1
|
Schwalbe EC, Lindsey JC, Danilenko M, Hill RM, Crosier S, Ryan SL, Williamson D, Castle J, Hicks D, Kool M, Milde T, Korshunov A, Pfister SM, Bailey S, Clifford SC. Molecular and clinical heterogeneity within MYC-family amplified medulloblastoma is associated with survival outcomes: A multicenter cohort study. Neuro Oncol 2024:noae178. [PMID: 39377358 DOI: 10.1093/neuonc/noae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND MYC/MYCN are the most frequent oncogene amplifications in medulloblastoma (MB) and its primary biomarkers of high-risk (HR) disease. However, while many patients' MYC(N)-amplified tumors are treatment-refractory, some achieve long-term survival. We therefore investigated clinicobiological heterogeneity within MYC(N)-amplified MB and determined its relevance for improved disease management. METHODS We characterized the clinical and molecular correlates of MYC- (MYC-MB; n = 64) and MYCN-amplified MBs (MYCN-MB; n = 95), drawn from >1600 diagnostic cases. RESULTS Most MYC-MBs were molecular group 3 (46/58; 79% assessable) and aged ≥3 years at diagnosis (44/64 [69%]). We identified a "canonical" very high-risk (VHR) MYC-amplified group (n = 51/62; 82%) with dismal survival irrespective of treatment (11% 5-year progression-free survival [PFS]), defined by co-occurrence with ≥1 additional established risk factor(s) (subtotal surgical-resection [STR], metastatic disease, LCA pathology), and commonly group 3/4 subgroup 2 with a high proportion of amplified cells. The majority of remaining noncanonical MYC-MBs survived (i.e. non-group 3/group 3 without other risk features; 11/62 (18%); 61% 5-year PFS). MYCN survival was primarily related to molecular group; MYCN-amplified SHH MB, and group 3/4 MB with additional risk factors, respectively defined VHR and HR groups (VHR, 39% [35/89]; 20% 5-year PFS/HR, 33% [29/89]; 46% 5-year PFS). Twenty-two out of 35 assessable MYCN-amplified SHH tumors harbored TP53 mutations; 9/12 (75%) with data were germline. MYCN-amplified group 3/4 MB with no other risk factors (28%; 25/89) had 70% 5-year PFS. CONCLUSIONS MYC(N)-amplified MB displays significant clinicobiological heterogeneity. Diagnostics incorporating molecular groups, subgroups, and clinical factors enable their risk assessment. VHR "canonical" MYC tumors are essentially incurable and SHH-MYCN-amplified MBs fare extremely poorly (20% survival at 5 years); both require urgent development of alternative treatment strategies. Conventional risk-adapted therapies are appropriate for more responsive groups, such as noncanonical MYC and non-SHH-MYCN MB.
Collapse
Affiliation(s)
- Edward C Schwalbe
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Janet C Lindsey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Marina Danilenko
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Sarra L Ryan
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Jemma Castle
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Marcel Kool
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Till Milde
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Huo X, Li H, Xing Y, Liu W, Chen P, Du F, Song L, Yu Z, Cao X, Tian J. Two decades of progress in glioma methylation research: the rise of temozolomide resistance and immunotherapy insights. Front Neurosci 2024; 18:1440756. [PMID: 39286478 PMCID: PMC11402815 DOI: 10.3389/fnins.2024.1440756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Aims This study aims to systematically analyze the global trends in glioma methylation research using bibliometric methodologies. We focus on identifying the scholarly trajectory and key research interests, and we utilize these insights to predict future research directions within the epigenetic context of glioma. Methods We performed a comprehensive literature search of the Web of Science Core Collection (WoSCC) to identify articles related to glioma methylation published from January 1, 2004, to December 31, 2023. The analysis included full-text publications in the English language and excluded non-research publications. Analysis and visualization were performed using GraphPad Prism, CiteSpace, and VOSviewer software. Results The search identified 3,744 publications within the WoSCC database, including 3,124 original research articles and 620 review articles. The research output gradually increased from 2004 to 2007, followed by a significant increase after 2008, which peaked in 2022. A minor decline in publication output was noted during 2020-2021, potentially linked to the coronavirus disease 2019 pandemic. The United States and China were the leading contributors, collectively accounting for 57.85% of the total research output. The Helmholtz Association of Germany, the German Cancer Research Center (DKFZ), and the Ruprecht Karls University of Heidelberg were the most productive institutions. The Journal of Neuro-Oncology led in terms of publication volume, while Neuro-Oncology had the highest Impact Factor. The analysis of publishing authors revealed Michael Weller as the most prolific contributor. The co-citation network analysis identified David N. Louis's article as the most frequently cited. The keyword analysis revealed "temozolomide," "expression," "survival," and "DNA methylation" as the most prominent keywords, while "heterogeneity," "overall survival," and "tumor microenvironment" showed the strongest citation bursts. Conclusions The findings of this study illustrate the increasing scholarly interest in glioma methylation, with a notable increase in research output over the past two decades. This study provides a comprehensive overview of the research landscape, highlighting the importance of temozolomide, DNA methylation, and the tumor microenvironment in glioma research. Despite its limitations, this study offers valuable insights into the current research trends and potential future directions, particularly in the realm of immunotherapy and epigenetic editing techniques.
Collapse
Affiliation(s)
- Xianhao Huo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Haoyuan Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Yixiang Xing
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Wenqing Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Pengfei Chen
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fang Du
- School of Information Engineering, Ningxia University, Yinchuan, China
- Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Ningxia University, Yinchuan, China
| | - Lijuan Song
- School of Information Engineering, Ningxia University, Yinchuan, China
| | - Zhenhua Yu
- School of Information Engineering, Ningxia University, Yinchuan, China
| | - Xiangmei Cao
- Basic Medical School, Ningxia Medical University, Yinchuan, China
| | - Jihui Tian
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Wang J, Yang M, Ali O, Dragland JS, Bjørås M, Farkas L. Predicting regulatory mutations and their target genes by new computational integrative analysis: A study of follicular lymphoma. Comput Biol Med 2024; 178:108787. [PMID: 38901187 DOI: 10.1016/j.compbiomed.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Mutations in DNA regulatory regions are increasingly being recognized as important drivers of cancer and other complex diseases. These mutations can regulate gene expression by affecting DNA-protein binding and epigenetic profiles, such as DNA methylation in genome regulatory elements. However, identifying mutation hotspots associated with expression regulation and disease progression in non-coding DNA remains a challenge. Unlike most existing approaches that assign a mutation score to individual single nucleotide polymorphisms (SNP), a mutation block (MB)-based approach was introduced in this study to assess the collective impact of a cluster of SNPs on transcription factor-DNA binding affinity, differential gene expression (DEG), and nearby DNA methylation. Moreover, the long-distance target genes of functional MBs were identified using a new permutation-based algorithm that assessed the significance of correlations between DNA methylation at regulatory regions and target gene expression. Two new Python packages were developed. The Differential Methylation Region (DMR-analysis) analysis tool was used to detect DMR and map them to regulatory elements. The second tool, an integrated DMR, DEG, and SNP analysis tool (DDS-analysis), was used to combine the omics data to identify functional MBs and long-distance target genes. Both tools were validated in follicular lymphoma (FL) cohorts, where not only known functional MBs and their target genes (BCL2 and BCL6) were recovered, but also novel genes were found, including CDCA4 and JAG2, which may be associated with FL development. These genes are linked to target gene expression and are significantly correlated with the methylation of nearby DNA sequences in FL. The proposed computational integrative analysis of multiomics data holds promise for identifying regulatory mutations in cancer and other complex diseases.
Collapse
Affiliation(s)
- Junbai Wang
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital and University of Oslo, Lørenskog, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway.
| | - Mingyi Yang
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Centre for Embryology and Healthy Development (CRESCO), University of Oslo, Oslo, 0373, Norway
| | - Omer Ali
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway; Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Jenny Sofie Dragland
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Embryology and Healthy Development (CRESCO), University of Oslo, Oslo, 0373, Norway
| | - Lorant Farkas
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway; Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
4
|
Owens MC, Yanas A, Liu KF. Sex chromosome-encoded protein homologs: current progress and open questions. Nat Struct Mol Biol 2024; 31:1156-1166. [PMID: 39123067 DOI: 10.1038/s41594-024-01362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Abstract
The complexity of biological sex differences is markedly evident in human physiology and pathology. Although many of these differences can be ascribed to the expression of sex hormones, another contributor to sex differences lies in the sex chromosomes beyond their role in sex determination. Although largely nonhomologous, the human sex chromosomes express seventeen pairs of homologous genes, referred to as the 'X-Y pairs.' The X chromosome-encoded homologs of these Y-encoded proteins are crucial players in several cellular processes, and their dysregulation frequently results in disease development. Many diseases related to these X-encoded homologs present with sex-biased incidence or severity. By contrast, comparatively little is known about the differential functions of the Y-linked homologs. Here, we summarize and discuss the current understanding of five of these X-Y paired proteins, with recent evidence of differential functions and of having a potential link to sex biases in disease, highlighting how amino acid-level sequence differences may differentiate their functions and contribute to sex biases in human disease.
Collapse
Affiliation(s)
- Michael C Owens
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Amber Yanas
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Saulnier O, Zagozewski J, Liang L, Hendrikse LD, Layug P, Gordon V, Aldinger KA, Haldipur P, Borlase S, Coudière-Morrison L, Cai T, Martell E, Gonzales NM, Palidwor G, Porter CJ, Richard S, Sharif T, Millen KJ, Doble BW, Taylor MD, Werbowetski-Ogilvie TE. A group 3 medulloblastoma stem cell program is maintained by OTX2-mediated alternative splicing. Nat Cell Biol 2024; 26:1233-1246. [PMID: 39025928 PMCID: PMC11321995 DOI: 10.1038/s41556-024-01460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
OTX2 is a transcription factor and known driver in medulloblastoma (MB), where it is amplified in a subset of tumours and overexpressed in most cases of group 3 and group 4 MB. Here we demonstrate a noncanonical role for OTX2 in group 3 MB alternative splicing. OTX2 associates with the large assembly of splicing regulators complex through protein-protein interactions and regulates a stem cell splicing program. OTX2 can directly or indirectly bind RNA and this may be partially independent of its DNA regulatory functions. OTX2 controls a pro-tumorigenic splicing program that is mirrored in human cerebellar rhombic lip origins. Among the OTX2-regulated differentially spliced genes, PPHLN1 is expressed in the most primitive rhombic lip stem cells, and targeting PPHLN1 splicing reduces tumour growth and enhances survival in vivo. These findings identify OTX2-mediated alternative splicing as a major determinant of cell fate decisions that drive group 3 MB progression.
Collapse
Affiliation(s)
- Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genomics and Development of Childhood Cancers, Institut Curie, PSL University, Paris, France
- INSERM U830, Cancer, Heterogeneity, Instability and Plasticity, Institut Curie, PSL University, Paris, France
- SIREDO Oncology Center, Institut Curie, Paris, France
| | - Jamie Zagozewski
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lisa Liang
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Liam D Hendrikse
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paul Layug
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Victor Gordon
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephanie Borlase
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ludivine Coudière-Morrison
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ting Cai
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | - Emma Martell
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Naomi M Gonzales
- Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Gareth Palidwor
- Ottawa Bioinformatics Core Facility, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | - Tanveer Sharif
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Brad W Doble
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Texas Children's Cancer and Hematology Center, Houston, TX, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Tamra E Werbowetski-Ogilvie
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
- Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Cancer and Hematology Center, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Swarup A, Bolger TA. The Role of the RNA Helicase DDX3X in Medulloblastoma Progression. Biomolecules 2024; 14:803. [PMID: 39062517 PMCID: PMC11274571 DOI: 10.3390/biom14070803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Medulloblastoma is the most common pediatric brain cancer, with about five cases per million in the pediatric population. Current treatment strategies have a 5-year survival rate of 70% or more but frequently lead to long-term neurocognitive defects, and recurrence is relatively high. Genomic sequencing of medulloblastoma patients has shown that DDX3X, which encodes an RNA helicase involved in the process of translation initiation, is among the most commonly mutated genes in medulloblastoma. The identified mutations are 42 single-point amino acid substitutions and are mostly not complete loss-of-function mutations. The pathological mechanism of DDX3X mutations in the causation of medulloblastoma is poorly understood, but several studies have examined their role in promoting cancer progression. This review first discusses the known roles of DDX3X and its yeast ortholog Ded1 in translation initiation, cellular stress responses, viral replication, innate immunity, inflammatory programmed cell death, Wnt signaling, and brain development. It then examines our current understanding of the oncogenic mechanism of the DDX3X mutations in medulloblastoma, including the effect of these DDX3X mutations on growth, biochemical functions, translation, and stress responses. Further research on DDX3X's mechanism and targets is required to therapeutically target DDX3X and/or its downstream effects in medulloblastoma progression.
