Key Laboratory MFree, Institute for Shanghai Advanced Research in Physical Sciences, Shanghai, China
| |
Collapse
|
3
|
Yang Z, Song Z, Wu Z, Mao HK, Zhang L. Iron silicate perovskite and postperovskite in the deep lower mantle. Proc Natl Acad Sci U S A 2024; 121:e2401281121. [PMID: 38621121 PMCID: PMC11046576 DOI: 10.1073/pnas.2401281121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
Ferromagnesian silicates are the dominant constituents of the Earth's mantle, which comprise more than 80% of our planet by volume. To interpret the low shear-velocity anomalies in the lower mantle, we need to construct a reliable transformation diagram of ferromagnesian silicates over a wide pressure-temperature (P-T) range. While MgSiO3 in the perovskite structure has been extensively studied due to its dominance on Earth, phase transformations of iron silicates under the lower mantle conditions remain unresolved. In this study, we have obtained an iron silicate phase in the perovskite (Pv) structure using synthetic fayalite (Fe2SiO4) as the starting material under P-T conditions of the lower mantle. Chemical analyses revealed an unexpectedly high Fe/Si ratio of 1.72(3) for the Pv phase in coexistence with metallic iron particles, indicating incorporation of about 25 mol% Fe2O3 in the Pv phase with an approximate chemical formula (Fe2+0.75Fe3+0.25)(Fe3+0.25Si0.75)O3. We further obtained an iron silicate phase in the postperovskite (PPv) structure above 95 GPa. The calculated curves of compressional (VP) and shear velocity (VS) of iron silicate Pv and PPv as a function of pressure are nearly parallel to those of MgSiO3, respectively. To the best of our knowledge, the iron silicate Pv and PPv are the densest phases among all the reported silicates stable at P-T conditions of the lower mantle. The high ferric iron content in the silicate phase and the spin-crossover of ferric iron at the Si-site above ~55 GPa should be taken into account in order to interpret the seismic observations. Our results would provide crucial information for constraining the geophysical and geochemical models of the lower mantle.
Collapse
Affiliation(s)
- Ziqiang Yang
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Zijun Song
- Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Zhongqing Wu
- Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
- Chinese Academy of Sciences Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui233500, China
- National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Hefei, Anhui233500, China
| | - Ho-kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
- Shanghai Key Laboratory MFree, Institute for Shanghai Advanced Research in Physical Sciences, Shanghai201203, China
| | - Li Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| |
Collapse
|
4
|
Haggerty SE. Perovskite-bearing crystal-controlled oxide-silicate mantle xenoliths: Resolution to controversial origins? SCIENCE ADVANCES 2023; 9:eadg1910. [PMID: 37831775 PMCID: PMC10575582 DOI: 10.1126/sciadv.adg1910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
Classic lamellar clinopyroxene-ilmenite intergrowths (type 1) are extended to include discovery of olivine-ilmenite-perovskite-wüstite (type 2) and olivine-spinel-perovskite (type 3) xenoliths in kimberlites from Liberia. Low titanium solubilities in olivine, garnet, and pyroxene cannot account for exsolution-like relations. Because the oxides coexist with high-pressure perovskite-structured silicate minerals in diamond, a permissive conclusion is that type 1 to type 3 xenoliths are of super-deep origin. Phase equilibria and thermodynamic studies show that type 1 xenoliths are stable at P > 80 GPa, with type 2 and type 3 at 35 to 50 GPa consistent with an origin in anomalous large low shear velocity province bodies anchored at the core-mantle boundary. Dissociated precursor perovskite-structured Ca-Fe-Ti bridgmanite is proposed and is indirectly supported by the copresence of type II diamonds with a sublithospheric lower mantle origin.
Collapse
Affiliation(s)
- Stephen E. Haggerty
- Department of Earth and Environment, Florida International University, Miami, FL 33155, USA
| |
Collapse
|
5
|
Fei H, Ballmer MD, Faul U, Walte N, Cao W, Katsura T. Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump. Nature 2023; 620:794-799. [PMID: 37407826 PMCID: PMC10447242 DOI: 10.1038/s41586-023-06215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/12/2023] [Indexed: 07/07/2023]
Abstract
A viscosity jump of one to two orders of magnitude in the lower mantle of Earth at 800-1,200-km depth is inferred from geoid inversions and slab-subducting speeds. This jump is known as the mid-mantle viscosity jump1,2. The mid-mantle viscosity jump is a key component of lower-mantle dynamics and evolution because it decelerates slab subduction3, accelerates plume ascent4 and inhibits chemical mixing5. However, because phase transitions of the main lower-mantle minerals do not occur at this depth, the origin of the viscosity jump remains unknown. Here we show that bridgmanite-enriched rocks in the deep lower mantle have a grain size that is more than one order of magnitude larger and a viscosity that is at least one order of magnitude higher than those of the overlying pyrolitic rocks. This contrast is sufficient to explain the mid-mantle viscosity jump1,2. The rapid growth in bridgmanite-enriched rocks at the early stage of the history of Earth and the resulting high viscosity account for their preservation against mantle convection5-7. The high Mg:Si ratio of the upper mantle relative to chondrites8, the anomalous 142Nd:144Nd, 182W:184W and 3He:4He isotopic ratios in hot-spot magmas9,10, the plume deflection4 and slab stagnation in the mid-mantle3 as well as the sparse observations of seismic anisotropy11,12 can be explained by the long-term preservation of bridgmanite-enriched rocks in the deep lower mantle as promoted by their fast grain growth.
Collapse
Affiliation(s)
- Hongzhan Fei
- Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany.