Collapse
Affiliation(s)
| | - Timothy A. Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Carrasquillo Rodríguez JW, Uche O, Gao S, Lee S, Airola MV, Bahmanyar S. Differential reliance of CTD-nuclear envelope phosphatase 1 on its regulatory subunit in ER lipid synthesis and storage. Mol Biol Cell 2024; 35:ar101. [PMID: 38776127 PMCID: PMC11244170 DOI: 10.1091/mbc.e23-09-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Lipin 1 is an ER enzyme that produces diacylglycerol, the lipid intermediate that feeds into the synthesis of glycerophospholipids for membrane expansion or triacylglycerol for storage into lipid droplets. CTD-Nuclear Envelope Phosphatase 1 (CTDNEP1) regulates lipin 1 to restrict ER membrane synthesis, but a role for CTDNEP1 in lipid storage in mammalian cells is not known. Furthermore, how NEP1R1, the regulatory subunit of CTDNEP1, contributes to these functions in mammalian cells is not fully understood. Here, we show that CTDNEP1 is reliant on NEP1R1 for its stability and function in limiting ER expansion. CTDNEP1 contains an amphipathic helix at its N-terminus that targets to the ER, nuclear envelope and lipid droplets. We identify key residues at the binding interface of CTDNEP1 and NEP1R1 and show that they facilitate complex formation in vivo and in vitro. We demonstrate that NEP1R1 binding to CTDNEP1 shields CTDNEP1 from proteasomal degradation to regulate lipin 1 and restrict ER size. Unexpectedly, NEP1R1 was not required for CTDNEP1's role in restricting lipid droplet biogenesis. Thus, the reliance of CTDNEP1 function on NEP1R1 depends on cellular demands for membrane production versus lipid storage. Together, our work provides a framework into understanding how the ER regulates lipid synthesis under different metabolic conditions.
Collapse
Affiliation(s)
| | - Onyedikachi Uche
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Shujuan Gao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook NY 11794
| | - Shoken Lee
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Michael V. Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook NY 11794
| | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| |
Collapse
|
8
|
Dakal TC, Dhabhai B, Pant A, Moar K, Chaudhary K, Yadav V, Ranga V, Sharma NK, Kumar A, Maurya PK, Maciaczyk J, Schmidt‐Wolf IGH, Sharma A. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm (Beijing) 2024; 5:e582. [PMID: 38827026 PMCID: PMC11141506 DOI: 10.1002/mco2.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Cancer, being the most formidable ailment, has had a profound impact on the human health. The disease is primarily associated with genetic mutations that impact oncogenes and tumor suppressor genes (TSGs). Recently, growing evidence have shown that X-linked TSGs have specific role in cancer progression and metastasis as well. Interestingly, our genome harbors around substantial portion of genes that function as tumor suppressors, and the X chromosome alone harbors a considerable number of TSGs. The scenario becomes even more compelling as X-linked TSGs are adaptive to key epigenetic processes such as X chromosome inactivation. Therefore, delineating the new paradigm related to X-linked TSGs, for instance, their crosstalk with autosome and involvement in cancer initiation, progression, and metastasis becomes utmost importance. Considering this, herein, we present a comprehensive discussion of X-linked TSG dysregulation in various cancers as a consequence of genetic variations and epigenetic alterations. In addition, the dynamic role of X-linked TSGs in sex chromosome-autosome crosstalk in cancer genome remodeling is being explored thoroughly. Besides, the functional roles of ncRNAs, role of X-linked TSG in immunomodulation and in gender-based cancer disparities has also been highlighted. Overall, the focal idea of the present article is to recapitulate the findings on X-linked TSG regulation in the cancer landscape and to redefine their role toward improving cancer treatment strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Bhanupriya Dhabhai
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Anuja Pant
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kareena Moar
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kanika Chaudhary
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vikas Yadav
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vipin Ranga
- Dearptment of Agricultural BiotechnologyDBT‐NECAB, Assam Agricultural UniversityJorhatAssamIndia
| | | | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of Bioinformatics, International Technology ParkBangaloreIndia
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| |
Collapse
|
9
|
Nishio Y, Kato K, Oishi H, Takahashi Y, Saitoh S. MYCN in human development and diseases. Front Oncol 2024; 14:1417607. [PMID: 38884091 PMCID: PMC11176553 DOI: 10.3389/fonc.2024.1417607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Somatic mutations in MYCN have been identified across various tumors, playing pivotal roles in tumorigenesis, tumor progression, and unfavorable prognoses. Despite its established notoriety as an oncogenic driver, there is a growing interest in exploring the involvement of MYCN in human development. While MYCN variants have traditionally been associated with Feingold syndrome type 1, recent discoveries highlight gain-of-function variants, specifically p.(Thr58Met) and p.(Pro60Leu), as the cause for megalencephaly-polydactyly syndrome. The elucidation of cellular and murine analytical data from both loss-of-function (Feingold syndrome model) and gain-of-function models (megalencephaly-polydactyly syndrome model) is significantly contributing to a comprehensive understanding of the physiological role of MYCN in human development and pathogenesis. This review discusses the MYCN's functional implications for human development by reviewing the clinical characteristics of these distinct syndromes, Feingold syndrome, and megalencephaly-polydactyly syndrome, providing valuable insights into the understanding of pathophysiological backgrounds of other syndromes associated with the MYCN pathway and the overall comprehension of MYCN's role in human development.
Collapse
Affiliation(s)
- Yosuke Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
10
|
Gao S, Carrasquillo Rodríguez JW, Bahmanyar S, Airola MV. Structure and mechanism of the human CTDNEP1-NEP1R1 membrane protein phosphatase complex necessary to maintain ER membrane morphology. Proc Natl Acad Sci U S A 2024; 121:e2321167121. [PMID: 38776370 PMCID: PMC11145253 DOI: 10.1073/pnas.2321167121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
C-terminal Domain Nuclear Envelope Phosphatase 1 (CTDNEP1) is a noncanonical protein serine/threonine phosphatase that has a conserved role in regulating ER membrane biogenesis. Inactivating mutations in CTDNEP1 correlate with the development of medulloblastoma, an aggressive childhood cancer. The transmembrane protein Nuclear Envelope Phosphatase 1 Regulatory Subunit 1 (NEP1R1) binds CTDNEP1, but the molecular details by which NEP1R1 regulates CTDNEP1 function are unclear. Here, we find that knockdown of NEP1R1 generates identical phenotypes to reported loss of CTDNEP1 in mammalian cells, establishing CTDNEP1-NEP1R1 as an evolutionarily conserved membrane protein phosphatase complex that restricts ER expansion. Mechanistically, NEP1R1 acts as an activating regulatory subunit that directly binds and increases the phosphatase activity of CTDNEP1. By defining a minimal NEP1R1 domain sufficient to activate CTDNEP1, we determine high-resolution crystal structures of the CTDNEP1-NEP1R1 complex bound to a peptide sequence acting as a pseudosubstrate. Structurally, NEP1R1 engages CTDNEP1 at a site distant from the active site to stabilize and allosterically activate CTDNEP1. Substrate recognition is facilitated by a conserved Arg residue in CTDNEP1 that binds and orients the substrate peptide in the active site. Together, this reveals mechanisms for how NEP1R1 regulates CTDNEP1 and explains how cancer-associated mutations inactivate CTDNEP1.
Collapse
Affiliation(s)
- Shujuan Gao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY11794
| | | | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511
| | - Michael V. Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY11794
| |
Collapse
|
11
|
Barateiro LGRP, de Oliveira Cavagna R, Dos Reis MB, de Paula FE, Teixeira GR, Moreno DA, Bonatelli M, Santana I, Saggioro FP, Neder L, Stavale JN, Malheiros SMF, Garcia-Rivello H, Christiansen S, Nunes S, da Costa MJG, Pinheiro J, Júnior CA, Mançano BM, Reis RM. Somatic mutational profiling and clinical impact of driver genes in Latin-Iberian medulloblastomas: Towards precision medicine. Neuropathology 2024. [PMID: 38736183 DOI: 10.1111/neup.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
Medulloblastoma (MB) is the most prevalent malignant brain tumor in children, known for its heterogeneity and treatment-associated toxicity, and there is a critical need for new therapeutic targets. We analyzed the somatic mutation profile of 15 driver genes in 69 Latin-Iberian molecularly characterized medulloblastomas using the Illumina TruSight Tumor 15 panel. We classified the variants based on their clinical impact and oncogenicity. Among the patients, 66.7% were MBSHH, 13.0% MBWNT, 7.3% MBGrp3, and 13.0% MBGrp4. Among the 63 variants found, 54% were classified as Tier I/II and 31.7% as oncogenic/likely oncogenic. We observed 33.3% of cases harboring at least one mutation. TP53 (23.2%, 16/69) was the most mutated gene, followed by PIK3CA (5.8%, 4/69), KIT (4.3%, 3/69), PDGFRA (2.9%, 2/69), EGFR (1.4%, 1/69), ERBB2 (1.4%, 1/69), and NRAS (1.4%, 1/69). Approximately 41% of MBSHH tumors exhibited mutations, TP53 (32.6%) being the most frequently mutated gene. Tier I/II and oncogenic/likely oncogenic TP53 variants were associated with relapse, progression, and lower survival rates. Potentially actionable variants in the PIK3CA and KIT genes were identified. Latin-Iberian medulloblastomas, particularly the MBSHH, exhibit higher mutation frequencies than other populations. We corroborate the TP53 mutation status as an important prognostic factor, while PIK3CA and KIT are potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | - Gustavo Ramos Teixeira
- Molecular Diagnostic Laboratory, Barretos Cancer Hospital, Barretos, Brazil
- Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Murilo Bonatelli
- Molecular Diagnostic Laboratory, Barretos Cancer Hospital, Barretos, Brazil
| | - Iara Santana
- Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Luciano Neder
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Molecular Diagnostic Laboratory, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
| |
Collapse
|
12
|
Cao B, Sun C, Bi R, Liu Z, Jia Y, Cui W, Sun M, Yu B, Li X, Zhou X. Mutation landscape in Chinese nodal diffuse large B-cell lymphoma by targeted next generation sequencing and their relationship with clinicopathological characteristics. BMC Med Genomics 2024; 17:84. [PMID: 38609996 PMCID: PMC11015559 DOI: 10.1186/s12920-024-01866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL), an aggressive and heterogenic malignant entity, is still a challenging clinical problem, since around one-third of patients are not cured with primary treatment. Next-generation sequencing (NGS) technologies have revealed common genetic mutations in DLBCL. We devised an NGS multi-gene panel to discover genetic features of Chinese nodal DLBCL patients and provide reference information for panel-based NGS detection in clinical laboratories. METHODS A panel of 116 DLBCL genes was designed based on the literature and related databases. We analyzed 96 Chinese nodal DLBCL biopsy specimens through targeted sequencing. RESULTS The most frequently mutated genes were KMT2D (30%), PIM1 (26%), SOCS1 (24%), MYD88 (21%), BTG1 (20%), HIST1H1E (18%), CD79B (18%), SPEN (17%), and KMT2C (16%). SPEN (17%) and DDX3X (6%) mutations were highly prevalent in our study than in Western studies. Thirty-three patients (34%) were assigned as genetic classification by the LymphGen algorithm, including 12 cases MCD, five BN2, seven EZB, seven ST2, and two EZB/ST2 complex. MYD88 L265P mutation, TP53 and BCL2 pathogenic mutations were unfavorable prognostic biomarkers in DLBCL. CONCLUSIONS This study presents the mutation landscape in Chinese nodal DLBCL, highlights the genetic heterogeneity of DLBCL and shows the role of panel-based NGS to prediction of prognosis and potential molecular targeted therapy in DLBCL. More precise genetic classification needs further investigations.
Collapse
Affiliation(s)
- Bing Cao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
- Fudan University Medical Library, Shanghai, China
| | - Chenbo Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Rui Bi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Zebing Liu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yijun Jia
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Wenli Cui
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Menghong Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Baohua Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xiaoqiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Pathology, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Sheng H, Li H, Zeng H, Zhang B, Lu Y, Liu X, Xu Z, Zhang J, Zhang L. Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene 2024; 43:839-850. [PMID: 38355808 PMCID: PMC10942862 DOI: 10.1038/s41388-024-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Medulloblastoma is one of the most common malignant pediatric brain tumors derived from posterior fossa. The current treatment includes maximal safe surgical resection, radiotherapy, whole cranio-spinal radiation and adjuvant with chemotherapy. However, it can only limitedly prolong the survival time with severe side effects and relapse. Defining the intratumoral heterogeneity, cellular origin and identifying the interaction network within tumor microenvironment are helpful for understanding the mechanisms of medulloblastoma tumorigenesis and relapse. Due to technological limitations, the mechanisms of cellular heterogeneity and tumor origin have not been fully understood. Recently, the emergence of single-cell technology has provided a powerful tool for achieving the goal of understanding the mechanisms of tumorigenesis. Several studies have demonstrated the intratumoral heterogeneity and tumor origin for each subtype of medulloblastoma utilizing the single-cell RNA-seq, which has not been uncovered before using conventional technologies. In this review, we present an overview of the current progress in understanding of cellular heterogeneity and tumor origin of medulloblastoma and discuss novel findings in the age of single-cell technologies.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haotai Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwen Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liguo Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Onyije FM, Dolatkhah R, Olsson A, Bouaoun L, Deltour I, Erdmann F, Bonaventure A, Scheurer ME, Clavel J, Schüz J. Risk factors for childhood brain tumours: A systematic review and meta-analysis of observational studies from 1976 to 2022. Cancer Epidemiol 2024; 88:102510. [PMID: 38056243 PMCID: PMC10835339 DOI: 10.1016/j.canep.2023.102510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Childhood brain tumours (CBTs) are the leading cause of cancer death in children under the age of 20 years globally. Though the aetiology of CBT remains poorly understood, it is thought to be multifactorial. We aimed to synthesize potential risk factors for CBT to inform primary prevention. METHODS We conducted a systematic review and meta-analysis of epidemiological studies indexed in the PubMed, Web of Science, and Embase databases from the start of those resources through 27 July 2023. We included data from case-control or cohort studies that reported effect estimates for each risk factor around the time of conception, during pregnancy and/or during post-natal period. Random effects meta-analysis was used to estimate summary effect sizes (ES) and 95% confidence intervals (CIs). We also quantified heterogeneity (I2) across studies. FINDINGS A total of 4040 studies were identified, of which 181 studies (85 case-control and 96 cohort studies) met our criteria for inclusion. Of all eligible studies, 50% (n = 91) were conducted in Europe, 32% (n = 57) in North America, 9% (n = 16) in Australia, 8% (n = 15) in Asia, 1% (n = 2) in South America, and none in Africa. We found associations for some modifiable risk factors including childhood domestic exposures to insecticides (ES 1.44, 95% CI 1.20-1.73) and herbicides (ES 2.38, 95% CI 1.31-4.33). Maternal domestic exposure to insecticides (ES 1.45, 95% CI 1.09-1.94), maternal consumption of cured meat (ES 1.51, 95% CI 1.05-2.17) and coffee ≥ 2 cups/day (ES 1.45, 95% 95% CI 1.07-1.95) during pregnancy, and maternal exposure to benzene (ES 2.22; 95% CI 1.01-4.88) before conception were associated with CBTs in case-control studies. Also, paternal occupational exposure to pesticides (ES 1.48, 95% CI 1.23-1.77) and benzene (ES 1.74, 95% CI 1.10-2.76) before conception and during pregnancy were associated in case-control studies and in combined analysis. On the other hand, assisted reproductive technology (ART) (ES 1.32, 95% CI 1.05-1.67), caesarean section (CS) (ES 1.12, 95% CI 1.01-1.25), paternal occupational exposure to paint before conception (ES 1.56, 95% CI 1.02-2.40) and maternal smoking > 10 cigarettes per day during pregnancy (ES 1.18, 95% CI 1.00-1.40) were associated with CBT in cohort studies. Maternal intake of vitamins and folic acid during pregnancy was inversely associated in cohort studies. Hormonal/infertility treatment, breastfeeding, child day-care attendance, maternal exposure to electric heated waterbed, tea and alcohol consumption during pregnancy were among those not associated with CBT in both case-control and cohort studies. CONCLUSION Our results should be interpreted with caution, especially as most associations between risk factors and CBT were discordant between cohort and case-control studies. At present, it is premature for any CBT to define specific primary prevention guidelines.
Collapse
Affiliation(s)
- Felix M Onyije
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, France.
| | - Roya Dolatkhah
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, France
| | - Ann Olsson
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, France
| | - Liacine Bouaoun
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, France
| | - Isabelle Deltour
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, France
| | - Friederike Erdmann
- Research Group Aetiology and Inequalities in Childhood Cancer, Division of Childhood Cancer Epidemiology Institute of Medical Biostatistics, Epidemiology, and Informatics (IMBEI), University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - Audrey Bonaventure
- Epidemiology of Childhood and Adolescent Cancers Team, Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Villejuif, France
| | - Michael E Scheurer
- Department of Pediatrics, Hematology-Oncology, Baylor College of Medicine and Texas Children's Hospital Cancer Center, Houston, TX, United States
| | - Jacqueline Clavel
- Epidemiology of Childhood and Adolescent Cancers Team, Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Villejuif, France; National Registry of Childhood Cancers, Hôpital Paul Brousse, Groupe Hospitalier Universitaire Paris-Sud, Assistance Publique Hôpitaux de Paris (AP-HP), Villejuif, France; Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre-lès-Nancy, France
| | - Joachim Schüz
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, France
| |
Collapse
|
15
|
Hofman DA, Ruiz-Orera J, Yannuzzi I, Murugesan R, Brown A, Clauser KR, Condurat AL, van Dinter JT, Engels SAG, Goodale A, van der Lugt J, Abid T, Wang L, Zhou KN, Vogelzang J, Ligon KL, Phoenix TN, Roth JA, Root DE, Hubner N, Golub TR, Bandopadhayay P, van Heesch S, Prensner JR. Translation of non-canonical open reading frames as a cancer cell survival mechanism in childhood medulloblastoma. Mol Cell 2024; 84:261-276.e18. [PMID: 38176414 PMCID: PMC10872554 DOI: 10.1016/j.molcel.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/30/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames (ORFs). To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a stepwise approach using multiple CRISPR-Cas9 screens to elucidate non-canonical ORFs and putative microproteins implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream ORFs (uORFs) exhibited selective functionality independent of main coding sequences. A microprotein encoded by one of these ORFs, ASNSD1-uORF or ASDURF, was upregulated, associated with MYC-family oncogenes, and promoted medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future studies seeking to define new cancer targets.
Collapse
Affiliation(s)
- Damon A Hofman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Ian Yannuzzi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Adam Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexandra L Condurat
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jip T van Dinter
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Sem A G Engels
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Amy Goodale
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Tanaz Abid
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Li Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kevin N Zhou
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jayne Vogelzang
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Keith L Ligon
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Department of Pathology, Boston Children's Hospital, Boston MA 02115, USA
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany; German Centre for Cardiovascular Research, Partner Site Berlin, 13347 Berlin, Germany
| | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| | - John R Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Shen C, Shi X, Wen D, Zhang Y, Du Y, Zhang Y, Ma B, Tang H, Yin M, Huang N, Liao T, Zhang TT, Kong C, Wei W, Ji Q, Wang Y. Comprehensive DNA Methylation Profiling of Medullary Thyroid Carcinoma: Molecular Classification, Potential Therapeutic Target, and Classifier System. Clin Cancer Res 2024; 30:127-138. [PMID: 37931242 DOI: 10.1158/1078-0432.ccr-23-2142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE Medullary thyroid carcinoma (MTC) presents a distinct biological context from other thyroid cancers due to its specific cellular origin. This heterogeneous and rare tumor has a high prevalence of advanced diseases, making it crucial to address the limited therapeutic options and enhance complex clinical management. Given the high clinical accessibility of methylation information, we construct the largest MTC methylation cohort to date. EXPERIMENTAL DESIGN Seventy-eight fresh-frozen MTC samples constituted our methylation cohort. The comprehensive study process incorporated machine learning, statistical analysis, and in vitro experiments. RESULTS Our study pioneered the identification of a three-class clustering system for risk stratification, exhibiting pronounced epigenomic heterogeneity. The elevated overall methylation status in MTC-B, combined with the "mutual exclusivity" of hypomethylated sites displayed by MTC-A and MTC-C, distinctively characterized the MTC-specific methylation pattern. Integrating with the transcriptome, we further depicted the features of these three clusters to scrutinize biological properties. Several MTC-specific aberrant DNA methylation events were emphasized in our study. NNAT expression was found to be notably reduced in poor-prognostic MTC-C, with its promoter region overlapping with an upregulated differentially methylated region. In vitro experiments further affirmed NNAT's therapeutic potential. Moreover, we built an elastic-net logistic regression model with a relatively high AUC encompassing 68 probes, intended for future validation and systematic clinical application. CONCLUSIONS Conducting research on diseases with low incidence poses significant challenges, and we provide a robust resource and comprehensive research framework to assist in ongoing MTC case inclusion and facilitate in-depth dissection of its molecular biological features.
Collapse
Affiliation(s)
- Cenkai Shen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Xiao Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Duo Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuqing Zhang
- School of Data Science, Fudan University, Shanghai, P.R. China
| | - Yuxin Du
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yu Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Haitao Tang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Min Yin
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Naisi Huang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ting-Ting Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Chang'e Kong
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
17
|
Buccilli B, Rodriguez Molina MA, Redrovan Palomeque DP, Herrera Sabán CA, C Caliwag FM, Contreras Flores CJS, Abeysiriwardana CWJ, Diarte E, Arruarana VS, Calderon Martinez E. Liquid Biopsies for Monitoring Medulloblastoma: Circulating Tumor DNA as a Biomarker for Disease Progression and Treatment Response. Cureus 2024; 16:e51712. [PMID: 38313884 PMCID: PMC10838584 DOI: 10.7759/cureus.51712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Pediatric brain tumors, including medulloblastoma (MB), represent a significant challenge in clinical oncology. Early diagnosis, accurate monitoring of therapeutic response, and the detection of minimal residual disease (MRD) are crucial for improving outcomes in these patients. This review aims to explore recent advancements in liquid biopsy techniques for monitoring pediatric brain tumors, with a specific focus on medulloblastoma. The primary research question is how liquid biopsy techniques can be effectively utilized for these purposes. Liquid biopsies, particularly the analysis of circulating tumor DNA (ctDNA) in cerebrospinal fluid (CSF), are investigated as promising noninvasive tools. This comprehensive review examines the components of liquid biopsies, including ctDNA, cell-free DNA (cfDNA), and microRNA (miRNA). Their applications in diagnosis, prognosis, and MRD assessment are critically assessed. The review also discusses the role of liquid biopsies in categorizing medulloblastoma subgroups, risk stratification, and the identification of therapeutic targets. Liquid biopsies have shown promising applications in the pediatric brain tumor field, particularly in medulloblastoma. They offer noninvasive means of diagnosis, monitoring treatment response, and detecting MRD. These biopsies have played a pivotal role in subgroup classification and risk stratification of medulloblastoma patients, aiding in the identification of therapeutic targets. However, challenges related to sensitivity and specificity are noted. In conclusion, this review highlights the growing importance of liquid biopsies, specifically ctDNA analysis in CSF, in pediatric brain tumor management, with a primary focus on medulloblastoma. Liquid biopsies have the potential to revolutionize patient care by enabling early diagnosis, accurate monitoring, and MRD detection. Nevertheless, further research is essential to validate their clinical utility fully. The evolving landscape of liquid biopsy applications underscores their promise in improving outcomes for pediatric brain tumor patients.
Collapse
Affiliation(s)
- Barbara Buccilli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, ITA
- Department of Neurosurgery, Mount Sinai Hospital, New York, USA
| | | | | | - Cindy A Herrera Sabán
- Department of General Practice, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, San Carlos, GTM
| | - Fides M C Caliwag
- Department of General Practice, Ateneo School of Medicine and Public Health, Pasig City, PHL
| | | | | | - Edna Diarte
- Department of Medicine, Universidad Autónoma de Sinaloa, Culiacán, MEX
| | - Victor S Arruarana
- Department of Internal Medicine, Brookdale University Hospital Medical Center, New York, USA
| | | |
Collapse
|
18
|
Radford EJ, Tan HK, Andersson MHL, Stephenson JD, Gardner EJ, Ironfield H, Waters AJ, Gitterman D, Lindsay S, Abascal F, Martincorena I, Kolesnik-Taylor A, Ng-Cordell E, Firth HV, Baker K, Perry JRB, Adams DJ, Gerety SS, Hurles ME. Saturation genome editing of DDX3X clarifies pathogenicity of germline and somatic variation. Nat Commun 2023; 14:7702. [PMID: 38057330 PMCID: PMC10700591 DOI: 10.1038/s41467-023-43041-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/30/2023] [Indexed: 12/08/2023] Open
Abstract
Loss-of-function of DDX3X is a leading cause of neurodevelopmental disorders (NDD) in females. DDX3X is also a somatically mutated cancer driver gene proposed to have tumour promoting and suppressing effects. We perform saturation genome editing of DDX3X, testing in vitro the functional impact of 12,776 nucleotide variants. We identify 3432 functionally abnormal variants, in three distinct classes. We train a machine learning classifier to identify functionally abnormal variants of NDD-relevance. This classifier has at least 97% sensitivity and 99% specificity to detect variants pathogenic for NDD, substantially out-performing in silico predictors, and resolving up to 93% of variants of uncertain significance. Moreover, functionally-abnormal variants can account for almost all of the excess nonsynonymous DDX3X somatic mutations seen in DDX3X-driven cancers. Systematic maps of variant effects generated in experimentally tractable cell types have the potential to transform clinical interpretation of both germline and somatic disease-associated variation.