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou, China.
| | - Maxim D Ballmer
- Department of Earth Sciences, University College London, London, UK
| | - Ulrich Faul
- Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Walte
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Garching, Germany
| | - Weiwei Cao
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), Orléans, France
| | - Tomoo Katsura
- Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany
- Center for High Pressure Science and Technology Advanced Research, Beijing, China
| |
Collapse
|
6
|
Deng X, Xu Y, Hao S, Ruan Y, Zhao Y, Wang W, Ni S, Wu Z. Compositional and thermal state of the lower mantle from joint 3D inversion with seismic tomography and mineral elasticity. Proc Natl Acad Sci U S A 2023; 120:e2220178120. [PMID: 37339202 PMCID: PMC10293858 DOI: 10.1073/pnas.2220178120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/17/2023] [Indexed: 06/22/2023] Open
Abstract
The compositional and thermal state of Earth's mantle provides critical constraints on the origin, evolution, and dynamics of Earth. However, the chemical composition and thermal structure of the lower mantle are still poorly understood. Particularly, the nature and origin of the two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle observed from seismological studies are still debated. In this study, we inverted for the 3D chemical composition and thermal state of the lower mantle based on seismic tomography and mineral elasticity data by employing a Markov chain Monte Carlo framework. The results show a silica-enriched lower mantle with a Mg/Si ratio less than ~1.16, lower than that of the pyrolitic upper mantle (Mg/Si = 1.3). The lateral temperature distributions can be described by a Gaussian distribution with a standard deviation (SD) of 120 to 140 K at 800 to 1,600 km and the SD increases to 250 K at 2,200 km depth. However, the lateral distribution in the lowermost mantle does not follow the Gaussian distribution. We found that the velocity heterogeneities in the upper lower mantle mainly result from thermal anomalies, while those in the lowermost mantle mainly result from compositional or phase variations. The LLSVPs have higher density at the base and lower density above the depth of ~2,700 km than the ambient mantle, respectively. The LLSVPs are found to have ~500 K higher temperature, higher Bridgmanite and iron content than the ambient mantle, supporting the hypothesis that the LLSVPs may originate from an ancient basal magma ocean formed in Earth's early history.
Collapse
Affiliation(s)
- Xin Deng
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Yinhan Xu
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Shangqin Hao
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
- Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92092
| | - Youyi Ruan
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu210023, China
- Institute of Earth Exploration and Sensing, Nanjing University, Nanjing, Jiangsu210023, China
| | - Yajie Zhao
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Wenzhong Wang
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
- Chinese Academy of Sciences, Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui233500, China
- National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Hefei, Anhui233500, China
| | - Sidao Ni
- State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei430077, China
| | - Zhongqing Wu
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
- Chinese Academy of Sciences, Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui233500, China
- National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Hefei, Anhui233500, China
| |
Collapse
|
7
|
Rashk-E-Eram, Mukherjee K, Saha A, Bhattacharjee S, Mallick A, Sarkar B. Nanoscale iron for sustainable aquaculture and beyond. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Constraining composition and temperature variations in the mantle transition zone. Nat Commun 2022; 13:1094. [PMID: 35232983 PMCID: PMC8888558 DOI: 10.1038/s41467-022-28709-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
The mantle transition zone connects two major layers of Earth’s interior that may be compositionally distinct: the upper mantle and the lower mantle. Wadsleyite is a major mineral in the upper mantle transition zone. Here, we measure the single-crystal elastic properties of hydrous Fe-bearing wadsleyite at high pressure-temperature conditions by Brillouin spectroscopy. Our results are then used to model the global distribution of wadsleyite proportion, temperature, and water content in the upper mantle transition zone by integrating mineral physics data with global seismic observations. Our models show that the upper mantle transition zone near subducted slabs is relatively cold, enriched in wadsleyite, and slightly more hydrated compared to regions where plumes are expected. This study provides direct evidence for the thermochemical heterogeneities in the upper mantle transition zone which is important for understanding the material exchange processes between the upper and lower mantle. A new study by @JinZhang_MP models the global distribution of wadsleyite proportion, temperature and water content in the upper mantle transition zone.
Collapse
|
9
|
Zhang JS, Irifune T, Hao M, Zhang D, Hu Y, Tkachev S, Dera P, Chen J, Jiang YB, Brearley AJ, Bass JD, Prakapenka V. Grain size dependent high-pressure elastic properties of ultrafine micro/nanocrystalline grossular. Sci Rep 2021; 11:22481. [PMID: 34795364 PMCID: PMC8602367 DOI: 10.1038/s41598-021-01960-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
We have performed sound velocity and unit cell volume measurements of three synthetic, ultrafine micro/nanocrystalline grossular samples up to 50 GPa using Brillouin spectroscopy and synchrotron X-ray diffraction. The samples are characterized by average grain sizes of 90 nm, 93 nm and 179 nm (hereinafter referred to as samples Gr90, Gr93, and Gr179, respectively). The experimentally determined sound velocities and elastic properties of Gr179 sample are comparable with previous measurements, but slightly higher than those of Gr90 and Gr93 under ambient conditions. However, the differences diminish with increasing pressure, and the velocity crossover eventually takes place at approximately 20-30 GPa. The X-ray diffraction peaks of the ultrafine micro/nanocrystalline grossular samples significantly broaden between 15-40 GPa, especially for Gr179. The velocity or elasticity crossover observed at pressures over 30 GPa might be explained by different grain size reduction and/or inhomogeneous strain within the individual grains for the three grossular samples, which is supported by both the pressure-induced peak broadening observed in the X-ray diffraction experiments and transmission electron microscopy observations. The elastic behavior of ultrafine micro/nanocrystalline silicates, in this case, grossular, is both grain size and pressure dependent.
Collapse
Affiliation(s)
- Jin S. Zhang
- grid.266832.b0000 0001 2188 8502Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131 USA ,grid.266832.b0000 0001 2188 8502Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 USA
| | - T. Irifune
- grid.255464.40000 0001 1011 3808Geodynamics Research Center (GRC), Ehime University, Matsuyama, Ehime 790-8577 Japan
| | - M. Hao
- grid.266832.b0000 0001 2188 8502Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 USA
| | - D. Zhang
- grid.170205.10000 0004 1936 7822Center of Advanced Radiation Sources, University of Chicago, Chicago, IL 60637 USA ,grid.410445.00000 0001 2188 0957Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI 96822 USA
| | - Y. Hu
- grid.410445.00000 0001 2188 0957Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI 96822 USA
| | - S. Tkachev
- grid.170205.10000 0004 1936 7822Center of Advanced Radiation Sources, University of Chicago, Chicago, IL 60637 USA
| | - P. Dera
- grid.410445.00000 0001 2188 0957Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI 96822 USA
| | - J. Chen
- grid.59053.3a0000000121679639School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Ying-Bing Jiang
- grid.266832.b0000 0001 2188 8502Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 USA
| | - Adrian J. Brearley
- grid.266832.b0000 0001 2188 8502Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 USA
| | - J. D. Bass
- grid.35403.310000 0004 1936 9991Department of Geology, University of Illinois, Urbana, 61801 USA
| | - V. Prakapenka
- grid.170205.10000 0004 1936 7822Center of Advanced Radiation Sources, University of Chicago, Chicago, IL 60637 USA
| |
Collapse
|
10
|
Experimental evidence for silica-enriched Earth's lower mantle with ferrous iron dominant bridgmanite. Proc Natl Acad Sci U S A 2020; 117:27899-27905. [PMID: 33093206 DOI: 10.1073/pnas.1917096117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Determination of the chemical composition of the Earth's mantle is of prime importance to understand the evolution, dynamics, and origin of the Earth. However, there is a lack of experimental data on sound velocity of iron-bearing Bridgmanite (Brd) under relevant high-pressure conditions of the whole mantle, which prevents constraints on the mineralogical model of the lower mantle. To uncover these issues, we have conducted sound-velocity measurement of iron-bearing Brd in a diamond-anvil cell (DAC) up to 124 GPa using Brillouin scattering spectroscopy. Here we show that the sound velocities of iron-bearing Brd throughout the whole pressure range of lower mantle exhibit an apparent linear reduction with the iron content. Our data fit remarkably with the seismic structure throughout the lower mantle with Fe2+-enriched Brd, indicating that the greater part of the lower mantle could be occupied by Fe2+-enriched Brd. Our lower-mantle model shows a distinctive Si-enriched composition with Mg/Si of 1.14 relative to the upper mantle (Mg/Si = 1.25), which implies that the mantle convection has been inefficient enough to chemically homogenize the Earth's whole mantle.
Collapse
|
11
|
Thomson AR, Crichton WA, Brodholt JP, Wood IG, Siersch NC, Muir JMR, Dobson DP, Hunt SA. Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth’s lower mantle. Nature 2019; 572:643-647. [DOI: 10.1038/s41586-019-1483-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/06/2019] [Indexed: 11/09/2022]
|
12
|
Hydrous magnesium-rich magma genesis at the top of the lower mantle. Sci Rep 2019; 9:7420. [PMID: 31092856 PMCID: PMC6520349 DOI: 10.1038/s41598-019-43949-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/02/2019] [Indexed: 11/08/2022] Open
Abstract
Several igneous activities occur on the surface of the Earth, including island arcs, mid-ocean ridges and hot spots. Based on geophysical observations, melting phenomena in the interior also occur at the asthenosphere’s top and the upper mantle’s bottom. Additionally, a seismological low-velocity anomaly was observed at the top of the lower mantle that may result from mantle melting due to dehydration decomposition of ringwoodite to bridgmanite and ferropericlase with a downward flow. However, the corresponding high-pressure experimental data are too poor to understand the melting phenomena under the lower mantle condition. Herein, we conducted hydrous peridotite melting experiments at pressures from 23.5 to 26 GPa and at temperatures from 1300 to 1600 °C for demonstrating the melt composition and the gravitational stability of magma at the top of the lower mantle. The melt had a SiO2-poor and MgO-rich composition, which is completely different than that of dry peridotite melting experiments. Compared with the seismological lower mantle, the experimental melt is gravitationally lighter; thus, a similar melt could be observed as seismological low-velocity zone at the lower mantle’s top. The generated magma plays as a filter of down-welling mantle and can contribute to a formation of a silicate perovskitic lower mantle.
Collapse
|
13
|
Le Donne A, Trifiletti V, Binetti S. New Earth-Abundant Thin Film Solar Cells Based on Chalcogenides. Front Chem 2019; 7:297. [PMID: 31114786 PMCID: PMC6502903 DOI: 10.3389/fchem.2019.00297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/11/2019] [Indexed: 11/13/2022] Open
Abstract
At the end of 2017 roughly 1.8% of the worldwide electricity came from solar photovoltaics (PV), which is foreseen to have a key role in all major future energy scenarios with an installed capacity around 5 TW by 2050. Despite silicon solar cells currently rule the PV market, the extremely more versatile thin film-based devices (mainly Cu(In,Ga)Se2 and CdTe ones) have almost matched them in performance and present room for improvement. The low availability of some elements in the present commercially available PV technologies and the recent strong fall of silicon module price below 1 $/Wp focused the attention of the scientific community on cheap earth-abundant materials. In this framework, thin film solar cells based on Cu2ZnSnS4 (CZTS) and the related sulfur selenium alloy Cu2ZnSn(S,Se)4 (CZTSSe) were strongly investigated in the last 10 years. More recently, chalcogenide PV absorbers potentially able to face TW range applications better than CZTS and CZTSSe due to the higher abundance of their constituting elements are getting considerable attention. They are based on both MY2 (where M = Fe, Cu, Sn and Y = S and/or Se) and Cu2XSnY4 (where X = Fe, Mn, Ni, Ba, Co, Cd and Y = S and/or Se) chalcogenides. In this work, an extensive review of emerging earth-abundant thin film solar cells based on both MY2 and Cu2XSnY4 species is given, along with some considerations on the abundance and annual production of their constituting elements.
Collapse
Affiliation(s)
| | | | - Simona Binetti
- Department of Materials Science and MIBSOLAR Center, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
14
|
Wu W, Ni S, Irving JCE. Inferring Earth's discontinuous chemical layering from the 660-kilometer boundary topography. Science 2019; 363:736-740. [PMID: 30765566 DOI: 10.1126/science.aav0822] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/02/2019] [Indexed: 11/02/2022]
Abstract
Topography, or depth variation, of certain interfaces in the solid Earth can provide important insights into the dynamics of our planet interior. Although the intermediate- and long-range topographic variation of the 660-kilometer boundary between Earth's upper and lower mantle is well studied, small-scale measurements are far more challenging. We found a surprising amount of topography at short length scale along the 660-kilometer boundary in certain regions using scattered P'P' seismic waves. Our observations required chemical layering in regions with high short-scale roughness. By contrast, we did not see such small-scale topography along the 410-kilometer boundary in the upper mantle. Our findings support the concept of partially blocked or imperfect circulation between the upper and lower mantle.