Collapse
Affiliation(s)
- Elizabeth J Radford
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Level 8, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Hong-Kee Tan
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | | | | | - Eugene J Gardner
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | | | | | | | | | | | | | | | - Elise Ng-Cordell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Helen V Firth
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | | | | | | |
Collapse
|
19
|
Owens MC, Shen H, Yanas A, Mendoza-Figueroa MS, Lavorando E, Wei X, Shweta H, Tang HY, Goldman YE, Liu KF. Mutant forms of DDX3X with diminished catalysis form hollow condensates that exhibit sex-specific regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533240. [PMID: 38076929 PMCID: PMC10705264 DOI: 10.1101/2023.03.19.533240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Mutations in the RNA helicase DDX3X, implicated in various cancers and neurodevelopmental disorders, often impair RNA unwinding and translation. However, the mechanisms underlying this impairment and the differential interactions of DDX3X mutants with wild-type (WT) X-linked DDX3X and Y-linked homolog DDX3Y remain elusive. This study reveals that specific DDX3X mutants more frequently found in disease form distinct hollow condensates in cells. Using a combined structural, biochemical, and single-molecule microscopy study, we show that reduced ATPase and RNA release activities contribute to condensate formation and the catalytic deficits result from inhibiting the catalytic cycle at multiple steps. Proteomic investigations further demonstrate that these hollow condensates sequester WT DDX3X/DDX3Y and other proteins crucial for diverse signaling pathways. WT DDX3X enhances the dynamics of heterogeneous mutant/WT hollow condensates more effectively than DDX3Y. These findings offer valuable insights into the catalytic defects of specific DDX3X mutants and their differential interactions with wild-type DDX3X and DDX3Y, potentially explaining sex biases in disease.
Collapse
|
20
|
Schoof M, Godbole S, Albert TK, Dottermusch M, Walter C, Ballast A, Qin N, Olivera MB, Göbel C, Neyazi S, Holdhof D, Kresbach C, Peter LS, Epplen GD, Thaden V, Spohn M, Blattner-Johnson M, Modemann F, Mynarek M, Rutkowski S, Sill M, Varghese J, Afflerbach AK, Eckhardt A, Münter D, Verma A, Struve N, Jones DTW, Remke M, Neumann JE, Kerl K, Schüller U. Mouse models of pediatric high-grade gliomas with MYCN amplification reveal intratumoral heterogeneity and lineage signatures. Nat Commun 2023; 14:7717. [PMID: 38001143 PMCID: PMC10673884 DOI: 10.1038/s41467-023-43564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Pediatric high-grade gliomas of the subclass MYCN (HGG-MYCN) are highly aggressive tumors frequently carrying MYCN amplifications, TP53 mutations, or both alterations. Due to their rarity, such tumors have only recently been identified as a distinct entity, and biological as well as clinical characteristics have not been addressed specifically. To gain insights into tumorigenesis and molecular profiles of these tumors, and to ultimately suggest alternative treatment options, we generated a genetically engineered mouse model by breeding hGFAP-cre::Trp53Fl/Fl::lsl-MYCN mice. All mice developed aggressive forebrain tumors early in their lifetime that mimic human HGG-MYCN regarding histology, DNA methylation, and gene expression. Single-cell RNA sequencing revealed a high intratumoral heterogeneity with neuronal and oligodendroglial lineage signatures. High-throughput drug screening using both mouse and human tumor cells finally indicated high efficacy of Doxorubicin, Irinotecan, and Etoposide as possible therapy options that children with HGG-MYCN might benefit from.
Collapse
Affiliation(s)
- Melanie Schoof
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Shweta Godbole
- Center for Molecular Neurobiology (ZMNH), University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas K Albert
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Matthias Dottermusch
- Center for Molecular Neurobiology (ZMNH), University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Annika Ballast
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Nan Qin
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- High-Throughput Drug Screening Core Facility, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marlena Baca Olivera
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- High-Throughput Drug Screening Core Facility, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carolin Göbel
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Sina Neyazi
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Dörthe Holdhof
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Catena Kresbach
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4 University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Levke-Sophie Peter
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Gefion Dorothea Epplen
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Thaden
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Center, Hamburg, Germany
| | - Mirjam Blattner-Johnson
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franziska Modemann
- Mildred Scheel Cancer Career Center HaTriCS4 University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oncology, Hematology and Bone marrow transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4 University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Ann-Kristin Afflerbach
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Alicia Eckhardt
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Münter
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Archana Verma
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Nina Struve
- Mildred Scheel Cancer Career Center HaTriCS4 University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Remke
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- High-Throughput Drug Screening Core Facility, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julia E Neumann
- Center for Molecular Neurobiology (ZMNH), University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Kornelius Kerl
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Ulrich Schüller
- Research Institute Children's Cancer Center, Hamburg, Germany.
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
21
|
Zhong S, Wang M, Huang L, Chen Y, Ge Y, Zhang J, Shi Y, Dong H, Zhou X, Wang B, Lu T, Jing X, Lu Y, Zhang J, Wang X, Wu Q. Single-cell epigenomics and spatiotemporal transcriptomics reveal human cerebellar development. Nat Commun 2023; 14:7613. [PMID: 37993461 PMCID: PMC10665552 DOI: 10.1038/s41467-023-43568-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
Human cerebellar development is orchestrated by molecular regulatory networks to achieve cytoarchitecture and coordinate motor and cognitive functions. Here, we combined single-cell transcriptomics, spatial transcriptomics and single cell chromatin accessibility states to systematically depict an integrative spatiotemporal landscape of human fetal cerebellar development. We revealed that combinations of transcription factors and cis-regulatory elements (CREs) play roles in governing progenitor differentiation and cell fate determination along trajectories in a hierarchical manner, providing a gene expression regulatory map of cell fate and spatial information for these cells. We also illustrated that granule cells located in different regions of the cerebellar cortex showed distinct molecular signatures regulated by different signals during development. Finally, we mapped single-nucleotide polymorphisms (SNPs) of disorders related to cerebellar dysfunction and discovered that several disorder-associated genes showed spatiotemporal and cell type-specific expression patterns only in humans, indicating the cellular basis and possible mechanisms of the pathogenesis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Changping Laboratory, Beijing, 102206, China.
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luwei Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youqiao Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yuxin Ge
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Jiyao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yingchao Shi
- Guangdong Institute of Intelligence Science and Technology, Guangdong, 519031, China
| | - Hao Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Changping Laboratory, Beijing, 102206, China
| | - Bosong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Tian Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxi Jing
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yufeng Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junjing Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Changping Laboratory, Beijing, 102206, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Changping Laboratory, Beijing, 102206, China.
| |
Collapse
|
22
|
Gao S, Carrasquillo Rodríguez JW, Bahmanyar S, Airola MV. Structure and mechanism of the human CTDNEP1-NEP1R1 membrane protein phosphatase complex necessary to maintain ER membrane morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567952. [PMID: 38045299 PMCID: PMC10690229 DOI: 10.1101/2023.11.20.567952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
C-terminal Domain Nuclear Envelope Phosphatase 1 (CTDNEP1) is a non-canonical protein serine/threonine phosphatase that regulates ER membrane biogenesis. Inactivating mutations in CTDNEP1 correlate with development of medulloblastoma, an aggressive childhood cancer. The transmembrane protein Nuclear Envelope Phosphatase 1 Regulatory Subunit 1 (NEP1R1) binds CTDNEP1, but the molecular details by which NEP1R1 regulates CTDNEP1 function are unclear. Here, we find that knockdown of CTDNEP1 or NEP1R1 in human cells generate identical phenotypes, establishing CTDNEP1-NEP1R1 as an evolutionarily conserved membrane protein phosphatase complex that restricts ER expansion. Mechanistically, NEP1R1 acts as an activating regulatory subunit that directly binds and increases the phosphatase activity of CTDNEP1. By defining a minimal NEP1R1 domain sufficient to activate CTDNEP1, we determine high resolution crystal structures of the CTDNEP1-NEP1R1 complex bound to a pseudo-substrate. Structurally, NEP1R1 engages CTDNEP1 at a site distant from the active site to stabilize and allosterically activate CTDNEP1. Substrate recognition is facilitated by a conserved Arg residue that binds and orients the substrate peptide in the active site. Together, this reveals mechanisms for how NEP1R1 regulates CTDNEP1 and explains how cancer-associated mutations inactivate CTDNEP1.
Collapse
Affiliation(s)
- Shujuan Gao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook NY 11794, USA
| | | | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Michael V. Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook NY 11794, USA
| |
Collapse
|
23
|
Dhar SS, Brown C, Rizvi A, Reed L, Kotla S, Zod C, Abraham J, Abe JI, Rajaram V, Chen K, Lee M. Heterozygous Kmt2d loss diminishes enhancers to render medulloblastoma cells vulnerable to combinatory inhibition of lysine demethylation and oxidative phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564587. [PMID: 37961118 PMCID: PMC10634931 DOI: 10.1101/2023.10.29.564587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The histone H3 lysine 4 (H3K4) methyltransferase KMT2D (also called MLL4) is one of the most frequently mutated epigenetic modifiers in medulloblastoma (MB) and other types of cancer. Notably, heterozygous loss of KMT2D is prevalent in MB and other cancer types. However, what role heterozygous KMT2D loss plays in tumorigenesis has not been well characterized. Here, we show that heterozygous Kmt2d loss highly promotes MB driven by heterozygous loss of the MB suppressor gene Ptch in mice. Heterozygous Kmt2d loss upregulated tumor-promoting programs, including oxidative phosphorylation and G-protein-coupled receptor signaling, in Ptch-mutant-driven MB genesis. Mechanistically, both downregulation of the transcription-repressive tumor suppressor gene NCOR2 by heterozygous Kmt2d loss and upregulation of the oncogene MycN by heterozygous Ptch loss increased the expression of tumor-promoting genes. Moreover, heterozygous Kmt2d loss extensively diminished enhancer signals (e.g., H3K27ac) and H3K4me3 signature, including those for tumor suppressor genes (e.g., Ncor2). Combinatory pharmacological inhibition of oxidative phosphorylation and the H3K4 demethylase LSD1 drastically reduced tumorigenicity of MB cells bearing heterozygous Kmt2d loss. These findings reveal the mechanistic basis underlying the MB-promoting effect of heterozygous KMT2D loss, provide a rationale for a therapeutic strategy for treatment of KMT2D-deficient MB, and have mechanistic implications for the molecular pathogenesis of other types of cancer bearing heterozygous KMT2D loss.
Collapse
|
24
|
Göbel C, Godbole S, Schoof M, Holdhof D, Kresbach C, Loose C, Neumann J, Schüller U. MYC overexpression and SMARCA4 loss cooperate to drive medulloblastoma formation in mice. Acta Neuropathol Commun 2023; 11:174. [PMID: 37919824 PMCID: PMC10621315 DOI: 10.1186/s40478-023-01654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023] Open
Abstract
Group 3 medulloblastoma is one of the most aggressive types of childhood brain tumors. Roughly 30% of cases carry genetic alterations in MYC, SMARCA4, or both genes combined. While overexpression of MYC has previously been shown to drive medulloblastoma formation in mice, the functional significance of SMARCA4 mutations and their suitability as a therapeutic target remain largely unclear. To address this issue, we combined overexpression of MYC with a loss of SMARCA4 in granule cell precursors. Both alterations did not increase proliferation of granule cell precursors in vitro. However, combined MYC overexpression and SMARCA4 loss successfully induced tumor formation in vivo after orthotopic transplantation in recipient mice. Resulting tumors displayed anaplastic histology and exclusively consisted of SMARCA4-negative cells although a mixture of recombined and non-recombined cells was injected. These observations provide first evidence for a tumor-promoting role of a SMARCA4 deficiency in the development of medulloblastoma. In comparing the transcriptome of tumors to the cells of origin and an established Sonic Hedgehog medulloblastoma model, we gathered first hints on deregulated gene expression that could be specifically involved in SMARCA4/MYC driven tumorigenesis. Finally, an integration of RNA sequencing and DNA methylation data of murine tumors with human samples revealed a high resemblance to human Group 3 medulloblastoma on the molecular level. Altogether, the development of SMARCA4-deficient medulloblastomas in mice paves the way to deciphering the role of frequently occurring SMARCA4 alterations in Group 3 medulloblastoma with the perspective to explore targeted therapeutic options.