Collapse
Affiliation(s)
- Wenbo Wu
- State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China.,Department of Geosciences, Princeton University, Princeton, NJ 08544, USA.,School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Sidao Ni
- State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China.
| | - Jessica C E Irving
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
15
|
|
16
|
|
17
|
Smith D, Smith JS, Childs C, Rod E, Hrubiak R, Shen G, Salamat A. A CO 2 laser heating system for in situ high pressure-temperature experiments at HPCAT. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:083901. [PMID: 30184683 DOI: 10.1063/1.5040508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
We present a CO2 laser heating setup for synchrotron x-ray diffraction inside a diamond anvil cell, situated at HPCAT (Sector 16, Advanced Photon Source, Argonne National Lab, Illinois, USA), which is modular and portable between the HPCAT experiment hutches. The system allows direct laser heating of wide bandgap insulating materials to thousands of degrees at static high pressures up to the Mbar regime. Alignment of the focused CO2 laser spot is performed using a mid-infrared microscope, which addressed past difficulties with aligning the invisible radiation. The implementation of the mid-infrared microscope alongside a mirror pinhole spatial filter system allows precise alignment of the heating laser spot and optical pyrometry measurement location to the x-ray probe. A comparatively large heating spot (∼50 μm) relative to the x-ray beam (<10 μm) reduces the risk of temperature gradients across the probed area. Each component of the heating system and its diagnostics have been designed with portability in mind and compatibility with the various experimental hutches at the HPCAT beamlines. We present measurements on ZrO2 at 5.5 GPa which demonstrate the improved room-temperature diffraction data quality afforded by annealing with the CO2 laser. We also present in situ measurements at 5.5 GPa up to 2800 K in which we do not observe the postulated fluorite ZrO2 structure, in agreement with recent findings.
Collapse
Affiliation(s)
- Dean Smith
- Department of Physics and Astronomy and HiPSEC, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| | - Jesse S Smith
- High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, USA
| | - Christian Childs
- Department of Physics and Astronomy and HiPSEC, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| | - Eric Rod
- High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, USA
| | - Rostislav Hrubiak
- High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, USA
| | - Guoyin Shen
- High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, USA
| | - Ashkan Salamat
- Department of Physics and Astronomy and HiPSEC, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| |
Collapse
|
18
|
Abstract
Perovskite minerals form an essential component of the Earth's mantle, and synthetic crystals are ubiquitous in electronics, photonics, and energy technology. The extraordinary chemical diversity of these crystals raises the question of how many and which perovskites are yet to be discovered. Here we show that the "no-rattling" principle postulated by Goldschmidt in 1926, describing the geometric conditions under which a perovskite can form, is much more effective than previously thought and allows us to predict perovskites with a fidelity of 80%. By supplementing this principle with inferential statistics and internet data mining we establish that currently known perovskites are only the tip of the iceberg, and we enumerate 90,000 hitherto-unknown compounds awaiting to be studied. Our results suggest that geometric blueprints may enable the systematic screening of millions of compounds and offer untapped opportunities in structure prediction and materials design.
Collapse
Affiliation(s)
- Marina R Filip
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Feliciano Giustino
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom;
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
| |
Collapse
|
19
|
Valence and spin states of iron are invisible in Earth's lower mantle. Nat Commun 2018; 9:1284. [PMID: 29599446 PMCID: PMC5876394 DOI: 10.1038/s41467-018-03671-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 03/05/2018] [Indexed: 11/09/2022] Open
Abstract
Heterogeneity in Earth's mantle is a record of chemical and dynamic processes over Earth's history. The geophysical signatures of heterogeneity can only be interpreted with quantitative constraints on effects of major elements such as iron on physical properties including density, compressibility, and electrical conductivity. However, deconvolution of the effects of multiple valence and spin states of iron in bridgmanite (Bdg), the most abundant mineral in the lower mantle, has been challenging. Here we show through a study of a ferric-iron-only (Mg0.46Fe3+0.53)(Si0.49Fe3+0.51)O3 Bdg that Fe3+ in the octahedral site undergoes a spin transition between 43 and 53 GPa at 300 K. The resolved effects of the spin transition on density, bulk sound velocity, and electrical conductivity are smaller than previous estimations, consistent with the smooth depth profiles from geophysical observations. For likely mantle compositions, the valence state of iron has minor effects on density and sound velocities relative to major cation composition.
Collapse
|
20
|
Global observations of reflectors in the mid-mantle with implications for mantle structure and dynamics. Nat Commun 2018; 9:385. [PMID: 29374158 PMCID: PMC5786065 DOI: 10.1038/s41467-017-02709-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 12/20/2017] [Indexed: 11/11/2022] Open
Abstract
Seismic tomography indicates that flow is commonly deflected in the mid-mantle. However, without a candidate mineral phase change, causative mechanisms remain controversial. Deflection of flow has been linked to radial changes in viscosity and/or composition, but a lack of global observations precludes comprehensive tests by seismically detectable features. Here we perform a systematic global-scale interrogation of mid-mantle seismic reflectors with lateral size 500–2000 km and depths 800–1300 km. Reflectors are detected globally with variable depth, lateral extent and seismic polarity and identify three distinct seismic domains in the mid-mantle. Near-absence of reflectors in seismically fast regions may relate to dominantly subvertical heterogeneous slab material or small impedance contrasts. Seismically slow thermochemical piles beneath the Pacific generate numerous reflections. Large reflectors at multiple depths within neutral regions possibly signify a compositional or textural transition, potentially linked to long-term slab stagnation. This variety of reflector properties indicates widespread compositional heterogeneity at mid-mantle depths. The Earth’s mantle undergoes changes as temperature and pressure increase with depth. Here, the authors present a global interrogation of reflectors in the Earth’s mid-mantle revealing a significant variation in their properties, with widespread compositional heterogeneity and seismic velocity in the mid-mantle, which signify contrasting styles of mantle flow.
Collapse
|
21
|
Girard A, Ramade J, Margueritat J, Machon D, Saviot L, Demoisson F, Mermet A. Contact laws between nanoparticles: the elasticity of a nanopowder. NANOSCALE 2018; 10:2154-2161. [PMID: 29327007 DOI: 10.1039/c7nr07540e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Studies of the mechanical contact between nanometer-scale particles provide fundamental insights into the mechanical properties of materials and the validity of contact laws at the nanoscale which are still under debate for contact surfaces approaching atomic dimensions. Using in situ Brillouin light scattering under high pressure, we show that effective medium theories successfully predict the macroscopic sound velocities in nanopowders if one takes into account the cementation of the contacts Our measurements suggest the relevance of the continuum approach and effective medium theories to describe the contact between nanoparticles of diameters as small as 4 nm, i.e. with radii of contact of a few angstroms. In particular, we demonstrate that the mechanical properties of nanopowders strongly depend on the surface state of the nanoparticles. The presence of molecular adsorbates modifies significantly the contact laws.
Collapse
Affiliation(s)
- Adrien Girard
- Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5306, 69622 Villeurbanne, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Kei Hirose
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Ryosuke Sinmyo
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - John Hernlund
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
23
|
Unexpected 3+ valence of iron in FeO 2, a geologically important material lying "in between" oxides and peroxides. Sci Rep 2017; 7:13005. [PMID: 29021556 PMCID: PMC5636914 DOI: 10.1038/s41598-017-13312-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/21/2017] [Indexed: 11/08/2022] Open
Abstract
Recent discovery of the pyrite FeO2, which can be an important ingredient of the Earth’s lower mantle and which in particular may serve as an extra source of water in the Earth’s interior, opens new perspectives for geophysics and geochemistry, but this is also an extremely interesting material from physical point of view. We found that in contrast to naive expectations Fe is nearly 3+ in this material, which strongly affects its magnetic properties and makes it qualitatively different from well known sulfide analogue - FeS2. Doping, which is most likely to occur in the Earth’s mantle, makes FeO2 much more magnetic. In addition we show that unique electronic structure places FeO2 “in between” the usual dioxides and peroxides making this system interesting both for physics and solid state chemistry.
Collapse
|
24
|
Fukui H, Baron AQR, Ishikawa D, Uchiyama H, Ohishi Y, Tsuchiya T, Kobayashi H, Matsuzaki T, Yoshino T, Katsura T. Pressure dependence of transverse acoustic phonon energy in ferropericlase across the spin transition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:245401. [PMID: 28452741 DOI: 10.1088/1361-648x/aa7026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigated transverse acoustic (TA) phonons in iron-bearing magnesium oxide (ferropericlase) up to 56 GPa using inelastic x-ray scattering (IXS). The results show that the energy of the TA phonon far from the Brillouin zone center suddenly increases with increasing pressure above the spin transition pressure of ferropericlase. Ab initio calculations revealed that the TA phonon energy far from the Brillouin zone center is higher in the low-spin state than in the high spin state; that the TA phonon energy depend weakly on pressure; and that the energy gap between the TA and the lowest-energy-optic phonons is much narrower in the low-spin state than in the high-spin state. This allows us to conclude that the anomalous behavior of the TA mode in the present experiments is the result of gap narrowing due to the spin transition and explains contradictory results in previous experimental studies.
Collapse
Affiliation(s)
- Hiroshi Fukui
- Center for Novel Material Science under Multi-Extreme Conditions, Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo 678-1297, Japan. Materials Dynamics Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions. Proc Natl Acad Sci U S A 2017; 114:6468-6473. [PMID: 28584106 DOI: 10.1073/pnas.1614036114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our current understanding of the electronic state of iron in lower-mantle minerals leads to a considerable disagreement in bulk sound speed with seismic measurements if the lower mantle has the same composition as the upper mantle (pyrolite). In the modeling studies, the content and oxidation state of Fe in the minerals have been assumed to be constant throughout the lower mantle. Here, we report high-pressure experimental results in which Fe becomes dominantly Fe2+ in bridgmanite synthesized at 40-70 GPa and 2,000 K, while it is in mixed oxidation state (Fe3+/∑Fe = 60%) in the samples synthesized below and above the pressure range. Little Fe3+ in bridgmanite combined with the strong partitioning of Fe2+ into ferropericlase will alter the Fe content for these minerals at 1,100- to 1,700-km depths. Our calculations show that the change in iron content harmonizes the bulk sound speed of pyrolite with the seismic values in this region. Our experiments support no significant changes in bulk composition for most of the mantle, but possible changes in physical properties and processes (such as viscosity and mantle flow patterns) in the midmantle.
Collapse
|
26
|
Evidence for a Fe3+-rich pyrolitic lower mantle from (Al,Fe)-bearing bridgmanite elasticity data. Nature 2017; 543:543-546. [DOI: 10.1038/nature21390] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/12/2017] [Indexed: 11/08/2022]
|
27
|
Irifune T, Kawakami K, Arimoto T, Ohfuji H, Kunimoto T, Shinmei T. Pressure-induced nano-crystallization of silicate garnets from glass. Nat Commun 2016; 7:13753. [PMID: 27924866 PMCID: PMC5151095 DOI: 10.1038/ncomms13753] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/26/2016] [Indexed: 11/23/2022] Open
Abstract
Transparent ceramics are important for scientific and industrial applications because of the superior optical and mechanical properties. It has been suggested that optical transparency and mechanical strength are substantially enhanced if transparent ceramics with nano-crystals are available. However, synthesis of the highly transparent nano-crystalline ceramics has been difficult using conventional sintering techniques at relatively low pressures. Here we show direct conversion from bulk glass starting material in mutianvil high-pressure apparatus leads to pore-free nano-polycrystalline silicate garnet at pressures above ∼10 GPa in a limited temperature range around 1,400 °C. The synthesized nano-polycrystalline garnet is optically as transparent as the single crystal for almost the entire visible light range and harder than the single crystal by ∼30%. The ultrahigh-pressure conversion technique should provide novel functional ceramics having various crystal structures, including those of high-pressure phases, as well as ideal specimens for some mineral physics applications.
It is suggested that the optical and mechanical properties of transparent ceramics become very favourable if they can be synthesized as nanocrystals. Here, the authors report direct conversion of bulk glass starting material to pore-free nano-polycrystalline silicate garnet at high pressure and temperature.
Collapse
Affiliation(s)
- T Irifune
- Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan.,Earth Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - K Kawakami
- Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
| | - T Arimoto
- Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
| | - H Ohfuji
- Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
| | - T Kunimoto
- Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
| | - T Shinmei
- Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
28
|
Fukui H, Yoneda A, Nakatsuka A, Tsujino N, Kamada S, Ohtani E, Shatskiy A, Hirao N, Tsutsui S, Uchiyama H, Baron AQR. Effect of cation substitution on bridgmanite elasticity: A key to interpret seismic anomalies in the lower mantle. Sci Rep 2016; 6:33337. [PMID: 27642083 PMCID: PMC5027542 DOI: 10.1038/srep33337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/24/2016] [Indexed: 12/04/2022] Open
Abstract
Seismological observations show that, in some regions of the lower mantle, an increase in bulk sound velocity, interestingly, occurs in the same volume where there is a decrease in shear velocity. We show that this anti-correlated behavior occurs on cation substitution in bridgmanite by making single crystal elasticity measurements of MgSiO3 and (Mg,Fe,Al)(Si,Al)O3 using inelastic x-ray scattering in the ambient conditions. Cation substitution of ferrous iron and aluminum may explain large low shear velocity provinces in the lower mantle.