Collapse
Affiliation(s)
- Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, Building N63 (LIV), Hamburg, D-20251, Germany
| | - Shweta Godbole
- Center for Molecular Neurobiology, Falkenried 94, Hamburg, 20251, Germany
| | - Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, Building N63 (LIV), Hamburg, D-20251, Germany
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, Building N63 (LIV), Hamburg, D-20251, Germany
| | - Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, Building N63 (LIV), Hamburg, D-20251, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
| | - Carolin Loose
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, Building N63 (LIV), Hamburg, D-20251, Germany
| | - Julia Neumann
- Center for Molecular Neurobiology, Falkenried 94, Hamburg, 20251, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany.
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, Building N63 (LIV), Hamburg, D-20251, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany.
| |
Collapse
|
25
|
Qin N, Paisana E, Picard D, Leprivier G, Langini M, Custódia C, Cascão R, Conrad C, Peitzsch M, Stefanski A, Stühler K, Fischer U, Faria CC, Dietrich S, Reifenberger G, Remke M. The long non-coding RNA OTX2-AS1 promotes tumor growth and predicts response to BCL-2 inhibition in medulloblastoma. J Neurooncol 2023; 165:329-342. [PMID: 37976029 PMCID: PMC10689561 DOI: 10.1007/s11060-023-04508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Primary brain tumors are a leading cause of cancer-related death in children, and medulloblastoma is the most common malignant pediatric brain tumor. The current molecular characterization of medulloblastoma is mainly based on protein-coding genes, while little is known about the involvement of long non-coding RNAs (lncRNAs). This study aimed to elucidate the role of the lncRNA OTX2-AS1 in medulloblastoma. METHODS Analyses of DNA copy number alterations, methylation profiles, and gene expression data were used to characterize molecular alterations of OTX2-AS1 in medulloblastoma tissue samples. In vitro analyses of medulloblastoma cell models and orthotopic in vivo experiments were carried out for functional characterization of OTX2-AS1. High-throughput drug screening was employed to identify pharmacological inhibitors, while proteomics and metabolomics analyses were performed to address potential mechanisms of drug action. RESULTS We detected amplification and consecutive overexpression of OTX2 and OTX2-AS1 in a subset of medulloblastomas. In addition, OTX2-AS1 promoter methylation was linked to OTX2-AS1 expression. OTX2-AS1 knockout reduced medulloblastoma cell viability and cell migration in vitro and prolonged survival in the D283 orthotopic medulloblastoma mouse xenograft model. Pharmacological inhibition of BCL-2 suppressed the growth of OTX2-AS1 overexpressing medulloblastoma cells in vitro. CONCLUSIONS Our study revealed a pro-tumorigenic role of OTX2-AS1 in medulloblastoma and identified BCL-2 inhibition as a potential therapeutic approach to target OTX2-AS1 overexpressing medulloblastoma cells.
Collapse
Affiliation(s)
- Nan Qin
- Department of Hematology, Oncology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany.
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany.
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany.
- High-Throughput Drug Screening Core Facility, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Düsseldorf, Germany.
| | - Eunice Paisana
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, 1649-028, Portugal
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Gabriel Leprivier
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Maike Langini
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Carlos Custódia
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, 1649-028, Portugal
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, 1649-028, Portugal
| | - Catleen Conrad
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Molecular Medicine 1, Heinrich Heine University Medical Faculty, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Molecular Medicine 1, Heinrich Heine University Medical Faculty, Düsseldorf, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Claudia C Faria
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, 1649-028, Portugal
- Department of Neurosurgery, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, 1649-028, Portugal
| | - Sascha Dietrich
- Department of Hematology, Oncology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
- High-Throughput Drug Screening Core Facility, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center of Saarland, Homburg/Saar, Germany
| |
Collapse
|
26
|
Sanghrajka RM, Koche R, Medrano H, El Nagar S, Stephen DN, Lao Z, Bayin NS, Ge K, Joyner AL. KMT2D suppresses Sonic hedgehog-driven medulloblastoma progression and metastasis. iScience 2023; 26:107831. [PMID: 37822508 PMCID: PMC10562805 DOI: 10.1016/j.isci.2023.107831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/29/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
The major cause of treatment failure and mortality among medulloblastoma patients is metastasis intracranially or along the spinal cord. The molecular mechanisms driving tumor metastasis in Sonic hedgehog-driven medulloblastoma (SHH-MB) patients, however, remain largely unknown. In this study we define a tumor suppressive role of KMT2D (MLL2), a gene frequently mutated in the most metastatic β-subtype. Strikingly, genetic mouse models of SHH-MB demonstrate that heterozygous loss of Kmt2d in conjunction with activation of the SHH pathway causes highly penetrant disease with decreased survival, increased hindbrain invasion and spinal cord metastasis. Loss of Kmt2d attenuates neural differentiation and shifts the transcriptional/chromatin landscape of primary and metastatic tumors toward a decrease in differentiation genes and tumor suppressors and an increase in genes/pathways implicated in advanced stage cancer and metastasis (TGFβ, Notch, Atoh1, Sox2, and Myc). Thus, secondary heterozygous KMT2D mutations likely have prognostic value for identifying SHH-MB patients prone to develop metastasis.
Collapse
Affiliation(s)
- Reeti Mayur Sanghrajka
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hector Medrano
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salsabiel El Nagar
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel N. Stephen
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - N. Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
27
|
Carrasquillo Rodríguez JW, Uche O, Gao S, Lee S, Airola MV, Bahmanyar S. Differential reliance of CTD-nuclear envelope phosphatase 1 on its regulatory subunit in ER lipid synthesis and storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562096. [PMID: 37873275 PMCID: PMC10592836 DOI: 10.1101/2023.10.12.562096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The endoplasmic reticulum (ER) is the site for the synthesis of the major membrane and storage lipids. Lipin 1 produces diacylglycerol, the lipid intermediate critical for the synthesis of both membrane and storage lipids in the ER. CTD-Nuclear Envelope Phosphatase 1 (CTDNEP1) regulates lipin 1 to restrict ER membrane synthesis, but its role in lipid storage in mammalian cells is unknown. Here, we show that the ubiquitin-proteasome degradation pathway controls the levels of ER/nuclear envelope-associated CTDNEP1 to regulate ER membrane synthesis through lipin 1. The N-terminus of CTDNEP1 is an amphipathic helix that targets to the ER, nuclear envelope and lipid droplets. We identify key residues at the binding interface of CTDNEP1 with its regulatory subunit NEP1R1 and show that they facilitate complex formation in vivo and in vitro . We demonstrate a role for NEP1R1 in temporarily shielding CTDNEP1 from proteasomal degradation to regulate lipin 1 and restrict ER size. Unexpectedly, we found that NEP1R1 is not required for CTDNEP1's role in restricting lipid droplet biogenesis. Thus, the reliance of CTDNEP1 function on its regulatory subunit differs during ER membrane synthesis and lipid storage. Together, our work provides a framework into understanding how the ER regulates lipid synthesis and storage under fluctuating conditions.
Collapse
|
28
|
Cho S, Miller A, Mosha M, McNerney KO, Metts J. Clinical Trials on Cellular Therapy for Children and Adolescents With Cancer: A 15-Year Trend in the United States. Cureus 2023; 15:e47885. [PMID: 38021600 PMCID: PMC10681796 DOI: 10.7759/cureus.47885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION Cellular therapies are frequently studied in clinical trials for pediatric patients with malignant disease. Characteristics of ongoing and completed cellular therapy clinical trials in the U.S. involving children and adolescents have not previously been reported. METHODS We searched ClinicalTrials.gov for clinical trials involving cellular therapies enrolling patients under 18 years of age in the U.S. Trials were initially stratified into child-only (maximum age of eligibility <18 years), child/adolescent and young adult (AYA) (maximum age of eligibility ≤21 years), and child/adult (maximum age of eligibility >21 years). Descriptive characteristics and trends over time were analyzed. RESULTS We included 202 trials posted 2007-2022. Of the 202 trials, only three trials were child-only; thus, our subsequent analysis focused on comparing child/AYA (≤21 years) and child/adult trials (>21 years). One hundred sixty-nine (84%) enrolled both child and adult populations. The vast majority of trials were early phase (phase 1, 1/2, and 2, 198/202, 98%). Chimeric antigen receptor T cell therapies were most commonly studied (88/202, 44%), while natural-killer cell therapies were most common in child/AYA trials (42% vs. 16%). Most trials were single institution-only (130/202, 64%) and did not receive industry funding (163/202, 81%). Studies with industry funding were more likely to be multicenter (64% vs. 29%) and international (31% vs. 0.6%). Notably, no central nervous system tumor-specific trials had industry funding. There was no difference in therapy type based on funding source. Yearly new trial activations increased over the time period studied (p=0.01). CONCLUSION The frequency of cellular therapy trial activations enrolling child/AYA patients with cancer in the U.S. has increased over time. Most studies were phase 1 or 2, single institution-only, and not industry-supported. Future opportunities for cell therapy for pediatric cancer should include multi-institutional approaches.
Collapse
Affiliation(s)
- Sukjoo Cho
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, USA
| | - Alexandra Miller
- Data Coordinating Center for Pediatric Multicenter Studies, Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, USA
| | - Maua Mosha
- Data Coordinating Center for Pediatric Multicenter Studies, Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, USA
| | - Kevin O McNerney
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Jonathan Metts
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, USA
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
29
|
Moreno DA, Bonatelli M, Antoniazzi AP, de Paula FE, Leal LF, Garcia FADO, de Paula AE, Teixeira GR, Santana IVV, Saggioro F, Neder L, Valera ET, Scrideli CA, Stavale J, Malheiros SMF, Lima M, Hajj GNM, Garcia-Rivello H, Christiansen S, Nunes S, Gil-da-Costa MJ, Pinheiro J, Martins FD, Junior CA, Mançano BM, Reis RM. High frequency of WNT-activated medulloblastomas with CTNNB1 wild type suggests a higher proportion of hereditary cases in a Latin-Iberian population. Front Oncol 2023; 13:1237170. [PMID: 37746264 PMCID: PMC10513896 DOI: 10.3389/fonc.2023.1237170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose Medulloblastomas are the most common primary malignant brain tumors in children. They are divided into molecular subgroups: WNT-activated, SHH-Activated, TP53 mutant or wild type, and non-WNT/non-SHH (Groups 3 and 4). WNT-activated medulloblastomas are usually caused by mutations in the CTNNB1 gene (85%-90%), and most remaining cases of CTNNB1 wild type are thought to be caused by germline mutations in APC. So far, the frequencies of CTNNB1 have been reported mainly in North American and European populations. The aim of this study was to report the frequency of CTNNB1 mutations in WNT-activated medulloblastomas in a Latin-Iberian population and correlate with their clinicopathological characteristics. Methods A total of 266 medulloblastomas from seven different institutions from Brazil (n=211), Portugal (n=38), and Argentina (n=17) were evaluated. Following RNA and DNA isolation from formalin-fixed, paraffin-embedded (FFPE) tumor tissues, the molecular classification and CTNNB1 mutation analysis were performed by nCounter and Sanger sequencing, respectively. Results WNT-activated medulloblastomas accounted for 15% (40/266) of the series. We observed that 73% of WNT-activated medulloblastomas harbored CTNNB1 mutations. CTNNB1 wild-type cases (27%) were more prevalent in female individuals and suggested to be associated with a worse outcome. Among the CTNNB1 wild-type cases, the available analysis of family history revealed two cases with familiar adenomatous polyposis, harboring APC germline variants. Conclusion We observed a lower incidence of CTNNB1 mutations in WNT-activated medulloblastomas in our Latin-Iberian cohort compared to frequencies previously described in other populations. Considering that CTNNB1 wild-type cases may exhibit APC germline mutations, our study suggests a higher incidence (~30%) of hereditary WNT-activated medulloblastomas in the Latin-Iberian population.