Collapse
Affiliation(s)
- Hiroshi Fukui
- Center for Novel Material Science under Multi-Extreme Conditions, Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo 678-1297, Japan.,Materials Dynamics Laboratory, RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 689-5148, Japan
| | - Akira Yoneda
- Institute for Planetary Materials, Okayama University, 827 Yamada, Misasa, Tottori 682-0193, Japan
| | - Akihiko Nakatsuka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Noriyoshi Tsujino
- Institute for Planetary Materials, Okayama University, 827 Yamada, Misasa, Tottori 682-0193, Japan
| | - Seiji Kamada
- Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, Miyagi 980-8578, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai, Miyagi 980-8578, Japan
| | - Eiji Ohtani
- Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, Miyagi 980-8578, Japan.,V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anton Shatskiy
- V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Naohisa Hirao
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 689-5198, Japan
| | - Satoshi Tsutsui
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 689-5198, Japan
| | - Hiroshi Uchiyama
- Materials Dynamics Laboratory, RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 689-5148, Japan.,Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 689-5198, Japan
| | - Alfred Q R Baron
- Materials Dynamics Laboratory, RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 689-5148, Japan.,Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 689-5198, Japan
| |
Collapse
|
29
|
Ismailova L, Bykova E, Bykov M, Cerantola V, McCammon C, Boffa Ballaran T, Bobrov A, Sinmyo R, Dubrovinskaia N, Glazyrin K, Liermann HP, Kupenko I, Hanfland M, Prescher C, Prakapenka V, Svitlyk V, Dubrovinsky L. Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite. SCIENCE ADVANCES 2016; 2:e1600427. [PMID: 27453945 PMCID: PMC4956391 DOI: 10.1126/sciadv.1600427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/16/2016] [Indexed: 06/06/2023]
Abstract
The physical and chemical properties of Earth's mantle, as well as its dynamics and evolution, heavily depend on the phase composition of the region. On the basis of experiments in laser-heated diamond anvil cells, we demonstrate that Fe,Al-bearing bridgmanite (magnesium silicate perovskite) is stable to pressures over 120 GPa and temperatures above 3000 K. Ferric iron stabilizes Fe-rich bridgmanite such that we were able to synthesize pure iron bridgmanite at pressures between ~45 and 110 GPa. The compressibility of ferric iron-bearing bridgmanite is significantly different from any known bridgmanite, which has direct implications for the interpretation of seismic tomography data.
Collapse
Affiliation(s)
- Leyla Ismailova
- Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany
- Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Elena Bykova
- Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Maxim Bykov
- Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Valerio Cerantola
- Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - Catherine McCammon
- Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany
| | | | - Andrei Bobrov
- Department of Petrology, Geological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Ryosuke Sinmyo
- Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany
| | | | - Konstantin Glazyrin
- Photon Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Hanns-Peter Liermann
- Photon Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Ilya Kupenko
- Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
- Institut für Mineralogie, University of Münster, Corrensstrasse 24, 48149 Münster, Germany
| | - Michael Hanfland
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - Clemens Prescher
- Center for Advanced Radiation Sources, University of Chicago, 9700 South Cass Avenue, Argonne, IL 60437, USA
| | - Vitali Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, 9700 South Cass Avenue, Argonne, IL 60437, USA
| | - Volodymyr Svitlyk
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
30
|
Tealdi C, Lavrentiev MY, Mohn CE, Allan NL. Perovskite solid solutions–a Monte Carlo study of the deep earth analogue (K, Na)MgF3. J STRUCT CHEM+ 2016. [DOI: 10.1134/s0022476616020037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Huang X, Li F, Zhou Q, Meng Y, Litasov KD, Wang X, Liu B, Cui T. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells. Sci Rep 2016; 6:19923. [PMID: 26883479 PMCID: PMC4756333 DOI: 10.1038/srep19923] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/21/2015] [Indexed: 11/21/2022] Open
Abstract
Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Grüneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem. B 114, 298 (2010)). These high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.
Collapse
Affiliation(s)
- Xiaoli Huang
- State Key Lab of Superhard Materials, College of physics, Jilin University Changchun 130012, P.R. China
| | - Fangfei Li
- State Key Lab of Superhard Materials, College of physics, Jilin University Changchun 130012, P.R. China
| | - Qiang Zhou
- State Key Lab of Superhard Materials, College of physics, Jilin University Changchun 130012, P.R. China
| | - Yue Meng
- High-Pressure Collaborative Access Team, Argonne National Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, USA
| | - Konstantin D Litasov
- Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia.,V. S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090, Russia
| | - Xin Wang
- State Key Lab of Superhard Materials, College of physics, Jilin University Changchun 130012, P.R. China
| | - Bingbing Liu
- State Key Lab of Superhard Materials, College of physics, Jilin University Changchun 130012, P.R. China
| | - Tian Cui
- State Key Lab of Superhard Materials, College of physics, Jilin University Changchun 130012, P.R. China
| |
Collapse
|
32
|
Elasticity of Ferropericlase across the Spin Crossover in the Earth's Lower Mantle. Sci Rep 2015; 5:17188. [PMID: 26621579 PMCID: PMC4664863 DOI: 10.1038/srep17188] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022] Open
Abstract
Knowing the elasticity of ferropericlase across the spin transition can help explain seismic and mineralogical models of the lower-mantle including the origin of seismic heterogeneities in the middle to lowermost parts of the lower mantle1234. However, the effects of spin transition on full elastic constants of ferropericlase remain experimentally controversial due to technical challenges in directly measuring sound velocities under lower-mantle conditions12345. Here we have reliably measured both VP and VS of a single-crystal ferropericlase ((Mg0.92,Fe0.08)O) using complementary Brillouin Light Scattering and Impulsive Stimulated Light Scattering coupled with a diamond anvil cell up to 96 GPa. The derived elastic constants show drastically softened C11 and C12 within the spin transition at 40–60 GPa while C44 is not affected. The spin transition is associated with a significant reduction of the aggregate VP/VS via the aggregate VP softening because VS softening does not visibly occur within the transition. Based on thermoelastic modelling along an expected geotherm, the spin crossover in ferropericlase can contribute to 2% reduction in VP/VS in a pyrolite mineralogical model in mid lower-mantle. Our results imply that the middle to lowermost parts of the lower-mantle would exhibit enhanced seismic heterogeneities due to the occurrence of the mixed-spin and low-spin ferropericlase.