Collapse
Affiliation(s)
| | - Murilo Bonatelli
- Molecular Diagnosis Laboratory, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | - Leticia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Pathology Department, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | - Gustavo Ramos Teixeira
- Barretos School of Health Sciences Dr. Paulo Prata, Barretos Cancer Hospital, Barretos, Brazil
- Pathology Department, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Fabiano Saggioro
- Department of Pathology and Forensic Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Luciano Neder
- Department of Pathology and Forensic Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Alberto Scrideli
- Department of Pediatrics of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Stavale
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Matheus Lima
- Oncology Department, AC Camargo Hospital, São Paulo, Brazil
| | | | | | - Silvia Christiansen
- Pathology Department, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Susana Nunes
- Pediatric Oncology Department, Centro Hospitalar Universitário São João, Porto, Portugal
| | | | - Jorge Pinheiro
- Department of Pathology, Centro Hospitalar Universitário São João, Porto, Portugal
| | | | | | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Molecular Diagnosis Laboratory, Barretos Cancer Hospital, Barretos, Brazil
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| |
Collapse
|
30
|
Gadek M, Sherr EH, Floor SN. The variant landscape and function of DDX3X in cancer and neurodevelopmental disorders. Trends Mol Med 2023; 29:726-739. [PMID: 37422363 DOI: 10.1016/j.molmed.2023.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
RNA molecules rely on proteins across their life cycle. DDX3X encodes an X-linked DEAD-box RNA helicase with a Y-linked paralog, DDX3Y. DDX3X is central to the RNA life cycle and is implicated in many conditions, including cancer and the neurodevelopmental disorder DDX3X syndrome. DDX3X-linked conditions often exhibit sex differences, possibly due to differences between expression or function of the X- and Y-linked paralogs DDX3X and DDX3Y. DDX3X-related diseases have different mutational landscapes, indicating different roles of DDX3X. Understanding the role of DDX3X in normal and disease states will inform the understanding of DDX3X in disease. We review the function of DDX3X and DDX3Y, discuss how mutation type and sex bias contribute to human diseases involving DDX3X, and review possible DDX3X-targeting treatments.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
31
|
Yang M, Ali O, Bjørås M, Wang J. Identifying functional regulatory mutation blocks by integrating genome sequencing and transcriptome data. iScience 2023; 26:107266. [PMID: 37520692 PMCID: PMC10371843 DOI: 10.1016/j.isci.2023.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/05/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Millions of single nucleotide variants (SNVs) exist in the human genome; however, it remains challenging to identify functional SNVs associated with diseases. We propose a non-encoding SNVs analysis tool bpb3, BayesPI-BAR version 3, aiming to identify the functional mutation blocks (FMBs) by integrating genome sequencing and transcriptome data. The identified FMBs display high frequency SNVs, significant changes in transcription factors (TFs) binding affinity and are nearby the regulatory regions of differentially expressed genes. A two-level Bayesian approach with a biophysical model for protein-DNA interactions is implemented, to compute TF-DNA binding affinity changes based on clustered position weight matrices (PWMs) from over 1700 TF-motifs. The epigenetic data, such as the DNA methylome can also be integrated to scan FMBs. By testing the datasets from follicular lymphoma and melanoma, bpb3 automatically and robustly identifies FMBs, demonstrating that bpb3 can provide insight into patho-mechanisms, and therapeutic targets from transcriptomic and genomic data.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Omer Ali
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Junbai Wang
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital and University of Oslo, Lørenskog, Norway
| |
Collapse
|
32
|
Hartley R, Phoenix TN. MYC Promotes Aggressive Growth and Metastasis of a WNT-Medulloblastoma Mouse Model. Dev Neurosci 2023; 46:167-178. [PMID: 37544301 DOI: 10.1159/000533270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
Medulloblastoma (MB), the most common malignant pediatric brain tumor, comprises four molecularly and clinically distinct subgroups (termed WNT, SHH, group 3, and group 4). Prognosis varies based on genetic and pathological features associated with each molecular subgroup. WNT-MB, considered low-risk, is rarely metastatic and contains activating mutations in CTNNB1; group 3-MB (GRP3-MB), commonly classified as high-risk, is frequently metastatic and can contain genomic alterations, resulting in elevated MYC expression. Here, we compare model systems of low-risk WNT-MB and high-risk GRP3-MB to identify tumor and microenvironment interactions that could contribute to features associated with prognosis. Compared to GRP3-MB, we find that WNT-MB is enriched in gene sets related to extracellular matrix (ECM) regulation and cellular adhesion. Exogenous expression of MycT58A in a murine WNT-MB model significantly accelerates growth and results in metastatic disease. In addition to decreased ECM regulation and cell adhesion pathways, we also identified immune system interactions among the top downregulated signaling pathways following MycT58A expression. Taken together, our data provide evidence that increased Myc signaling can promote the growth and metastasis in a murine model of WNT-MB.
Collapse
Affiliation(s)
- Rachel Hartley
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
- Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
33
|
Reuss DE, Downing SM, Camacho CV, Wang YD, Piro RM, Herold-Mende C, Wang ZQ, Hofmann TG, Sahm F, von Deimling A, McKinnon PJ, Frappart PO. Simultaneous Nbs1 and p53 inactivation in neural progenitors triggers high-grade gliomas. Neuropathol Appl Neurobiol 2023; 49:e12915. [PMID: 37296499 DOI: 10.1111/nan.12915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
AIMS Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder caused by hypomorphic mutations of NBS1. NBS1 is a member of the MRE11-RAD50-NBS1 (MRN) complex that binds to DNA double-strand breaks and activates the DNA damage response (DDR). Nbs1 inactivation in neural progenitor cells leads to microcephaly and premature death. Interestingly, p53 homozygous deletion rescues the NBS1-deficient phenotype allowing long-term survival. The objective of this work was to determine whether simultaneous inactivation of Nbs1 and p53 in neural progenitors triggered brain tumorigenesis and if so in which category this tumour could be classified. METHODS We generated a mouse model with simultaneous genetic inactivation of Nbs1 and p53 in embryonic neural stem cells and analysed the arising tumours with in-depth molecular analyses including immunohistochemistry, array comparative genomic hybridisation (aCGH), whole exome-sequencing and RNA-sequencing. RESULTS NBS1/P53-deficient mice develop high-grade gliomas (HGG) arising in the olfactory bulbs and in the cortex along the rostral migratory stream. In-depth molecular analyses using immunohistochemistry, aCGH, whole exome-sequencing and RNA-sequencing revealed striking similarities to paediatric human HGG with shared features with radiation-induced gliomas (RIGs). CONCLUSIONS Our findings show that concomitant inactivation of Nbs1 and p53 in mice promotes HGG with RIG features. This model could be useful for preclinical studies to improve the prognosis of these deadly tumours, but it also highlights the singularity of NBS1 among the other DNA damage response proteins in the aetiology of brain tumours.
Collapse
Affiliation(s)
- David E Reuss
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Susanna M Downing
- Center for Pediatric Neurological Disease Research, St. Jude Translational Neuroscience, Departments of Genetics and Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cristel V Camacho
- Center for Pediatric Neurological Disease Research, St. Jude Translational Neuroscience, Departments of Genetics and Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yong-Dong Wang
- Center for Pediatric Neurological Disease Research, St. Jude Translational Neuroscience, Departments of Genetics and Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rosario M Piro
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milan, Italy
| | - Christel Herold-Mende
- Department of Neurosurgery, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Ageing-Fritz Lipmann Institute, Jena, Germany
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Translational Neuroscience, Departments of Genetics and Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Pierre-Olivier Frappart
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
34
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
35
|
Navickas SM, Giles KA, Brettingham-Moore KH, Taberlay PC. The role of chromatin remodeler SMARCA4/BRG1 in brain cancers: a potential therapeutic target. Oncogene 2023:10.1038/s41388-023-02773-9. [PMID: 37433987 PMCID: PMC10374441 DOI: 10.1038/s41388-023-02773-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
The chromatin remodeler SMARCA4/BRG1 is a key epigenetic regulator with diverse roles in coordinating the molecular programs that underlie brain tumour development. BRG1 function in brain cancer is largely specific to the tumour type and varies further between tumour subtypes, highlighting its complexity. Altered SMARCA4 expression has been linked to medulloblastoma, low-grade gliomas such as oligodendroglioma, high-grade gliomas such as glioblastoma and atypical/teratoid rhabdoid tumours. SMARCA4 mutations in brain cancer predominantly occur in the crucial catalytic ATPase domain, which is associated with tumour suppressor activity. However, SMARCA4 is opposingly seen to promote tumourigenesis in the absence of mutation and through overexpression in other brain tumours. This review explores the multifaceted interaction between SMARCA4 and various brain cancer types, highlighting its roles in tumour pathogenesis, the pathways it regulates, and the advances that have been made in understanding the functional relevance of mutations. We discuss developments made in targeting SMARCA4 and the potential to translate these to adjuvant therapies able to enhance current methods of brain cancer treatment.
Collapse
Affiliation(s)
- Sophie M Navickas
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Katherine A Giles
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Kate H Brettingham-Moore
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Phillippa C Taberlay
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
36
|
Chicard M, Iddir Y, Masliah Planchon J, Combaret V, Attignon V, Saint-Charles A, Frappaz D, Faure-Conter C, Beccaria K, Varlet P, Geoerger B, Baulande S, Pierron G, Bouchoucha Y, Doz F, Delattre O, Waterfall JJ, Bourdeaut F, Schleiermacher G. Cell-Free DNA Extracted from CSF for the Molecular Diagnosis of Pediatric Embryonal Brain Tumors. Cancers (Basel) 2023; 15:3532. [PMID: 37444642 DOI: 10.3390/cancers15133532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Liquid biopsies are revolutionary tools used to detect tumor-specific genetic alterations in body fluids, including the use of cell-free DNA (cfDNA) for molecular diagnosis in cancer patients. In brain tumors, cerebrospinal fluid (CSF) cfDNA might be more informative than plasma cfDNA. Here, we assess the use of CSF cfDNA in pediatric embryonal brain tumors (EBT) for molecular diagnosis. METHODS The CSF cfDNA of pediatric patients with medulloblastoma (n = 18), ATRT (n = 3), ETMR (n = 1), CNS NB FOXR2 (n = 2) and pediatric EBT NOS (n = 1) (mean cfDNA concentration 48 ng/mL; range 4-442 ng/mL) and matched tumor genomic DNA were sequenced by WES and/or a targeted sequencing approach to determine single-nucleotide variations (SNVs) and copy number alterations (CNA). A specific capture covering transcription start sites (TSS) of genes of interest was also used for nucleosome footprinting in CSF cfDNA. RESULTS 15/25 CSF cfDNA samples yielded informative results, with informative CNA and SNVs in 11 and 15 cases, respectively. For cases with paired tumor and CSF cfDNA WES (n = 15), a mean of 83 (range 1-160) shared SNVs were observed, including SNVs in classical medulloblastoma genes such as SMO and KMT2D. Interestingly, tumor-specific SNVs (mean 18; range 1-62) or CSF-specific SNVs (mean 5; range 0-25) were also observed, suggesting clonal heterogeneity. The TSS panel resulted in differential coverage profiles across all 112 studied genes in 7 cases, indicating distinct promoter accessibility. CONCLUSION CSF cfDNA sequencing yielded informative results in 60% (15/25) of all cases, with informative results in 83% (15/18) of all cases analyzed by WES. These results pave the way for the implementation of these novel approaches for molecular diagnosis and minimal residual disease monitoring.