Collapse
|
33
|
Ballmer MD, Schmerr NC, Nakagawa T, Ritsema J. Compositional mantle layering revealed by slab stagnation at ~1000-km depth. SCIENCE ADVANCES 2015; 1:e1500815. [PMID: 26824060 PMCID: PMC4730845 DOI: 10.1126/sciadv.1500815] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/21/2015] [Indexed: 06/02/2023]
Abstract
Improved constraints on lower-mantle composition are fundamental to understand the accretion, differentiation, and thermochemical evolution of our planet. Cosmochemical arguments indicate that lower-mantle rocks may be enriched in Si relative to upper-mantle pyrolite, whereas seismic tomography images suggest whole-mantle convection and hence appear to imply efficient mantle mixing. This study reconciles cosmochemical and geophysical constraints using the stagnation of some slab segments at ~1000-km depth as the key observation. Through numerical modeling of subduction, we show that lower-mantle enrichment in intrinsically dense basaltic lithologies can render slabs neutrally buoyant in the uppermost lower mantle. Slab stagnation (at depths of ~660 and ~1000 km) and unimpeded slab sinking to great depths can coexist if the basalt fraction is ~8% higher in the lower mantle than in the upper mantle, equivalent to a lower-mantle Mg/Si of ~1.18. Global-scale geodynamic models demonstrate that such a moderate compositional gradient across the mantle can persist can in the presence of whole-mantle convection.
Collapse
Affiliation(s)
- Maxim D. Ballmer
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan
- School of Ocean and Earth Sciences and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | - Takashi Nakagawa
- Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan
| | - Jeroen Ritsema
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Boujibar A, Andrault D, Bolfan-Casanova N, Bouhifd MA, Monteux J. Cosmochemical fractionation by collisional erosion during the Earth's accretion. Nat Commun 2015; 6:8295. [PMID: 26395157 PMCID: PMC4667431 DOI: 10.1038/ncomms9295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/07/2015] [Indexed: 11/09/2022] Open
Abstract
Early in the Solar System's history, energetic collisions of differentiated bodies affected the final composition of the terrestrial planets through partial destruction. Enstatite chondrites (EC) are the best candidates to represent the primordial terrestrial precursors as they present the most similar isotopic compositions to Earth. Here we report that collisional erosion of >15% of the early Earth's mass can reconcile the remaining compositional differences between EC and the Earth. We base our demonstration on experimental melting of an EC composition at pressures between 1 bar and 25 GPa. At low pressures, the first silicate melts are highly enriched in incompatible elements Si, Al and Na, and depleted in Mg. Loss of proto-crusts through impacts raises the Earth's Mg/Si ratio to its present value. To match all major element compositions, our model implies preferential loss of volatile lithophile elements and re-condensation of refractory lithophile elements after the impacts.
Collapse
Affiliation(s)
- Asmaa Boujibar
- Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS UMR-6524, 5 rue Kessler, 63000 Clermont-Ferrand, France
| | - Denis Andrault
- Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS UMR-6524, 5 rue Kessler, 63000 Clermont-Ferrand, France
| | - Nathalie Bolfan-Casanova
- Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS UMR-6524, 5 rue Kessler, 63000 Clermont-Ferrand, France
| | - Mohamed Ali Bouhifd
- Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS UMR-6524, 5 rue Kessler, 63000 Clermont-Ferrand, France
| | - Julien Monteux
- Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS UMR-6524, 5 rue Kessler, 63000 Clermont-Ferrand, France
| |
Collapse
|
35
|
Zhang JS, Bass JD, Zhu G. Single-crystal Brillouin spectroscopy with CO2 laser heating and variable q. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:063905. [PMID: 26133848 DOI: 10.1063/1.4922634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
We describe a Brillouin spectroscopy system integrated with CO2 laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ∼13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (∼141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm).
Collapse
Affiliation(s)
- Jin S Zhang
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jay D Bass
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gaohua Zhu
- Materials Research Department, Toyota Research Institute of North America, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
36
|
Marik S, Labrugere C, Toulemonde O, Morán E, Alario-Franco MA. Core-level photoemission spectra of Mo0.3Cu0.7Sr2ErCu2Oy, a superconducting perovskite derivative. Unconventional structure–property relationships. Dalton Trans 2015; 44:10795-805. [DOI: 10.1039/c5dt00459d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The correlation between the critical temperature, Tc, and the apical oxygen distance, the buckling angle and the charge transfer energy (Δ) with the oxidation, in the family of materials: Mo0.3Cu0.7Sr2ErCu2Oy.
Collapse
Affiliation(s)
- Sourav Marik
- Dpto. Química Inorgánica
- Facultad de CC.Químicas
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | | | | | - Emilio Morán
- Dpto. Química Inorgánica
- Facultad de CC.Químicas
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | - M. A. Alario-Franco
- Dpto. Química Inorgánica
- Facultad de CC.Químicas
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| |
Collapse
|
37
|
Gilioli E, Ehm L. High pressure and multiferroics materials: a happy marriage. IUCRJ 2014; 1:590-603. [PMID: 25485138 PMCID: PMC4224476 DOI: 10.1107/s2052252514020569] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/14/2014] [Indexed: 05/26/2023]
Abstract
The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities.