Collapse
Affiliation(s)
- Mathieu Chicard
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Yasmine Iddir
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Julien Masliah Planchon
- Unité de Génétique Somatique, Service de Génétique, Institut Curie Hospital Group, 75005 Paris, France
| | - Valérie Combaret
- Plateforme de Génomique des Cancers, Centre Léon Bérard, 69008 Lyon, France
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, 69373 Lyon, France
| | - Valéry Attignon
- Plateforme de Génomique des Cancers, Centre Léon Bérard, 69008 Lyon, France
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, 69373 Lyon, France
| | - Alexandra Saint-Charles
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Didier Frappaz
- Department of Pediatric Clinical Trials and Department of Pediatric Neuro-Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, 69008 Lyon, France
| | - Cécile Faure-Conter
- Department of Pediatric Clinical Trials and Department of Pediatric Neuro-Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, 69008 Lyon, France
| | - Kévin Beccaria
- Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris-Université Paris Cité, 75015 Paris, France
| | - Pascale Varlet
- GHU Psychiatrie et Neurosciences, Site Sainte-Anne, 75014 Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, 75005 Paris, France
| | - Gaelle Pierron
- Unité de Génétique Somatique, Service de Génétique, Institut Curie Hospital Group, 75005 Paris, France
| | - Yassine Bouchoucha
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
| | - François Doz
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
- Faculty of Medicine, Université Paris Cité, 75005 Paris, France
| | - Olivier Delattre
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
- Diversity and Plasticity of Childhood Tumors Laboratory, INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Joshua J Waterfall
- Integrative Functional Genomics of Cancer Laboratory, INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, PSL Research University, 75005 Paris, France
- Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Franck Bourdeaut
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
| | - Gudrun Schleiermacher
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
| |
Collapse
|
37
|
Zhao Z, Cao K, Watanabe J, Philips CN, Zeidner JM, Ishi Y, Wang Q, Gold SR, Junkins K, Bartom ET, Yue F, Chandel NS, Hashizume R, Ben-Sahra I, Shilatifard A. Therapeutic targeting of metabolic vulnerabilities in cancers with MLL3/4-COMPASS epigenetic regulator mutations. J Clin Invest 2023; 133:e169993. [PMID: 37252797 PMCID: PMC10313365 DOI: 10.1172/jci169993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Epigenetic status-altering mutations in chromatin-modifying enzymes are a feature of human diseases, including many cancers. However, the functional outcomes and cellular dependencies arising from these mutations remain unresolved. In this study, we investigated cellular dependencies, or vulnerabilities, that arise when enhancer function is compromised by loss of the frequently mutated COMPASS family members MLL3 and MLL4. CRISPR dropout screens in MLL3/4-depleted mouse embryonic stem cells (mESCs) revealed synthetic lethality upon suppression of purine and pyrimidine nucleotide synthesis pathways. Consistently, we observed a shift in metabolic activity toward increased purine synthesis in MLL3/4-KO mESCs. These cells also exhibited enhanced sensitivity to the purine synthesis inhibitor lometrexol, which induced a unique gene expression signature. RNA-Seq identified the top MLL3/4 target genes coinciding with suppression of purine metabolism, and tandem mass tag proteomic profiling further confirmed upregulation of purine synthesis in MLL3/4-KO cells. Mechanistically, we demonstrated that compensation by MLL1/COMPASS was underlying these effects. Finally, we demonstrated that tumors with MLL3 and/or MLL4 mutations were highly sensitive to lometrexol in vitro and in vivo, both in culture and in animal models of cancer. Our results depicted a targetable metabolic dependency arising from epigenetic factor deficiency, providing molecular insight to inform therapy for cancers with epigenetic alterations secondary to MLL3/4 COMPASS dysfunction.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Kaixiang Cao
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Jun Watanabe
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Cassandra N. Philips
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Jacob M. Zeidner
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Yukitomo Ishi
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Sarah R. Gold
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Katherine Junkins
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Navdeep S. Chandel
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rintaro Hashizume
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| |
Collapse
|
38
|
Rallabandi HR, Choi H, Cha H, Kim YJ. Research Trends in C-Terminal Domain Nuclear Envelope Phosphatase 1. Life (Basel) 2023; 13:1338. [PMID: 37374122 DOI: 10.3390/life13061338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
C-terminal domain nuclear envelope phosphatase 1 (CTDNEP1, formerly Dullard) is a member of the newly emerging protein phosphatases and has been recognized in neuronal cell tissues in amphibians. It contains the phosphatase domain in the C-terminal, and the sequences are conserved in various taxa of organisms. CTDNEP1 has several roles in novel biological activities such as neural tube development in embryos, nuclear membrane biogenesis, regulation of bone morphogenetic protein signaling, and suppression of aggressive medulloblastoma. The three-dimensional structure of CTDNEP1 and the detailed action mechanisms of CTDNEP1's functions have yet to be determined for several reasons. Therefore, CTDNEP1 is a protein phosphatase of interest due to recent exciting and essential works. In this short review, we summarize the presented biological roles, possible substrates, interacting proteins, and research prospects of CTDNEP1.
Collapse
Affiliation(s)
- Harikrishna Reddy Rallabandi
- Department of Medicinal Bioscience and Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| | - Haewon Choi
- Department of Medicinal Bioscience and Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyunseung Cha
- Department of Medicinal Bioscience and Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Jun Kim
- Department of Medicinal Bioscience and Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
39
|
Hofman DA, Ruiz-Orera J, Yannuzzi I, Murugesan R, Brown A, Clauser KR, Condurat AL, van Dinter JT, Engels SA, Goodale A, van der Lugt J, Abid T, Wang L, Zhou KN, Vogelzang J, Ligon KL, Phoenix TN, Roth JA, Root DE, Hubner N, Golub TR, Bandopadhayay P, van Heesch S, Prensner JR. Translation of non-canonical open reading frames as a cancer cell survival mechanism in childhood medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539399. [PMID: 37205492 PMCID: PMC10187264 DOI: 10.1101/2023.05.04.539399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames. To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a step-wise approach to employ multiple CRISPR-Cas9 screens to elucidate functional non-canonical ORFs implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream open reading frames (uORFs) exhibited selective functionality independent of the main coding sequence. One of these, ASNSD1-uORF or ASDURF, was upregulated, associated with the MYC family oncogenes, and was required for medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future cancer genomics studies seeking to define new cancer targets.
Collapse
Affiliation(s)
- Damon A. Hofman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- These authors contributed equally
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- These authors contributed equally
| | - Ian Yannuzzi
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Adam Brown
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Current address: Arbor Biotechnologies, Cambridge, MA, 02140, USA
| | - Karl R. Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Alexandra L. Condurat
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jip T. van Dinter
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Sem A.G. Engels
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Amy Goodale
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Tanaz Abid
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Li Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kevin N. Zhou
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Current address: Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, 91101, USA
| | - Jayne Vogelzang
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, 02215, USA
| | - Keith L. Ligon
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, 02215, USA
- Department of Pathology, Boston Children’s Hospital, Boston MA 02115
| | - Timothy N. Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45229, USA
| | | | - David E. Root
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité-Universitätsmedizin, 10117 Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, 13347 Berlin, Germany
| | - Todd R. Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - John R. Prensner
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115, USA
- Current address: Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
40
|
Chao C, Tang R, Zhao J, Di D, Qian Y, Wang B. Oncogenic roles and related mechanisms of the long non-coding RNA MINCR in human cancers. Front Cell Dev Biol 2023; 11:1087337. [PMID: 37215074 PMCID: PMC10196036 DOI: 10.3389/fcell.2023.1087337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play vital roles in regulating epigenetic mechanisms and gene expression levels, and their dysregulation is closely associated with a variety of diseases such as cancer. Several studies have demonstrated that lncRNAs are dysregulated during tumor progression. Recently, the MYC-induced long non-coding RNA MINCR, a newly identified lncRNA, has been demonstrated to act as an oncogene in different cancers, including gallbladder cancer, hepatocellular cancer, colorectal cancer, non-small cell lung cancer, oral squamous cell carcinoma, nasopharyngeal cancer, and glioma. Moreover, MINCR has been reported to act as a biomarker in the prognosis of patients with different cancers. In this review, we summarize and analyze the oncogenic roles of MINCR in a variety of human cancers in terms of its clinical significance, biological functions, cellular activities, and regulatory mechanism. Our analysis of the literature suggests that MINCR has potential as a novel biomarker and therapeutic target in human cancers.
Collapse
Affiliation(s)
- Ce Chao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Renzhe Tang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiamin Zhao
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dongmei Di
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yongxiang Qian
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
41
|
Vo T, Balderson B, Jones K, Ni G, Crawford J, Millar A, Tolson E, Singleton M, Kojic M, Robertson T, Walters S, Mulay O, Bhuva DD, Davis MJ, Wainwright BJ, Nguyen Q, Genovesi LA. Spatial transcriptomic analysis of Sonic hedgehog medulloblastoma identifies that the loss of heterogeneity and promotion of differentiation underlies the response to CDK4/6 inhibition. Genome Med 2023; 15:29. [PMID: 37127652 PMCID: PMC10150495 DOI: 10.1186/s13073-023-01185-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/20/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Medulloblastoma (MB) is a malignant tumour of the cerebellum which can be classified into four major subgroups based on gene expression and genomic features. Single-cell transcriptome studies have defined the cellular states underlying each MB subgroup; however, the spatial organisation of these diverse cell states and how this impacts response to therapy remains to be determined. METHODS Here, we used spatially resolved transcriptomics to define the cellular diversity within a sonic hedgehog (SHH) patient-derived model of MB and show that cells specific to a transcriptional state or spatial location are pivotal for CDK4/6 inhibitor, Palbociclib, treatment response. We integrated spatial gene expression with histological annotation and single-cell gene expression data from MB, developing an analysis strategy to spatially map cell type responses within the hybrid system of human and mouse cells and their interface within an intact brain tumour section. RESULTS We distinguish neoplastic and non-neoplastic cells within tumours and from the surrounding cerebellar tissue, further refining pathological annotation. We identify a regional response to Palbociclib, with reduced proliferation and induced neuronal differentiation in both treated tumours. Additionally, we resolve at a cellular resolution a distinct tumour interface where the tumour contacts neighbouring mouse brain tissue consisting of abundant astrocytes and microglia and continues to proliferate despite Palbociclib treatment. CONCLUSIONS Our data highlight the power of using spatial transcriptomics to characterise the response of a tumour to a targeted therapy and provide further insights into the molecular and cellular basis underlying the response and resistance to CDK4/6 inhibitors in SHH MB.
Collapse
Affiliation(s)
- Tuan Vo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Brad Balderson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Kahli Jones
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Guiyan Ni
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Amanda Millar
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Elissa Tolson
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Matthew Singleton
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Marija Kojic
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Thomas Robertson
- Department of Pathology, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, QLD, 4029, Australia
| | - Shaun Walters
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Onkar Mulay
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dharmesh D Bhuva
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Faculty of Medicine, South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Melissa J Davis
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Faculty of Medicine, South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Brandon J Wainwright
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Laura A Genovesi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
42
|
Gorini F, Miceli M, de Antonellis P, Amente S, Zollo M, Ferrucci V. Epigenetics and immune cells in medulloblastoma. Front Genet 2023; 14:1135404. [PMID: 36968588 PMCID: PMC10036437 DOI: 10.3389/fgene.2023.1135404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Medulloblastoma (MB) is a highly malignant childhood tumor of the cerebellum. Transcriptional and epigenetic signatures have classified MB into four molecular subgroups, further stratified into biologically different subtypes with distinct somatic copy-number aberrations, driver genes, epigenetic alterations, activated pathways, and clinical outcomes. The brain tumor microenvironment (BTME) is of importance to regulate a complex network of cells, including immune cells, involved in cancer progression in brain malignancies. MB was considered with a “cold” immunophenotype due to the low influx of immune cells across the blood brain barrier (BBB). Recently, this assumption has been reconsidered because of the identification of infiltrating immune cells showing immunosuppressive phenotypes in the BTME of MB tumors. Here, we are providing a comprehensive overview of the current status of epigenetics alterations occurring during cancer progression with a description of the genomic landscape of MB by focusing on immune cells within the BTME. We further describe how new immunotherapeutic approaches could influence concurring epigenetic mechanisms of the immunosuppressive cells in BTME. In conclusion, the modulation of these molecular genetic complexes in BTME during cancer progression might enhance the therapeutic benefit, thus firing new weapons to fight MB.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Pasqualino de Antonellis
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- DAI Medicina di Laboratorio e Trasfusionale, ‘AOU Federico II Policlinico, Naples, Italy
| | - Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- *Correspondence: Veronica Ferrucci,
| |
Collapse
|
43
|
Zhang Y, Chen M, Huang D, Gu H, Yi Y, Meng X. Correlation between ARID1B gene mutation (p.A460, p.V215G) and prognosis of high-risk refractory neuroblastoma. Cell Biol Int 2023. [PMID: 36883912 DOI: 10.1002/cbin.12013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/12/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023]
Abstract
In a few reports, ARID1B/A mutation was found in neuroblastoma. We analyzed the clinical characteristics, clinical efficacy, and prognosis of three children with high-risk refractory neuroblastoma (NB) with somatic ARID1B gene mutation. The whole exon sequencing results showed that there were involved in transcription, DNA synthesis, and repair of ARID1B gene mutations. All mutation sites were located in the promoter region of the exon: ARID1B (p.A460) mutation was found in cases 1 and 2, and ARID1B (p.V215G) mutation was found in cases 1 and 3. The nucleic acid site of ARID1B (p.A460) mutation was c.1379 (exon1) C > G, and the nucleic acid site of ARID1B (p.V215G) mutation was c.644 (exon1) T > G. The meningeal metastasis in case 1 turned negative after 4 cycles of intrathecal injection combined with chemotherapy. However, the child died of agranulocytosis combined with sepsis during the 5th cycle of chemotherapy. Case 2 achieved complete remission (CR). Case 3 achieved CR after chemotherapy, surgery, metaiodobenzylguanidine, and 3F-8 (Naxitamab) immunotherapy after the initial diagnosis. The mediastinum and lymph node metastasis occurred during the 6-month observation period after stopping treatment. He achieved very good partial remission after individualized chemotherapy and surgical treatment. ARID1B is a component protein of the SWI/SNF chromatin-remodeling complex that participates in the occurrence of a variety of tumors by regulating DNA repair and synthesis. ARID1B nucleic acid mutation (p.A460, p.V215G) in the promoter region of three children may contribute to the poor prognosis of NB children.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Moyi Chen
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dongsheng Huang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Huali Gu
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - You Yi
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xue Meng
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Yamaguchi J, Ohka F, Kitano Y, Maeda S, Motomura K, Aoki K, Takeuchi K, Nagata Y, Hattori H, Tsujiuchi T, Motomura A, Nishikawa T, Kibe Y, Shinjo K, Kondo Y, Saito R. Rapid detection of the MYD88 L265P mutation for pre- and intra-operative diagnosis of primary central nervous system lymphoma. Cancer Sci 2023. [PMID: 36859777 DOI: 10.1111/cas.15762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
The myeloid differentiation primary response gene 88 (MYD88) L265P mutation is a disease-specific mutation of primary central nervous system lymphoma (PCNSL) among the central nervous system tumors. Accordingly, this mutation is considered a reliable diagnostic molecular marker of PCNSL. As the intra-operative diagnosis of PCNSL is sometimes difficult to achieve using histological examinations alone, intra-operative detection of the MYD88 L265P mutation could be effective for the accurate diagnosis of PCNSL. Herein, we aimed to develop a novel rapid genotyping system (GeneSoC) using real-time polymerase chain reaction (PCR) based on microfluidic thermal cycling technology. This real-time PCR system shortened the analysis time, which enabled the detection of the MYD88 L265P mutation within 15 min. Rapid detection of the MYD88 L265P mutation was performed intra-operatively using GeneSoC in 24 consecutive cases with suspected malignant brain tumors, including 10 cases with suspected PCNSL before surgery. The MYD88 L265P mutation was detected in eight cases in which tumors were pathologically diagnosed as PCNSL after the operation, while wild-type MYD88 was detected in 16 cases. Although two of the 16 cases with wild-type MYD88 were pathologically diagnosed as PCNSL after the operation, MYD88 L265P could be detected in all eight PCNSL cases harboring MYD88 L265P. The MYD88 L265P mutation could also be detected using cell-free DNA derived from the cerebrospinal fluid of two PCNSL cases. Detection of the MYD88 L265P mutation using GeneSoC might not only improve the accuracy of intra-operative diagnosis of PCNSL but also help the future pre-operative diagnosis through liquid biopsy of cerebrospinal fluid.
Collapse
Affiliation(s)
- Junya Yamaguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yotaro Kitano
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhito Takeuchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Nagata
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hikaru Hattori
- Department of Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | | | - Ayako Motomura
- Department of Neurosurgery, Daido Hospital, Nagoya, Japan
| | - Tomohide Nishikawa
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Kibe
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
45
|
Naineni SK, Robert F, Nagar B, Pelletier J. Targeting DEAD-box RNA helicases: The emergence of molecular staples. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1738. [PMID: 35581936 DOI: 10.1002/wrna.1738] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/29/2022]
Abstract
RNA helicases constitute a large family of proteins that play critical roles in mediating RNA function. They have been implicated in all facets of gene expression pathways involving RNA, from transcription to processing, transport and translation, and storage and decay. There is significant interest in developing small molecule inhibitors to RNA helicases as some family members have been documented to be dysregulated in neurological and neurodevelopment disorders, as well as in cancers. Although different functional properties of RNA helicases offer multiple opportunities for small molecule development, molecular staples have recently come to the forefront. These bifunctional molecules interact with both protein and RNA components to lock them together, thereby imparting novel gain-of-function properties to their targets. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Luo Z, Xin D, Liao Y, Berry K, Ogurek S, Zhang F, Zhang L, Zhao C, Rao R, Dong X, Li H, Yu J, Lin Y, Huang G, Xu L, Xin M, Nishinakamura R, Yu J, Kool M, Pfister SM, Roussel MF, Zhou W, Weiss WA, Andreassen P, Lu QR. Loss of phosphatase CTDNEP1 potentiates aggressive medulloblastoma by triggering MYC amplification and genomic instability. Nat Commun 2023; 14:762. [PMID: 36765089 PMCID: PMC9918503 DOI: 10.1038/s41467-023-36400-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
MYC-driven medulloblastomas are highly aggressive childhood brain tumors, however, the molecular and genetic events triggering MYC amplification and malignant transformation remain elusive. Here we report that mutations in CTDNEP1, a CTD nuclear-envelope-phosphatase, are the most significantly enriched recurrent alterations in MYC-driven medulloblastomas, and define high-risk subsets with poorer prognosis. Ctdnep1 ablation promotes the transformation of murine cerebellar progenitors into Myc-amplified medulloblastomas, resembling their human counterparts. CTDNEP1 deficiency stabilizes and activates MYC activity by elevating MYC serine-62 phosphorylation, and triggers chromosomal instability to induce p53 loss and Myc amplifications. Further, phosphoproteomics reveals that CTDNEP1 post-translationally modulates the activities of key regulators for chromosome segregation and mitotic checkpoint regulators including topoisomerase TOP2A and checkpoint kinase CHEK1. Co-targeting MYC and CHEK1 activities synergistically inhibits CTDNEP1-deficient MYC-amplified tumor growth and prolongs animal survival. Together, our studies demonstrate that CTDNEP1 is a tumor suppressor in highly aggressive MYC-driven medulloblastomas by controlling MYC activity and mitotic fidelity, pointing to a CTDNEP1-dependent targetable therapeutic vulnerability.
Collapse
Affiliation(s)
- Zaili Luo
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Dazhuan Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yunfei Liao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kalen Berry
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Feng Zhang
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Liguo Zhang
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Chuntao Zhao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Rohit Rao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xinran Dong
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Hao Li
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Jianzhong Yu
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Yifeng Lin
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Guoying Huang
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Lingli Xu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mei Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ryuichi Nishinakamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ); Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ); Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China.
| | - William A Weiss
- Department of Neurology, Pediatrics, and Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Paul Andreassen
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
47
|
Abballe L, Spinello Z, Antonacci C, Coppola L, Miele E, Catanzaro G, Miele E. Nanoparticles for Drug and Gene Delivery in Pediatric Brain Tumors' Cancer Stem Cells: Current Knowledge and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020505. [PMID: 36839827 PMCID: PMC9962005 DOI: 10.3390/pharmaceutics15020505] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Primary malignant brain tumors are the most common solid neoplasm in childhood. Despite recent advances, many children affected by aggressive or metastatic brain tumors still present poor prognosis, therefore the development of more effective therapies is urgent. Cancer stem cells (CSCs) have been discovered and isolated in both pediatric and adult patients with brain tumors (e.g., medulloblastoma, gliomas and ependymoma). CSCs are a small clonal population of cancer cells responsible for brain tumor initiation, maintenance and progression, displaying resistance to conventional anticancer therapies. CSCs are characterized by a specific repertoire of surface markers and intracellular specific pathways. These unique features of CSCs biology offer the opportunity to build therapeutic approaches to specifically target these cells in the complex tumor bulk. Treatment of pediatric brain tumors with classical chemotherapeutic regimen poses challenges both for tumor location and for the presence of the blood-brain barrier (BBB). Lastly, the application of chemotherapy to a developing brain is followed by long-term sequelae, especially on cognitive abilities. Novel avenues are emerging in the therapeutic panorama taking advantage of nanomedicine. In this review we will summarize nanoparticle-based approaches and the efficacy that NPs have intrinsically demonstrated and how they are also decorated by biomolecules. Furthermore, we propose novel cargoes together with recent advances in nanoparticle design/synthesis with the final aim to specifically target the insidious CSCs population in the tumor bulk.
Collapse
Affiliation(s)
- Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Celeste Antonacci
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Lucia Coppola
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ermanno Miele
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0H3, UK
| | - Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: (G.C.); (E.M.)
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence: (G.C.); (E.M.)
| |
Collapse
|
48
|
Thatikonda V, Islam SMA, Autry RJ, Jones BC, Gröbner SN, Warsow G, Hutter B, Huebschmann D, Fröhling S, Kool M, Blattner-Johnson M, Jones DTW, Alexandrov LB, Pfister SM, Jäger N. Comprehensive analysis of mutational signatures reveals distinct patterns and molecular processes across 27 pediatric cancers. NATURE CANCER 2023; 4:276-289. [PMID: 36702933 PMCID: PMC9970869 DOI: 10.1038/s43018-022-00509-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
Analysis of mutational signatures can reveal underlying molecular mechanisms of the processes that have imprinted the somatic mutations found in cancer genomes. Here, we analyze single base substitutions and small insertions and deletions in pediatric cancers encompassing 785 whole-genome sequenced tumors from 27 molecularly defined cancer subtypes. We identified only a small number of mutational signatures active in pediatric cancers, compared with previously analyzed adult cancers. Further, we report a significant difference in the proportion of pediatric tumors showing homologous recombination repair defect signatures compared with previous analyses. In pediatric leukemias, we identified an indel signature, not previously reported, characterized by long insertions in nonrepeat regions, affecting mainly intronic and intergenic regions, but also exons of known cancer genes. We provide a systematic overview of COSMIC v.3 mutational signatures active across pediatric cancers, which is highly relevant for understanding tumor biology and enabling future research in defining biomarkers of treatment response.
Collapse
Affiliation(s)
- Venu Thatikonda
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim RCV GmbH, Vienna, Austria
| | - S M Ashiqul Islam
- Department of Cellular and Molecular Medicine and Department of Bioengineering, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Robert J Autry
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Barbara C Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Pediatric Glioma Research Group, DKFZ, Heidelberg, Germany
| | - Susanne N Gröbner
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gregor Warsow
- Omics IT and Data Management Core Facility (W610), DKFZ, Heidelberg, Germany
| | - Barbara Hutter
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg, DKFZ, Heidelberg, Germany
- Division of Applied Bioinformatics, DKFZ, Heidelberg, Germany
| | - Daniel Huebschmann
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg, DKFZ, Heidelberg, Germany
- Pattern Recognition and Digital Medicine, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Mirjam Blattner-Johnson
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, DKFZ, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Pediatric Glioma Research Group, DKFZ, Heidelberg, Germany
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
49
|
Germline TP53 mutations undergo copy number gain years prior to tumor diagnosis. Nat Commun 2023; 14:77. [PMID: 36604421 PMCID: PMC9816166 DOI: 10.1038/s41467-022-35727-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome associated with germline TP53 pathogenic variants. Here, we perform whole-genome sequence (WGS) analysis of tumors from 22 patients with TP53 germline pathogenic variants. We observe somatic mutations affecting Wnt, PI3K/AKT signaling, epigenetic modifiers and homologous recombination genes as well as mutational signatures associated with prior chemotherapy. We identify near-ubiquitous early loss of heterozygosity of TP53, with gain of the mutant allele. This occurs earlier in these tumors compared to tumors with somatic TP53 mutations, suggesting the timing of this mark may distinguish germline from somatic TP53 mutations. Phylogenetic trees of tumor evolution, reconstructed from bulk and multi-region WGS, reveal that LFS tumors exhibit comparatively limited heterogeneity. Overall, our study delineates early copy number gains of mutant TP53 as a characteristic mutational process in LFS tumorigenesis, likely arising years prior to tumor diagnosis.
Collapse
|
50
|
Kamenova M, Kaneva R, Genova K, Gabrovsky N. Embryonal Tumors of the Central Nervous System with Multilayered Rosettes and Atypical Teratoid/Rhabdoid Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:225-252. [PMID: 37452940 DOI: 10.1007/978-3-031-23705-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The 2016 WHO classification of tumors of the central nervous system affected importantly the group of CNS embryonal tumors. Molecular analysis on methylome, genome, and transcriptome levels allowed better classification, identification of specific molecular hallmarks of the different subtypes of CNS embryonal tumors, and their more precise diagnosis. Routine application of appropriate molecular testing and standardized reporting are of pivotal importance for adequate prognosis and treatment, but also for epidemiology studies and search for efficient targeted therapies. As a result of this approach, the term primitive neuroectodermal tumor-PNET was removed and a new clinic-pathological entity was introduced-Embryonal tumor with multilayered rosettes (ETMR). The group of CNS embryonal tumors include also medulloblastoma, medulloepithelioma, CNS neuroblastoma, CNS ganglioneuroblastoma, atypical teratoid/rhabdoid tumor (ATRT) and their subtypes. This chapter will focus mainly on ETMR and ATRT. Embryonal tumors with multilayered rosettes and the atypical teratoid/rhabdoid tumors are undifferentiated or poorly differentiated tumors of the nervous system that originate from primitive brain cells, develop exclusively in childhood or adolescence, and are characterized by a high degree of malignancy, aggressive evolution and a tendency to metastasize to the cerebrospinal fluid. Their clinical presentation is similar to other malignant, intracranial, neoplastic lesions and depends mainly on the localization of the tumor, the rise of the intracranial pressure, and eventually the obstruction of the cerebrospinal fluid pathways. The MRI image characteristics of these tumors are largely overlappingintra-axial, hypercellular, heterogeneous tumors, frequently with intratumoral necrosis and/or hemorrhages. Treatment options for ETMR and ATRT are very restricted. Surgery can seldom achieve radical excision. The rarity of the disease hampers the establishment of a chemotherapy protocol and the usual age of the patients limits severely the application of radiotherapy as a therapeutic option. Consequently, the prognosis of these undifferentiated, malignant, aggressive tumors remains dismal with a 5-year survival between 0 and 30%.
Collapse
Affiliation(s)
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University, Sofia, Bulgaria
| | - Kamelia Genova
- Department of Image Diagnostic, University Hospital "Pirogov", Sofia, Bulgaria
| | - Nikolay Gabrovsky
- Department of Neurosurgery, University Hospital "Pirogov", Sofia, Bulgaria.
| |
Collapse
|