Collapse
Affiliation(s)
| | - Lars Ehm
- Mineral Physics Institute, Stony Brook University, 255 Earth and Space Science Building, Stony Brook, NY 11794-2100, USA
- Photon Sciences Directorate, Brookhaven National Laboratory, 75 Brookhaven Avenue, Upton, NY 11973-500, USA
| |
Collapse
|
38
|
Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc Natl Acad Sci U S A 2014; 111:10468-72. [PMID: 25002507 DOI: 10.1073/pnas.1322427111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deciphering the origin of seismic velocity heterogeneities in the mantle is crucial to understanding internal structures and processes at work in the Earth. The spin crossover in iron in ferropericlase (Fp), the second most abundant phase in the lower mantle, introduces unfamiliar effects on seismic velocities. First-principles calculations indicate that anticorrelation between shear velocity (VS) and bulk sound velocity (Vφ) in the mantle, usually interpreted as compositional heterogeneity, can also be produced in homogeneous aggregates containing Fp. The spin crossover also suppresses thermally induced heterogeneity in longitudinal velocity (VP) at certain depths but not in VS. This effect is observed in tomography models at conditions where the spin crossover in Fp is expected in the lower mantle. In addition, the one-of-a-kind signature of this spin crossover in the RS/P (∂ ln VS/∂ ln VP) heterogeneity ratio might be a useful fingerprint to detect the presence of Fp in the lower mantle.
Collapse
|
39
|
Andrault D, Pesce G, Bouhifd MA, Bolfan-Casanova N, Hénot JM, Mezouar M. Melting of subducted basalt at the core-mantle boundary. Science 2014; 344:892-5. [PMID: 24855266 DOI: 10.1126/science.1250466] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The geological materials in Earth's lowermost mantle control the characteristics and interpretation of seismic ultra-low velocity zones at the base of the core-mantle boundary. Partial melting of the bulk lower mantle is often advocated as the cause, but this does not explain the nonubiquitous character of these regional seismic features. We explored the melting properties of mid-oceanic ridge basalt (MORB), which can reach the lowermost mantle after subduction of oceanic crust. At a pressure representative of the core-mantle boundary (135 gigapascals), the onset of melting occurs at ~3800 kelvin, which is ~350 kelvin below the mantle solidus. The SiO2-rich liquid generated either remains trapped in the MORB material or solidifies after reacting with the surrounding MgO-rich mantle, remixing subducted MORB with the lowermost mantle.
Collapse
Affiliation(s)
- Denis Andrault
- Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS, IRD, Clermont-Ferrand, France.
| | - Giacomo Pesce
- Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS, IRD, Clermont-Ferrand, France
| | - Mohamed Ali Bouhifd
- Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS, IRD, Clermont-Ferrand, France
| | | | - Jean-Marc Hénot
- Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS, IRD, Clermont-Ferrand, France
| | | |
Collapse
|
40
|
Zhang L, Meng Y, Yang W, Wang L, Mao WL, Zeng QS, Jeong JS, Wagner AJ, Mkhoyan KA, Liu W, Xu R, Mao HK. Disproportionation of (Mg,Fe)SiO3 perovskite in Earth's deep lower mantle. Science 2014; 344:877-82. [DOI: 10.1126/science.1250274] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
41
|
Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure. Nat Commun 2013; 4:1680. [PMID: 23575684 PMCID: PMC3644065 DOI: 10.1038/ncomms2661] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 02/26/2013] [Indexed: 11/12/2022] Open
Abstract
The evolution of morphology and internal strain under high pressure fundamentally alters the physical property, structural stability, phase transition and deformation mechanism of materials. Until now, only averaged strain distributions have been studied. Bragg coherent X-ray diffraction imaging is highly sensitive to the internal strain distribution of individual crystals but requires coherent illumination, which can be compromised by the complex high-pressure sample environment. Here we report the successful de-convolution of these effects with the recently developed mutual coherent function method to reveal the three-dimensional strain distribution inside a 400 nm gold single crystal during compression within a diamond-anvil cell. The three-dimensional morphology and evolution of the strain under pressures up to 6.4 GPa were obtained with better than 30 nm spatial resolution. In addition to providing a new approach for high-pressure nanotechnology and rheology studies, we draw fundamental conclusions about the origin of the anomalous compressibility of nanocrystals. Extreme pressure can induce significant changes in a material’s mechanical response, but characterizing the evolution of these changes as they take place is challenging. Yang et al. demonstrate the use of coherent X-ray diffraction imaging to follow changes in the three-dimensional shape and strain fields within gold particles under pressure.
Collapse
|
42
|
Wu Z, Justo JF, Wentzcovitch RM. Elastic anomalies in a spin-crossover system: ferropericlase at lower mantle conditions. PHYSICAL REVIEW LETTERS 2013; 110:228501. [PMID: 23767753 DOI: 10.1103/physrevlett.110.228501] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Indexed: 06/02/2023]
Abstract
The discovery of a pressure induced iron-related spin crossover in Mg((1-x))Fe(x)O ferropericlase (Fp) and Mg-silicate perovskite, the major phases of Earth's lower mantle, has raised new questions about mantle properties which are of central importance to seismology. Despite extensive experimental work on the anomalous elasticity of Fp throughout the crossover, inconsistencies reported in the literature are still unexplained. Here we introduce a formulation for thermoelasticity of spin crossover systems, apply it to Fp by combining it with predictive first principles density-functional theory with on-site repulsion parameter U calculations, and contrast results with available data on samples with various iron concentrations. We explain why the shear modulus of Fp should not soften along the crossover, as observed in some experiments, predict its velocities at lower mantle conditions, and show the importance of constraining the elastic properties of minerals without extrapolations for analyses of the thermochemical state of this region.
Collapse
Affiliation(s)
- Zhongqing Wu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
43
|
Hunter L, Gordon J, Peck S, Ang D, Lin JF. Using the Earth as a polarized electron source to search for long-range spin-spin interactions. Science 2013; 339:928-32. [PMID: 23430649 DOI: 10.1126/science.1227460] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many particle-physics models that extend the standard model predict the existence of long-range spin-spin interactions. We propose an approach that uses the Earth as a polarized spin source to investigate these interactions. Using recent deep-Earth geophysics and geochemistry results, we create a comprehensive map of electron polarization within the Earth induced by the geomagnetic field. We examine possible long-range interactions between these spin-polarized geoelectrons and the spin-polarized electrons and nucleons in three laboratory experiments. By combining our model and the results from these experiments, we establish bounds on torsion gravity and possible long-range spin-spin forces associated with the virtual exchange of either spin-one axial bosons or unparticles.
Collapse
Affiliation(s)
- Larry Hunter
- Physics Department, Amherst College, Amherst, MA 01002, USA.
| | | | | | | | | |
Collapse
|
44
|
Fukui H, Tsuchiya T, Baron AQR. Lattice dynamics calculations for ferropericlase with internally consistent LDA+Umethod. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jb009591] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
|